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We dedicate this paper to the memory of deceased colleagues, of Roberto
Mignani who saw the need for the physical and extended fifth dimension,
and of Eliano Pessa who proposed an appropriate dimensional homogeneity
constant for the fifth dimension.

Abstract. The framework of the Deformed Space Time theory has been extended in
the past from four to five dimensions (Ref. [1]) where the fifth coordinate is the energy
exchanged by the interaction. In this theory each fundamental interaction is described
by an energy depended metric. This picture has been exploited in order to take care
of the interaction behaviour both when Lorentz invariance holds and the spacetime is
Minkowskian and when Lorentz is violated and must be recovered in a non-Minkowskian
spacetime. It has been successfully attempted to complete the pentadimensional metric of
the four fundamental interaction calculating the fifth element of the metric corresponding
to the fifth coordinate energy. The mathematical tool exploited is the method of the Ricci
flow which gave the complete explicit form of the fifth element of the metric, answering
in this way to the question of “how the energy measure the energy” for each interaction,
setting the electromagnetic interaction as the reference for the energy measure. In this
sense it has been given meaning to the problem of the energy gauge for interaction,
identifying the gauge with the fifth metric element. The consequences for the nuclear
metamorphosis have been also examined for reaching the technological goal of a device
producing this metamorphosis in a stable way under the hadronic metric. The most
valuable consequence is that in this pentadimensional picture the old Einsteinian dream
of a complete geometrization of the interactions is reached. The results achieved in the
present work have allowed to design, build and test devices capable of exploiting the
behavior of the fifth element of the metrics to obtain the production of electric charges
directly from the nuclear metamorphosis of the matter.
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1 Introduction

In order to progress beyond the results presented in [1] in the present work we want to
explicitly determine the fifth element of the pentadimensional metrics associated with
the fundamental interactions — dependent on the energy coordinate — by means of the
technique of the Ricci flow.

The pentadimensional metrics studied so far in [1] derive their origin from four-dimensional
metrics on a space-time of Cartesian coordinates (x0, x1 , x2 , x3), where energy E plays the
role of parameter, not of coordinate.

Turning to the 5D representation, energy E also takes on the role of coordinate. Energy
E is an additional measurable and extended real physical dimension, thus endowed with
measurable physical dimensions.

The four pentadimensional metrics associated with the four fundamental interactions

(1)

strong (hadronic)
gravitational
electromagnetic
weak (leptonic)

are defined in a space-time-energy manifold endowed with global length-dimensional
coordinates (x0, x1, x2, x3, x4) so that the gij components of the metric tensor turn out to
be dimensionless.

The first coordinate x0 represents time t through the product x0 = u t, that is, the product
of time by the velocity u which is the maximum relativistically invariant causal velocity
corresponding to each interaction, see [1].

The fifth coordinate x4 ∈ [0,+∞) represents the energy E through the product

(2) x4 = k E

where k is a positive constant having the dimensions L × energy−1, so that the coordinate
x4 has the dimensions of a length.

The intermediate spatial coordinates (x1, x2, x3) have the dimension of a length.

2 Classification of the pentadimensional metrics

The components of the four pentadimensional metrics we are going to examine are taken
from [1], §19.3. For all of them the metric tensor is diagonalized: gij = 0 for i ̸= j. A
careful comparison of these metrics reveals that they can be classified into two types:

(3) type 1:



g00 = G(x4) positive dimensionless function,

g11 = −α, α positive dimensionless constant,

g22 = − β, β positive dimensionless constant,

g33 = −G(x4),

g44 = ±F (x4), F (x4) positive dimensionless function.
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(4) type 2:


g00 = 1 dimensionless,

g11 = g22 = g33 = −G(x4), G(x4) positive dimensionless function,

g44 = ±F (x4), F (x4) positive dimensionless function.

In both types are involved two dimensionless positive functions F (x4) and G(x4) of the one
coordinate x4 on which the metric depends.1 We call G(x4) the characteristic function
of the metric. The function F (x4) that defines the fifth component g44, that is, the ‘fifth
element’ mentioned at the beginning, is preceded by the double sign ±. So each type
splits into two subtypes. The choice of the sign ± is equivalent to the choice of the genus
of the energy axis x4:

(5)

{
upper sign + ⇐⇒ the x4−axis is timelike

lower sign − ⇐⇒ the x4−axis is spacelike

�

�

�




The distinction of the metrics into these two types (four sub-types) allows
us to highlight some of their peculiar properties valid for any characteristic
function G(x4). As will be seen, this results in a valuable simplification of
the calculations as well as efficient checking of their correctness.

Each of these metrics has a discontinuity at a particular value x4int of the x4-coordinate,
which is called threshold energy.

We will use the symbol int to label any of the four interactions:

int = (em, grav, weak, strong) = (electromagnetic,gravitational,weak,strong)

Or, more simply,
int = (e, g, w, s).

Each threshold divides the axis x4 ≥ 0 into two separated intervals. In one of these (before
or after the threshold) the geometry is flat with sign (+−−−±) depending on the sign
± of g44, while in the complementary interval the geometry undergoes a deformation
and may therefore exhibit curvature. This discontinuity is represented by means of the
Heaviside step function.2

2.1 Unitary Heaviside step function

The unitary Heaviside step function is defined as follows

H(x) =

{
0 for x < 0

1 for x ≥ 0

1 The other coordinates are said to be ignorable.
2 Before proceeding further we want to note here that the Heaviside step function can also be considered
as a limit of continuous functions or even series of functions. We leave this topic as further study to be
developed in later work.
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Its graph is shown in Figure 1.
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Figure 1: Unitary Heaviside step function.

From this definition derive two other types of step functions which we will use below:
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Figure 2: Translated Heaviside step (right).
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Figure 3: Translated and inverted Heaviside step.

In a physical context we can also adopt this definition: the Heaviside step function can
represent a signal activated in a physical system for a given value of the variable x that
remains constant for successive values, without regard to the order of variability (increasing
or decreasing). Given this definition of a Heaviside step in physical context, we do not
wish to go into the reversibility of the physical system described by this function here.
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2.2 Hadronic (strong) metric
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Hadronic (strong) metric

Figure 4: Hadronic Heaviside step of axis x4 with threshold x4s.

The components of the metric are:

(6)



g00 = 1 +H[x4 − x4s]

(
x2
4

x2
4s

− 1

)
,

g11 = −α, α > 0 dimensionless constant,

g22 = − β, β > 0 dimensionless constant,

g33 = − g00,

g44 = ±F (x4), F (x4) > 0, F (x4) dimensionless function.

• Before the threshold we have H[x4 − x4s] = 0 and metric (6) becomes

(7)


g00 = 1

g11 = −α

g22 = − β

{
g33 = − 1

g44 = ±F (x4)

The comparison with (3) shows that this metric is type 1 with characteristic function
Gs = 1. Thus this metric is flat with signature (+−−−±), see Figure 5.
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Figure 5: Once the threshold is reached, we move from a flat metric to a deformed one.
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•• After the threshold we have H[x4 − x4s] = 1 and the metric becomes

(8)


g00 =

x2
4

x2
4s

g11 = −α

g22 = − β

 g33 = − x2
4

x2
4s

g44 = ±F (x4)

The comparison with (3) shows that this metric is type 1 with characteristic function

(9) Gs =

(
x4

x4s

)2
and signature (+ − − − ±). As will be seen later (Theorem 6.1) its Ricci tensor cannot
cancel after the threshold: after the threshold the metric is deformed.

2.3 Gravitational metric

The situation is quite similar to that of hadronic interaction:
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Figure 6: Once the threshold is reached, we move from a flat metric to a deformed one.

The metric components are:

(10)



g00 = 1 +H[x4 − x4g]
[

1
4

(
1 +

x4

x4g

)2
− 1

]
,

g11 = −α, α > 0 dimensionless constant,

g22 = − β, β > 0 dimensionless constant,

g33 = − g00,

g44 = ±F (x4), F (x4) > 0, F (x4), dimensionless function.
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• Before the threshold we have H[x4 − x4g] = 0 and the metric becomes

(11) x4 < x4g



g00 = 1,

g11 = −α, α > 0 dimensionless constant,

g22 = − β, β > 0 dimensionless constant,

g33 = − g00 = −1,

g44 = ±F (x4), F (x4) > 0, F (x4) dimensionless function.

The comparison with (3) shows that this metric is type 1 with characteristic function
Gg = 1. Thus this metric is flat3 with signature (+−−−±), see Figure 6.

•• After the threshold we have H[x4 − x4g] = 1 and the metric becomes

(12) x4 ≥ x4g



g00 =
1
4

(
1 +

x4

x4g

)2
g11 = −α, α > 0 dimensionless constant

g22 = − β, β > 0 dimensionless constant

g33 = − g00

g44 = ±F (x4), F (x4) > 0, F (x4) dimensionless function

The comparison with (3) shows that this metric is type 1 with characteristic function

(13) Gg =
1
4

(
1 +

x4

x4g

)2

=
(x4g + x4)

2

4x2
4g

and signature (+ − − − ±). As will be seen later (Theorem 6.2) its Ricci tensor cannot
cancel after the threshold: after the threshold the metric is deformed.

2.4 Electromagnetic metric
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1 ......................................................................................................................................................................................................................................................................................

H[x4e − x4]

x4

x4 ≥ x4ex4 < x4e

deformed metrric flat metricx4e

Electromagnetic metric

Figure 7: Electromagnetic Heaviside step over x4-axis with threshold x4e.

3 Since F (x4) > 0 we can transform the coordinate x4 into a new coordinate for which the new component
g44 of the metric is constant.
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The metric components are

(14)


g00 = 1

g11 = g22 = g33 = −

{
1 +H[x4e − x4]

[(
x4

x4e

)1/3

− 1

]}
spatial isotropy

g44 = ±F (x4), F (x4) > 0.

• Before the threshold we have H[x4e − x4] = 1 and the metric becomes

(15) x4 < x4e


g00 = 1

g11 = g22 = g33 = −
(

x4

x4e

)1/3

spatial isotropy

g44 = ±F (x4), F (x4) > 0.

The comparison with (4) shows that this metric is type 2 with characteristic function

(16) Ge =

(
x4

x4e

)1/3
and signature (+−−−±), see Figure 7.

•• After the threshold we have H[x4e − x4] = 0 and the metric becomes

(17) x4 ≥ x4e


g00 = 1

g11 = g22 = g33 = − 1, spatial isotropy

g44 = ±F (x4), F (x4) > 0.

The comparison with (4) shows that this metric is type 2 with characteristic function
Ge = 1. It is flat with signature (+−−−±) (see the previous footnote).

2.5 Leptonic (weak) metric

The metric components are

(18)


g00 = 1,

g11 = g22 = g33 = −
{
1 +H[x4w − x4]

[(
x4

x4w

)1/3
− 1

]}
spatial isotropy,

g44 = ±F (x4), F > 0.

• Before the threshold we have H[x4w − x4] = 1 and the metric becomes

(19) x4 < x4w


g00 = 1

g11 = g22 = g33 = −
(

x4

x4w

)1/3
g44 = ±F (x4)
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The comparison with (4) shows that this metric is type 2 with characteristic function

(20) Gw =

(
x4

x4w

)1/3
and signature (+−−−±), see Figure 8.

•• After the threshold we have H[x4w − x4] = 0 and the metric becomes

(21) x4 ≥ x4w


g00 = 1

g11 = g22 = g33 = −1

g44 = ±F (x4)

The comparison with (4) shows that this metric is type 2 with characteristic function
Gw = 1. It is flat with signature (+−−−±) (see the previous footnote).
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threshold
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1 ......................................................................................................................................................................................................................................................................................

H[x4w − x4]

x4

x4 ≥ x4wx4 < x4w

deformes metric flat metricx4w

Leptonic metric

Figure 8: Leptonic Heaviside step over x4-axis with threshold x4w.

Note that the leptonic Heaviside step is similar to the electromagnetic step, except that
the leptonic threshold is 2 · 1016 times the electromagnetic threshold.4

2.6 Summary of characteristic functions

(22)

(9) Gs =

(
x4

x4s

)2
hadronic, after the threshold x4s

(13) Gg =
1
4

(
1 +

x4

x4g

)2

gravitational, after the threshold x4g

(16) Ge =

(
x4

x4e

)1/3
electromagnetic, before the threshold x4e

(20) Gw =

(
x4

x4w

)1/3
leptonic, before the threshold x4w

4 [1], Cap. 4, §4.2, p. 61, fig. 4.2.
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2.7 Summary of Heaviside’s steps

We give here the graphical translation of what is expressed in equations (22) from a
qualitative point of view consistent with the definition of the Heaviside step and the
variants that we adopted at §2.1.

(23)

hadronic ................................................................................................................................................................................................................................................................................................................. .......................
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
..................
................

·································································································································
·································································································································•

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

..

flat
metric

deformed

gravitazional ................................................................................................................................................................................................................................................................................................................. .......................
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
..................
................

·································································································································
·································································································································
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
..•

flat
metric

deformed

electromagnetic ................................................................................................................................................................................................................................................................................................................. .......................
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
..................
................

·································································································································
·································································································································.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
..

•

deformed

flat

leptonic ................................................................................................................................................................................................................................................................................................................. .......................
.......
.......
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.......
.......
.......
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.......
.......
.......
..................
................

·································································································································
·································································································································.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
..

•

deformed

flat

3 Metric flows and volume conservation�




�

	
From here up to Section 8, with the addition of an Appendix concerning the
calculation of the Ricci tensor, purely mathematical topics focused on the
notion of Ricci flow will be covered.

We work on an n-dimensional manifold Mn with generic coordinates (x) = (x1, x2, ..., xn)
and on this manifold we consider a coordinated domain D ⊂ Mn, i.e., a deformed
hyperparallelepipedon whose edges are segments of coordinate lines. To such a domain
we can apply the derivation theorem under the integral sign.5.

We call metric flow a family of metric tensors gij(x, t) defined over D, depending on an
evolution parameter t such that it satisfies flow equations of the type

(24) ∂tgij(x, t) = −Sij(x, t) +
1

n
S̄(t) gij(x, t)

where Sij(x, t) is a symmetric tensor defined on D and

(25) S̄
def
=

1

VD

∫
D

S dV =
1

VD

∫
D

S
√

|g| dx

5 In fact, the results obtained below are also valid in the more general case in which the domain D can be
covered by several coordinate domains
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is the mean value over D of the scalar

(26) S
def
= gij Sij

In (25) the volume VD of the domain D is defined by

(27) VD =

∫
D

dV =

∫
D

√
|g| dx

 g
def
= det[gij]

dx
def
= dx1 ∧ dx2 ∧ ... ∧ dxn,

where the n-differential form dV =
√
|g|, dx1 ∧ dx2 ∧ ... ∧ dxn is the volume form

associated with the metric gij(x, t).

