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Preface

Mathematical models must be based on a well stated set of postulates which
should obey a sort of principle of aesthetic simplicity. For this reason we
cannot start from the celebrated Weyl principle, which imposes from the very
beginning the existence of a Lorentzian metric on space-time in which the
world lines of the galaxies are time-like curves. In my opinion this principle
lies at a too advanced position. In mathematical terms, the principle Weyl is
at the level of the category of Riemannian (or semi-Riemannian) manifolds,
while it seems more appropriate to begin from a lower-level category, as that of
the differentiable manifolds (in the present theory the category of Riemannian
manifolds operates in the fourth postulate). In doing so, we acquire two
advantages: we can locate primary concepts and their relationships in the
right order and at the right place and we do not lose secondary but noteworthy
concepts, which otherwise would remain unknown. The proof is that we are
able to bring much forward our analysis, without any assumptions about the
dynamical laws. These topics occupy the first three chapters.

In Chapter 1 (Cosmic kinematics) we compose the basic geometrical structures
of the cosmic space-time (Fig. 1). The four-dimensional manifold M of the
(non singular) cosmic events® is endowed with two foliations. The first fo-
liation is made of three-dimensional manifolds Sy, parametrized by a cosmic
time ¢. They represent the sets of simultaneous events and are called spatial
sections. Each S; is endowed with a Riemannian structure with metric tensor
g:. The isotropic principle implies that each metric g; has a constant curva-
ture, varying with ¢. The second foliation is made of the world-lines of the
galaxies, which are transversal to the spatial sections. Since the world-lines
do not intersect each other, this theory does not contemplate fragmentations
or collisions of galaxies.

1 Actually, the differentiable manifold M does not contain the singular events of birth
and death of the universe.
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Figure 1: The basic geometrical structures of the cosmic space-time.

We postulate that the set @ of the galactic world-lines (which is nothing but
the set of all the galaxies) is endowed with the structure of a three-dimensional
manifold: it will be called the quotient manifold and it will play a basic
role in this theory. A theorem establishes that the quotient manifold @ is
endowed with a Riemannian structure with metric tensor g, called quotient
metric in such a way that any spatial section (S, g¢) is isomorphic to (@, ),
so that any spatial section can be taken as a representative of the quotient
manifold.

In any cosmological theory the so-called scale factor plays a key role. It is
a function of the cosmic time ¢, commonly denoted as a(t), that appears as a
conformal factor of the spatial metrics. In our theory, however, the notion of
scale factor arises as a conformal factor linking two spatial metrics through
the formula

g(t,) = a(t,,t,) g(t,)

therefore as a two-variable function in the cosmic time: a(t,,t,). This fact
offers significant opportunities and advantages in the mathematical analysis
of cosmological phenomena, which instead escaped in other approaches to
Cosmology. For example, if we fix a value of the second variable ¢, (which
we can call reference time) and leave ¢, = ¢ to run as the only independent
variable, then a theorem shows that two scale factors obtained in this way,
say a(t, t2) and a(t, t}), with different values of the reference time differs by a
constant factor. As a consequence, we can always impose to the scale factor
the normalization condition

a(t, tﬁ) =1
to be satisfied under the free choice of a normalization time ¢;. This allows
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us to establish an effective check on the physical validity of equations involv-
ing the scaling factor, because such equations must be invariant under the
change of the normalization time. Once the normalization time is chosen, the
scale factor a(t,t;) becomes the principal cosmic function from which, in
principle, we should derive the evolution of other observational quantities (like
the Hubble parameter, the energy density, the matter density, etc.). For this
reason the evolution in time of the scale factor a(t,t;) will be called profile
of the universe.

In Chapter 2 (Cosmic connections) we prove the existence on the cosmic
space-time of a family of linear symmetric connections that are the natural
prelude to the formulation of a dynamics. These connections depend on an
indeterminate (but not arbitrary) function of the cosmic time. The assignment
of such a function through a bridge-postulate will mark the passage from
kinematics to dynamics. We will examine two possible bridge-postulates. The
first one leads towards a generalization of the Newtonian space-time, where
we can build-up a Newtonian cosmic dynamics. The second one consists
in assuming the existence of special particles (photons) wandering in the
cosmos with a constant ‘peculiar velocity’. The surprising fact is that (i)
the resulting cosmic connection s the Levi-Civita connection of a space-time
metric, (ii) this metric has necessarily a Lorentzian signature, (iii) the galactic
world-lines are time-like geodesics and the world-lines of the photons are null
geodesics. This makes us to move towards a relativistic cosmic dynamics
founded on the Einstein field equations (Chapter 4).

Chapter 3 is dedicated to the preparation of the essential elements that we
need for the formulation of the dynamics (Ricci tensor, Einstein tensor, etc.).
It is first noted a remarkable fact which greatly simplifies the calculations: due
to the isotropy principle any symmetric two-tensor 7% having a geometrical
or physical meaning is fully determined by two functions ¢(¢) and (t) only,
which we call characteristic functions. In generic co-moving coordinates
the components of such a tensor are

T = ¢(t) = a function of ¢ only
TU(Z J—

T = 1)(t) g*°(§) = a function of ¢ times the quotient metric §2°

Then it can be proved that the conservation law and the Einstein field equa-
tions result in ordinary differential equations involving the two characteristic
functions of the momentum-energy tensor and the scale factor. Many things
can be said in this context without specifying the form the energy-momentum
tensor.

Chapter 4. The choice of this tensor is the first topic of this chapter, devoted
to the relativistic cosmic dynamics. We will consider the standard energy-



momentum tensor of a perfect fluid

T°% = (e+p) U U’ +pg*?

where €(t) is the energy density, p(t) is the intergalactic pressure and U is
the unitary four-velocity of the galactic fluid

o det _p dY* Ue =1, a B
= _— o == —1
U < { Ue =0, Gap U U

It follows that the conservation law V7% = 0 and the Einstein field equa-
tions are respectively equivalent to the two dynamical equations

(1) aé+3(e+p)a=0

(2) —2:%a2(A+X6)—R’

where K is the curvature of the quotient manifold.

Chapter 5. A second crucial step is the choice of a state equation that ties
the three unknown functions €(t), p(t) and a(t). In this chapter we deal with
the simplest possible case, namely that of a linear barotropic fluid, whose
equation of state is

bp=we,

w being a constant parameter. Thus, we are faced with various models to
examine, depending on the sign of the constant curvature K. However, the
models with negative spatial curvature are ‘a priori’ excluded from this theory
because, as it is easily shown, their radial speed expansion turns out to be
always greater than light speed. On the other hand, models with positive
spatial curvature seems to be incopatible with the astrophysical observations.
As a consequence, we confine ourselves to study the models with zero spatial
curvature only. These models are in fact very simple and do not take into
account of all the complex quantum-physical phenomenology occurring in the
evolution of the universe, especially in the vicinity of its creation. Nevertheless
they reveal the typical features of the isotropic cosmology and can serve as
a starting point for the creation of finer models. For example, in the gallery
of the possible profiles of the universe we find that of Fig. 2, which is perfect
agreement with that appearing in the Nobel Lecture by G. Riess [20] (Fig.
3).2

2 The Nobel Prize in Physics 2011 was awarded to Saul Perlmutter, Brian P. Schmidt
and Adam G. Riess ”for the discovery of the accelerating expansion of the Universe through
observations of distant supernovae”.
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Figure 2: One of the eligible universe profiles

Figure 3: From Riess Nobel Lecture,

The fortunate circumstance which makes the difference with respect
the other mathematical approaches to Cosmology is that the dynamical
equations of a flat barotropic model are solvable in terms of elementary
functions (exponential and hyperbolic functions). This allows us to get
the exact expression of all the observational variables related to the scale
factor. The only approximation is then due to the numerical evaluation
of the cosmological parameters involved.
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Another feature of our approach is that there is no refrence to the
Robertson-Walker metric. In fact, when the use of coordinates is neces-
sary, we will refer to quite generic length-dimensional co-moving coordi-
nates, so that the metric tensor components are dimensionless. Particu-
lar attention is paid to the dimensionality of the physical objects. This
is a way for checking the correctness of the formulas.

Chapter 6. In order to avoid the common misconceptions on the various
notions of horizons, pointed out for example in [6], we afford the so-called
‘horizon problems’ on the basis of what we have learned from the previous
chapter and with a significant graphic method. When applied to the flat dust-
matter model, this method gives numerical results in very good agreement
with the current observational data.

The postulates on which we relied are very simple and intuitive. They
do not take into account the complex evolutionary physical processes of
the universe and in particular the presence of dark matter, whose nature
is still unknown. It is therefore quite natural that the results obtained
here do not fully meet the expectations and experiences of cosmologists.
However, it is surprising that, despite the extreme simplification of our
model, the resulting estimates of the age of the universe, as well as of
other data, are quite close to that obtained by astronomers. Nanyway,
like for any axiomatic theory, the cosmological theory presented here
must be subjected to criticisms, adjustments and extensions.

Kok

This work stops without covering other charming topics, which require more
time for their study —and perhaps some modification to postulates. For
example, models with positive spatial curvature (even if these are deemed
incompatible by the astrophysical observations), with multi-components, with
dark matter, with anisotropy, and so on.

Sergio Benenti
April 2016
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Chapter 1

Cosmic kinematics

1.1 The postulates of the cosmic space-time

In an axiomatic formulation of cosmology the concept of event is a primary
concept as that of point in Euclidean geometry.

1%t Postulate. The history of the universe is made of events, whose
set will be called cosmic space-time and denoted by £. There are
two critical events, denoted by a and w, representing the beginning
and the end of the universe, respectively. All other events are called
regular and form a four-dimensional manifold M:

E=aUMUuw.

E=aUMUw

5 x
/ N

O

beginning end

S B

Figure 1.1: The cosmic space-time.



2 Chapter 1. Cosmic kinematics

A regular event occurs in a certain ‘place’ and at a certain ‘date’. So, in order
to locate an event we need to allocate three coordinates for the place and one
coordinate for the date. This is the reason why we require M to have four
dimensions. With the next two postulates we will see how this localization is
achievable.

24 Postulate. (i) The manifold M of the regular events is endowed
with a fibration over an open real interval t: M — (tn,t,) C R, which
we call cosmic time. The value t(e) of ¢ on an event e will be called the
date of e. (ii) The cosmic time ¢ is defined up to an affine transformation

t—t=Xt+p MNpeR, pu>0.

(iii) The fibers of ¢ form a foliation of M made of three-dimensional
manifolds which we call spatial sections; we will denote by S; the
spatial section of the events occurring at the date ¢. (iv) The mapping ¢
is extended to the critical events by setting

The attribute ‘spatial’ will be justified below.

Remark 1.1 - By a reversible smooth transformation ¢ — ¢ any mapping
t: M — (ta,ts,) can be transformed into a mapping t: M — R = (—o0, +00).
Note that any reversible smooth transformation is compatible with items (iii)
and (iv). However, if we want to give meaning to the concept of duration
of the universe then such a transformation must not be allowed. This is the
meaning of item (ii). The choice of an affine gauge for the cosmic time will be
further justified in dealing with the existence of cosmic connections on space-
time, Section 2.4. As a consequence of these observations, the ‘life-interval’
of the universe is of four types:

The cosmic time provides a cosmic chronology (Fig. 1.2): given two events
e; and es we say that

e1 and ey are simultaneous if t(e;) = t(e2)
e1 occurs before ey if t(er) <t(eq)
e1 occurs after eg if  t(er) > t(eq)



1.1. The postulates of the cosmic space-time 3

In particular the event o (beginning of the universe) occurs before all other
events and w (end of the universe) occurs after all other events.

spatial sections
E=aUMUw P

v N
5 A 3
beginning / S : \ end

Figure 1.2: The cosmic chronology.

- S—
|
K
8

~
s T

Remark 1.2 - This second postulate is the result of a reasoning based on
the notion of simultaneity of events. In Newtonian mechanics the postulate of
existence of an absolute time implies the notions of absolute chronology and
absolute simultaneity. In special relativity both these notions depend on the
choice of an inertial reference frame. In general relativity the simultaneity of
events cannot be easily defined. The modern cosmology, at least in its simplest
formulation, is based on the assumptions of isotropy and homogeneity of the
universe: the distribution of the celestial bodies is uniform and there are no
privileged directions. As a consequence, we can assume by definition that two
events e4 and ep are simultaneous when in a small neighborhood of e4 and
ep the densities of matter are equal. This definition is of course the result
of an ideal experiment, but it makes plausible the concept of simultaneity,
although not currently experienced through some physical method. e

The galaxies are considered as particles forming the galactic fluid. The
history of a galaxy A is a (smooth) sequence of events parametrized by the
cosmic time ¢t. So, it can be represented by a (smooth) curve y4: I — M,
where I is a life-interval contained in (ta,t.), called the world-line of A.
With the next postulate, we consider the simplest situation in which the
life duration of all galaxies coincides with the life duration of the universe:
I =(ta,tw)-



4 Chapter 1. Cosmic kinematics

3¢ Postulate. (i) The life of a galaxy is represented by a curve on M
called world-line. The world-lines of all galaxies form a congruence of
non-intersecting curves transversal to the spatial foliation. (ii) The set
Q of all the galactic world-lines has the structure of a three-dimensional
differentiable manifold such that the canonical projection p: M — @,
which associates with any event e € M the galaxy p(e) € @ where this
event occurs, is a surjective submersion (Fig. 1.3).