Remark 3.1 – The equations of the normalized Ricci flow, which we will discuss
later, are of the type (24)

(28) ∂tgij(x, t) = −Rij(x, t) +
1

n
R̄(t) gij(x, t)

where Rij(x, t) is the Ricci tensor of the metric gij(x, t) and R̄ is the mean value of the
Ricci scalar R in the domain D:

R̄
def
=

1

VD

∫
D

RdV =
1

VD

∫
D

R
√
|g| dx(29)

R
def
= gij Rij(30)

However, equations (24) differ conceptually from (28) because, unlike the latter, in equa-
tions (24) no functional link is specified between the tensors gij(x, t) and Sij(x, t). For
this very reason, we need the following theorem •

Theorem 3.1 – If in a metric flow (24) the mean value S̄ remains constant with respect
to t then the volume VD also remains constant.

Proof. By multiplying both members of (24) by gij and summing we get the equation

gij∂tgij = − S + S̄.

By virtue of Jacobi’s formula

(31) gij ∂tgij = ∂t log |g|

this equation becomes

(32) ∂t log |g| = − S + S̄

We then proceed to calculate the derivative with respect to t of the volume (27):

dVD

dt
=

d

dt

∫
D

dV =
d

dt

∫
D

√
|g| dx.
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As mentioned above, for a coordinated domain D the theorem of differentiation under the
sign of integral applies, so that

dVD

dt
=

∫
D

d
√

|g|
dt

dx = ...

Since dx =
1√
|g|

, dV it follows that

... =

∫
D

d
√
|g|

dt

1√
|g|

dV =

∫
D

d log
√
|g|

dt
dV = 1

2

∫
D

d log |g|
dt

dV = ...

Finally, by virtue of (32), we find

... = 1
2

∫
D

(S̄ − S) dV = 1
2
S̄

∫
D

dV − 1
2

∫
D

S dV

because S̄ is a constant (it is a number). We have then shown that

dVD

dt
= 1

2
S̄ VD − 1

2

∫
D

S dV.

Dividing both members by the volume VD =
∫
D
dV , and multiplying by 2, we find

2

VD

dVD

dt
= S̄ − 1

VD

∫
D

S dV = S̄ − S̄ = 0.

Thus
dVD

dt
= 0. ■

Remark 3.2 – We will see later (Theorem 7.1) that the existence of a normalized Ricci
flow necessarily implies R̄ = 0. So in this case we can definitely apply Theorem 3.1 with
that additional assumption. •

4 Dimensional homogeneity

Any equation of the type (24) must satisfy the dimensional homogeneity principle
according to which both members of an equation must have the same physical dimension.
If not, the equation is meaningless.6 In our case, in which the components of the metric
tensor gij are dimensionless, the flow equations (24) are dimensionally homogeneous if
and only if the parameter t obeys the dimensional equality

(33) Dim[ t ] =
1

Dim[Sij]

Then with regard to the first member of (24) we have

Dim
[
∂tgij

]
= Dim

[
1

t

]
=

1

Dim
[
t
] .

On the other hand, as far as the second member is concerned, from S
def
= gij Sij it fol-

lows that Dim
[
S
]
= Dim

[
Sij

]
. This means that the second member is homogeneous.

Therefore, the dimensional equation to be taken into account is (33):

6 Especially in a physical-mathematical context, but not only, this principle should also be given due
consideration because it constitutes a check on the correctness of calculations.
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5 Ricci tensors
�




�

	
S.M. Carroll, [16], p.75: ... there is a convention that needs to be chosen
for the ordering of the indices. There is no agreement at all on what this
convention should be, so be careful.

In the aim to analyze the Ricci flow properties of the metrics associated with the four
fundamental interactions, it should be preliminarily noted that:

(i) There are properties of the Ricci flows which change seriously if we change the sign of
the Ricci tensor.

(ii) As Carroll warns, although in the literature the defininions of Riemann and Ricci
tensors may vary from author to author, the Ricci tensor may at most change in sign.

(iii) It is therefore necessary to conduct a comparative study of the definitions or conven-
tions adopted by a sufficiently significant number of authors. A small number of them
are examined in Appendix 15.1, sufficient, however, to highlight the fact that:

(34)

�

�

�

�

Regardless of the conventions adopted for Riemann and Ricci tensors,
all the Ricci tensors have the opposite sign to that adopted by L.P.
Eisenhart..a Thus, the definitions according to Eisenhart of Ricci ten-
sors come to assume an important comparative role.

a In his time professor of differential geometry at Princeton.

On the other hand, to ensure the maximum reliability of the results we are going to
achieve, it is a must to adopt for Riemann and Ricci the conventions of R. Hamilton or
Cao-Zhu,7 because on them these authors built their fundamental approach to Ricci’s flow
theory. Given the property (34) we conclude that:

(35)

�
�

�
�

The components of the Ricci tensors on which to base the study of Ricci
flows of type 1 and 2 metrics are those of Eisenhart with opposite sign.

In Appendices 15.3 and 15.4 it is shown that the Ricci-Eisenhart components are

(36)
type 1
metrics

±F



E

R 00 = ± 2G′′ F −G′ F ′

4F 2
,

E

R 11 = R22 = 0,
E

R 33 = −
E

R 00

E

R 44 =
2G′′ F G−G′ F ′G− (G′)2 F

2G2 F

7 As we shall see they turn out to be equivalent.
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(37)
type 2
metrics

±F



E

R 00 = 0

E

R 11 =
E

R 22 =
E

R 33 = ∓ 2G′′ F G+ (G′)2 F − F ′G′ G

4F 2G

E

R 44 = 3
2F G′′ G− (G′)2 F − F ′ G′G

4G2 F

So, according to these guidelines, the components of the Ricci tensors whose flow we have
to analyze turn out to be:

(38)
type 1
metrics

±F


R00 = ∓ 2G′′ F −G′ F ′

4F 2
,

R11 = R22 = 0, R33 = −R00

R44 = − 2G′′ F G−G′ F ′G− (G′)2 F

2G2 F

(39)
type 2
metrics

±F


R00 = 0

R11 = R22 = R33 = ± 2G′′ F G+ (G′)2 F − F ′ G′G

4F 2G

R44 = − 3
2F G′′G− (G′)2 F − F ′ G′ G

4G2 F

The following properties apply to both types of metrics.

(i) The Ricci tensor is diagonalized.

(ii) The component R44 does not change sign in the transition from sign + to sign −.

(iii) The constants α and β disappear.

(iv) F ′ is present but not F ′′.

(v) Both G′ and G′′ derivatives of G are present.

6 Peculiar properties of hadronic and gravitational

metrics

Theorem 6.1 – After the threshold x4s the Ricci tensor of the hadronic metric cannot
cancel.

Proof. After the threshold x4s this metric is of type 1 with characteristic function Gs =
x2
4/x

2
4s. Suppose R00 = 0. From the first of (38) we derive the equivalence

R00 = 0 ⇐⇒ 2G′′ F = G′ F ′.

Furthermore we have G =
x2
4

x2
4s

,
G′′

G′ =
2

2x4

=
1

x4

,
2

x4

=
F ′

F
=

dF

dx4

1

F
, 2

dx4

x4

=
dF

F
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d log x2
4 = d logF , log x2

4 = cost. + logF , x2
4 = ecost.F . Therefor:

R00 = 0 ⇐⇒ F = Cs x
2
4

(40) where Cs is an arbitrary positive constant with dimension L−2

Now suppose also R44 = 0:

R44 = − 3
2F G′′G− (G′)2 F − F ′G′ G

4G2 F
= 0 ⇐⇒ 2F G′′ G− (G′)2 F − F ′ G′G = 0

⇐⇒ 2G′′G− (G′)2 − F ′

F
G′ G = 0 ⇐⇒ 2 ∗ 2 ∗ x2

4 − (2x4)
2 − 2

x4

∗ 2x4 ∗ x2
4 = 0

⇐⇒ x2
4 − (x4)

2 − x2
4 = 0: absurd. ■

The same property also holds for the gravitational metric:

Theorem 6.2 – After the threshold x4g the Ricci tensor of the gravitational metric cannot
cancel.

Proof. After the threshold this metric is type 1 with characteristic function

Gg =
1
4

(
1 +

x4

x4g

)2

= 1
4

(
x4 + x4g

x4g

)2

.

Also in this case we start by assuming R00 = 0 and therefore again from the equivalence

R00 = 0 ⇐⇒ 2G′′ F = G′ F ′.

G′ = 1
2

x4 + x4g

x2
4g

, G′′ = 1
2

1

x2
4g

,
G′′

G′ =

1
2

1

x2
4g

1
2

x4 + x4g

x2
4g

=
1

x4 + x4g

.

2G′′ F = G′ F ′ ⇐⇒ 2

x4 + x4g

=
F ′

F
=

dF

dx4

1

F
⇐⇒ 2 dx4

x4 + x4g

=
dF

F

⇐⇒ d log(x4+x4g)
2 = d logF ⇐⇒ log(x4+x4g)

2 = cost.+logF ⇐⇒ (x4+x4g)
2 =

ecost.F . Therefore:
R00 = 0 ⇐⇒ F = Cg (x4 + x4g)

2

(41) where Cg is an arbitrary positive constant with dimension L−2

Now suppose also R44 = 0:

R44 = 0 ⇐⇒ 2F G′′G− (G′)2 F − F ′G′ G = 0 ⇐⇒ 2G′′ G− (G′)2 − F ′

F
G′ G = 0

⇐⇒ 2 1
2

1

x2
4g

1
4

(
x4 + x4g

x4g

)2

−
(

1
2

x4 + x4g

x2
4g

)2

− 2

x4 + x4g

1
2

x4 + x4g

x2
4g

1
4

(
x4 + x4g

x4g

)2

= 0

⇐⇒ 1

x2
4g

(
x4 + x4g

x4g

)2

−
(
x4 + x4g

x2
4g

)2

− 1

x2
4g

(
x4 + x4g

x4g

)2

= 0

=⇒ x4 + x4g = 0: absurd. ■

Remark 6.1 – For the remaining two metrics, leptonic and electromagnetic, one can
repeat the calculation on the Ricci tensor before the threshold, concluding that before the
thresholds x4e and x4w the Ricci tensor does not cancel. •
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7 Normalized Ricci flows

The definition of normalized Ricci flow has already been introduced in Remark 3.1 of §3:
it is a family of metrics gij(x, t) parametrized by an independent evolution variable t and
defined over a domain D of a Riemannian manifold Mn such as to satisfy the normalized
flow equations8

(42) ∂tgij(x, t) = −Rij(x, t) +
1

n
R̄(t) gij(x, t)

where Rij(x, t) is the Ricci tensor of the metric gij(x, t) and R̄ is the mean value of the
Ricci scalar R in the domain D:

R̄
def
=

1

VD

∫
D

RdV =
1

VD

∫
D

R
√
|g| dx(43)

R
def
= gij Rij(44)

Remark 7.1 – We are working in L-dimensional xi coordinates with dimensionless metric
components. It follows that the Ricci components have the inverse dimension of a squared
length:

Dim[Rij] = Dim[R] = Dim[R̄] =
1

L2
.

Theorem 3.1 and formula (33) regarding metric flows are valid mutatis mutandis for a
Ricci flow. So for dimensional homogeneity of the flow equations (42) must be

(45) Dim[ t ] =
1

Dim[Rij]
= L2. •

Theorem 7.1 – The existence of a normalized Ricci flow for type 1 or 2 metrics neces-
sarily implies R̄ = 0.

Proof. Type 1. By virtue of equations (3)

type 1 metric


g00 = G(x4)

g11 = −α, α > 0

g22 = − β, β > 0

{
g33 = −G(x4)

g44 = ±F (x4),

8 In the literature these equations also appear in the form

∂tgij = −2Rij(x, t) +
2

n
R̄ gij .

However, the presence of factor 2 is inessential because it can delete by changing parameter. Let us
remember that n is the number of dimensions that we have set equal to 5 following the physical indication
of the hadronic metric, where the anisotropy is linked to the coordinates that have parameters of the
metric α and β which are constant fractions having the number 5 in the denominator, and are the result of
the phenomenological study of the hadronic metric (see [1], Chap. 19, §19.1, p. 280, and related footnote).
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the Ricci flow equations (42) for n = 5

∂tgij = −Rij +
1
5
R̄ gij :



[00] ∂tg00 = −R00 +
1
5
R̄ g00

[11] ∂tg11 = −R11 +
1
5
R̄ g11

[22] ∂tg22 = −R22 +
1
5
R̄ g22

[33] ∂tg33 = −R33 +
1
5
R̄ g33

[44] ∂tg44 = −R44 +
1
5
R̄ g44

become, also taking into account (38) R11 = R22 = 0 and R33 = −R00,

(46)


[00] ∂tG = −R00 +

1
5
R̄ G

[11] 0 = 1
5
R̄ α

[22] 0 = 1
5
R̄ β

[44] ± ∂tF = −R44 ± 1
5
R̄ F

From [11] and [22] it follows that R̄ = 0.

Type 2. By virtue of equations (4)

type 1 metric


g00 = 1

g11 = g22 = g33 = −G(x4)

g44 = ±F (x4),

the Ricci flow equations (42) with n = 5

(47)



[00] 0 = −R00 +
1
5
R̄,

[11] − ∂tG = −R11 − 1
5
R̄ G,

[22] − ∂tG = −R22 − 1
5
R̄ G,

[33] − ∂tG = −R33 − 1
5
R̄ G,

[44] ± ∂tF = −R44 ± 1
5
R̄ F,

also taking into account that R00 = 0 and R11 = R22 = R33, reduce to the three equations

(48)


[00] 0 = 1

5
R̄,

[11] ∂tG = R11 +
1
5
R̄ G,

[44] ± ∂tF = −R44 ± 1
5
R̄ F,

i.e. to

(49)


[00] R̄ = 0,

[11] ∂tG = R11,

[44] ± ∂tF = −R44. ■

We must underline that the Theorem 7.1 puts us in front of a rather paradoxical situation:
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�




�

	
From the hypothesis that the metrics of type 1 and 2 admit a normalized
Ricci flow it necessarily follows R̄ = 0, i.e. that the Ricci flow is in fact
not normalized.

In the next section we therefore move on to the study of non-normalized Ricci flows in
order to establish their conditions of existence.

8 Non-normalized Ricci flows

With R̄ = 0 the equations of the normalized flow (42) reduce to those of a non-
normalized Ricci flow

(50) ∂tgij = −Rij

It is known that the existence of a normalized Ricci flow is a sufficient condition for the
conservation of the volume of the definition domain D, but it is not necessarily a necessary
condition.�

�

�




However, we observe that the conservation of the volume VD is still guar-
anteed by Theorem 3.1 according to which if in a flow of metrics (24) the
mean value S̄ is constant in t then also the volume VD remains constant.
In the present case it is R̄ = 0, so this condition is satisfied.

From (46) and (48) it follows that, for the metrics of the two types, the system of equations
(50) reduces respectively to:

non-normalized Ricci flow of type 1

{
[00] ∂tG = −R00

[44] ± ∂tF = −R44

non-normalized Ricci flow of type 2

{
[11] ∂tG = R11

[44] ± ∂tF = −R44

Since the components of the metric are dimensionless and the components of the Ricci
tensors have dimension L−2, then in equations (50) the evolution parameter t must have
dimension L2, see (45).

If in equations (50) we replace the parameter t with the coordinate x4 thought of as a
function of t then they take the form:

tipo 1

{
[00] G′ ẋ4 = −R00

[44] ± F ′ ẋ4 = −R44

tipo 2

{
[11] G′ ẋ4 = R11

[44] ± F ′ ẋ4 = −R44

Since

Dim(G′ ẋ4) =
1

L

L

L2
=

1

L2
, Dim(F ′ ẋ4) =

1

L

L

L2
=

1

L2
, Dim(Rij) =

1

L2
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these equations are dimensionally homogeneous.

Now, recalling the expressions of the components of the Ricci tensors (38) and (39) we
obtain the following two couples of equations:

(51) type 1


[00] G′ ẋ4 = −R00 = ± 2G′′ F −G′ F ′

4F 2

[44] ± F ′ ẋ4 = −R44 =
2G′′ F G−G′ F ′G− (G′)2 F

2G2 F

(52) type 2


[11] G′ ẋ4 = R11 = ± 2G′′ F G+ (G′)2 F − F ′ G′ G

4F 2G

[44] ± F ′ ẋ4 = −R44 = 3
2F G′′G− (G′)2 F − F ′G′G

4G2 F

Theorem 8.1 – A type 1 metric admits a non-normalized Ricci flow if its characteristic
function G satisfies the equation

(53)
2G′′ F −G′ F ′

2F G′ =
2G′′ F G−G′ F ′ G− (G′)2 F

G2 F ′

which is equivalent to

(54)
G′′

G′ −
F ′

2F
=

2G′′

G

F

F ′ −
G′

G
− (G′)2

G2

F

F ′

Proof. Equations (51) are equivalent to
ẋ4 = ± 2G′′ F −G′ F ′

4F 2G′

± ẋ4 =
2G′′ F G−G′ F ′ G− (G′)2 F

2G2 F F ′

whose combination produces (53). ■

Theorem 8.2 – A type 2 metric admits a non-normalized Ricci flow if its characteristic
function G satisfies the equation

(55)
2G′′ F G+ (G′)2 F − F ′ G′G

F G′ = 3
2F G′′G− (G′)2 F − F ′ G′ G

GF ′

which is equivalent to

(56)
F ′

F
G+ 3

(
2G′′ − (G′)2

G

)
F

F ′ = 2

(
G′′ G

G′ + 2G′
)
.

Proof. Equations (52) are equivalent to
ẋ4 = ± 2G′′ F G+ (G′)2 F − F ′ G′G

4F 2GG′

±ẋ4 = 3
2F G′′ G− (G′)2 F − F ′ G′ G

4G2 F F ′
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Upper sign:


ẋ4 =

2G′′ F G+ (G′)2 F − F ′G′ G

4F 2GG′

ẋ4 = 3
2F G′′G− (G′)2 F − F ′ G′ G

4G2 F F ′

=⇒ 2G′′ F G+ (G′)2 F − F ′ G′ G

4F 2GG′ = 3
2F G′′ G− (G′)2 F − F ′G′G

4G2 F F ′

Multiplying by 4F G we get equation (55).

Lower sign:


ẋ4 = − 2G′′ F G+ (G′)2 F − F ′G′G

4F 2GG′

−ẋ4 = 3
2F G′′ G− (G′)2 F − F ′ G′G

4G2 F F ′

Simplifying, we still find equation (55). Development of equation (55):

Left hand side

[
2G′′ F G

F G′ +
(G′)2 F

F G′ − F ′ G′ G

F G′ =
2G′′ G

G′ +G′ − F ′ G

F

Right hand side

 3
2F G′′G− (G′)2 F − F ′ G′ G

GF ′

= 3
2F G′′ G

GF ′ − 3
(G′)2 F

GF ′ − 3
F ′ G′G

GF ′ = 6
F G′′

F ′ − 3
(G′)2 F

GF ′ − 3G′

Equation:
2G′′ G

G′ +G′ − F ′ G

F
= 6

F G′′

F ′ − 3
(G′)2 F

GF ′ − 3G′

=⇒ 2G′′ G

G′ + 4G′ − F ′

F
G =

(
6G′′ − 3

(G′)2

G

)
F

F ′ =⇒ (56). ■

9 The ‘fifth element’

By inserting into equation (54) or into equation (56) the expressions of the characteristic
function Gint and its derivatives G′

int and G′′
int, we obtain a first order differential equation

in the unknown function Fint(x4) whose integration provides the ‘fifth element’ i.e. the
fifth component of the metric g44. Furthermore, once the functions Gint and Fint are
given, we can write down the explicit form of the components and of the eigenvalues of
the Ricci tensor Rint

ij for each interaction. These will be functions of the coordinate x4

dependent on the corresponding threshold x4int and on a positive constant Kint.

In the coordinates (x0, x1, x2, x3, x4) to which we refer, the metric tensor and the Ricci
tensor are both diagonalized. Then the main directions of curvature are identified by
the coordinate axes. Consequently, the eigenvalues (principal curvatures) are defined by
ρi = gii Rii and have dimension L−2.
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9.1 Hadronic metric after the threshold

Recall that before the threshold x4s the hadronic metric is flat (§ 2.2) and therefore admits
the trivial flow gij = constant.
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Theorem 9.1 – After the threshold x4s the hadronic interaction metric admits a non-
normalized Ricci flow as long as the function F satisfies the differential equation

(57) x4 F
′ − 6F = 0

whose complete integral is

(58) Fs = Ks x
6
4, Ks > 0 constant

where Ks is an arbitrary positive constant. The components of the hadronic Ricci tensor
are:

(59)

s

R 00 = ± 2

Ks x6
4 x

2
4s

s

R 11 =
s

R 22 = 0,
s

R 33 = −
s

R 00

s

R 44 =
6

x2
4

Its eigenvalues are:

(60)

ρ0 = ± 2

Ks x8
4

, ρ1 = 0, ρ2 = 0,

ρ3 = ± 2

Ks x8
4

= ρ0, ρ4 = ± 6

Ks x8
4

= 3 ρ0

Remark 9.1 – (i) The hadronic Fs function does not explicitly depend on the value of
the threshold x4s. (ii) The constant Ks has dimension L−6. •

Proof. Starting from (9) for the hadronic metric we have

G =
x2
4

x2
4s

=⇒ G′ =
2x4

x2
4s

=⇒ G′′ =
2

x2
4s

,

G′

G
=

2x4

x2
4s

· x
2
4s

x2
4

=
2

x4

,
G′′

G
=

2

x2
4s

· x
2
4s

x2
4

=
2

x2
4

,
G′′

G′ =
2

x2
4s

· x2
4s

2x4

=
1

x4

.
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We have to insert these expressions into equation (54):

G′′

G′ −
F ′

2F
=

2G′′

G

F

F ′ −
G′

G
− (G′)2

G2

F

F ′ ,

1

x4

− F ′

2F
=

�
�
��4

x2
4

F

F ′ −
2

x4

−
�

�
�
�4x2

4

x2
4s

F

F ′ =⇒ 3

x4

− F ′

2F
= 0 =⇒ (57)

We get equation (58) with Ks > 0 since the function F is assumed to be positive. In the
components (38) of the Ricci tensors of type 1,

R00 = ∓ 2G′′ F −G′ F ′

4F 2
,

R11 = R22 = 0, R33 = −R00,

R44 = − 2G′′ F G−G′ F ′ G− (G′)2 F

2G2 F
,

we substitute the expressions

(9) G =
x2
4

x2
4s

=⇒ G′ =
2x4

x2
4s

=⇒ G′′ =
2

x2
4s

,

and
(58) F = Ks x

6
4 =⇒ F ′ = 6Ks x

5
4.

We obtain:

R00 = ∓
2

2

x2
4s

Ks x
6
4 −

2x4

x2
4s

6Ks x
5
4

4K2
s x

12
4

= ∓

1

x2
4s

x6
4 −

3

x2
4s

x6
4

Ks x12
4

= ± 2

Ks x6
4 x

2
4s

R44 = −
2

2

x2
4s

Ks x
6
4

x2
4

x2
4s

− 2x4

x2
4s

6Ks x
5
4

x2
4

x2
4s

− 4x2
4

x4
4s

Ks x
6
4

2
x4
4

x4
4s

Ks x6
4

= −
2

2

x2
4s

x2
4

x2
4s

− 2

x2
4s

6
x2
4

x2
4s

− 4x2
4

x4
4s

2
x4
4

x4
4s

= −�
�
�
�4

x2
4s

1

x2
4s

− 12

x2
4s

1

x2
4s

−
�
�
�4

x4
4s

2
x2
4

x4
4s

=
6

x2
4

Recall (59) and (9):
Rs

00 = ± 2

Ks x6
4 x

2
4s

,

Rs
11 = Rs

22 = 0, Rs
33 = −Rs

00,

Rs
44 =

6

x2
4

,

Gs =

(
x4

x4s

)2
.
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It follows that

ρ0 = g00R00 =
1

G
R00 = ± x2

4s

x2
4

2

Ks x6
4 x

2
4s

= ± 2

Ks x8
4

ρ1 = g11R11 = 0, ρ2 = g22R22 = 0

ρ3 = g33R33 = − 1

G
R33 =

1

G
R00 = ρ0

ρ4 = g44R44 = ± 1

F

6

x2
4

= ± 1

Ks x6
4

6

x2
4

= ± 6

Ks x8
4

= 3 ρ0 ■

9.2 Gravitational metric after the threshold

Recall that before the threshold x4g the metric of the gravitational interaction is flat
(§ 2.3) and therefore admits the trivial flow gij = constant .
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Theorem 9.2 – After the threshold x4g the gravitational interaction metric admits a
non-normalized Ricci flow as long as F satisfies the differential equation

(61) (x4g + x4)F
′ − 6F = 0

whose complete integral is

(62) Fg = Kg (x4g + x4)
6, Kg > 0

where Kg is an arbitrary positive constant. The components of the gravitational Ricci
tensor are:

(63)

g

R 00 = ± 1

4Kg (x4g + x4)6 x2
4g

g

R 11 =
g

R 22 = 0,
g

R 33 = −
g

R 00

g

R 44 =
6

(x4g + x4)2

Its eigenvalues are:

(64)

ρ0 = ± 1

Kg (x4g + x4)8

ρ1 = ρ2 = 0, ρ3 = ρ0

ρ4 = ± 6

Kg (x4g + x4)8
= 6 ρ0
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Remark 9.2 – (i) The gravitational function FG explicitly depends on the value of the
threshold x4g. (ii) The constant Kg has dimension L−6. •

Proof. Starting from (13) for the gravitational metric we have

G =
(x4g + x4)

2

4x2
4g

=⇒ G′ =
x4g + x4

2x2
4g

=⇒ G′′ =
1

2x2
4g

.

G′

G
=

x4g + x4

2x2
4g

·
4x2

4g

(x4g + x4)2
=

2

x4g + x4

,
G′′

G′ =
1

2x2
4g

·
2x2

4g

x4g + x4

=
1

x4g + x4

.

G′′

G
=

1

2x2
4g

·
4x2

4g

(x4g + x4)2
=

2

(x4g + x4)2
.

We have to insert these expressions into equation (54):

1

x4g + x4

− F ′

2F
=

��������4

(x4g + x4)2
F

F ′ −
2

x4g + x4

−
��������4

(x4g + x4)2
F

F ′

=⇒ 3

x4g + x4

− F ′

2F
= 0 =⇒ 6

x4g + x4

− F ′

F
= 0 =⇒ (61) (x4g + x4)F

′ − 6F = 0.

In the complete integral (62) the constant Kg must be positive since F is a positive
function. In the components (38) of type 1 Ricci tensors we replace the expressions

(13) G =
(x4g + x4)

2

4x2
4g

=⇒ G′ =
x4g + x4

2x2
4g

=⇒ G′′ =
1

2x2
4g

,

and

(62) F = Kg (x4g + x4)
6 =⇒ F ′ = 6Kg (x4g + x4)

5 =⇒ F ′

F
=

6

x4g + x4

.

We obtain:

R00 = ∓
2

1

2x2
4g

Kg (x4g + x4)
6 − x4g + x4

2x2
4g

6Kg (x4g + x4)
5

4K2
g (x4g + x4)12

= ∓

1

x2
4g

(x4g + x4)
6 − x4g + x4

x2
4g

3 (x4g + x4)
5

4Kg (x4g + x4)12
= ∓

− 1

x2
4g

(x4g + x4)
6

4Kg (x4g + x4)12

= ± 1

4Kg (x4g + x4)6 x2
4g

R44 = −����������
2

1

2x2
4g

(x4g + x4)
2

4x2
4g

− �����x4g + x4

2x2
4g

6

�����x4g + x4

(x4g + x4)
2

4x2
4g

−
��

���
��(

x4g + x4

2x2
4g

)2

2

(
(x4g + x4)

2

4x2
4g

)2

= 6
8

1

x2
4g

(x4g + x4)
2

x2
4g

1
8

(x4g + x4)
4

x4
4g

=
6

(x4g + x4)2
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Recall equations (63) 

g

R 00 = ± 1

4Kg (x4g + x4)6 x2
4g

g

R 11 =
g

R 22 = 0,
g

R 33 = −
g

R 00

g

R 44 =
6

(x4g + x4)2

and (13)

Gg =
1
4

(
1 +

x4

x4g

)2

=
(x4g + x4)

2

4x2
4g

.