We call @ the quotient manifold . Note that, being the set of all the galactic
world-lines, @ is nothing but the set of all galaxies.

projection

spatial sections

world-lines
of the
galaxies
quotient B
manifold : :
f } cosmic
to t tw time

Figure 1.3: The galactic world-lines and the quotient manifold.

The transversality condition means that a world-line is nowhere tangent to a
spatial section. By virtue of well-known arguments of differential geometry
this third postulate implies that

Theorem 1.1 — The restriction of the projection p to any spatial section Sy
is a diffeomorphism.

Thus, all Sy and @ are diffeomorphic manifolds. Another implication is

Theorem 1.2 — Any coordinate system ¢ = (q¢%) = (q*, 4% ¢) on an open
domain U C Q generates a coordinate system on (t,q%) on the open subset of
M made of the world-lines determined by U (Fig. 1.4).

Coordinates on M of this type are called co-moving coordinates.’

I Since t is constant on each spatial section, co-moving coordinates are also called syn-
chronous coordinates.
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The coordinates ¢ = (¢*) are Lagrangian coordinates of the galactic fluid: they
have a constant value on each world-line of U. In this way the coordinates g
can be interpreted as coordinates on each spatial section S;. So, they will be
called spatial coordinates.?

S B

Figure 1.4: Co-moving coordinates.

4" Postulate. Each spatial section S; of simultaneous events is the
representation of the three-dimensional ‘physical world’ at the date ¢ and
is endowed with a positive-definite metric tensor g; smoothly depending
on t.

In other words, we think of each S; as a three-dimensional Riemannian man-
ifold where the metric tensor components gqp(t,g) in co-moving coordinates
are smooth functions of t.

The Copernican principle assumes that neither the Sun nor the Earth
are in a central, specially favored position in the universe. This principle is
extended to cosmology with the following isotropy principle.

5" Postulate. On each spatial section S; there is no privileged vector
field having a geometrical or physical meaning.

Theorem 1.3 — Any scalar field on M having a geometrical or physical
meaning s a function of the cosmic timet only i.e., it is constant on each Sy.

ProoF — By means of the metric g; we can define the gradient of such a scalar
field which is then a distinguished vector field on S;. This is in contrast with
the isotropy principle. =

2 Greek indices o, 8, ... will run from 0 to 3. Latin indices a, b, ... will run from 1 to 3.



6 Chapter 1. Cosmic kinematics

Theorem 1.4 — Each spatial section (S, gi) is a manifold with constant cur-
vature K (t).3

ProofF — The Ricci tensor R; of the metric g; must is proportional to the
metric tensor itself, Ry = \; g¢, otherwise the existence of distinguished Ricci
directions would be in contrast with the isotropy principle. In turn, the factor
A+ must be constant on S; because of Theorem 1.3. Thus, (S¢, ¢¢) is an Einstein
manifold. It is known that an Einstein manifold of dimension 3 is of constant
curvature. m

1.2 Manifolds with constant curvature

In this section we recall the main features of the manifolds with constant
curvature.* For the Riemann curvature tensor and the Ricci tensor of a linear

symmetric connection I we will refer to the following definitions:®
v dﬁf v v ¥4 v ¥4 v

(11) R aufB — 8ﬂraﬁ_8ﬁrﬂa+raﬁ ‘ue—r‘ua Fﬁe
def - -

(1.2) Rog = R“aw:8ﬂrgﬁ—aﬁrg#+raﬁrg#—ra#rgﬁ

where I') ; = '3, are the symbols of I' in any coordinate system.

A Riemannian manifold with metric tensor gos is said to be of constant
curvature K when the totally covariant Riemann tensor of the Levi-Civita
connection

def »
(13) R)\a,uﬁ = g)\uR apf

satisfies the equation®

(14) Raﬁ'y(s =K (ga’y 9ps — Jas gﬁ’)’)

equivalent to

(1.5) R%.s = K (05 gps — 05 9p+),

3 In general, the constant of curvature will depend on the cosmic time.
4 A high level reference to this topic is the book [1]. A classical reference for a simpler
approach, sufficient for our needs, is the book [7].

5 Our definition of the Riemann tensor is that of [15] and [7]. On the contrary, our Ricci
tensor is the opposite of that of [7].

6 [7] Section 26.
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It follows that

(1.6) Ruyp=n—1)Kgap || R=n(n—-1)K

where n is the dimension of the manifold and R is the Ricci scalar (or scalar
curvature)

def

(1.7) R= ¢ Rup

For a conformal transformation gog = cgag with a constant factor c the
Riemann tensor components are invariant: R% s = R%. 5. Hence, from (1.5),

K (62 Ggs — 05 Gpy) = K (82 ggs — 05 gpn),

and consequently ¢ K = K. This shows that

K
c

(1.8) JaB = Cgap (c = constant) — K=

With a similar argument one can show that: two metric tensors on a same
manifold gap and gog, with the same signature and with constant curvatures
of the same sign are conformal gog = ¢ gag with a positive constant conformal
factor c.

1.3 Isotropic vectors and tensors

Definition 1.1 — A tensor on space-time is isotropic if it meets the isotropy
principle: it does not generates distinguished vector fields tangent to the
spatial sections.

Since the isotropy principle is one of the main postulates, only isotropic tensors
are admissible in the present cosmological theory. The isotropic scalar
have been considered in Theorem 1.3. Now we characterize the isotropic
vectors and two-tensors.

Theorem 1.5 — A vector field V is isotropic if and only if its components
in a co-moving coordinate system (q°,q%) are of the following type:

V' = function of ¢° only,
Ve =0.
Proor — If V? is also a function of the coordinates ¢ then its gradient defines a

distinguished direction on each spatial section. If V% £ 0 then a distinguished
direction field is defined on each spatial section. m
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Theorem 1.6 — A contravariant symmetric two-tensor T? is isotropic if
and only if its components are of the following type:

T°° = ®(¢°) = a function of ¢° only,
(1.9) 700 =,

T = ¥(q°) §°°(q) = a function of ¢° times §g*°,

where [§%°] is the inverse matriz of [ap). A similar result holds for an admis-

sible covariant symmetric tensor:

Too = ®(¢°) = a function of ¢° only,
(1.10) Tpo =0,

Tob = V(q°) Jap(q) = a function of ¢° only times gup

e . a

 raB B o’ B’ + def Oq def 0q
Proor = T90 = Jo Jp T97, Ja = Ja Jar = guar

For a transformation of co-moving coordinates leaving ¢° invariant we have

JO =1, J¢ =0, J =0, J,=0, J=0.Thus

11

{ T = J3, Jg TP = (Jo )2 T° = T,
T = J, Jb, T8 = Jo Jb, 10V = Jb T
T = Ja, Jb, 1'% = Ja, Jp, 7oV

This shows that: 7% is a scalar, so it must be a function of ¢° only; T°
is a vector, so it must vanish; 7% is a symmetric tensor on each spatial
section generating eigenfields, so it must be proportional to the spatial metric

gan(@*, @) = A*(¢°) Gab()-

Remark 1.3 - According to this theorem any admissible symmetric two-
tensor TP is fully determined by two functions ® and ¥ of ¢° only. e

Theorem 1.7 — No skew-symmetric isotropic two-tensor is admissible in the
cosmic space-time.”

PRrROOF — A skew-symmetric two-tensor A*” gives rise to a spatial vector field
A% and to a spatial skew-symmetric tensor field A?*. The isotropy principle
implies A°® = 0. Any antisymmetric tensor field A%® on a three-dimensional
Riemannian space has a real eigenvector. This is in contrast with the isotropy
principle. Thus A% =0. =

7 In other words: only symmetric two-tensors are admissible in the isotropic models of
the universe.
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Remark 1.4 —Theorem 1.7 shows that the existence in space-time of a single
or a finite number of electro-magnetic fields is incompatible with the isotropic
cosmology. However, a continuous distribution of electro-magnetic fields such
as those emitted from galaxies, may not generate any particular direction.
Such fields are then admissible. o

Remark 1.5 - Since the torsion I'] ; — T}, of a linear connection is a skew-
symmetric tensor in the lower indices, only symmetric connections are allowed
in space-time. e

1.4 Dimensional analysis

To test the correctness of the formulas that we will write, it is important
to consider the physical dimension of the involved objects. We will denote
the physical dimension of an object X by the symbol Dim (X).® The basic
physical dimensions are

Dim

Dim (time) =T

Dim (length) = L

Dim (mass) = M
(

dimensionless quantity) = 1

Then the dimension of any object X will be expressed by the product of
positive or negative integer powers of these simbols,

Dim (X) =T°L* M¢, a,b,c€ Z.

For instance:

Object Dim
area L?
volume L3
velocity LT !
acceleration LT?
angle 1
angular velocity | 7!

Table 1.4

8 The symbol [X] is more commonly used.
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Object Symbol Dim Note
force F MLT2 mass X acceleration
pressure P ML T2 force/area
energy (work) E M L?*T~? | work = force x length
energy density € ML T2 energy/volume
mass density p ML3 mass/volume
Table 1.4

The coordinates of a manifold can be dimensionless (e.g. angles) or with a
physical dimension (time, length,...). Concerning the co-moving coordinates
introduced by Theorem 1.2 we assume that

the cosmic time ¢ is time-dimensional: Dim (¢) = T.

the spatial coordinates ¢* are length-dimensional: Dim (¢%) = L.

Then it will be convenient to replace the time coordinate ¢ with a length-
dimensional coordinate ¢° via the simple relationship

(1.11) ¢ =kt

where k is a constant with the dimension of a velocity: Dim (k) = LT~ !.
It is immaterial the numerical value of this constant.” In this way we get
length-dimensional co-moving coordinates.

Henceforth we will always refer to
length-dimensional co-moving coordinates.

Consequently:

Dim (ga5) = Dim (¢°°) = 1.

(
Dim (T'y3,4) = Dim (T"]
(1.12)
Dim(R",,5) = L72.
(Ra

9 Later, when dealing with cosmic dynamics, we shall be led to consider k = ¢, the light
speed.
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Remark 1.6 — Do not pay attention to the dimension of the coordinates
is unfortunately a widespread harmful habit, which produces confusion and
mistakes in the writing and interpreting of the tensorial-type formulas. For
example, if you use angular coordinates (for instance on a sphere or hyper-
sphere with fixed radius) which are dimensionless, then Dim (ga3) = L? and
consequently,

Dim (9°%) = L2, Dim (R, ,5) = 1,
Dim (Tap,) = L2, Dim (Rap) = 1,
Dim (') = 1, Dim (R) = L2,

(Note that the Ricci scalar still maintains its dimension L~2, as should be.)
But if you use coordinates of mixed type (dimensionless, length-dimensional,
time-dimensional,...) then the dimension of the objects listed above depends
on the indices. This creates a big mess. e

1.5 Scale factor and quotient metric

Theorem 1.8 — There exists a two-variable function a(t,,t,) such that

(113) g(tl)ZQQ(tlatz)g(tz)

where g(t,) and g(t,) are the metric tensors on the spatial sections Sy —and
St -

Proor — Each spatial section S; has a constant curvature K(t). Since two
spatial sections Sy and S, are diffeomorphic, the constant curvatures K (t,)
and K (t,) have the same sign (or are both equal to 0). In accordance with
what has been said at the end of Section 1.2, the metrics g(t,) and g(¢,)
are conformal with a positive constant conformal factor a?: g(t,) = a? g(t,).
This ‘constant’ is actually a dimensionless positive function a?(t,,t,) of the
two dates ¢, and ¢,. m

We assume, without loss of generality, that this function is positive. From the
definition (1.13) it follows that it obeys the following rules:*°

a(t,t) =1
(1.14) a(t,,t,) a(t,,t,) = a(t,,t,) (composition rule)
1

tyot,) = ———
a( 12 2) a/(t2,tl)

10 Note that it is not commutativein (¢, ,t,). The use of the scale factor must be attentive
to the location of the two variables (¢,,t,).
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If we fix a reference time ¢4 then by virtue of Theorem 1.1 (page 4) we can
take the spatial section Sy, as a representative of the quotient manifold Q.
Then @ is endowed with the quotient metric

(1.15) g = glty)

By applying (1.13) we get

(1.16) g(t) = a®(t, ty) ¢F

This factorization equation will be widely applied in the following. An
equivalent form of this equation is

(1.17) ds; = a(t,ty)ds

where ds; and ds are the arc elements of g(t) and of g#, respectively.

We call scale factor the positive function a(t,ty).!* It has to be regarded as
a function of ¢, but determined by the preset value of 3. When there is no
danger of confusion, we can simply denote it by a(t),

(1.18) a(t) < a(t, ty)

Note that a(tj) = a(ty,ts) = 1. For this reason ty will be called normaliza-
tion time.

Remark 1.7 — The composition rule in (1.14) implies that if a(¢,,t,) is con-
stant then this constant is necessarily equal to 1. For a(t) = constant = 1 we
have the so-called static universe: g(t) = g for all ¢. e

Remark 1.8 — The scale factor plays a central role in cosmology be-
cause, as a function of the cosmic time, it contains all the information
concerning the evolution of the universe. It is determined by dynam-
ical equations established in the next chapter. e

Remark 1.9 —In the current literature it is not sufficiently emphasized
the fact that the scale factor a(t) is defined up to the choice of a reference
time. This oversight precludes the recognition of some important facts.
It should be borne in mind that, in order to have a physical meaning,
any formula involving a(t) and its derivatives must be invariant under
the change of a reference time. o

1 1t is also called scale parameter or expansion factor. It is also denoted by the
symbol R(t), here used for the radius of the universe.
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Remark 1.10 - Let a(t,t;) and a(t,t,) be the scale parameters asso-
ciated with two different reference times ¢4 and ¢,. By applying the
composition rule (1.14) we get

(1.19) a(t,tﬁ) = a(t,tb) a(tb,tﬁ)

This shows that the scale factors associated with two different reference
dates differ by a constant factor (depending on the reference dates). o

Remark 1.11 - The metric tensor g(t) = a?(t,t;) g(t;) does not depend, by
definition, on the choice of the reference time ¢4, so that

(1.20) a’(t,ty) g(ty) = a’(t,1,) g(ts)

For t = t; we get the relation

(1.21) g(ts) = a®(ty, 1) g(t5)

which is in agreement with (1.16). e

Remark 1.12 - We can write the factorization equation (1.16) in terms of
the coordinate ¢° = Kkt by setting

(1.22) a(t) = A(q")

(1.23) 9ab(4°0) = A%(¢°) 95,(@)

As a rule, we will use a small letter to denote a scalar function of ¢ and the
corresponding capital letter to denote the same scalar as a function of ¢°:

ft) =F(q"). o

Remark 1.13 - The quotient manifold is endowed with the Levi-Civita con-
nection coming from the quotient metric, henceforth denoted by I', whose
Christoffel symbols are

=~ def
T8 = 565 (Oagly + Ovgh, — 0agly)-

It is easy to check that these symbols are invariant under the change of the
reference date. It follows that the I'-geodesics, as unparametrized curves, are
not affected by the change of the reference time. o
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Remark 1.14 - Since the co-moving coordinates ¢* are L-dimensional (Sec-

tion 1.4) the metric tensor components ggb are dimensionless:

Dim (¢ = 1.
Dim ([¢,) =L, o

Remark 1.15 - On the quotient manifold the arc-element ds of any curve
q* = v*(&) (with generic parameter ) is defined by

aor [ g dy* 4y
1.24 ds = b d dq®
(1.24) $ =\ 9o da® da® = 4| g5, £ dE

In turn, the arc-length s is defined by

o [&1 & dv* d
(1.25) s(&)-s(f“)d:t/ ds:/ gibdé dé

It is a privileged parameter for any curve on @, since

dy® drb
g ay ey
(1.26) Jab g gs =
This follows from (1.24)

ds g dy° d"y

dé- ab df df

and

gt dr d_”ﬁ’(%f_l
@ ds ds abd¢ d¢

However, the arc-element and the arc-length are not invariant under the

change of the reference date. If we denote by ds; and ds, the arc-elements

defined in the quotient metrics g* = g(t;) and ¢” = g(,), then equation (1.21)

is equivalent to

1

1.27 dsy = ——
( ) # a(tﬁ,tb)

ds. °

1.6 The Hubble law

Any curve in the quotient manifold, of length ¢;, is carried along the galactic
world-lines and generates curves of length £(¢) on each spatial section S;. By
virtue of (1.17), this length is given by

(1.28) 0(t) = alt, ;) b,
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It follows that

(1.29) 6 = alt,ty) 4.

Theorem 1.9 — The derivative ((t) 2 obeys the rule

(1.30) 0(t) = h(t) £(t)

where the ratio

(1.31) h(t) &

does not depend on the reference time ty.

Proor — From (1.29) and (1.28) we get

(1.32) it) = : 0t).

The scale factors relative to different normalization times differ by a multi-
plicative constant. So, the ratio (1.31) remains unchanged. m

This argument can be applied to the case of geodesic curves, where the
‘lengths’ are ‘distances’. In particular, we can consider the distance between
galaxies.

We can define two distances between two galaxies A and B:

(i) The co-moving distance é% p: this is the length of the geodesic joining
A to B in the quotient metric ¢gf. This distance is a constant depending on
A and B only (Fig. 1.5).

(ii) The synchronous distance {45 (t) at the time ¢: this is the length of
the shortest geodesic joining A to B in the spatial section S; with metric g(t).
The derivative {4 5(t) with respect to ¢ of the synchronous distance £4p(t) is
called the recession velocity of the galaxies A and B.

By applying equations (1.28) and (1.30) to these distances we find the two
relationships

(1.33) Cap(t) = alty) Oy

(1.34) Can(t) = h(t) Lap(t)

In the second of these we recognize the famous Hubble law, and in h(t) the
Hubble parameter (not affected by the choice of ¢3).

12 A dot over a symbol will denote the derivative with respect to t.
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Remark 1.16 - In our theory the Hubble law is a matter of pure Kine-
matics: it is a consequence of the postulates so far stated for the structure
of the cosmic space-time. In other words, it does not depend on what-
soever dynamical equations, like Einstein equations, Newton equations...

°

A coordinate

B C ¢ =rt
—
*\

galactic
world-lines Q
I
M _—-\
I
._\
Lap(t)  |Segd | T

projection |
p | —ﬂ
i synchronous |
i distance

coordinates

: T q=(q")
Q A €O-moving : °
distance B C o

Figure 1.5: The synchronous distance £4p(t)
and the co-moving distance é& B

1.7 The cosmic radius and the angular distance

For cosmological models with non-flat spatial sections (K (t) # 0) we define
the cosmic radius R(t) > 0 by

(1.35) K(t) = Rf(t), e=+1
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with e = +1 according to the sign of the curvature. If we set

def def

(1.36) Ky = K(ty), Ry = R(ty),
then we havel?

1
(1.37) e Ky = 7

and, due to the general formula (1.28), we have

(1.38) R(t) = alt, ts) R
_ Ky
(1.39) K(t) = ey

By putting in particular ¢t = ¢, in these equations we get

(1.40) R(ty) = alty, ty) Ry
_ K
(1.41) K(t,) = (6.1

Furthermore, from h = a/a we get

R(t)  dlogR(t)

(1.42) ht) = i = a

This formula gives the Hubble parameter in terms of the cosmic radius. We
call R the radial velocity of the universe. Finally, from (1.33) and (1.38) it
follows that for any pair of galaxies

i
def U4 Lap(t)
1.43 = L2 = = tant
(1.43) YaB R, R() constan

We call angular distance of two galaxies the dimensionless constant ¥ 4p.
Its geometrical meaning is explained in the next section. As a consequence,
the Hubble law can be written as

(1.44) ap(t) = vYap R(1)

Note that the angular distance ¥4 does not depend on the choice of the
reference date ty.

13 Note that the product & K is always positive.
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1.8 Topological types of cosmological models

isochronous
distance Y4B

at the time ¢ Clqsed

universe
at the

constant angular time t

distance

YaB

O

Reference

date ty

Ss(ts) =~ @Q

S B

Figure 1.6: Radial diagram of the closed universe.

The isotropic cosmological models that can be constructed on the basis of
the postulates so far stated have two characteristic elements: (i) the scale
parameter a(t), a function of the cosmic time ¢ defined on a real (bounded
or unbounded) interval (to,%,) (beginning and end of the universe) which
contains all the information about the evolution of the cosmos (expansion,
contraction, etc.) and (ii) the sign of the constant curvature K of the quotient
manifold. However, it must be observed that this description is incomplete
because it lacks a third characteristic element: the topology of the quotient
manifold (that is the topology of the spatial sections).

There are several topological types of three-dimensional manifolds with con-
stant curvature. The types that are commonly considered are the following
three ones:

(i) @ ~ S,, the three-dimensional sphere, positive curvature,
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(ii) @ ~ H,, the three-dimensional pseudo-sphere , negative curvature,
(iii) @ ~ E,, the three-dimensional Euclidean space, zero curvature.

The corresponding models are called (i) closed universe, (ii) open universe
and (iii) flat universe.

1.8.1 Closed universe

In a closed universe the spatial sections S; are three-dimensional sphere of
radius R(t) immersed in the Euclidean affine space R* = (w,z,y,2) and
centered at the origin O of the coordinates; they represented by the equation

w? + 22+ + 22 = R*(1).

Their curvature is K(t) = R™2(t) > 0. This geometrical vision differs from
that of the space-time where the submanifolds S; form a foliation. Here
they contract and expand in time according to the function R(t). What we
get is a sort of movie which we call radial diagram (Fig. 1.6). One of
the spheres, corresponding to a reference date t4, can be identified with the
quotient manifold @. Any galaxy is represented by a point moving along a
straight line crossing the origin O. At any date ¢t two galaxies A and B stay
on the sphere of radius R(t) and are separated by a circular arc of maximal
radius (i.e. by a geodesic arc) of length £45(t). Then the straight lines joining
A and B to the center O form, in agreement with (1.43), an angle ¥ap
such that £ap(t) = Yap R(t), which remains constant in time. The maximal
distance between two galaxies is 7 R, the half of the length 27 R of a maximal
(geodesic) circle. Then the maximal angular distance is ¥ypax = .

1.8.2 Open universe

In this model the spatial sections S; are three-dimensional hyperboloid Hs of
radius R,

w2—x2—y2—22:R2(t)

immersed in the Minkowski affine space My = (w, x, y, z) with signature (— +
++). The hyperboloid Hs is the set of points P such that the vector OP is
time-like and with positive component with respect the time-like coordinate
w. It results to be a space-like three-dimensional surface whose curvature
at the date t is K(t) = —R72(t) < 0 (Fig. 1.7). Remarks similar to those
concerning the closed universe hold for the open universe. The only difference
is that in the open universe the angular distance is not bounded.
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open universe at the time ¢

A B

\ >

isochronous N

distance 4B \\\
N\

at the time t ]
constant
reference angular distance
time ¢y YaB
H(t3) ~ Q
<0 B

Figure 1.7: Radial diagram of the open universe.

1.8.3 Flat universe

In this model the concept of radius of the universe does not make sense. So
we must refer to the scale parameter a(t) only. The spatial sections are the
three-dimensional planes w = constant immersed in the Euclidean affine space
R4 = (w’ x? y’ Z)'

1.9 Co-moving volumes and conserved densi-
ties

Let U be a domain in the quotient manifold ¢ with a finite volume

V(U) = /U \/det[ggb] dq' Ndg? A dg®.

Carried along the world-lines, U generates domains U; C S; with finite vol-

umes
V(U,t) = / Vdetlgan(t, q)] dg* A dg? Adg®.
Uy
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Theorem 1.10 — The ratio V(U,t)/a®(t) does not depend on t:

(1.45)

V(U) = constant > 0

Proor — The factorization gap(t, §) = a2(t) g*,(§) implies
V(U,t) = / Vdetlgan(t, q)] dg* A dg? A dg?
Ut
@) [ ol @) dw nde: ndgt = a0 VO). w
Ut

Theorem 1.11 - For any scalar function of the cosmic time u(t) the follow-
ing equations are equivalent,

u(t) V(U t) = const. YU | <= | u(t) a®(t) = const.

(1.46)

e |ap+3upa=0 | |h=—2aH~l
I

When these equations are satisfied we say that u(t) is a conserved density
of order wu.

Proor — Write equation (1.45) as V(U,t) = V(U)a®(t). Then the condition
w(t) V(U t) = const. is equivalent to pu(t) V*(U)a®“(t) = const., hence to
w(t)a®“(t) = const. By differentiation we get the second equivalence. The
last equivalence is due to the definition of the Hubble factor: h = a/a. m

The typical case is the mass (or matter) density for which v = 1. But there
are other density of physical interest for which u # 1 (see Chapter 5).

1.10 Cosmic monitor and free particles

The quotient manifold will play a crucial role in the sequel. In order to make
such an abstract concept more accessible we can think of it as a cosmic
monitor whose pizels, which are bright fixed points, represent the galaxies.
Of course we need an effort of imagination because such a monitor is neither
flat nor two-dimensional: it is a (possibly curved) three-dimensional screen.
On the cosmic monitor there is also a clock showing the cosmic time ¢.

Imagine a very special person, the cosmic watcher, sitting in front of (or
better, sitting inside) the monitor. Since the cosmic monitor is endowed with
a metric (the quotient metric g*) the cosmic watcher is able to recognize
distinguished curves, called geodesics, connecting any pair of galaxies with a
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minimal (or stationary) distance. Then the cosmic watcher is able to measure
the co-moving distance é& p of two galaxies (Fig. 1.8).

Galactic world-lines
B

T~

Spatial /
sections \

Figure 1.8: The cosmic space-time and the cosmic monitor.

6'" Postulate. There are bodies, other than galaxies, running in the
universe. We call them particles. The life of a particle is represented
by a world-line in space-time transversal to the spatial sections.

The cosmic watcher cannot see the world-line () of a particle. What he
can see on the monitor is the projection ¥(t) of v(t). He looks at 5(¢) as the
motion of a point. Then he can measure the monitor speed v(t)

_ds

(1.47) o(t) = =

where s is the arc-length along ¥(¢). The concept of monitor speed will play
a very important role in the following.

Among the various curves ¥(t) that the cosmic watcher can see there are also
geodesics. He argues that they represent distinguished particles whose world
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lines in space-time have some special features. But he cannot claim that these
world-lines are geodesics because he does not know if in space-time there is
any special metric or a connection. Anyway, he proposes the following formal
definition:

World-line of a particle ~y(t)

ta

SR

Figure 1.9: Particle observed on the cosmic monitor.