It follows that

ρ0 = g00
g

R 00 =
1

Gg

g

R 00 = ±
4x2

4g

(x4g + x4)2
1

4Kg (x4g + x4)6 x2
4g

= ± 1

Kg (x4g + x4)8

ρ1 = g11
g

R 11 = 0, ρ2 = g22
g

R 22 = 0

ρ3 = g33
g

R 33 = − 1

Gg

g

R 33 =
1

Gg

g

R 00 = ρ0

ρ4 = g44
g

R 44 = ± 1

Fg

6

(x4g + x4)2
= ± 6

Kg (x4g + x4)8
■

9.3 Electromagnetic metric before the threshold

The metric of the electromagnetic interaction is of type 2. Starting from zero energy up
to the threshold energy the metric is deformed and becomes flat after the threshold x4e

(§ 2.4).
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x4e x4

Theorem 9.3 – The pre-threshold electromagnetic interaction metric admits a non-normalized
Ricci flux as long as F is constant:

(65) F = Ke, Ke > 0 dimensionless constant

Proof. Let us consider a characteristic function that is a power of x4/x4e:

(66) G =
xp
4

xp
4e

=⇒ G′ = p
xp−1
4

xp
4e

=⇒ G′′ = p (p− 1)
xp−2
4

xp
4e

Insert these expressions into the equation (56) which characterizes the existence of a
non-normalized Ricci flow

F ′

F
G+ 3

(
2G′′ − (G′)2

G

)
F

F ′ = 2

(
G′′ G

G′ + 2G′
)
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and develop the terms A and B in parentheses:

A
def
=

G′′G

G′ + 2G′, B
def
= 2G′′ − (G′)2

G
.



A =
G′′G

G′ + 2G′ =

p (p− 1)
xp−2
4

xp
4e

xp
4

xp
4e

p
xp−1
4

xp
4e

+ 2 p
xp−1
4

xp
4e

= (p− 1)
xp−2
4

xp
4e

xp
4

xp
4e

xp
4e

xp−1
4

+ 2 p
xp−1
4

xp
4e

= (p− 1)
xp−2
4

xp
4e

xp
4

xp−1
4

+ 2 p
xp−1
4

xp
4e

= (p− 1)
xp−1
4

xp
4e

+ 2 p
xp−1
4

xp
4e

=
(
(p− 1) + 2 p

) xp−1
4

xp
4e

= (3 p− 1)
xp−1
4

xp
4e

.

From here we see that A = 0 if and only if p = 1
3

In this case the characteristic

function (16) and its derivatives become

(67) G =
x
1/3
4

x
1/3
4e

=⇒ G′ = 1
3

x
−2/3
4

x
1/3
4e

=⇒ G′′ = −2
9

x
−5/3
4

x
1/3
4e

As A vanishes, equation (56) reduces to

(68)
F ′

F
= 2

(
G′′

G′ + 2
G′

G

)
.

Taking into account equations (67) we find
(68) =⇒ F ′

F
= 2

(
G′′

G′ + 2
G′

G

)
= 2

(
−2

9

x
−5/3
4

x
1/3
4e

· 3 x
1/3
4e

x
−2/3
4

+ 2 1
3

x
−2/3
4

x
1/3
4e

· x
1/3
4e

x
1/3
4

)
= 2

(
−2

3

1

x4

+ 2
3

1

x4

)
= 0

so that F ′ = 0. ■

Alternative proof. Starting from its characteristic function(16)

Ge =

(
x4

x4e

)1/3
and substituting p for 1

3
we find the equalities

G =
xp
4

xp
4e

, G′ = p
xp−1
4

xp
4e

, G′′ = p (p− 1)
xp−2
4

xp
4e

.

By inserting these expressions into equation (56) which characterizes the existence of a
non-normalized Ricci flow

F ′

F
G+ 3

(
2G′′ − (G′)2

G

)
F

F ′ = 2

(
G′′ G

G′ + 2G′
)
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we find that the term in brackets on the left hand side vanishes for p = 1
3
. As a result,

this equation simplifies in order to allow its integration by separation of variables:

F ′

F
= 2

(
G′′

G′ + 2
G′

G

)
.

Since  G′′

G′ + 2
G′

G
= p (p− 1)

xp−2
4

xp
4e

· p−1 xp
4e

xp−1
4

+ 2 p
xp−1
4

xp
4e

· x
p
4e

xp
4

= (p− 1)x−1
4 + 2 p x−1

4 = (3p− 1)x−1
4 = 0 per p = 1

3
,

we get F ′ = 0. ■

Theorem 9.4 – The components of the electromagnetic Ricci tensor are

(69)

e

R 00 = 0

e

R 11 =
e

R 22 =
e

R 33 = ∓ 1
12

1

Ke

x
−5/3
4

x
1/3
4e

e

R 44 =
5
12

1

x2
4

Its eigenvalues are

(70)

ρ0 = 0

ρ1 = ρ2 = ρ3 = ± 1
12

1

Ke

1

x2
4

ρ4 = ± 5
12

1

Ke

1

x2
4

= 5 ρ1

Proof. We combine (39), which provide the general form of the Ricci components for a
type 2 metric

type 2
metrics

±F


R00 = 0

R11 = R22 = R33 = ± 2G′′ F G+ (G′)2 F − F ′G′ G

4F 2G

R44 = − 3
2F G′′ G− (G′)2 F − F ′ G′G

4G2 F

with (67) which provide the electromagnetic characteristic function and its derivatives:

G =
x
1/3
4

x
1/3
4e

=⇒ G′ = 1
3

x
−2/3
4

x
1/3
4e

=⇒ G′′ = −2
9

x
−5/3
4

x
1/3
4e

Taking into account that F = Ke (constant) we find
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

R11 = ± 2G′′ F G+ (G′)2 F −��F ′G′ G

4F 2G
= ± 2G′′G+ (G′)2

4F G
= ± 1

4Ke

(
2G′′ +

(G′)2

G

)

= ± 1

4Ke

−4
9

x
−5/3
4

x
1/3
4e

+

(
1
3

x
−2/3
4

x
1/3
4e

)2
· x

1/3
4e

x
1/3
4

 = ± 1

4Ke

[
−4

9

x
−5/3
4

x
1/3
4e

+ 1
9

x
−4/3
4

x
2/3
4e

· x
1/3
4e

x
1/3
4

]

= ± 1

4Ke

[
−4

9

x
−5/3
4

x
1/3
4e

+ 1
9

x
−5/3
4

x
1/3
4e

]
= ∓ 1

12Ke

x
−5/3
4

x
1/3
4e

R44 = − 3
2F G′′ G− (G′)2 F −��F ′ G′ G

4G2 F
= − 3

4

2G′′G− (G′)2

G2

= − 3
4

(
2G′′ ·G−1 − (G′)2 ·G−2

)
= − 3

4

(
−4

9

x
−5/3
4

x
1/3
4e

· x
1/3
4e

x
1/3
4

− 1
9

x
−4/3
4

x
2/3
4e

· x
2/3
4e

x
2/3
4

)

= − 3
4

(
− 4

9
x−2
4 − 1

9
x−2
4

)
= 3

4
5
9
x−2
4 = 5

12

1

x2
4

Calculation of the eigenvalues. From (15) we obtain the contravariant components of
the metric

x4 < x4e


g00 = 1

g11 = g22 = g33 = −
(
x4e

x4

)1/3

spatial isotropy

g44 = ± 1

F
= ± 1

Ke

.

Recalling (69) we find:
ρ0 = g00

e

R 00 = 0

ρ1 = g11
e

R 11 = ±
(
x4e

x4

)1/3
1
12

1

Ke

x
−5/3
4

x
1/3
4e

= ± 1
12

1

Ke

1

x2
4

ρ4 = g44
e

R 44 = ± 5
12

1

Ke

1

x2
4

= 5 ρ1. ■

9.4 Leptonic metric before the threshold

Recall that as the energy increases the type 2 leptonic metric becomes flat after the
threshold (see §2.5 and Figure 8) and that before the threshold its characteristic function
is the same as that of the electromagnetic metric

Gw =

(
x4

x4w

)1/3
so that Theorem 9.3 also holds for the leptonic metric. Consequently, for the leptonic
metric the results obtained in the previous section for the electromagnetic metric hold
true.
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10 The fifth element of the metric according to Pessa

convention

10.1 Pessa’s constant and convention

So far we have considered and used the characteristic functions G dependent on the
dimensionless variable given by the ratio

x4

x4int

between the energy coordinate x4 and the energy threshold x4int characteristic for each
interaction.9

Now we redefine the variable x4, which is our energy coordinate, introducing the Pessa
constant ℓ, which has the dimensions of a length, preserving the dimensions of a length for
x4 as we have already introduced in (2). At the same time we introduce the new variable

(71) x̄4
def
= ℓ · x4

x4int

so that the old dimensionless variable is expressed by

x4

x4int

=
x̄4

ℓ
.

We solve what has been said for the equation (2) with the following definition (Pessa
convention):

k ≡ ℓ

x4int

where k has the dimensions of the inverse of a linear energy density. Its importance
consists in explicitly making the fifth energy coordinate x4 dimensionally homogeneous
to the others through the introduction of the Pessa constant ℓ, whose meaning, physical
identification and numerical value are reported below .

The value of ℓ is in the range 4 − 8µm as it was originally calculated theoretically and
reported in [1], §16.3, page 250. This ℓ is the characteristic linear dimension for all
interactions and whose volume ℓ3 allows us to calculate the critical energy density
DCint which gives rise to the metamorphosis of matter. For each interaction this
critical energy density is given by

(72) DCint =
x4int

ℓ3

where x4int has the dimension of an energy.

From the phenomenology of experiments concerning both space-time deformation emis-
sions [1] [3]–[5] and DST transformations, nuclear metamorphoses, [6] –[11], we can set
ℓ = 10µm which corresponds to the characteristic diameter measured for the so-called
Ridolfi cavities [5].

9 Recall that the symbol int (interaction) stands for (em, grav, weak, strong) = (e, g, w, s).
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Pessa convention definitively replaces the convention and the related Kostro constant [2],
already used in [1], p. 282.

It is not necessary to define different ℓ for different interactions since the distinction is
already inherent in x̄4 for each metric of each interaction. This can be seen from the (71)

x̄4
def
= ℓ · x4

x4int

where on the right hand side the interaction dependence is in x4int

We must strongly underline that the Pessa constant ℓ = 10µm is not a universal constant
but a phenomenological constant useful for defining the critical energy density for each
interaction, via (72), when it acts on matter in condition of space-time deformation, as
we have already said above.

10.2 Leptonic metric

As an example we deal with the leptonic metric according to Pessa convention using the
coordinate x̄4 and Pessa constant ℓ. What we do here for the leptonic metric can be
retrospectively repeated for all metrics of other interactions. We wanted to follow this
path so as not to make the whole discussion too heavy.

As already said at the end of §2.5, the leptonic Heaviside step is similar to the electromag-
netic one, with the difference that the leptonic threshold is 2 · 1016 times electromagnetic
threshold.
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1 ......................................................................................................................................................................................................................................................................................

H[ℓ− x̄4]

x̄4

x̄4 ≥ ℓx̄4 < ℓ

deformed metric flat metric
ℓ

Figure 9: Leptonic Heaviside step of axis x̄4 with threshold ℓ.

Figure 9 is obtained from Figure 8 by replacing x4 with its expression within Pessa
convention, i.e.

x̄4
def
= ℓ · x4

x4w

whose inverse is
x4 = x̄4 ·

x4w

ℓ
.
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The leptonic metric is

(73)


g00 = 1

g11 = g22 = g33 = −
{
1 +H[ℓ− x̄4]

[(
x̄4

ℓ

)1/3
− 1

]}
spatial isotropy

g44 = ±F (x̄4), F > 0.

• Before the threshold we have H[ℓ− x̄4] = 1 and the metric becomes

(74) x̄4 < ℓ


g00 = 1

g11 = g22 = g33 = −
( x̄4

ℓ

)1/3
spatial isotropy

g44 = ±F (x̄4), F (x̄4) > 0.

The comparison with (4) shows that this metric is type 2 with characteristic function

(75) G =
( x̄4

ℓ

)1/3
(the same as the electromagnetic metric) and signature (+−−−±).

•• After the threshold we have H[ℓ− x̄4] = 0 and the metric becomes

(76) x̄4 ≥ ℓ


g00 = 1

g11 = g22 = g33 = − 1, spatial isotropy

g44 = ±F (x̄4), F (x̄4) > 0.

The comparison with (4) shows that this metric is type 2 with G = 1. It is flat with
signature (+−−−±).

10.3 Remarks on metrics

It is worth highlighting the analogy between the strong and gravitational metrics. In
both cases a deformation of the temporal coordinate occurs. Furthermore, one of the
spatial parameters (which we have conventionally assumed as the third parameter) varies
with energy like the temporal one in a over–Minkowskian way, that is, it approaches
the Minkowskian limit for energy values greater than the energy of interaction threshold.
The other two spatial parameters are constant, but of different value for the hadronic case
(i.e., the three-space is anisotropic for the hadronic interaction even in derived forms, see
its behavior inside the atomic nucleus).

The threshold energy, generally indicated by E0, or x4int, so that E0 ≡ x4int, is the energy
value at which the metric parameters of the interactions reach a constant value, i.e. the
metric becomes Minkowskian.

Note that for both electromagnetic and leptonic interactions the metric is isochronous,
i.e. the time parameter does not change as the energy varies, furthermore it is spatially
isotropic and sub–Minkowskian, i.e. it approaches the Minkowski limit for values in-
creasing in energy but less than the threshold energy.
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10.4 Physical-phenomenological identification of the conserved
volume

Keep in mind that the proof of Theorem 3.1 has a general character, it is independent
of the normalized Ricci flow and does not depend on the metrics of the interactions but
is applied to them to verify that the interaction conserves the volume. Remember what
has already been said in §8 (non-normalized Ricci flows): for type 1 and 2 metrics the
conservation of volumes is in any case guaranteed by the Theorem 3.1 which it does not
involve the Ricci tensor.