Definition 1.2 - A free particle (or free-falling particle) is a particle
whose monitor motion J(t) is a geodesic. No matter if the cosmic time ¢ is an
affine parameter or not.!*

Thus, we are encouraged to investigate on the existence of linear connections
on space-time that are, in a sense, adapted to the geometric structures so far
determined by the postulates — the spatial foliation, the spatial metrics, the
congruence of the galactic world-lines, the quotient manifold and the quotient
metric. This will be done in Chapter 2. At the end of our analysis we will

1 In fact this distinction will be subject to a postulate (page 37).
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be faced with two types of connections (Sections 2.5 and 2.6) which open two
distinct ways for developing the cosmic dynamics: the Newtonian way and
the relativistic way.

- & bitd watcher

27
W S

oy st K
> . the cosmic S\
= watcher

“the cosmic
© —° monito

The cosmic monitor and the cosmic watcher
(interpreted by my schoolmate Tony Magala)

1.11 Local reference frames and peculiar ve-
locity

In order to locate an event in space-time we need to know where it occurs
and when. To do this we need to assign a reference frame made of the
congruence of world-lines of particles of an ideal ‘body’ and of a transversal
foliation S; of simultaneous events parametrized by a ‘time’ ¢. Then we can
say that a certain event occurs in a point of a certain ‘body’ and at a certain
‘date’ t.

In cosmology we have a privileged reference frame: the galactic world-
lines and the cosmic time ¢t. Note that this is similar to what happens in




1.11. Local reference frames and peculiar velocity 25

Newtonian space-time (which is an affine space): there is an absolute time
t, a foliation S; made of three-dimensional affine subspaces, and a class of
equivalence of reference frames, whose world-lines are parallel straight lines,
called inertial frames. Instead, in Special Relativity i.e., in the Minkowski
space-time (which is still an affine space) there is not a privileged time but a
class of equivalence of reference frames, whose world-lines are parallel straight
lines, still called inertial frames. Each one of them determines an orthog-
onal foliation of three-dimensional affine subspaces, hence a time ¢ which is
‘relative’ to the frame.

Consider now the intergalactic journey of a particle P from a galaxy A to a
galaxy C. Let t4 and ¢, be the dates of departure and arrival (see Fig. 1.9 on
page 23). At a date ¢ € (tq,1,) the particle P crosses a galaxy B;. Then we
are faced with the following data:

lap,(t) = the isochronous distance from A to B; measured
at the actual time ¢.
é% B,(t) = the co-moving distance from A to B; measured
by the cosmic watcher.
a(t) = the scale parameter, unknown to the cosmic watcher.

They are linked by equation (1.33)
Cap,(t) = a(t) Gy, (1).

It follows that {4, (t) = a(t) éﬁth (t) + a(t) P ap, (1) =

(1.48) Uap, () = h(t) Cap, () +a(t) P ap, (1), h(t) % 22,

These formulas are quite similar to the composition law of velocities in clas-
sical mechanics. The galaxy B; can be interpreted as a local reference frame
that moves with respect to the main (fixed) reference frame A. Then the
first term {4 p, is the absolute velocity of the particle P (the velocity with
respect to the main frame A). The second term a é% B, = hlap, plays the role
of dragging velocity. The third term a ¢! 45, is the relative velocity, that

is the velocity of the particle with respect to the moving frame B;. Hence
equation (1.48) can be read as

absolute velocity of P w. r. to the frame A éABt
= dragging velocity of the galaxy B; = = dé% B,
+ relative velocity of P w. r.to the frame B;. 4 CLéﬁABt-

In cosmology these three velocities are called total velocity, recession ve-
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locity and peculiar velocity, respectively:

total velocity viot(P/A) laB,
(1.49) = recession velocity vee(Bi/A) <= = déi B,
+ peculiar velocity vpec(P/Bt) +ali, B,

Here the slash symbol / stands for with respect to. The total velocity pertains
the galaxy A and the particle P when it crosses the galaxy B; at the date ¢.
The recession velocity pertains the two galaxies A and B; only. The peculiar
velocity pertains the particle P and the galaxy B; only. The cosmic watcher
is able to measure é%Bt = 5(t) — s(tq) and ¢ 45, = $(t) only.

(1.50) Vrec (B JA) = h(t) Lap, = a(t) [S(t) — s(td)]
a(t) unknown to the cosmic watcher —j\
s(t) known to the cosmic watcher
. ds
(1.51) Vpec(P/By) = a(t) ¢t ap, = a(t) o

a(t) unknown to the cosmic watcher _T

5(t) known to the cosmic watcher

This last formula provides the definition of peculiar velocity of a particle.
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Cosmic connections

2.1 Preamble

A linear connection I on space-time is locally determined by its symbols I') 3
in any given coordinate system. Due to the isotropy principle only symmetric
connections, for which I') ; = Fga, are admissible.! In homogeneous co-
moving coordinates (¢°, ¢%) we classify the symbols according to the number
of the o—indices:

IS,
o) D Th =TS,

D6y =Tis iy =T,

D% =T

Then the parallel transport equations of a vector v*(§) along any curve ¢ =

7€),

dvY dvy?
ag T g =0
separate into the system
dv® dn° dn° dy*® dr®
FU 0 FU a 0 FU a :O
(22) e+ Tt G+ T (v G+ ) + T e o
' v’ e 0@ pe (0@ 0B | pe e D
T + I, v i + I, (v i +v i +T¢,v i =0.

Along any curve ¢* = y*(§) we can define the acceleration vector with
respect to the parameter &:

- A2 d~® d el
ey def A7V vy d* dy
(2.3) a’ (€) ae? +Los i e

1 See Remark 1.5 below.

27
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The curve is a I'-geodesic when the acceleration is parallel to the velocity
™ /dg,

dy”

2.4 Y(E) = -
(2.4) () = Me) G
i.e.,

d*y7 dy* dy’ dy"
2.5 V= —— = A§) —
These equations separate into the system

d2,.)/0 o d,.ya d,.yb d,.ya d,.)/f) 0 d,.)/f) d,.)/f) B d,.)/f)

dez o e g T2eo g5 g T e ae T e

d2c dadb d~® d~° d~° d~° d~¢
2V pe DAY g DAY pe A A
dg? d§ dg d§ dg dg dg dg§

(2.6)

The parameter ¢ is said to be affine when the acceleration vanishes: a7(£) =0
(<= A=0).

Remark 2.1 - If a curve is transversal to the spatial sections, then the coor-
dinate ¢° can be taken as a parameter. So, 7°(¢°) = ¢° and consequently
dv°/dg® = 1 and for such a curve the transport equations (2.2) and the
geodesic equations (2.6) reduce respectively to

dv® d~* d~P
! + 10,00 4+ 10 v* +0° 7)o, pe =0,
0 0 ab 0
2.7) dgq dgq dgq
' v’ ¢ (o p0 @\ pe 0@
dqo + Foo v° + Fao (’U + G dq“ ) + Fabv dqo =0
dy® dryb dy*®
0 2 FO FO —
(2 8) ab dqg dqg + ao dqo + 00 )\a
. d d")/c . d,_ya d")/b . d,.ya . d,.YC
d_qo dqo Fab dqo dqo + 2 Fao dq“ + FOD = )\ dqo . [ ]

2.2 The basic requirements

We look for a linear connection I' = (I') 5) that meet the postulates of the
cosmic kinematics or, in other words, that is adapted to the geometrical struc-
tures introduced on the space-time: the congruence of the galactic world-lines
and the spatial foliation. We will translate our aims into precise requirements.
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15¢ Requirement. The galactic world-lines are geodesics of ' with
affine parameter ¢°.

2"? Requirement. The property of a vector to be tangent to the spatial
foliation is preserved by the I'-transport along the galactic world-lines.

Henceforth we will call spatial every vector tangent to a spatial section.
In co-moving coordinates a spatial vector is characterized by the condition
v° = 0.

Theorem 2.1 — The 15¢ requirement is satisfied if and only if TS, = 0 and
Ire, =0.

ProoF — A galactic world-line is parametrized by ¢° and characterized by the
condition ¢* = constant. In this case the geodesic equations (2.8) give

Fgo =,
e, =0.
The parameter ¢° is affine if and only if A =0. =

Theorem 2.2 — The 2"¢ requirement is satisfied if and only if (i) T%, = 0 and
(ii) the transport of a spatial vector along a galactic world-line is represented
by the equations

dv®

(2.9) T

+Ig, v =0.

Proor — For a spatial vector v* = 0 and the transport equations (2.7) with
~v* = constant reduce to

oo v" =0,
dv®
dq° +I5v*=0. =m

By virtue of the 3"¢ postulate each spatial section S; is endowed with a
positive-definite metric tensor g;. Hence, a further ‘natural’ requirement is
the following.

3" Requirement. The norm of the spatial vectors is preserved by the
I’-transport along the galactic world-lines.
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The norm of a spatial vector v®(€) along a curve ¢®(£) is defined by?
210) [ = gun(a’. D) v"(€) 0" () = A*(@") Gur(@) 0" (€) 2" (€).

Theorem 2.3 — If the 2"¢ requirement is satisfied then the connection meets
the 3" requirement if and only if T%, = H L, where H(q°) is the Hubble
parameter.

PRrOOF — A galactic world-line can be parametrized by ¢°. From the definition
(2.10) it follows that (' = d/dq")
[ d||v]| do®

_ ~ a ,b 2~ a
o =2AA Gupv* v’ +2A%*Gapv i
b

use the transport equations (2.9) =-T? o°

dq°®
=2AA Gapv®v® —2 A% G v T ¢

| =2A4AGe v (A0 — H7'TY 0°)
The 3" requirement is equivalent to

d||v|
dq°®

According to this last equations the spatial vectors v® and v* + z®, with
a def

=0 = G (¥ — H'T,00) =0

H™T% v¢, must be orthogonal. This is absurd unless v + 2% = 0
e, =H T v¢ <= Tt =H3.

At this point, the table of the symbols of the connection I' is the following:

Fgo =0, Fgo =0, Fgo =0
(2.11) T, =H(q") o,

I, and I'¢, to be determined

The geodesic equations (2.6) in a generic parameter £ reduce to

d2,.)/0 d")/a d"yb d,.yo
o, 22
dez The e qe =M ae

(212> d2c dadb d~¢ d~° d~¢
C0 e, D oD D D
dé&? d¢§ dg /S d§
For £ = ¢°,
o Ay dy’
ab 0 o )\’
(2.13) de° de? . .
A A e A pd dy
dq® dq° ab dq® dq° dq°® dg°”

2 Recall (1.22), a(t) = A(q°).
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Assuming that the above three requirements are met, now we ask the connec-
tion I' to meet the 4*" postulate: the isotropy principle.

4" Requirement. The connection T' is isotropic in the sense that
it does not give rise to distinguished vector fields tangent to the spatial
sections.

Theorem 2.4 — If the connection is isotropic then

(2.14) Loy = F(q") gan(Q)

where F(q°) is a function of ¢° only.

Proor — Going back to the definition (2.4) of geodesic, a® = Ady*/d¢, we
observe that the multiplier A is a scalar since a® and dy®/d¢ are vectors.
Then the left hand side of the first equation (2.13) is a scalar. It follows that
I'°,(¢°, q) are the components of a spatial covariant symmetric tensor for each
fixed ¢°. It generates distinguished eigenvectors unless it is of the form (2.14)
(see also Section 1.3 below). m

Now the table of the I'-symbols is

Fgo =0, Fgo =0, Fgo =0

(2.15) I, =H(d*) o, T4y =F(q")ab

F(¢°) and I, to be determined

The I'-geodesic equations (2.12) in a generic parameter £ reduce to

d2,.)/0 ~ d")/a d"yb d,.yo
F a s T ’
(2.16) agr I ag as
: d2")/c d")/a d"yb d")/c d,.yo d")/c
— 4, == 42H A=
dg? NS dg dg dg§
and for £ = ¢°
_ dy® dyt
Fgab— = A
(2.17) dq” dg° ,
d dv° dy® dvy dr© dr©

g dg T dg dp T A =N ag

2.3 Projection of geodesics

Let us return to the end of Section 1.10 where the cosmic watcher noted the
presence of geodesics on its monitor. Arguing that these I'-geodesics may
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result from the projection of geodesics of a connection in space-time we are
led to the following

5" Requirement. I'-geodesics project onto f—geodesics.

This means that if v(£) is a geodesic for the connection I" then the projected
curve 5(£) must be a geodesic for the Levi-Civita connection I of the quotient
metric g. Note that this requirement is already satisfied by the galactic world-
lines. In fact they are I'-geodesics which projects onto single points of the
quotient manifold which may be interpreted as singular geodesics.?

A

I-geodesic ﬁ

v(q%)
N N
—
ErOJ ected ~ projection :
I'-geodesic J(s) P : ‘

S B

Figure 2.1: Regular I'-geodesics project onto f—geodesics.

Impose this 5" requirement to those geodesics v which can be parametrized
by ¢° and by the arc-length s of their projected curves 7 (see Fig. 2.1). We
will call them regular I'-geodesics. The arc-length s is a distinguished

3 A parametrized curve is interpreted as a motion. So, a point represents the motion of
a point at rest.
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parameter for any curve on ) since

G, d’

2.1 b —— =1
(2.18) gbds ds

and is an affine parameter for all f—geodesics,

d2")/c - d")/a d"yb
Ie —_— =
ds? than ds ds

(2.19) ¢* = 7%(s) is a [-geodesic <>

The reversible relationship between the parameters ¢° and s is represented by
a function?

wr 05
dq°®

(2.20) V(g")

Theorem 2.5 — The 5" requirement implies that the symbols T, coincide
with the Christoffel symbols 'S, of the quotient metric

(2.21) (@ @) =T (@)

and that the function V(¢°) > 0 (2.20) satisfies the equation

dlogV
dq°®

(2.22) —FV?*+2H=0

Proor — Taking into account equation (2.18) the geodesic equations (2.17)
are equivalent to

VZF =)\,
(223) d d~¢ d~?® d b d~¢
2 [ & &Y e VAV _v3p_ vyt gl
v (ds ds T ds ds) (V F=v 2HV) ds '

By replacing the expression of A given by the first equation in the second set
we get the characteristic equations of the regular I'-geodesics in the
parameter s:

d dy . dy*dy

ds ds b ds ds =V (VQF N (10gV)/ N 2H)

d~°
ds

(2.24)

These equations involve only the parametric equations ¢* = y*(¢°) and their
first and second derivatives. Consequently, they are satisfied by the projected

dq° dq°
4 Actually, the reversibility condition is _c;] # 0. The condition —C;] > 0 is not restric-
s

S
tive: it simply means that the two parameters ¢° and s are assumed to be with the same
orientation.
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curve (s). But, in acoordance with the 5" requirement, this projected curve
must be a I'-geodesic. As a consequence, by the comparison with the I'-
geodesic equations (2.19) we get

dy® dryb dry©

(r;b - f;b) e A (V2 F— (log V) — 2H) _.

These equations must hold for all geodesics. Since the left sides are quadratic
in the s-velocities and the right sides are linear, both sides must vanish. m

The following is in a sense the inverse of the previous theorem.

Theorem 2.6 — Let v be a regular curve on space-time, that is a curve
which can be parametrized by ¢° as well as by the arc-length s of the projected
curve y. Assume that (1) equations (2.21) and (2.22) are satisfied and that

(ii) the projected curve 7 is a I'-geodesic. Then «y is a T'-geodesic.

Proor — Under the assumptions (i) and (ii)

c _ Tec
Fab - Fab

d dv¢ =, dv® dr® —0
ds ds b ds ds

and equations (2.23) reduce to

V2F =),
V2F —(logV) —2HV =0

The second equation is satisfied because of the assumption (i). The first
equation gives the expression of A and in this context is irrelevant. Hence,
equations (2.23) are satisfied. On the other hand, ss we have seen in the
previous proof, equations (2.23) are equivalent to equations (2.17) which in
turn are the I'-geodesic equations in the parameter ¢°. m

2.4 Cosmic connections

The arguments of this chapter can be summarized in a definition and a theo-
rem.

Definition 2.1 — A cosmic connection is a linear symmetric connection on
the cosmic space-time satisfying the five requirements listed in this chapter,
which are compatible with the postulates of the cosmic kinematics stated in
the first chapter.
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Theorem 2.7 — In any co-moving coordinate system the symbols of a cosmic
connection are

rg,=0, I =0, It =0

(2.25) I =H(d") o, Top=F(q")gab

c _ Te
Fab - Fab

where H(q°) is the Hubble parameter, be are the Christoffel symbols of the
quotient metric g, and F(q°) is a function satisfying the equation

(2.26) sV | o — py?
dq°®
- ds
2.27 V(") ¥ =2
(227 @)

along any regular I'-geodesic.
Despite the complexity of the above discussion, the result (2.25) is very simple.

Remark 2.2 - Having in mind Remark 1.9 we observe that the five require-
ments of a cosmic connection are expressed in a geometrical way which is man-
ifestly invariant with respect to the choice of a reference date (take also into
account Remark 1.13). Nevertheless, we can observe this invariance directly
from the expressions (2.25) of the symbols. (i) The symbols '’ = H(q°) §°
are invariant since the Hubble factor is invariant (Theorem 1.9). (ii) The
coefficients T¢, = I'¢, are invariant (Remark 1.13). (i) About the undeter-
mined function F' entering the symbols I'?, = F(¢°) gas, we observe that due

to equation (1.27)
1

ds(ty) = ———— ds(t
S( 0) a(to,t*) S( )
from the definition (2.27) it follows that
ds(to) 1 ds(ts) 1
2.28 Vit q°) = = = Vit q°),
( ) (to, 4°) dq® a(te, ty) dg° a(to, ts) (')
thus

dlogV (te,q°) = dlogV (t«, ¢°).

Hence, the left-hand side of equation (2.26) is invariant, so that F'V? must
be invariant:
F(tf)a qO) V2(t05 qO) = F(t*a qO) V2(t*a qO)



36 Chapter 2. Cosmic connections

Due to (2.28), this equation is equivalent to

(2.29) F(to,q") = a*(to, ts) F(t«, ¢°)

In turn, due to (1.21), this last equation is equivalent to the invariance of
o = F(d°) gap- o

Remark 2.3 — The role of the undetermined function F'(¢°) raises a subtle
argument. In fact equation (2.26) involve not only the functions F' and H,
which participate in the definition of the connection, but also the function V'
which instead, by definition, is linked to the structure of the regular geodesics.
This is a paradox that may cast doubt on the correctness of this equation
which in a sense is ‘hybrid’. This paradox will be clarified in the following. e

REALM OF o D) 2 REALM OF

NEWTONIAN Ay ! ®  Recatvistico

COSMOLOGY G COSMOLOGY

| Newtonian connection Relativistic connection |
| 1.st Bridge postulato 2. nd Bridge Connoct10n|

We are here | \
Cosmic connections |
Hubble law _

A |l Quotient metric ‘

‘ Scale parameter

Quotient manifold ‘

REALM OF KINEMATICS

Postulates

QIR o

Figure 2.2: The cosmic road.
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The determination of a cosmic connection through the choice of the
function F'(¢°) must be the consequence of a postulate. In this regard
we observe that a connection provides the basis of a dynamics. In other
words, the kind of postulate we are arguing will form a ‘bridge’ between
the Cosmic Kinematics and the Cosmic Dynamics.

We will consider two of these bridge-postulates that open the way to
two different dynamics (Fig. 2.2).

2.5 The Newtonian cosmic connection

1%t Bridge—postulate. The cosmic time ¢ is an affine parameter for
the world-lines of the free particles.

Remind that the world-line of a particle is (by definition) transversal to the
spatial foliation (paragraph 2 of Section 1.10).

Theorem 2.8 — The parameter ¢° = k't s affine for all transversal geodesics
of a cosmic connection if and only if F(¢°) = 0.

Proor — Write the first geodesic equation (2.16) for £ = ¢° and put A = 0:

_dy* dyb
Fgup — =0.
Jab I g [*]
_dy* dyt dy*
Jab d—q“ i =0 < i =0 = absurd

because of the transversality assumption. Then [¥x] = F =0. =

There is a unique cosmic connection meeting the above postulate. We call
it Newtonian since a cosmic space-time equipped with this connection is a
generalization of the Newtonian space-time of classical mechanics (Fig. 2.3),
where:

1. The manifold M is an affine four-dimensional space.
2. The spatial sections are Euclidean three-dimensional affine spaces.

3. The galactic world-lines are parallel straight lines and represents the motion
of the so-called fixed stars. The congruence of these lines is an inertial
reference frame, as well as any other congruence of parallel lines transversal
to the foliation S.

4. The world-lines of the free-falling particles are transversal straight lines
(law of inertia).
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5. The cosmic time ¢ is the absolute time.

6. The expansion factor is constant and equal to 1, and the Hubble parameter
is h = 0; thus H = 0. Consequently if the coordinates ¢ are Cartesian, then
all symbols Flﬁ vanishes. The cosmic connection is flat and coincides with
the canonical connection of an affine space.

Spatial sections:

Euclidean affine
3-spaces World-line of

Fixed-stars the star P

world-lines:

congruence

of parallel W\l\/ \/
straight lines

)\ SR
/

M: affine 4-space

Figure 2.3: Newtonian space-time.

2.6 The relativistic cosmic connection

2"? Bridge—postulate. There exist special particles whose peculiar
velocity (1.51) is constant

d
(2.30) a(t) d_j = ¢ = constant

Since the peculiar velocity is in fact the velocity with respect to a local frame
of reference, this postulate clearly falls within the relativistic vision. Thus,
the connection we are going to define will be called relativistic cosmic
connection.

Theorem 2.9 — There is a unique cosmic connection compatible with the



2.6. The relativistic cosmic connection 39

existence of special particles. The function F(q°) is given by

2
K
(2.31) F=— A*H

Proor — Due to the condition (2.30) the monitor speed (1.47) of a special
particle is

def ds c

(2.32) OR

Then in the parameter ¢° the monitor speed is expressed by the function

c'd
(2.33) V() ¥ =2 °

dg*  KA(g)

Note that this ‘speed’ coincides with the function V(¢°) defined in (2.20) for
which equation (2.22) holds,

dlogV
dq°®

—FV?42H=0.

Due to (2.33) this equation is equivalent to

dlog A=!

oH_FS A2
dq°® + T R2 o

Since H = (log A)’, we have
2
H-F—5A7?=0
K
and we find equation (2.31). m

Remark 2.4 — The definition (2.31) of F' shows that the cosmic connection
depends explicitly on ¢ (the functions A and H do not depend on ¢). Then the
existence of two (or more) special particles with different peculiar velocities
is incompatible with the existence of a unique cosmic connection. If we think
of a unique cosmic connection then ¢ becomes a universal constant. e

Remark 2.5 - Remind that the constant « has been introduced at the begin-
ning of our discussion for a dimensional consistency in the correlation between
the cosmic time ¢ and the coordinate ¢°: ¢° = xt. Its numerical value has
been left arbitrary, but fixed. This constant has been present throughout our
discussion, and it is also present in the definition (2.31) of F'. Then there is
no loss of generality in considering
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It follows from (2.33) that for a special particle

ds 1

The symbols of the relativistic cosmic connection are

Fgo = O FZO = H5Z
(2.35) re, =0 ¢TI =A*Hgu(9)
I, =0 Lo =T5

Theorem 2.10 - The world-line of a special particle is a geodesic of the

relativistic cosmic connection.’

ProofF — The world-line of a special particle is a curve transversal to the
spatial sections. The characteristic equations (2.24) of the I'-geodesics in the
parameter s read

d dy . dy* dy’

T e e e =V (VPP — (log V) —2H)

d~°
ds

Due to (2.34) V = AL, the coefficient at the right hand side vanishes: V2 F —

d2")/c d")/a d"yb
Ie —_— =
ds? tlab ds ds

(logV)—2H = H+(log A) =2 H = 0. It follows that
and we can apply Theorem 2.6. m

If we accept the existence of ‘special particles’ then at the bifurcation of
Fig. 2.2 we turn right. On this way we are going towards a relativistic
formulation of the isotropic cosmology. In fact at the first station we
will find a surprise: as a consequence of our postulates the space-time
admits in a canonical way a metric of Lorentzian signature.

5 In other words: a special particle is a free particle of the relativistic cosmic connection.
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REALM OF D i REALM OF
NEWTONIAN ¥ ! ®  Revarivistio
COSMOLOGY : ! COSMOLOGY
| Newtonian connection Relativistic connection |
\\. //
| 1.st Bridge postulate 2.nd Bridge postulate |

We turn r lg-,ht { \

Cosmic connections |

Hubble law

A || Quotient metric ‘

Scale parameter

Quotient manifold ‘

REALM OF KINEMATICS

Postulates

AL o

Figure 2.4: Towards the relativistic cosmology.

2.7 The canonical cosmic metric

Theorem 2.11 — The relativistic cosmic connection is the Levi-Civita con-
nection of the Lorentzian metric®

Joo = & = const.
(2.36) | gap:g gao =0 Gap dq”™ d¢® = a (dq°2 — A2 G, dg® dqb)
Jab — —« A2 gab

Proor — According to Theorem 1.6 the components of any metric have the
form

6 Note that the Newtonian connection, for which F' = 0, cannot admit a cosmic metric.
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goo = a(q°), g” =a"l,
Jap Goa = 0, = go‘ﬁ : g =0,
Gab = B(qo) gab gab — 671 ngab'

Computation of the first-kind Christoffel '3 , = % (0agsy + 089ya — 0+9ap):
20,0 = b Goo + 80900 - 80900 =
2T 00,y = 0vGory + OoG~yo — Oy Goo = ’
00,7y 09oy 09~o v 9oo 2 Tooa = Dogon + Bn s — Oafon = 0.

2T0,0 = Oogbo + Ogoo — Gogob = 0.
2F0b,’y —809b'y+8b9'yo—3»ygob—{ 00,0 0Ybo 00 090

2 Fob,c = OoGbc + 8bgco - 8cgob = 5/ gbc-

2 Fab,’y = 8agb'y + 8bg’ya - 8’ygab =
{ 2Fab,0 = 8agbo + 8bgoa - 8ogab = _6/ gab-

2 Fab,c = 8agbc + 8bgca - 8cgab =2 6 fab,c-

Computation of the second-kind Christoffel ', 5= g7 LCups:

T [ = 9" Too5 = 9" Lo = 2a71a’ = 1 (loga)'.
00— 9 00,8 re — gc6 Foo,& _ gcd Foo,d —=0.