In particular, its application to the hadronic metric allows us to conclude that it con-
serves volume. Likewise, the interaction represented by this metric conserves the volume,
therefore one of the main characteristics of the nuclear interaction (hadronic interaction
in the nucleus), which is the constancy of the density in the nucleus, is respected even
if the nucleus is subjected to deformation beyond of those already known for ellipsoidal
nuclei. In fact, the conservation of the volume, regardless of the deformation, allows the
nuclear density to be constant.

In order to identify the conserved volume we evaluate the physical volume of the deformed
hyperparallelepiped referred to in equation (27). In general we estimate VD at the energy
thresholds E0 counting on making a useful estimate not only for the metric and the
hadronic interaction but also for the other interactions and related metrics.

Let us now present our proposals regarding the physical volume of the deformed hyper-
parallelepiped whose edges are segments of coordinated lines.

First three-dimensional proposal. Setting ℓ equal to Pessa’s constant, already intro-
duced in §10.1, we evaluate the volume of this hyperparallelepiped through the following
identification with the critical volume of nuclear metamorphosis.

Let us remember that this identification is valid in a three-dimensional Euclidean space
with only three spatial coordinates, i.e. for the spatial part of the Minkowskian metric
representation of an interaction: VD ≡ VC ≡ ℓ3, where VD is the volume of the domain D,
VC is the critical volume and ℓ is the aforementioned Pessa constant. It is clear that this
estimate, based on this identification, can be valid for any interaction metric around the
threshold energy E0 which, remember, is a point of discontinuity in the representation by
the Heaviside function.

Second four-dimensional proposal. Remember that x0 = u(E) t, [x0] = L.

• First chance. Setting E → E0, let’s set x0 ∝ c (h/E0), i.e. for E → E0, x0 =
u(E) t → c (h/E0). Therefore we estimate that VD ≡ ℓ3 c (h/E0), ℓ Pessa constant,
c = u(E0), Plank constant h, from which [VD] = [ℓ3 c (h/E0)] = L4. This estimate is based
on the fact that Plank’s constant can be identified with the constant of the first integral
of the geodesic motion referred to the coordinates time and energy.10

•• Second chance. Setting E → E0, let’s set x0 ∝ (e2/E0), i.e. for E → E0, x0

tends to (e2/E0), so we estimate that VD ≡ ℓ3 (e2/E0), ℓ Pessa constant, e2 square of the
elementary electric charge (again remember that e is constant and relativistically invariant
in Minkowskian space) from which [VD] = [ℓ3 (e2/E0)] = L4. This estimate is based on the

10See [1], Chap. 24, §24.4, p. 377, eq. 24.91.
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fact that the square of the elementary electric charge could be identifiable with a constant
of the first integral of the geodesic motion referred to the space and energy coordinates.

Third five-dimensional proposal. Remember that x0 = u(E) t, [x0] = L, x4 =
ℓ (E/E0), [x4] = L.

• First chance. Setting E → E0, let’s set x0 ∝ c (h/E0), i.e. for E → E0, x0 = u(E) t
tends to c , (h/E0), furthermore for E which tends to E0 we have x4 = ℓ (E/E0) tends to
ℓ, where h is Planck constant, ℓ is Pessa constant, c = u(E0). Therefore we estimate that
VD ≡ ℓ3 c (h/E0) = ℓ4 c (h/E0). Dimensions: [VD] = [ℓ3 c (h/E0)] = [ℓ4 c (h/E0)] = L5.

Also this estimate is based on the fact that Plank constant can be identified with the
constant of the first integral of the geodesic motion referred to the time and energy
coordinates.

•• Second chance. Setting E → E0, let’s set x0 ∝ (e2/E0), i.e. for E → E0, x0

tends to (e2/E0). Furthermore for E which tends to E0 we have x4 = ℓ (E/E0) tends
to ℓ, Pessa constant, e2 squared of the elementary electric charge (remember that e is
constant and relativistically invariant in Minkowskian space). Therefore we estimate that
VD ≡ ℓ4 (e2/E0), from which [VD] = [ℓ4 (e2/E0)] = L5.

Also this estimate is based on the fact that the square of the elementary electric charge
could be identifiable with a constant of the first integral of the geodesic motion referred
to the space and energy coordinates.

It should be noted that all these three-dimensional, four-dimensional and five-dimensional
estimates were carried out using the dimensional analysis method as proposed by P. Dirac.
In this sense we can also interpret the presence of ℓ−6 = Ks in equation (58) as the inverse
of the square of a volume; similarly for Kg in equation (62).

10.5 Physical meaning of Ricci eigenvalues

With the eigenvalues of the Ricci tensor for the interaction metrics, interpreted as prin-
cipal curvatures, we can describe the deformation not only in space but also in time
and, novelty, in energy. In fact, the eigenvalue of the energy ρ4 in each interaction ex-
plains how the interaction itself measures the energy it has. In this sense we have further
information on the calibration (gauge) of the energy for each interaction. The union
of the information coming for each interaction, both from the eigenvalue and from the
metric element corresponding to the energy coordinate, gives us the complete picture of
the calibration, thus overcoming the arbitrariness and ambiguities that can arise in other
physical-mathematical forms of representation of interactions.

Since these eigenvalues have the dimension of an area, they give us the area of compar-
ison within which the deformation of a surface occurs. In other words they identify the
minimum area where the deformation is effective and generates phenomena unrelated to
a flat and Minkowskian area. In this sense, the Fermi-Walker theorem cannot be applied
in general in this area identified by these eigenvalues.
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11 Pentadimensional metrics�




�

	
Here we summarize the 5D metrics where (i) the fifth element is reported
explicitly and (ii) for each interaction the natural unit of measurement of
energy is its own threshold energy.

Adronic metric §2.2. Formulas (7) and (8) are reported, where F (x4) takes on the value
Fs(x4) calculated in (58):

• Before the threshold (7):



g00 = 1,

g11 = −α

g22 = − β

g33 = −g00 = − 1

g44 = ±Fs(x4) = dimensionless constant
def≡ +1

•• After the threshold (8):



g00 =
x2
4

x2
4s

g11 = −α

g22 = − β

g33 = −g00 = − x2
4

x2
4s

g44 = ±Fs(x4), Fs(x4) > 0, Fs(x4) dimensionless.

• • • Fifth element (58):

Fs = Ks x
6
4, Ks > 0 constant, dimension L−6.

In this way we realize both g44 being dimensionless and Ks being a positive constant, but
we also measure the energy in natural units with the basic unit of reference being the
threshold energy, as mentioned above. beginning of this paragraph. We specify that this
method of energy measurement is proposed here as a general paradigm valid for every
interaction where this is necessary.
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Figure 10: Hadronic Heaviside step of axis x4 in threshold units x4s.
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Gravitazional metric §2.3. Formulas (11) and (12) are reported, where F (x4) takes on
the value Fg(x4) calculated in (62):

• Before the threshold



g00 = 1

g11 = −α, α > 0 dimensionless constant

g22 = − β, β > 0 dimensionless constant

g33 = − g00 = −1

g44 = ±Fg(x4), Fg(x4) > 0, Fg(x4) dimensionless

•• After the threshold (12)



g00 =
1
4

(
1 +

x4

x4g

)2
g11 = −α, α > 0 dimensionless constant

g22 = − β, β > 0 dimensionless constant

g33 = − g00

g44 = ±Fg(x4), Fg(x4) > 0, Fg(x4) dimensionless.

••• Fifth element (62): Fg = Kg (x4g + x4)
6, Kg > 0 constant, dimension L−6.

The measurement of energy in natural units via its threshold energy also applies to gravity.
The situation is therefore similar to that of hadronic interaction:
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Figure 11: Gravitational Heaviside step of axis x4 in threshold units x4g.

Elettromagnetic metric. Formulas (15) and (17) are reported, where F (x4) takes the
value Fe(x4) calculated in (65):

• Before the threshold (15)


g00 = 1

g11 = g22 = g33 = −
(

x4

x4e

)1/3

spatial isotropy

g44 = ±Fe(x4), Fe(x4) > 0 dimesionless constant.

•• After the threshold (17)


g00 = 1

g11 = g22 = g33 = − 1, spatial isotropy

g44 = ±Fe(x4), Fe(x4) > 0 dimensionless.

••• Fifth element (65): Fe = Ke, Ke > 0 dimensionless constant, which we set ≡ +1.
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Figure 12: Electromagnetic Heaviside step of axis x4 in threshold units x4e.

Leptonic metric. The situation is similar to that of the electromagnetic interaction (x4e

should be replaced by x4w).
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Figure 13: Leptonic Heaviside step of axis x4 in threshold units x4w.

As seen from their pentadimensional expressions, for the metrics of the four interactions
the fifth elements of the metrics are the following:

(i) for hadronic and gravitational interactions it is a power of energy measured in units
of its threshold energy E0int and does not respect any type of threshold, so this element
of the metric acts even when the metric is flat;

(ii) for leptonic and electromagnetic interactions it is a constant and therefore indifferent
to whether the metric is flat or not flat (deformed).

Here we can hazard the hypothesis that the fifth parameter of the metric g44 for each
interaction is the calibration of the energy for that interaction, in fact it describes for
the energy coordinate how it is modified in the metric of the interaction itself, i.e., in
simple words, how in each interaction energy measures energy. In conclusion, we remind
that the reference energy for each phenomenon is that measured with instruments that
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use electromagnetic interaction in conditions of flat space-time and the validity of Hamil-
ton’s theorem for the conservation of total energy. In fact we can ignore the g44 of the
electromagnetic interaction ([1] Chap. 1) by setting Ke ≡ 1. Therefore:

�




�

	
The electromagnetic metric and the electromagnetic interaction consti-
tute the fixed point of reference in all measurements of phenomena also
governed by other interactions with their relative metrics.

The result that the fifth element of the metric, corresponding to the coordinate energy
has a functional dependence on a power of the energy, had already been hypothesized
previously as we will summarize at the beginning of §13.

12 Over- and sub-Minkowskian metrics

As already mentioned at §10.3 a pentadimensional metric is called:

over-Minkowskian if the deformed metric becomes flat while x4 decreases,
sub-Minkowskian if the deformed metric becomes flat while x4 increases.

over-Minkoskian metric ................................................................................................................................................................................................................................................................................................................. .......................
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
..................
................

x4·································································································································
·································································································································
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
..

metric
flat deformed

sub-Minkoskian metric ................................................................................................................................................................................................................................................................................................................. .......................
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
..................
................

x4

·································································································································
·································································································································.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
..

deformed

metric
flat

Ultimately we can say that over-Minkoskian metric interactions, such as hadronic and
gravitational, have a variable energy calibration with the energy itself, regardless of
whether the metric is flat or deformed. On the other hand, sub-Minkowskian metric
interactions, such as electromagnetic and leptonic, always have the same energy calibra-
tion regardless of the value of the energy itself. We have conventionally set this calibration
equal to 1, i.e. Ke = 1 for the electromagnetic interaction as a convention and for con-
venience. Despite our choice to set Ke = Kw = 1 in the next section, it is clear that we
can leave the value for the leptonic interaction, i.e. the value of Kw, undefined for an
appropriate phenomenological, experimental and theoretical verification. In simple words
we want to maintain the possibility of checking whether Ke = Kw or whether Ke ̸= Kw.
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#
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!

The results achieved in the present work have allowed us to design, build
and test devices capable of exploiting the behavior of the fifth element g44
of the metrics, in particular hadronic and leptonic, to obtain the production
of electric charges directly from the nuclear metamorphosis of the matter
(Ref. [3]– [11]).
One of these devices is being designed and built in the laboratories of High
Sonic Technology (HST) in Rome as a reactor-generator which exploits in
particular the results obtained here relating to the F function in order to
determine the dimensions and operating conditions of its components.a

a Private communication from the HST owner regarding patents pending.

An experimental sample of the core

of a reactor-generator (courtesy of Eng. D. Bassani).
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13 Overview of the five-dimensional metrics

As announced at the end of § 11 we underline that the results relating to the fifth element
of the metric can be summarized for all interactions with the following expression of the
functional dependence on energy:

b25(E) = Er, r ∈ Q+ {0}.

This expression, which provides the functional dependency form from energy, had already
been hypothesized previously in the context of the 12 classes of solutions of Einstein’s
field equations in vacuum for penta-dimensional metrics in deformed space-time. The
result was also presented in 2004 as an assumption in [18] Chap. 15, §15.3, p. 135–135,
eq. (15.11). It is therefore a further result to have verified with the Ricci Flow method
that this previous hypothesis is correct.

Finally, for the convenience of the reader, we summarize in tabs the results already exposed
for each interaction where, however, the metrics are written with the convention and
symbols used in [18] Chap. 11, p. 93–95 and [1] Chap. 4, p. 53–60. In practice we replace
the elements of the diagonal metric expressed with the symbols gii used in this work with
the symbols b2i (E) used in the cited references, in order to obtain a graphical representation
of their evolution (in function of E) before and after the relevant threshold E0 int. This is
a purely nominalistic and conventional fact that we wish to do in order to reconnect with
the fundamental works from which this one derives and constitutes further progress.

�

�

�

�

Below, for each interaction, we report the forms filled out during the
experiments. These forms contain data and sketchy graphs of the var-
ious b2(E). However, giving the values of the thresholds E0 int, it is
possible to reprocess these data in order to display the trend of b2(E) in
numerically reliable graphs.
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13.1 Electromagnetic interaction

Figure 14: Electromagnetic lab-form.

Transcription of the electromagnetic lab-form:

(77)

[0] Threshold energy E0 em = 4.5µeV

[1] b20(E) = 1

[2] b21 = b22 = b23(E) =

(
E

E0 em

)1/3
, E < E0 em

[3] b21 = b22 = b23(E) = 1, E > E0 em

[4] b25(E) = Kem, Kem > 0 constant

[5] b25(E) = b20(E) = 1 per Kem ≡ 1 constant self-calibrated energy

For convention and convenience we have chosen Kem coinciding with 1 since the elec-
tromagnetic interaction is the paradigm of all our phenomenological and experimental
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measurements as all the instruments at our disposal to date work with it. So it is in this
sense that energy is considered self-calibrated for electromagnetic interaction.