FZO = 906 Fao,é = 900 Fao,o =0.
I =9"Taos =1 T¢ =9%Ta0s=9Taoa= 2855 Gaa
= 4 (log B)' &%.
o _ 00 __ 00 __1 -1
[, = g Ty = § o0 =97 Tabo =90 abe = =2 0 Fgan
=0“Tars =9"Tapa =0 G“Blap,a=T7%,.

Fgo = % (10goz)’, Fgo = % (10g6>/ 5;,
Summary: s, =0, Iy =—5a '3 Ga,
T, =0, T, =14,
These symbols coincide with those of the relativistic cosmic connection (2.35)
Fgo = 0, Fao - Hia; H — AflA/ — (10gA)/
I's, =0, ng = K gas, 9
c _Tc K=AA=A*H

F[l)lf) = 0’ Fab = Fab'

if and only if

« = constant,

3 (logB)" = (log A), =

—ta7lp =AA

a = constant,
A72 3 = constant = v,
B =-2aAA.
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o = constant, « = constant,
= ( B=rn4A% — { F=2~vA4A,
B =-2aAA. B =—-2aAA.
« = constant,
= v =—aq, = (2.36) =
B =—a A2
Without loss of generality we can take o = —1 and consider the metric
goo = —1
(2.37) | gap:} Yoo =0 Jopdq®dq® = —dq"* + A% Gupdq® dg®
gab = A*(0°) Gab(q)

with signature — + ++ as the canonical cosmic metric. The contravariant
components are

goo =1
(2.38) g*" 3 ¢"* =0
g°" = A2(¢") §"(@)

Theorem 2.12 - The galactic world-lines are time-like geodesics of the canon-
ical cosmic metric orthogonal to the spatial sections.

Proor — By virtue of the first requirement of a cosmic connection (p. 29) the
galactic world-lines are geodesics of the relativistic connection, thus of the
cosmic metric. Since in co-moving coordinates g, = 0, these world lines are
orthogonal to the spatial sections, thus they are time-like. m

2.8 Photons

Theorem 2.13 - The world-line of a special particle is a light-like geodesic
of the canonical cosmic metric.

Proor — For any world-line we have

dy® dvy® dy*\? dy® dry® dy dy® [ ds\®
dq® dq° dq°® dq® dq° ds ds \dq°

Since
o
Yab ds ds
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we get

dy® dvy* 5 [ ds 2
2.39 o =A"|—) -1
(2:39) Y g dgp (dQ“>

d
For a photon equation (2.34) d—so = A~! holds. Then equation (2.39) gives
q

dy dy” 2 42
gaﬁdq“d—q“:AA —1=0.

This proves that the world-line of a special particle is a light-like curve. We
already know that the world-line of a special particle is a geodesic (Theorem
2.10). =

Special particles are very strange particles: they are never at rest and have the
same peculiar velocity in whatever local reference frame. This is in accordance
with the theory of propagation of the electro-magnetic waves. Then by virtue
of Theorem 2.13 the concept of special particle can be identified with that
of electro-magnetic signal or that of photon in a broadest sense i.e., as a
particle associated with visible or non-visible light.

2.9 Sub-luminal particles

Definition 2.2 ~ A sub-luminal particle is a particle (2°¢ postulate of
Kinematics, p. 22) whose world-line v*(¢) is a time-like curve admitting a
parameter 7, called proper time, such that

dy® dy® ([ dr ,

9.4 bt dr
(2.40) L a0

Theorem 2.14 — Sub-luminal particles have peculiar velocity less than ¢ and
dr < dt.®

Proor —

dy® dv* ([ dr 2 ds \’
2. = gup— —|— ) =42 [—) -1
(239 o0 ar dr (dQ“> (dQ“>

dr\* ds \* dr\? ds\?
2 =) =A% (22 ) = L) =22 (2
(2.40) = —c (dq“) A (dq“) 1=1 (dt) c*a (dt) .

7 The proper time is oriented towards the future, as the cosmic time t.

8 dr < dt: the proper time is runs slower than the cosmic time: twins paradox.
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def ds ar\? 9 9

(1.51): vpec = a(t)a = 1= =c 5. =

. dr\? . dr\?

if Upec 7§ 0:1— (E) >0 i.e. (E) < 1.

. dr\? . dr

ifvpec=0:1—(—] =0 ie — =1

v2 202[1— d—TQ}<02 n
pec dt

Remark 2.6 - Galaxies have vpe. = 0, then galaxies are subluminal particles
with 7 =1t. e

2.10 Geodesics in the cosmic metric

For later use we summarize here some fundamental equations concerning the
geodesics in the relativistic cosmic metric.

The symbols of the relativistic cosmic connection are given in (2.35). The
non-vanishing symbols are

oo(q") = H(q") g = i/((;]:)) 0
(2.41) D96 @) = A%(¢") H(¢") Gunl@ = Ale") A'(6") (@)

Ffw@) = Ffw@)

where ¢ is any set of co-moving spatial coordinates. As a consequence, the
geodesic equations (2.6) for a curve v*(§) with a generic parameter £ read

d2’70 +A2H§ ) d")/a d_"yb _ d,.yo
(2.42) de? dg g~ " de
: d2~c¢ ~  dv® dAb d~¢ d~° d~¢
S ¥ R MDY e Nt
dg g dg ¢ dg dg
In the parameter ¢°:
" =q",
_ dy® dy?
A% H Gop —— =A
(243> d2~c¢ o dqzl Czlzqzl b ’ d~¢ d~¢
T, SO o S 2O
dq02 dqo dqo dqo dqo

In the parameter t:
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v’ =ct,
_ dy® dyt
2 _

(242) = § A H G g G =Ac
d2")/c ~. d")/a d"yb d")/c d")/c
arr e g T PR = A

da dt j 7 h
Take into account that A’ = = = =2 ,s0 that H =A"/A = L2,
dt dg° ¢ ca
v’ =ct,
_dy* dyb
2 h ot — 2
= ¢ Iy T T
d2,_yc - d")/a d")/b d")/c d")/c
S 4T Syoptl = .
ar Tle g e T e =
v’ =ct,
a? dy® dryb
= — h,~a _—
= { AT @ har g T
d2")/c - d")/a d"yb d")/c CL2 ~ d")/a d"yb d")/c
FC —_— 2h - 5 a R .
az e g T e T @M e A
—
V" = ct,

(2.44) PPy = dydy b [, dy® dy ) d°
i L P
dt? dt dt ¢ dt dt dt

These are the general cosmic geodesic equations in the cosmic time t.

Observe that for any world-line (transversal to the spatial sections)

(245) gup T D _ (WY L D o s d

. 0B i = a — =—c"4+a"y, .
G TRT dt Jab " Tat Jab " Tat
For the world-line of a photon
dy* dy* 2n Ayt Ay,
g —— —— =0 = b —— —— =
GV TR R T T
and equations (2.44) reduce to
v’ =ct,
(2.46) Py~ dy Ay
dt? o gt dt dt

These are the light-like geodesic equations.
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2.11 Comments on the Weyl principle

The standard texts of cosmology refer to the postulate of Weyl and the cos-
mological principle as basic statements on which to build up models of the
evolution of the universe. They are essentially formulated as follows:?

Weyl’s postulate: In cosmic space-time the world-lines of the galazies
form a bundle of non-intersecting time-like geodesics orthogonal to a
series of space-like hyper-surfaces.

The cosmological principle: On large scales the universe is spatially
homogeneous and spatially isotropic.

15 comment: As mentioned in the Introduction, the Weyl postulate put
cosmology in the framework of general relativity from the very beginning. In
our approach the second part of this postulate is a theorem (Theorem 2.12)
while the first part is contained in our third postulate. One might argue why
not accept from the very beginning the Weyl postulate instead to spend so a
long time starting from several postulates. The answer is that in this longer
way we do not lose the knowledge of important facts which are not strictly
pertinent to the theory of general relativity. For instance, the Hubble law as
well as several other results,!? are the subject of theorems valid regardless of
any dynamical assumptions on the evolution of the galactic fluid.

2"? comment about the cosmological principle: in our approach isotropy

implies homogeneity (Theorem 1.3). In fact this follows at once from the
fourth postulate concerning the existence of a metric on each spatial section.

At the end of these first two chapters it is worth emphasizing that so
far, as well as in the following discussion, we did not use any special
coordinate system like, for instance, one of those which are commonly
used on manifolds with constant curvature.

9 See e.g. [17].
10 Concerning, for instance, the scale parameter and the quotient metric (Section 1.5),

the cosmic connections (this chapter) and the symmetric tensors (Chapter 3).



Chapter 3

Fundamental symmetric
tensors

3.1 Conservation equations for a symmetric ten-
sor

Theorem 3.1 - Let V,, be the covariant derivative with respect to a general
cosmic connection T (2.25) and T*" the components (1.9) of an isotropic
symmetric tensor. The four conservation equations VT = 0 are equivalent
to the single equation

(3.1) P +3HP+FU)=0

Proor — It is sufficient to prove that

VT =& +3(H®+ F W)
(3.2)
VoI =0

VoI = 8,7 + 1%, TP +T5 T —

Vol = 9,7 + T8, T7° + 19, T = §,T* + ¢, T* + 'y, T + Iy, T
=0 + (T, +10) P+ T0, Wg» =V T = 0,1 + T4, 17" + 10, T

= 0, T + T8, T +Tb T + T T°7 = §,T* 4+ 1%, T° + T, T +T5 T
= W (0,9 + T2, 9% +T%,9%) + T, .

48



3.2. Ricci tensor of a cosmic connection 49

Use (2.25),
Vo T = +3(H® + F ),

VoI =T (0,§% +T¢, g% +T5.5%) =UV,g* =0. =

3.2 Ricci tensor of a cosmic connection

Theorem 3.2 — The components of the Ricci tensor of a general cosmic con-
nection (2.25) are

Ry — —3 (H' + H?)
(3.3) Rap =0
Ray = (F'+ HF +2K) Gup

where K is the curvature constant of the quotient metric g.

Proor — The Ricci tensor components are defined by (see (1.2))

Rog = 8#FZ[, — 8gfg# + F‘g# gﬁ — Fgﬁ Fg#.

1. Computation of Rg,:

R = 8,4, — ,Th, + T, Tg, — T4, T7, = — d,I%, — T4, T3,

= — 9, — T TIb = —H'6 — H68 H6b = —3(H + H?).

2. Computation of R.p:

Rap = 0,1, — olh, + T4, Tq, — TV, T7,

= 0oLy, +0cLyy, — Ol + D5 Ty + TG Ty — T2, T6, — T, Toe — TG, T
Reordering:

Rap = 0.1, — 0,75, + T, T4, —T4 T4, + 9,1, + T, 19, — 9, Te, —T¢TY,
(the first four terms give the Ricci-tensor components Ray of J)

= Rap + F'Gay + 3HF Gup — F oy H 6 — H 6 H Gac

= Rap+ F'Gup+ 3H FGap — Fgup H — HF Gy

= Ry +(F'+H F)Gap  (apply (1.6), Rap = 2 K Gap) = QT+F'+H F) Gop. m

Theorem 3.3 — The covariant components of the Ricci tensors of the cosmic
connections take the form

Ry = —3 A1 A"

(3.4) Newtonian : ~
Rab =2 Kgab
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Ry = —3 A7 A"

3.5 Relativistic : K
(3.5) elativistic {Rab—(2A/2+AAN+2K) Gab

Proor — (i) For I = 0 (Newtonian connection) equations (3.3) reduce to

Ry, = —3 (H' + H?),
Rap = 2 K G

Since H = (log A) = A=t A’, we find

H2 —l—H/ :A72 (A/)Q —A72 (A/)Q _,’_A—l A = A—l AN,
and (3.4) are proved. (i) For F = A% H (relativistic connection)
F'+HF =(A’H) +A?H?>=2AA"H+ A’H' + A2 H?
(use again H = A=t A")
=9 (A/)Q + A2 [Afl Al — A72 (A/)Q] + (A/)Q =9 (A/)Q + AA".
Enter this result in equations (3.3) and (3.5) are proved. m

3.3 Einstein tensor of the relativistic cosmic
connection

For the relativistic cosmic connection we can compute the mixed and the
contravariant components of the Ricci tensor by raising the indices of the
components (3.5) by means of the contravariant components (2.38) of the
metric. We find that

RY=3A"14"

(3.6) Rh= A7 (2(A) + A" +2K) 8,
RO — _3A71 A//

(3.7) Rab — A4 (2 (A/)Q +AA +2[~() fgmb

From (3.6) we derive the Ricci scalar curvature

RERG =3[4T A7+ A7 (2(4) 4 44" 12K)] =

(3.8) R=6A"2 (A’2+AA”+I~()
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As a consequence we can compute the contravariant! components of the Ein-

stein tensor Go8 % Ras _ % R g8,
G* = R*— L Rg" =347 A"+ 3472 (42 + A"+ K)
=342 (A’2 + f() :
G = R~ LRg™ = A4 (247 + A A" +2K) g
—3474 (A2 AN+ K ) g
— A [2A/2 FAA 12K 3 (A’2 L AA +f()} o
— At [A% 12447 4+ K| g™ —

G* =342 (A% + K)

(3.9) ~
Gab:_A74 (A/Q—‘,-QAA”—‘,-K) gab

3.4 The intervention of the cosmic time

So far we have used the coordinate ¢° as a parameter. However, in the per-
spective of applying in a dynamical context the formulas so far found, we
should rewrite them using as a parameter the cosmic time ¢. For this purpose

we observe that

oy A _1d dt 1
¢ =c dg® ¢ dt dg® ¢
Alg) =alt)y = A =2, a"=2, ’
(3.10) ¢ N ¢
H(¢") = AT A = H(¢") = —.
F() = A2H=A44 — 22
C

The Ricci curvature (3.8) and the contravariant components (3.9) of the Ein-

stein tensor become

(3.11) Ricei = 6¢ 202 (a2 Yai+tc f{)
(3.12) 6" = gz (i + *K)
. ! B
G =~ (2ai+a* + K ) g0
cta

1 As we will see, we are more interested in these components, rather than in the covariant

or mixed ones.
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The contravariant components (1.9) of an isotropic symmetric two-tensor take
the form

T°° = ¢(t) = a function of ¢ only,
(3.13) T =0,
T = 1)(t) g°°(q) = a function of ¢ times §*°,

We call ¢(t) and 1(t) the characteristic functions of the symmetric tensor
T8,

Theorem 3.4 — For an isotropic symmetric tensor (3.13) the conservation
equations VT = 0 are equivalent to the single equation

(3.14) ad+3a (¢p+a’h) =0

In turn, this equation is equivalent to

(3.15) (pa) +3a*ay =0

Proor — Apply the rules (3.10) to equation (3.1):

¢+3 (i¢+a—dw> =0 < (314). =
ca &

c

P +3(HP+FP)=0 <



Chapter 4

Relativistic cosmic
dynamics

4.1 The principles of the relativistic cosmic dy-

namics

In the previous chapters we have constructed the geometrical background we
need for passing to the foundation of the cosmic DYNAMICS. We have seen
that the evolution of the universe can be described by a single function of the
cosmic time, the scale parameter a(t). Our goal is now to state physical laws
governing the evolution of a(t).

1% Postulate. We found the cosmic dynamics on the principles of the
cosmic kinematics (first chapter) and on the existence of photons (274
bridge-postulate).

The cosmic space-time is then equipped with the cosmic metric (2.37)

(4.1)

Goo = -1
Gao = 0
ab = a*(t) Gab(q)

Gapdg” dg® = —c? dt® + a? (t) Gab dg” dg®

The contravariant components are

(4.2)

Q

9

00— _1
ao J— O
= a=2(1)3°(@)

93
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2"? Postulate. The evolution of the scale parameter a(t) is governed
by the Einstein field equations

(4.3) R*® 4+ (A—LR) g*F = xTF

equivalent to

(4.4) G = TP — A g*FP

where 7% is the energy tensor, A > 0 is the cosmological constant
and the costant y is given by

87TGN
4 3

X:
C

where Gy is the Newtonian gravitational constant.

Remark 4.1 - Dimensional analysis of the Einstein equations:

[2]

Table IIT
Object Dim Note
A L2 [a]
x TP L2 (2]
T | M L™'T~2 (energy density) | [b]
X M-tL=t1? [c]
Gy M L3T? [d]

According to our conventions (Section 1.4) the coordinates ¢® are length-

dimensional, thus the metric tensor components gag, g*? are dimensionless
and Dim (R*?) = Dim (R) = L~2. Then from the Einstein equations (4.3) it
follows that: Dim (A) = Dim (x T%%) = L~2.

[b] Equations (4.12) shows that Dim (7°°) = Dim (e) and Dim (7%*) = Dim (p).
From the entries of Table 1.4 (page 10) Dim (e) = Dim (p) = M L= T2

(]

[d]

Dim (x) = Dim (x 7%%)/Dim (T*%) = L=2 /(M L=* T~2).
Dim (x) = L=*T* - Dim (Gy) = Dim (Gx) = Dim (y) L* T~*

=M PLIT?2IAT A =M"'L3T72 e
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4.2 The energy-momentum tensor

According the above postulates, the core of a cosmological model is the choice
of an energy-momentum tensor 7% for the galactic fluid. As for any isotopic
symmetric tensor, it must have the form (4.5):

T = ¢(t)
(4.5) | T = ¢(t) 0y @ 0y + () G 9, @ O T8 . T* =
T = 1p(t) g*°

The two characteristic functions ¢(¢) and ¥ (¢) must satisfy the conservation
equation

(4.6) ad+3a (¢+a’) =0

which is equivalent to the four conservation equations V,7% = 0 (Theorem
3.4). An equivalent form of this equation is

(4.7) (pa) = =3a*ar

Nothing can be changed in the definition (4.5) and in equations (4.6)
and (4.7) without violating our postulates. The only degrees of freedom
we will have in the following will be the choice of the energy-momentum

tensor (Section 4.2.1) and of the equation of state (Section 5.1).

Theorem 4.1 — Let TP be an isotropic energy-momentum tensor with char-
acteristic functions ¢(t) and ¥ (t). Then:

(i) The ten Finstein equations are equivalent to the two differential equations

a2 ~
(4.8) Z =3 Exe) - K
' a 2 2 1

(ii) Due to the conservation law (4.6) the second equation (4.8) is a differential
consequence of the first one.

Proor — (i) The contravariant components of the metric tensor and of the
Einstein tensor are given in (3.12). Then the Einstein field equations

G — XTOO _ Agoo
Gab — XTab _ Agab
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are equivalent to

(d2—|—021?) =xo+ A

2 42
c al
ey (2ad—|—d2—|—02K) g% =xg®?® —Aa"2ge
d2:%02a2 (X¢+A)—C2I?
4 "
(2ad—|—d2—|—c2K) g% =c?at (Acf2 —X1/)) g
a? = ¢? |:%CL2 (A—Fx(b) —I?}
<

2ai+a?+ 2K = c?a? (A—X1/JLL2)

Substitute the first equation into the second one:

2= [La?(A+xd) - K
= ) ~ -
2aii+c [$a* (A+x0) - K] + K = 2a? (A = xa?)
— a? = c? :%CL2(A+X¢)_I}:
206+ 3c?a® (A +x¢) =c?a® (A - xva?)
— @*=c*|za*(A+x9) - K|
2ai=c?a® [A—xva®— 3 (A+x0)
a? = 2 —%CL2(A+X¢)_K_
4

d:%c2a[%j\—x(¢a2+%¢)}. (]
(ii) Differentiate the first equation (4.8):

2aa

(4.9) —=2(x¢+AN)ai+ixaé.

c

Substitute into this equation the conservation law (4.6) in the form a¢ =
—-3a (¢ +a®¢). Then

2aa

(49) = —z =3¢+ MNaa—x (¢+a?¢) ad
94
S = 2o+ ) —x (6+a%)
= %:%A—X(%¢+a2¢). <= second equation (4.8). =m
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4.2.1 The energy-momentum tensor of the galactic fluid

Theorem 4.2 - Let V(t) be the volume of any arbitrary co-moving portion
of the galactic fluid, €(t) and p(t) the energy density and the pressure in
that portion. Then the energy conservation law

d av

(4.10) pn (eV)=—p e

holds if and only if the energy-momentum tensor of the galactic fluid is that
of a perfect fluid!

(4.11) T = (e +p) U*U® + pg*?

where U is the unitary four-velocity of the galactic fluid

of da UOZL
Uad_fcli:{ gaﬁUaUﬁ:—l_

dt U* =0,
Note that
T =etp—p=e,
(4.12) T =0,

Tab — pgab'

Lemma 4.1 — The conservation law (4.10) is equivalent to the equation

(4.13) aé+3(e+p)a=0
PrOOF — Due to (1.45), ;((tt)) = const. = ;((tt**))
V- ;(&)) A1), V=3 ;(éi)) Pe)i(t) =35V

(413) <= éV+eV=—pV <= éV+(c+p) V=0
<= é+3(e+p)h=0. =

PRrOOF of THEOREM 4.2. Equation (4.13) is in perfect agreement with equa-
tion (4.6) a¢ +3a (¢ + a*v) = 0 with

(4.14) o=clt), ¥=ap

Then from (4.5) we get (4.12). m

I See [25] p. 127, [15] p. 132, [11] p. 14, [12] p. 23. Due to the different conventions,
there are changes of sign.
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Remark 4.2 - Since UP Ug = —1, the four-velocity U® is an eigenvector of
TP with eigenvalue —e:
T U = —eU".

Moreover, any vector X orthogonal to U® is an eigenvector of T with
eigenvalue p:
T X5 =pX®. o

Remark 4.3 -~ With the substitution (4.14) ¢ = €(t), ¢ = a~?p the dy-
namical equations (4.8) read respectively

(4.15) —:%QQ(A—E-XG)—IN(

d .
(4.16) —QZ%Q[gA—X(er%e)_

Equation (4.16) is a differential consequence of (4.15) and of the conservation
law (4.13) (Theorem 4.1, item (iii)). o

Remark 4.4 — The acceleration equation (4.16) highlights a salient fea-
ture of the relativistic cosmic dynamics: it can be interpreted as a Newtonian
dynamical equation of a point subjected to three forces competing with each
other, namely

Since A and y are positive constants, F acts as a centrifugal force (with center
a=0), as well as F}, and F, if p(t) and €(t) are negative. On the contrary, F),
and F, are attractive towards a = 0 when p(t) and €(t) are positive. o

4.3 Comments on the Friedman equations

The equations of Friedman are definitely the most cited equations in the texts
of cosmology, where they appear written in various different forms. Actually,
by Friedman equations one should understand the dynamical equations ap-
pearing in the original work Uber die Krimmung des Raumes by A. Friedman
(1922) which are written exactly as follows:

R? 2RR’ 2 , _dR

4) =4+ L A=0 R = —,

(4.17) W I R e
' 3R? 32 ,_ d°R
(5) ——+ = —A=xc% R = —.

R2 R2 dzg
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where p is declared to be the density of mass and s eine Konstante. The
coordinate x4 is time-dimensional and the signature of the metric is (———+).
These equations come from the Einstein field equations?

R = g"* Rix
(A)  Rik — 5 gik R+ Ngix = —2 Ty, Ty, =0, i,k#4
Tya = c* 0gaa

fori =k =1,2,3 and for i = k = 4, respectively. Looking at the energy
tensor components we observe that (i) Friedman takes into account the cos-
mological constant, (ii) the kinetic pressure p is not present, so Friedman deals
with a dust galactic fluid. Furthermore, as proved below, (iii) Friedman deals
with a positive spatial curvature.

In our theory we have seen that the Einstein equations determined by the
energy-momentum tensor (4.11) reduce to the differential equations (4.15)
and (4.16), namely

2

a?(A+ye) — K,

@
(4.18) 3
a
2

N [=

a [%A—X(p—l-%e)} )
Let us compare these equations with the Friedman equations (4.17). To do
this we rewrite them as
(4.19) { [4] 2H2’R”+R’2+c2—)\R2:0,

[5] R”+c—3 (A +xc®0) R?=0,
Subtract side by side [4] — [5]:

2RR"—AR*+ % (A +2c%0) R =0.

Since R # 0, we get 2R — 2 AR+ 3?9 R =0, i.c.
(4.20) R'"=1R (2XA—xc%).
If in (4.20) we put

dCC4 =dt R/ =a
(4.21) { { P

then we get the equation ¢ = % a (2 A— %029) which coincides with the sec-
ond equation (4.18) with p = 0,
a

0—2:%0,(2[\—)(6)

2 The comparison with our Einstein equations (4.3) R*? + (A — %R) g8 = TP
shows a difference of sign in the right side. This is due to the different signature of the
metric.
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provided that 2\ — scc?9 = c? (2A — xe) i.e.
(4.22) A=c*A, xo=xe
In turn, due to the substitutions (4.21), the second equation [5] in (4.19) reads

at = % ()\ + %029) a? — 2.

Due to (4.22),
a*=3ca® (A+xe) —
This equation coincides with our first equation (4.18)

@ 7=
2 =350 (A+xe)— K

provided that K = 1. This proves item (iii) above.



Chapter 5

Barotropic dynamics of a
single-component universe

5.1 Preamble

The dynamics of the scale factor a(t) is so far governed by the two first-
order differential equations (4.15) and (4.13). These two equations involve
three unknown functions a(t), €(t) and p(t). We need a further equation.
This equation should express the physical characteristics of the galactic fluid
and should be dictated by physical arguments. The galactic fluid may have
different components (typically mass, radiation, etc.). Assuming that the
energy densities €; of these components are additive, we can write the total
energy density € as the sum
€ = Z €.
K2

Beside the densities we have consider the pressures p; of each component.
Then we must assume that all of these variables are bound each other by
means of certain equations of state. In the case in which there is no inter-
action between the components, these equations are separated between them,
that is to say of the type

pi = files).

In the simplest case, we can consider linear equations
Pi = Wi €

where w; are dimensionless constants called barotropic parameters. In
this chapter we confine our analysis to a single-component universe with the
equation of state

(5.1) D=we
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As a consequence, the barotropic dynamics will involve two functions in
the cosmic time ¢, a(t) > 0 and €(t), together with a constant parameter w.
This dynamics is governed by the differential equations

(5.2) aé+3(w+1)ea=0
(5.3) d—Q*lQQ(A—l- €) — K,
. ~ =3 X :
5.4 ifl 2 A 1
(5.4) O~ La[2A X b

which are respectively called fluid equation, velocity equation and accel-
eration equation.