From table (77) we get the values of the b2(E) before the threshold, on the threshold and
after the threshold:

E < E0 em


b20(E) = 1

b21(E) = b22(E) = b23(E) =

(
E

E0 em

)1/3
b25(E) = Kem

E = E0 em


b20(E0 em) = 1

b21(E0 em) = b22(E0 em) = b23(E0 em) = 1

b25(E) = Kem

E > E0 em


b20(E) = 1

b21(E) = b22(E) = b23(E) = 1

b25(E) = Kem

Figure 15 provides a graphical representation of these results.

b2(E)

•

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

....

1

•

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.........................................................................

1

≃0.6



.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

..........................

.....................

E
0 E0 em = 4.5µeV

E < E0 em

E > E0 em

b21 = b22 = b23(E) =

(
E

4.5

)1/3
...........

...........
...........

...........
...........

...........
...........

...........
...........

...........
............................
.....................

|
9

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

······
·······
·······
········
········
·········
··········
···········
·············
·················
···················································
·············
·············
·············
·············
·············
··············
··············
··············
··············
···············
···············
···············
················
················
·················
······································
··············
··········
·············
····················
····················
·····················
······················
·························

·····················
·····················

·······················
·································

..............
..............

...............
...............

...............
................

................
................

.................
.................

.................
..................

..................
..................

...................
...................

...................
....................

....................
....................

.....................
........................

...................................
.......................

...................
................

...............
........................

........................
........................

.

•

·····················································································································································································································································································································································································································································································································································
b21 = b22 = b23(E) = 1

b20 = 1
·································································································································································································································································································································

b20 = 1

threshold line.................................................................................................

Figure 15: Electromagnetic interaction around the threshold.
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13.2 Leptonic interaction

Figure 16: Leptonic lab-form.

Transcription of the leptonic lab-form:

(78)

[0] Threshold energy E0 lep = 80.4GeV

[1] b20(E) = 1

[2] b21(E) = b22(E) = b23(E) = (E/E0 lep)
1/3, E ≤ E0 lep

[3] b21(E) = b22(E) = b23(E) = 1, E > E0 lep

[4] b25(E) = Klep > 0 constant

[5] b25(E) = b20(E) = 1 valid for Klep = 1 constant calibrated energy
as for the electromagnetic metric.

Graphic representation, Figure 17. From [2] and [3] we observe that b21(E) = b22(E) =
b23(E) follow the bold curve. The remaining conditions [1], [4] and [5] in the case Klep = 1
give b25(E) = b20(E) = 1: the area where this condition is valid it is the entire energy axis.
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b25(E) = b20(E) = 1

Figure 17: Leptonic interaction around the threshold.
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13.3 Gravitational interaction

Figure 18: Gravitational lab-form.



13. Overview of the five-dimensional metrics 46

Transcription of the gravitational lab-form:

(79)

[0] Threshold enery E0 grav = 20.2 µeV

[1] b20(E) = 1, E ≤ E0 grav

[2] b21(E) = b22(E) = b23(E) = 1, E < E0 grav

[3] b25(E) = Kgrav > 0 constant, E < E0 grav

[4] b25(E) = b20(E) = 1, per Kgrav = 1 constant calibrated energy
as for electromagnetic metric.

[5] b23(E) = b20(E) =

(
1 +

E

E0 grav

)2
, E ≥ E0 grav

[6] b21(E) = b22(E) = 1

[7] b25(E) =

(
1 +

E

E0 grav

)6
, E ≥ E0 grav

•

•

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

........................

.....................

................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................ ............................
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.

threshold line ............................................................... ................

.......

.

.......

.

.......

.

.......

.

.......

.

.......

.

.......

.

.......

.

.......

.

.......

.

.......

.

......

−b25(E0 grav) = 64

E

b2(E)

b25 = Kgrav > 0 constant







.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

...

··························
·························

························
·······················

·······················
······················

······················
······················
·····················
·····················
·····················
····················
····················
····················
····················
···················
···················
···················
···················
···················
··················
··················
··················
··················
··················
··················
··················
··················
·················
·················
·················
················

........ ........ ........ ........ ........ ........ ........
........ ........ ........

........ ........ ..
...... ........

........ ........
........ .......

. ........
........ ....

.... .......
. ........

........ ..
...... ...

..... ....
.... ....

.... ....
.... ...
.....·················
···············
···············
··············
·············
·············
·············
·············
·············
·············
·············
·············
·············
··············
··············
···············
···············
···············
··············
··············
··············
·············
·············
·············
·············
·············
·············
············
············
············
············
············
············
············
············
············
···

........ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........ ........
........ ........ .

....... .......
. ........

........
........

........
........
........
........
........
........

| | |•

[7] b25(E) =
(
1 + E

20.2

)6
..........................................................................

.......
.

.............
...

[5] b23(E) = b20(E) =
(
1 + E

20.2

)2.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
..................
................

E0grav = 20.2µeV10 30 40

1

4
[1] + [2]

b20 = b21 = b22 = b23 = 1 [6] b21 = b22 = 1
·······················································································································································································································································································································································································································································································································································································································································································································································································································································································································································

Figure 19: Gravitational interaction around the threshold.
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13.4 Adronic interaction

Figure 20: Hadronic lab-form.
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Transcription of the hadronic lab-form:

(80)

[0] Threshold energy E0 strong = 367.5GeV

[1] b20(E) = 1, E ≤ E0 strong

[2] b21(E) =
(√

2
5

)2
= 0.08, b22(E) =

(
2
5

)2
= 0.16 anisotropy

[3] b23(E) = 1, E < E0 strong

[4] b25(E) = Kstrong > 0 constant

[5] b25(E) = b20(E) = 1 per Kstrong = 1 constant calibrated energy
as for the elettromagnetic metric

[6] b20(E) =

(
E

E0 strong

)2

, E ≥ E0 strong

[7] b21(E) =
(√

2
5

)2
, b22(E) =

(
2
5

)2
anisotropy

[8] b23(E) = b20(E) =

(
E

E0 strong

)2

, E ≥ E0 strong

[9] b25(E) =

(
E

E0 strong

)6

, E ≥ E0 strong

Graphic representation Figure 21.

b20(E) Due to [1] and [6] it is equal to 1 up to the threshold where it continues with

(E/E0 strong)
2.

b21(E). b22(E) Their constant values are given by [2] and [7], regardless of the threshold

and therefore for every value of the energy E.

b23(E) Due to [3] it is equal to 1 before the threshold. By [8] it is equal to 1 at the

threshold and (E/E0 strong)
2 after the threshold. Ultimately it is b20(E) = b23(E).

b25(E) Due to [8] it is equal to (E/E0 strong)
6 on the threshold and for energy values

greater than the threshold. For energy values lower than the threshold we assumed a
value equal to 1, in accordance with [4] and [5].
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Figure 21: Hadronic interaction around the threshold.

14 Hadronics, astrophysics and asymmetry

We wish here to make some interpretative remarks on the fifth element of hadronic and
gravitational metrics. We then want to add an observation on the asymmetry that occurs
in various electromagnetic and nuclear phenomena studied by the method of energy-
dependent deformed metrics.

14.1 Confinement and asymptotic freedom

The phenomenon of confinement and asymptotic freedom in a composite hadronic sys-
tem has already been interpreted for hadronic metrics with considerations of the proper
(hadronic) time and of the observer’s coordinated (electromagnetic) time.11

In summary we have that as energy varies the time element for hadronic and electro-
magnetic metrics is different. Thus as energy increases the reaction time interval of
the hadronic system is much less than that of the electromagnetic action by which the
hadronic system is energized and observed and appears to be bound. Conversely as the

11See [1] §4.1.3, p. 57, eq. 4.15–4.16. For a detailed discussion see [18] §10.4–10.5, p. 89–92.
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energy decreases the hadronic and electromagnetic time intervals tend to equalize and the
hadronic system appears pseudo–free.

We now wish to make some interpretive remarks here regarding the fifth element of
hadronic and electromagnetic metrics with reference to the same phenomenon.

Again we have that as the energy changes, the element of the energy coordinate for
the hadronic and electromagnetic metrics is different. The hadronic metric calibrates
the energy differently from the electromagnetic metric also the scales of the energies are
different.

In summary, if the energy varies by one-tenth on the hadronic scale it is calibrated as one-
millionth relative to the electromagnetic scale, that is, it is depotentiated and the system
appears to the observer as weakly bound. Conversely, if the energy varies ten times on
the hadronic scale it is calibrated as one millionth relative to the electromagnetic scale,
that is, it is amplified and the hadronic system appears to the observer as strongly bound.

We do not want to push the level of interpretation further, we only observe that the two
elements of hadronic metrics referring to time and energy as coordinates give consistent
and coincident conclusions regarding the phenomenon of confinement and asymptotic
freedom in a hadronic system.

We leave the reader the freedom and opportunity to consider the proper and coordinated
interval also for the energy coordinate in analogy to what is commonly proposed in the
literature for the time coordinate.

14.2 Dark energy and superluminal galaxies

Dark energy, like its precursor dark matter, were introduced into astrophysics and
cosmology as ill-defined and delineated concepts in an uncertain attempt to search for
a way that could absolve them from the condemnation of having to consider seemingly
paradoxical phenomena, such as an expanding universe with positive acceleration and
visible galaxies with a seemingly superluminal Doppler effect.

In Chap. 5 Signal Transmission and Visibility of the Memoir [26] it is shown that within
an isotropic model of the Universe, the phenomenon of superluminal velocity is closely
related to the recession velocity of galaxies, i.e., Hubble’s law. It is shown, for example,
that paradoxically, if the current distance of two galaxies A and B is greater than the
Hubble radius, dAB(t0) > rH , then A and B have superluminal recessional velocity even
though they are mutually visible (§ 5.5).

The problem of superluminality, which in gravitational systems is related to dark energy
understood as a kind of extra energy, is further examined in the next section.

14.3 Interpretation of the fifth element of gravitational and elec-
tromagnetic metrics

We now wish to make some interpretative remarks about the fifth element of the gravita-
tional and electromagnetic metrics. Regarding the existence of both luminal and superlu-
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minal velocities in gravitation we refer the reader to Chap. 15 of [1] where the problem is
extensively examined both experimentally and mathematically, as well as historically.12

We note that as the energy varies, the element of the energy coordinate for the grav-
itational and electromagnetic metrics is different. Let us also remember that all mea-
surements, whether astronomical observational with various and different telescopes or
experimental with various devices either in the laboratory or in orbit, still occur with
electromagnetic interaction. Thus one observes gravitational phenomena with the fatally
distorted view of “electromagnetic glasses”. In fact, gravitational phenomena occur with
a calibration of energy that exponentially expands energy to the sixth power. No surprise
if to an “electromagnetic observer” the gravitational systems appear to behave “as if”
there is an “additional energy” that accelerates them in a paradoxical way while they re-
main visible and thus measurable electromagnetically at any frequency of electromagnetic
energy itself.

Here again, we do not want to push the level of interpretation any further, except to
mention that even the balance for weighing objects and even the Cavendish balance are
instruments that use electromagnetic interaction to have the measurement of gravitational
phenomena. The balance uses coulombic electric repulsion between the atoms of matter on
its plate and those of weight. The Cavendish balance likewise uses the coulombic electric
repulsion between the atoms of the cable holding the dumbbell when that cable twists
according to its torsion constant while the dumbbell twisting it undergoes a gravitational
action

14.4 Asymmetry and Heaviside function

It has been found (see [20], [21], [22], [23], [24], [25]) that everything goes as if there is a
fundamental asymmetry underlying all physical phenomena and conditioning all interac-
tions governing them. It has been proposed and verified that the preferred direction with
which to compare asymmetric phenomena is the cold spot of the cosmic background radia-
tion. Finally, it was necessary to recognize from the comparison of several electromagnetic
experiments with nuclear experiments that the Lorentz violation is not kinematic in na-
ture but appears to be geometric in nature, depending on the angles of direction of the
phenomenon but also on the angles of torsion of the phenomenon. In fact, it was found
in the experiments that the coincidence of the privileged direction of the phenomenon
with the projection of the direction of the cold spot of cosmic radiation referred to the
geographical position on Earth and the astronomical position of the Earth in space, where
and when the measurements were made.

The proposal for future work is as follows: modulate the pentadimensional metric by in-
troducing an angle-dependent Heaviside function in each element of the metric to account
for asymmetry. For this purpose, we use the direction of the cold spot of the background
radiation as the reference direction for calculating the angle (as in [20]— [25]).

12See the fifth volume of Laplace’s Celestial Mechanics [27] translated into English and annotated by N.
Bowditch (1829), how the evaluation of the speed of gravitational action in the Sun-Earth-Moon system
is inferred from the study of lunar libration motions.
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15 Appendix 1: calculation of the Ricci tensor

15.1 Conventions on Riemann and Ricci tensors

To demonstrate what has already been stated in Box (34), p. 14, we review the conventions
concerning Riemann and Ricci tensors adopted by eminent authors (Hamilton, Cao and
Zhu, Carroll, Wald, Misner, Thorne and Wheeler) and then compare them with those of
Eisenhart.

L.P. Eisenhart.13

E

R i
ℓmn

def
= ∂mΓ

i
ℓn − ∂nΓ

i
ℓm + Γi

km Γk
ℓn − Γi

kn Γ
k
ℓm(81)

E

R ℓm
def
=

E

R i
ℓmi = ∂mΓ

i
ℓi − ∂iΓ

i
ℓm + Γi

km Γk
ℓi − Γi

ki Γ
k
ℓm(82)

Ricci is defined by summing the upper index and the last one at the bottom.

R. S. Hamilton.14

H

R h
ijk

def
= ∂iΓ

h
jk − ∂jΓ

h
ik + Γh

ip Γ
p
jk − Γh

jp Γ
p
ik.(83)

H

R ijkℓ
def
= ghk

H

R h
ijℓ.(84)

H

R ik
def
= gjℓ

H

R ijkℓ = gjℓ ghk
H

R h
ijℓ.(85)

Comparison of
H

R with
E

R :
H

R h
ijk

def
= ∂iΓ

h
jk − ∂jΓ

h
ik + Γh

ip Γ
p
jk − Γh

jp Γ
p
ik

E

R h
ijk

def
= ∂jΓ

h
ik − ∂kΓ

h
ij + Γm

ik Γ
h
mj − Γm

ij Γ
h
mk

Exchange i with j:
E

R h
jik = ∂iΓ

h
jk − ∂kΓ

h
ji + Γm

jk Γ
h
mi − Γm

ji . Γ
h
mk

Exchange k with j:
E

R h
kij = ∂iΓ

h
kj − ∂jΓ

h
ki + Γm

kj Γ
h
mi − Γm

ki Γ
h
mj.

Put m = p:
E

R h
kij = ∂iΓ

h
kj − ∂jΓ

h
ki + Γp

kj Γ
h
pi − Γp

ki Γ
h
pj.

From
H

R h
ijk

def
= ∂iΓ

h
jk − ∂jΓ

h
ik + Γh

ip Γ
p
jk − Γh

jp Γ
p
ik we get

(86)
H

R h
ijk =

E

R h
kij

According to Eisenhart, the Ricci tensor is obtained by summing the top index with the
last index at the bottom:

E

R ki
def
=

E

R j
kij.

13 [13] Formulas (8.3), (8.5), (8.12), (8.14). See also [14], p. 55, formula (21.1):

Bi
jkℓ = ∂kΓ

i
jℓ − ∂ℓΓ

i
jk + Γh

jℓ Γ
i
hk − Γh

jk Γ
i
hℓ.

14 [12] p. 258.
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It follows that
E

R ki = ∂iΓ
j
kj − ∂jΓ

j
ki + Γp

kj Γ
j
pi − Γp

ki Γ
j
pj.

Recall
H

R h
ijk

def
= ∂iΓ

h
jk − ∂jΓ

h
ik + Γh

ip Γ
p
jk − Γh

jp Γ
p
ik

and sum over h = j:

H

R j
ijk = ∂iΓ

j
jk − ∂jΓ

j
ik + Γj

ip Γ
p
jk − Γj

jp Γ
p
ik.

We find equation (83) again. From here it can be deduced that according to Hamilton
the definition of the Ricci tensor could be

H

R ik
def
=

H

R j
ijk.

In fact, Hamilton goes from Riemann to Ricci in a somewhat tortuous manner. He lowers
the upper Riemann index by posing

H

R ijkℓ
def
= ghk

H

R h
ijℓ.

He then defines Ricci by posing
H

R ik
def
= gjℓ

H

R ijkℓ.

Recalling (86) we find
H

R ijkℓ
def
= ghk

H

R h
ijℓ = ghk

E

R h
ℓij =

E

R kℓij. Therefore,

H

R ik
def
= gjℓ

H

R ijkℓ = gjℓ
E

R kℓij = − gjℓ
E

R ℓkij = −
E

R j
kij. Since

E

R ki
def
=

E

R j
kij we find

(87)
H

R ik = −
E

R ik

The Ricci tensors of Hamilton and Eisenhart are opposite in sign.

Cao, Zhu.15

The definition of the Riemann tensor is

C

R k
ijℓ

def
= ∂iΓ

k
jℓ − ∂jΓ

k
iℓ + Γk

ip Γ
p
jℓ − Γk

jp Γ
p
iℓ.

Let us recall the Hamilton definition (83) with a change of indices:

H

R k
ijℓ

def
= ∂iΓ

k
jℓ − ∂jΓ

k
iℓ + Γk

ip Γ
p
jℓ − Γk

jp Γ
p
iℓ.

The comparison of these two expressions shows that

C

R k
ijℓ =

H

R k
ijℓ

Then the Riemann tensors are the same. Furthermore, we have16
C

R ijkℓ
def
= gkp

C

R p
ijℓ and

C

R ik
def
= gjℓ

C

R ijkℓ.

15 [15] p. 152.
16 [15] p. 173.
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By virtue of the identities Rijkℓ = −Rjikℓ = −Rijℓk = Rkℓij from (81) we get

E

R i
ℓmn

def
= ∂mΓ

i
ℓn − ∂nΓ

i
ℓm + Γi

km Γk
ℓn − Γi

kn Γ
k
ℓm

i.e.
E

R k
ℓmn

def
= ∂mΓ

k
ℓn − ∂nΓ

k
ℓm + Γk

pm Γp
ℓn − Γk

pn Γ
p
ℓm

Comparison with (8.3)
E

R h
ijk

def
= ∂jΓ

h
ik − ∂kΓ

h
ij + Γm

ik Γ
h
mj − Γm

ij Γ
h
mk

i.e.
E

R h
ijk

def
= ∂jΓ

h
ik − ∂kΓ

h
ij + Γp

ik Γ
h
pj − Γp

ij Γ
h
pk.

C

R k
ijℓ

def
= ∂iΓ

k
jℓ − ∂jΓ

k
iℓ + Γk

ip Γ
p
jℓ − Γk

jp Γ
p
iℓ p.152

S.M. Carroll.17

Cl

R ρ
σµν

def
= ∂µΓ

ρ
νσ − ∂νΓ

ρ
µσ + Γρ

µλ Γ
λ
νσ − Γρ

νλ Γ
λ
µσ

Cl

R ρσµν
def
= gρλ

Cl

R ρ
σµν

Cl

R µν
def
= Rλ

µλν

Check: for a 2-sphere da2 = a2(dθ2 + sin2 θ dϕ2) we have
Rθθ = 1

Rθϕ = Rϕθ = 0

Rϕϕ = sin2 θ

R =
2

a2
Gauss > 0. a = radius, correct.

Comparison with Eisenhart:

 (3.67)
Cl

R ρ
σµν

def
= ∂µΓ

ρ
νσ − ∂νΓ

ρ
µσ + Γρ

µλ Γ
λ
νσ − Γρ

νλ Γ
λ
µσ,

(8.3)
E

R ℓ
ijk

def
= ∂jΓ

ℓ
ik − ∂kΓ

ℓ
ij + Γm

ik Γ
ℓ
mj − Γm

ij Γ
ℓ
mk,

Cl

R a
bcd

def
= ∂cΓ

a
db − ∂dΓ

a
cb + Γa

cλ Γ
λ
db − Γa

dλ Γ
λ
cb.

E

R a
bcd

def
= ∂cΓ

a
bd − ∂dΓ

a
bc + Γm

bd Γ
a
mc − Γm

bc Γ
a
md.

Symmetry of Γ =⇒ Riemann is the same:

(88)
E

R a
bcd =

Cl

R a
bcd,

but Ricci is opposite in sign:

(3.90)
Cl

R µν
def
=

Cl

R λ
µλν . (8.14)

E

R ij
def
=

E

R k
ijk =⇒

Cl

R µν = −
E

R µν =⇒

(89)
Cl

R ab = −
E

R ab

17 [16] Formulas (3.67), (3.76), (3.90).
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R.M. Wald.18

W

R µνρ
σ def
= ∂νΓ

σ
µρ − ∂µΓ

σ
νρ + Γα

µρ Γ
σ
αν − Γα

νρ Γ
σ
αµ.

W

R µρ
def
=

W

R µνρ
ν .

Comparison with Eisenhart


W

R bcd
a def
= ∂cΓ

a
bd − ∂bΓ

a
cd + Γα

bd Γ
a
αc − Γα

cd Γ
a
αb

E

R a
dcb

def
= ∂cΓ

a
db − ∂bΓ

a
dc + Γm

db Γ
a
mc − Γm

dc Γ
a
mb

shows that

(90)
W

R bcd
a =

E

R a
dcb.

Hence,
W

R bd =
W

R bad
a =

E

R a
dab = −

E

R db = −
E

R bd =⇒ Ricci changes the sign:

(91)
W

R ab = −
E

R ab

Misner, Thorne, Wheeler.19

M

R µ
ναβ

def
= ∂αΓ

µ
νβ − ∂βΓ

µ
να + Γµ

ρα Γ
ρ
νβ − Γµ

ρβ Γ
ρ
να.

M

R µν
def
=

M

R α
µαν .

Check: sphere of radius a, ds2 = a2 (dθ2 + sin2 θ dϕ2)

Rθ
θ = Rϕ

ϕ =
1

a2
. Rθ

ϕ = 0. R =
2

a2
, correct.

Comparison with Eisenhart

 (340)
M

R µ
ναβ

def
= ∂αΓ

µ
νβ − ∂βΓ

µ
να + Γµ

ρα Γ
ρ
νβ − Γµ

ρβ Γ
ρ
να.

(8.3)
E

R h
ijk

def
= ∂jΓ

h
ik − ∂kΓ

h
ij + Γm

ik Γ
h
mj − Γm

ij Γ
h
mk.

M

R a
bcd

def
= ∂cΓ

a
bd − ∂dΓ

a
bc + Γa

ρc Γ
ρ
bd − Γa

ρd Γ
ρ
bc

E

R a
bcd

def
= ∂cΓ

a
bd − ∂dΓ

a
bc + Γm

bd Γ
a
mc − Γm

bc Γ
a
md

Riemann is the same

(92)
E

R a
bcd =

M

R a
bcd

but Ricci Changes the sign: (8.14)
E

R ij
def
=

E

R k
ijk. (p. 343)

M

R µν
def
=

M

R α
µαν =⇒

(93)
M

R ab = −
E

R ab

In conclusion, what is stated in the box (34) on page 14 is confirmed, i.e. that the Ricci
tensor according to Eisenhart has the opposite sign to all the other examined
conventions:

∗
R ij = −

E

R ij

18 [17] p. 48.
19 [19] pp. 340 e 343.
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15.2 ‘Lagrangian’ algorithm for calculating Christoffel symbols

To prove formulas (36) and (37), which provide the components of the Ricci-Eisenhart
tensors of type 1 and type 2 metrics, respectively, we begin by computing their Christoffel
symbols. For this purpose we can make use of the quick and safe algorithm consisting of
the following three steps:

1 Given a metric tensor with components gij(x) in coordinates x = (xi) we write the
kinetic energy

T = 1
2
gij v

i vj

as a second-degree homogeneous polynomial in the Lagrangian velocities vi. By setting

dxi

dt
= vi

where t is a generic evolution parameter, we calculate the Lagrangian binomials

Li
def
=

d

dt

∂T

∂vi
− ∂T

∂xi

2 We calculate the contravariant components gij(x) of the metric and raise the indices
of the Lagrangian binomials

Li def
= gij Lj

Each Li turns out to have the form

(94) Li =
dvi

dt
+ Γi

hk v
h vk

where the three-index quantities Γi
hk, which are functions of the coordinates x alone, are

precisely the Christoffel symbols that we want to calculate.

3 From the expressions (94) we extract the quadratic forms

(95) Qi def
= Li − dvi

dt
= Γi

hk v
h vk

from which the expressions of the Christoffel symbols Γi
hk can be derived.

15.3 Ricci-Eisenhart tensor of a type 1 metric

Type 1 metric



g00 = G(x4) dimensionless positive function

g11 = −α, α dimensionless positive constant

g22 = − β, β dimensionless positive constant

g33 = −G(x4)

g44 = ±F (x4), F (x4) dimensionless positive function
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Step 1

T = 1
2
gij v

i vj = 1
2

[
G (v0)2 − α (v1)2 − β (v2)2 −G (v3)2 ± F (v4)2

]
= 1

2

[
G
(
(v0)2 − (v3)2

)
− α (v1)2 − β (v2)2 ± F (v4)2

]


∂T

∂v0
= Gv0

∂T

∂v1
= −α v1

∂T

∂v2
= −β v2

∂T

∂v3
= −Gv3

∂T

∂v4
= ±F v4



d

dt

∂T

∂v0
= G′ v4 v0 +G

dv0

dt

d

dt

∂T

∂v1
= −α

dv1

dt

d

dt

∂T

∂v2
= −β

dv2

dt

d

dt

∂T

∂v3
= −G′ v4 v3 −G

dv3

dt

d

dt

∂T

∂v4
= ±F ′ (v4)2 ± F

dv4

dt

Single non-ignorable coordinate x4:

∂T

∂x4
= 1

2

[
G′ (v0)2 −G′ (v3)2 ± F ′ (v4)2

]
Lagrangian binomials Li

def
=

d

dt

∂T

∂vi
− ∂T

∂xi
:

L0 = G′ v4 v0 +G
dv0

dt
, L3 = −G′ v4 v3 −G

dv3

dt
,

L1 = −α
dv1

dt
, L2 = −β

dv2

dt
,

L4 = ±F ′ (v4)2 ± F
dv4

dt
− 1

2
[G′ (v0)2 −G′ (v3)2 ± F ′ (v4)2]

Step 2 Lagrangian binomials with raised indices Li = gii Li (orthogonal metric)
g00 = −g33 = G−1

g11 = −α−1

g22 = − β−1

g44 = ±F−1


L0 =

dv0

dt
+G′G−1 v4 v0, L3 =

dv3

dt
+G′G−1 v4 v3.

L1 =
dv1

dt
, L2 =

dv2

dt

L4 =
dv4

dt
+ F−1F ′ (v4)2 ∓ 1

2
F−1

[
G′ (v0)2 −G′ (v3)2 ± F ′ (v4)2

]
Antisymmetry with respect to v0 and v3 in L4 only.
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Step 3 From the above expressions of Li we extract the quadratic forms Qi def
= Γi

hk v
h vk:

(96)


Q0 = G′G−1 v4 v0, Q3 = G′G−1 v4 v3, Q1 = 0, Q2 = 0.

Q4 = F−1F ′ (v4)2 ∓ 1
2
F−1

[
G′ (v0)2 −G′ (v3)2 ± F ′ (v4)2

]
= 1

2
F−1F ′ (v4)2 ∓ 1

2
F−1G′

[
(v0)2 − (v3)2

]
and from these we derive the non-identically null Christoffel symbols:

(97)

{
Γ0
04 =

1
2
G′G−1

Γ3
34 =

1
2
G′G−1


Γ4
44 =

1
2
F−1F ′

Γ4
00 = ∓1

2
F−1G′

Γ4
33 = ±1

2
F−1G′

Note that symbols with at least one lower index equal to 1 or 2 are null and that the
following equalities hold:

Γi
0i = Γ0

00 + Γ1
01 + Γ2

02 + Γ3
03 + Γ4

04 = 0

Γi
1i = Γ0

10 + Γ3
13 + Γ4

14 = 0

Γi
2i = Γ0

20 + Γ3
23 + Γ4

24 = 0

Γi
3i = Γ0

30 + Γ3
33 + Γ4

34 = 0

Γi
4i = Γ0

40 + Γ3
43 + Γ4

44 = G′G−1 + 1
2
F−1F ′

End of the algorithm.

Now we recall the definition of the Ricci tensor according to Eisenhart (82)

E

R ℓm
def
= ∂mΓ

i
ℓi − ∂iΓ

i
ℓm + Γi

km Γk
ℓi − Γi

ki Γ
k
ℓm

where the terms ∂mΓ
i
ℓi cancel for m ̸= 4 because x4 is the only coordinate that cannot be

ignored.
E

R 00

E

R 00 =�
��∂0Γ

i
0i − ∂iΓ

i
00 + Γi

k0 Γ
k
0i − Γi

ki Γ
k
00 = −∂4Γ

4
00 + Γi

k0 Γ
k
0i − Γi

ki Γ
k
00[

Γi
0k Γ

k
i0 = Γi

00 Γ
0
i0 + Γi

03 Γ
3
i0 + Γi

04 Γ
4
i0 = Γ4

00 Γ
0
40 + Γ0

04 Γ
4
00 = 2Γ4

00 Γ
0
40

= ∓2 1
2
G′G−1 1

2
F−1G′ = ∓1

2
(G′)2G−1 F−1

Γi
ki Γ

k
00 = Γi

4i Γ
4
00 =

(
G′G−1 + 1

2
F−1F ′) (∓1

2
F−1G′)
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

E

R 00 = −∂4Γ
4
00 + Γi

k0 Γ
k
0i − Γi

ki Γ
k
00

= −
(
∓1

2
F−1G′)′ ∓ 1

2
(G′)2G−1 F−1 −

(
G′G−1 + 1

2
F−1F ′) (∓1

2
F−1G′)

= ±
(
1
2
F−1G′)′ ∓ 1

2
(G′)2G−1 F−1 ±

(
G′G−1 + 1

2
F−1F ′) (1

2
F−1G′)

= ±1
2

{
(F−1G′)

′ − (G′)2G−1 F−1 +
(
G′G−1 + 1

2
F−1F ′) (F−1G′)

}
= ±1

2

{
(F−1G′)

′ − (G′)2G−1 F−1 +G′G−1(F−1G′) + 1
2
F−1F ′(F−1G′)

}
= ±1

2

{
(F−1G′)

′
+ 1

2
F−2F ′ G′

}
= ±1

2

{(
G′

F

)′

+ 1
2

F ′ G′

F 2

}
= ±1

2

{
G′′ F −G′ F ′

F 2
+ 1

2

F ′G′

F 2

}
= ±

G′′ F − 1
2
G′ F ′

2F 2
=⇒

E

R 00 = ±2G′′ F −G′ F ′

4F 2

E

R 11,
E

R 22 
E

R 11 =���∂1Γ
i
1i − ∂i�

�Γi
11 +�

�Γi
k1�

�Γk
1i − Γi

ki�
�Γk
11 = 0

E

R 22 =���∂2Γ
i
2i − ∂i�

�Γi
22 +�

�Γi
k2�

�Γk
2i − Γi

ki�
�Γk
22 = 0

E

R 33[
Γm
3k Γ

k
m3 = Γm

30 Γ
0
m3 + Γm

33 Γ
3
m3 + Γm

34 Γ
4
m3

= 0 + Γ4
33 Γ

3
43 + Γ3

34 Γ
4
33 = 2Γ4

33 Γ
3
43 = ±1

2
F−1 (G′)2G−1

E

R 33 = ∂3Γ
k
3k − ∂kΓ

k
33 + Γm

3k Γ
k
m3 − Γm

33 Γ
k
mk = −∂4Γ

4
33 + Γm

3k Γ
k
m3 − Γ4

33 Γ
k
4k

= ∓1
2
(F−1G)′ ± 1

2
F−1 (G′)2G−1 ∓ 1

2
F−1G′

(
G′G−1 + 1

2
F−1F ′

)
= ∓1

2
(F−1G)′ ∓ 1

4
F−2G′ F ′ = ... =⇒

E

R 33 = −
E

R 00 = ∓ 2G′′ F −G′ F ′

4F 2

E

R 44

R44 = ∂4Γ
i
4i − ∂iΓ

i
44 + Γi

k4 Γ
k
4i − Γi

ki Γ
k
44. Γi

4i = Γ0
40 + Γ3

43 + Γ4
44 = G′G−1 + 1

2
F−1F ′

E

R 44 =
(
G′G−1 + 1

2
F−1F ′

)′
− 1

2
(F−1F ′)′ +

(
Γ0
k4 Γ

k
40 + Γ3

k4 Γ
k
43 + Γ4

k4 Γ
k
44

)
− Γi

4i Γ
4
44

=
(
G′G−1

)′
+
(
Γ0
04 Γ

0
40 + Γ3

34 Γ
3
43 + Γ4

44 Γ
4
44

)
− Γi

4i Γ
4
44

=
(
G′G−1

)′
+
(
1
2
G′G−1

)2
+
(
1
2
G′G−1

)2
+
(
1
2
F−1F ′)2 − (G′G−1 + 1

2
F−1F ′) 1

2
F−1F ′

=
(
G′G−1

)′
+ 1

2
(G′G−1)

2 − 1
2
G′G−1 F−1F ′
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
E

R 44 =

(
G′

G

)′

+ 1
2

(
G′

G

)2

− 1
2

F ′ G′

F G
=

G′′G− (G′)2

G2
+ 1

2

(
G′

G

)2

− F ′G′

2F G

=
G′′G− 1

2
(G′)2

G2
− F ′G′

2F G
=

2G′′ G− (G′)2

2G2
− F ′G′

2F G
=

2F G′′G− F (G′)2

2F G2
− F ′G′G

2F G2

E

R 44 =
2G′′ F G−G′ F ′G− (G′)2 F

2G2 F

Thus all formulas (36) are proved.

15.4 Ricci-Eisenhart tensor of a type 2 metric

Type 2 metric


g00 = 1

g11 = g22 = g33 = −G(x4), G(x4) dimensionless positive function

g44 = ±F (x4), F (x4) dimensionless positive function

Step 1

T = 1
2
gij v

i vj = 1
2

[
(v0)2 −G

(
(v1)2 + (v2)2 + (v3)2

)
± F (v4)2

]


∂T

∂v0
= v0

∂T

∂v1
= −Gv1

∂T

∂v2
= −Gv2

∂T

∂v3
= −Gv3

∂T

∂v4
= ±F v4



d

dt

∂T

∂v0
=

dv0

dt

d

dt

∂T

∂v1
= −G′ v4 v1 −G

dv1

dt

d

dt

∂T

∂v2
= −G′ v4 v2 −G

dv2

dt

d

dt

∂T

∂v3
= −G′ v4 v3 −G

dv3

dt

d

dt

∂T

∂v4
= ±F ′ (v4)2 ± F

dv4

dt
Single non-ignorable coordinate x4:

∂T

∂x4
= 1

2

[
−G′

(
(v1)2 + (v2)2 + (v3)2

)
± F ′ (v4)2

]
Lagrangian binomials Li

def
=

d

dt

∂T

∂vi
− ∂T

∂xi
:

L0 =
dv0

dt

L1 = −G′ v4 v1 −G
dv1

dt

L2 = −G′ v4 v2 −G
dv2

dt

L3 = −G′ v4 v3 −G
dv3

dt

L4 = ±F ′ (v4)2 ± F
dv4

dt
− 1

2

[
−G′

(
(v1)2 + (v2)2 + (v3)2

)
± F ′ (v4)2

]
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Step 2 Lagrangian binomials with raised indices Li = gii Li (orthogonal metric):



g00 = 1

g11 = −G−1

g22 = −G−1

g33 = −G−1

g44 = ±F−1



L0 =
dv0

dt

L1 = G−1G′ v4 v1 +
dv1

dt

L2 = G−1G′ v4 v2 +
dv2

dt

L3 = G−1G′ v4 v3 +
dv3

dt

L4 = F−1F ′ (v4)2 +
dv4

dt

∓ 1
2
F−1

[
−G′

(
(v1)2 + (v2)2 + (v3)2

)
± F ′ (v4)2

]
Step 3 From the above expressions of Li we extract the quadratic forms Qi def

= Γi
hk v

h vk::

(98)



Q0 = 0

Q1 = G−1G′ v4 v1

Q2 = G−1G′ v4 v2

Q3 = G−1G′ v4 v3

Q4 = F−1F ′ (v4)2 ∓ 1
2
F−1

[
−G′

(
(v1)2 + (v2)2 + (v3)2

)
± F ′ (v4)2

]
= 1

2
F−1F ′ (v4)2 ± 1

2
F−1G′

(
(v1)2 + (v2)2 + (v3)2

)
and from these we derive the non-identically null Christoffel symbols:

(99)


Γ1
41 =

1
2
G−1G′

Γ2
42 =

1
2
G−1G′

Γ3
43 =

1
2
G−1G′

{
Γ4
44 =

1
2
F−1F ′

Γ4
11 = Γ4

22 = Γ4
33 = ±1

2
F−1G′

Note that symbols with at least one lower index equal to 0 are null.

End of the algorithm.

Once more we recall the definition of the Ricci tensor according to Eisenhart (82)

E

R ℓm
def
= ∂mΓ

i
ℓi − ∂iΓ

i
ℓm + Γi

km Γk
ℓi − Γi

ki Γ
k
ℓm

where the terms ∂mΓ
i
ℓi and ∂iΓ

i
ℓm cancel for m ̸= 4 and i ̸= 4 because x4 is the only

coordinate that cannot be ignored.
E

R 00

E

R 00 = ∂0Γ
i
0i− ∂iΓ

i
00+Γi

k0 Γ
k
0i−Γi

ki Γ
k
00. Since all symbols involved have at least one lower

index equal to 0, we find
E

R 00 = 0
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E

R 11

E

R 11 = ∂1Γ
i
1i − ∂iΓ

i
11 + Γi

k1 Γ
k
1i − Γi

ki Γ
k
11 = −∂4Γ

4
11 + Γi

k1 Γ
k
1i − Γi

4i Γ
4
11

= −∂4Γ
4
11 + Γ1

k1 Γ
k
11 + Γ4

k1 Γ
k
14 − Γi

4i Γ
4
11 = −∂4Γ

4
11 + Γ1

41 Γ
4
11 + Γ4

11 Γ
1
14 − Γi

4i Γ
4
11

= −∂4Γ
4
11 + Γ4

11

(
Γ1
41 + Γ1

14 − Γi
4i

)
= −∂4Γ

4
11 + Γ4

11

(
Γ1
41 + Γ1

14 − Γ0
40 − Γ1

41 − Γ2
42 − Γ3

43 − Γ4
44

)
= −∂4Γ

4
11 + Γ4

11

(
Γ1
41 − Γ2

42 − Γ3
43 − Γ4

44

)
....ma Γ1

41 = Γ2
42

= −∂4Γ
4
11 − Γ4

11

(
Γ3
43 + Γ4

44

)
= ∓1

2
(F−1G′)′ ∓ 1

2
F−1G′

(
1
2
G−1G′ + 1

2
F−1F ′

)
(F−1G′)′ = −F−2F ′G′ + F−1G′′
E

R 11 = ∓1
4

[
2 (F−1G′)′ + F−1G′

(
G−1G′ + F−1F ′

)]
= ∓1

4

[
2
(
F−1G′′ − F−2F ′G′

)
+ F−1G−1(G′)2 + F−2G′F ′

]
= ∓1

4

[
2F−1G′′ + F−1G−1(G′)2 − F−2G′F ′

]
= ∓2FG′′ + FG−1(G′)2 −G′F ′

4F 2
.

By virtue of the spatial isotropy of a type 2 metric we have

E

R 11 =
E

R 22 =
E

R 33 = ∓2FG′′ + FG−1(G′)2 −G′F ′

4F 2

i.e.
E

R 11 =
E

R 22 =
E

R 33 = ∓ 2G′′ F G+ (G′)2 F − F ′G′G

4F 2G



16. Acknowledgments 63

E

R 44

E

R 44 = ∂4Γ
i
4i − ∂iΓ

i
44 + Γi

k4 Γ
k
4i − Γi

ki Γ
k
44

= ∂4Γ
0
40 + ∂4Γ

1
41 + ∂4Γ

2
42 + ∂4Γ

3
43 + ∂4Γ

4
44 − ∂4Γ

4
44 + Γi

k4 Γ
k
4i − Γi

4i Γ
4
44

= ∂4Γ
1
41 + ∂4Γ

2
42 + ∂4Γ

3
43 + Γi

k4 Γ
k
4i − Γi

4i Γ
4
44

= 3
2
(G−1G′)′ + Γ1

k4 Γ
k
41 + Γ2

k4 Γ
k
42 + Γ3

k4 Γ
k
43 + Γ4

k4 Γ
k
44 −

(
Γ1
41 + Γ2

42 + Γ3
43 + Γ4

44

)
Γ4
44

= 3
2
(G−1G′)′ + Γ1

14 Γ
1
41 + Γ2

24 Γ
2
42 + Γ3

34 Γ
3
43 + Γ4

44 Γ
4
44 −

(
Γ1
41 + Γ2

42 + Γ3
43 + Γ4

44

)
Γ4
44

= 3
2
(G−1G′)′ + (Γ1

14)
2 + (Γ2

24)
2 + (Γ3

34)
2 + (Γ4

44)
2 −

(
Γ1
41 + Γ2

42 + Γ3
43 + Γ4

44

)
Γ4
44

= 3
2
(G−1G′)′ + (Γ1

14)
2 + (Γ2

24)
2 + (Γ3

34)
2 −

(
Γ1
41 + Γ2

42 + Γ3
43

)
Γ4
44

= 3
2
(G−1G′)′ + 3

4
(G−1G′)2 − 3

4
G−1G′ F−1F ′

= 3
2
(−G−2(G′)2 +G−1G′′) + 3

4
(G−2(G′)2 − 3

4
G−1G′ F−1F ′

= 3
2
G−1G′′ − 3

4
G−2(G′)2 − 3

4
G−1G′ F−1F ′

= 3
4

(
2G−1G′′ −G−2(G′)2 −G−1G′ F−1F ′

)
= 3

4
G−2

(
2GG′′ − (G′)2 −GG′ F−1F ′

)
=⇒

E

R 44 = 3
2GG′′ − (G′)2 −GG′ F−1F ′

4G2

i.e.
E

R 44 = 3
2F G′′G− (G′)2 F − F ′G′ G

4G2 F

Thus all the formulas (36) and (37) are proved.
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