Equations (5.2) and (5.4) come from equations (4.13) and (4.16) with the
substitution p = we. Equation (5.3) is nothing but equation (4.15). The
acceleration equation (5.4) is a differential consequence of the fluid and the
velocity equations (Remark 4.3).

Our purpose is to find and classify all possible solutions a(t) of these dynamical
equations. We call them profiles of the universe. Such a classification
should depend on the value of the parameter w and on the value of the spatial
curvature Ky, specially on its sign. Moreover, two profiles differing by a
translation along the t-axis have to be considered equivalent.

5.2 Basic theorems

In the analysis of a barotropic dynamics it turns out to be convenient to
replace the parameter w with the new parameter!

(5.5) u w1

and introduce the new constants

ANE LA S

def 1

(5.6)
My = 3 xctes >0

Dim (\) = Dim (uy) = T2

€4 being the value of €(t) at the normalization time t;.

1 Table of conversion:

_ 1 1 2 4| s
u=w-+1 3 0 3 3 1 3 3
4 2 1 1 2

w 3|1l -5|-5|0]|35]|3%

The parameter u is used by other authors. See e.g. [5], p. 33, where it is denoted by T'.
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Theorem 5.1 - The evolution a(t,t;) of the scale factor is governed by the
single first-order differential equation

(5.7) > =Xa®+py a® P — P Ky

which can also be written as

:2
(5.8) I B I L0
a a

PROOF — (5.2) < E+3ug:0 <= dloge+3udloga =0 —

(5.9) e(t) a®"(t, t4) = constant in ¢

As a(ty, ty) = 1, equation (5.9) is equivalent to

(5.10) e(t)a® (t,ty) =

Substituting the expression €(t) = e; a=3“(¢, t4) coming from this last equation
into the velocity equation (5.3) we get
2

CCL—Q = %CLQ [A+xega 3] —Ky = % [a> A+ x €ga®> 3] =Ky = (5.7), (5.6). =

Remark 5.1 — The dynamical equation (5.8) must be invariant under any
change t4 — ¢, of the normalization time of the scale parameter a(t,t;), as
explained in Remark 1.9, page 12. We know that the definition of the Hubble
parameter h is invariant. Since also the constant A is invariant, the invariant
condition of (5.8) reduces to equation

1 €4 _ Ky 1 € _ K.
3Xa3u(t,tﬁ) a®(t, ty) 3Xa3“(t,tb) a?(t,ty)’

(5.11)

to be satisfied for all ¢,t4,t,. For t = ¢, we get

1 3! Ky 1
1 - —lye — K.
3 Xa3“(tb,tﬁ) CLQ(tb,tﬁ) gX *
K
Due to (1.41), K(t,) = T‘jt)’ this equation reduces to €4 = €, a®"(ty, ).
a=(tp, g

This last equation still holds for all values of (t,,t), and by putting ¢, = ¢
we get equation (5.10) that, as we have seen above, is a consequence of the
fluid equation (5.2). This proves that the dynamical equation (5.8) satisfies
the required invariance condition. e
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Remark 5.2 — By virtue of Theorem (1.11) (page 21) the following equations
are equivalent:

(5.12) e(t) V*(U,t) = const. VU = co-moving domain),
(5.13) e(t) a®"(t,t4) = constant in ¢

(5.14) aé+3uea=0 (fluid equation),

(5.15) h=—dC

This shows that the energy density €(t) is a conserved density of order equal
to the barotropic parameter u. e

Theorem 5.2 — If the spatial curvature is negative then any physical length
has a permanent superluminal expansion or contraction.

Note that this theorem holds whatever w.

ProoF — Let us go back to Section 1.6, equation (1.29), £(t) = a(t,ty) ¢,
where ¢4 is the length of a curve (not necessarily a geodesic) on the quotient
manifold and ¢(t) is the corresponding length on the spatial section S;. Due
to equation (5.7) we have

(5.16) P(t) = 2(t, ) £2 = [A a2 + py a~GwHD) _ 2 Kﬁ} 2.

If Ky < 0 then (2 = [)\ a? + py a=Gwtl) 4 2 |Kﬁ|] ¢;. This shows that 2>

02. |

Remark 5.3 - The superluminal condition ¢ > ¢? of any physical
length during all the life of the universe has no physical sense. Thus,
our theory leads to consider inadmissible the barotropic models with
negative spatial curvature. Similarly, the positive curvature models are
not covered here because they are deemed to be incompatible as a result
of astrophysical observations. e

5.3 The profiles of the barotropic flat models

In the vastness of the cosmological mathematical models, the flat
barotropic models have the rare property that the whole evolution in
time of the scale factor admits an analytical expression in terms of ele-
mentary functions (exponentials, or hyperbolic functions), whatever the
value of the parameter u.
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We will denote by a(u;t,ty) the scale factor of a barotropic universe with
barotropic parameter © = w 4 1 and reference time 4.

Theorem 5.3 - The profiles a(u;t,ty) of a barotropic flat model admit the
following two equivalent representations

1 ) = L X e T
(5.17) a(u;t, ty) [4 AT Bt form

(ePt — 1)2} 3% { exponential

1 .
X 3 hyperbolic

(5.18) a(ut, ty) = [% A (cosh(upt) — 1)] ’ { form

where

(5.19) 8% V3Re || Dim(8) =7

and e; is the value of the energy density e(t) at the refrence time ty.

Proor — With Ky = 0 equation (5.8) reads

52

a r
@ AT g
and is equivalent to
da def [l
5.20 —  _\ar, pHE
(5.20) a+/(L+ba=3%) A

The left-hand side is integrable in terms of elementary functions:

da 1 Vadt + b+ Va3t
a/1+ba3dw) g\/a?’“—i- — Va3t

Thus from (5.20) we get
o /a3® + b+ a3®
8 /a3% + b — /a3®

with an arbitrary ¢.. However, there is no loss of generality in assuming
t, = 0. In this case a(0) = 0.2 By setting 8 = 3vA = v/3 A ¢ we can write

/a3u+b+1/a3u wpt
=e .
*/CL3“+ — /a3

2 The physical meaning of a scale factor is invariant under translations along the t-axis.

-+ constant.

=3uVA(t—t.)
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In order to solve this equation with respect to a®* we put

(5.21) X & eubt

and def def
A= Va3 +b, B= Vadu.
Note that A2 — B2 = b. Then we have the following sequence of implications:

A+B:X:>A+B:X(A_B):>b:X(A—B)2 [1]

A-B
= b=X(A?+B?-2AB) = b=X (24> +b—2AB)
X-1 [b
:>%Tb:B(A—B). Due to [{], A— B= ~ Then
X-1 b X-1 (X —1)?
l—: —_— l— — 2:l7
= 1% B X:>2\/X\/E B= B=};—"b

As B2 =43 X =e"Bt and b = %, we finally get

py (€ — 1)
7 euBt

a3u _

N[

Due to the definitions (5.6) we have

M X
5.22 — ==
(5.22) 3 TR
€4 being the value of €(t) at the normalization time ¢4, and (5.17) is proved.
The profile (5.18) follows from (5.17) by observing that

e* —1)?

2(cosh(z) —1)=e*+e *—2=¢"* [€2Z+1—2€Z]:( "

eZ

Remark 5.4 — The profiles (5.17) and (5.17) show the convenience of intro-
ducing the dimensionless time

(5.23) ¥ Bt

so that they assume the form

ur _ 1)27L exponential
(5.24) alu; x, xﬁ) = |:% % € u} 3u { Xponenti

form

(5.25) a(u; x, xy) = [% %eﬁ (cosh(uz) — 1)] Bu

form

L { hyperbolic

These profiles will be plotted later on (Section 5.7) since we need more infor-
mation about the magnitude of the constants that are involved. e
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5.4 The profiles of the Hubble parameter

Theorem 5.4 — The profiles h(u; x) of the Hubble parameter of a barotropic
flat model admit the following two equivalent representations

of 1 d w1
(5.26) h(u;x) = def 2 20 =1 ¢t

a dr

Proor — By setting, as above, X 4t cur and observing that X’ = ux from
(5.24) we get

5 dlogaizdlog(X—l) dlogX 2 1 X+1
YTax T X X X-1 X X(X-1
da a X+1
2 =2-_2_=T
(5:28) dX  3uX(X—1)
do _da  y_ o XHL v
dr  dx """ T 3uX(x-1)"
da X +1 e*r +1
5.29 Ga _ 1 _1
(5:29) dr 39X 1 3%quww 71

= (5.26). As da/dt = Bda/dx we get (5.27). m

h(u,x)
5 -4
1
=3
. _ 2
/ =3
| / =1 (matter)
u = 3 (radiation)
1 -
Ll
3 Il Il
0 1 r=[0t

Figure 5.1: Graphs of h(u;x).
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Remark 5.5 — The evolution of the Hubble parameter does not depend on
the normalization time xy, in accordance with Theorem 1.9, page 15. o

5.5 Cosmological data

The dimensionless time z = ¢ has no practical significance as long as we do
not know the value of the constant 3. The estimates of 3 and other constants
introduced in this theory are listed in Table 5.2 and are inferred from Table
5.1 containing basic cosmological data taken from [4].

name symbol estimate note
tropical year (2011) 31.5569522 - 106 s
speed of light c 299.792458 - 103 km s~ !
age of the universe to ~ 13.81 £0.05 Gyr
Hubble parameter H, ~ 0.6882972691 - 10~10 ¢y —1
today
gravitational constant Gn ~ 6.67408 - 10~ m3 kg—1s72
dark energy density Qa O.685f818%
Table 5.1: Basic cosmological data.
constant | dimension | estimate note
A L2 ~ 1.087769524444 - 1052 m~2 [1]
3 71 ~ { 5.41563983302 - 1018 s~1 2]
0.170901087343 Gyr—!
1 T ~ { 0.18465038865819 - 1018 5
B 5.8513378442864 Gyr
X L='M~'T? | ~2.07657899185574- 10~ m~Lkg=1s? | [3]
% L™*M T2 | ~5.238276649771- 10~ 10m~t kgs—2

Table 5.2: Supplementary data.
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Notes.

ef H2
[1] Estimate of A det 38, Qa:

02
H, ~ 0.6882972691- 1010 yyr—1
H? ~ 0.47375313065051 - 10720 yr—2
3 H2 ~1.42125939195- 10720 yr—2
3H?2/c~0.004740811031176774967434- 10~ 20 yr=2 .10 5m~1 5
3H?2/c? ~ 1.581364342119899149509 - 1075 - 10720 =2 . 10712 m=2 52
A=3H2/c? Qp ~ 1.581364342119899149509 - 10737 yr—2m~=2 52 . 0.685
A ~ 1.08324574352130917414 - 10737 yr=2m=2 52
yr/s = 3.15569522- 107,  yr?/s> = 9.9584123215308484 - 10

| A ~ 0.1087769524444422833994 - 10>  m~2 | m

[2] Estimate of (3 B

3 A ~ 3.263308573333268501982 - 10752 m 2

V3 A ~ 1.806463000820462002629 - 1026 m 1

c=299.792458 - 106 m 51

B =3 Ac~541.5639833020223204638 - 10726 m~1 - 106 m s~*
~ 5.415639833020223204638 - 10~ 18 s~ 1.

1yr = 31.5569522 - 10° s.

B~ 1.709010873430351653021 - 10~ yr=1. m

[3] Estimate of x def SWfN

P .

™4 ~ 1.237990147236120239125 - 1034 m 4 54

m =~ 3.1415926535897932384626433

8mc™4 ~ 31.11408601418833454066 - 10~34m~* s*

Gn = 6.67408(31) - 1071t m3 kg=1s—2

X =~ 207.657899185574- 1034 m =4 s . 107" m3 kg~ 152

Y ~ 2.07657899185574- 103 m 1 2 kg~! | m
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5.6 The age of the universe

Theorem 5.5 — If H, is the present-day value of the Hubble parameter, then
the age of the universe is

1. 3H,+8
: — Bty = = log 220
(5.30) T, = [, " 0g3H0 3

Proor — Equation (5.26) is solvable with respect to X = e¥*:
h(u,z) = 3 % = 3(X -1h(u,z) =X +1

3h(u,z)+1
3h(u,z)—1"
3h(u,t)+ g
3h(u,t)— 0

= Bh(u,z)— 1] X =3h(u,z)+1 = X =

Because of (5.27), h(u,x) = 37 h(u,t) = X =

As X = e —

3h(u,t)+ 0

1
(5.31) x:ﬁt:a 1ogm

The profile (5.17) satisfies the initial condition a(0) = 0 with ¢, = 0. Then
the beginning of the universe corresponds to ¢t = = = 0, so that equation
(5.31) applied to the present epoch provides the age of the universe. m

According to the formula (5.30), for computing the age of the universe we
only need the values of H, and 5= +/3,A ¢

H, ~ 0.6882972691 - 10710 ¢r—1 ux, ~ log 10.6043969244822
£~ 1.70901087343 - 10710 yr—1 ~ 2.361268719306985270849

(5.32) wz, ~ 2.3612687193
(5.33) ut, = “; ~ 13.81658101781 - 10° yr

Remark 5.6 — For v = 1 this estimate is very close to that supplied by
the astronomers [4] (2015) ¢, ~ 13.81 £ 0.05 Gyr. This means that the
primordial phase of radiation dominance has an irrelevant influence on
the evaluation of the present-day age of the universe. o
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5.7 The ‘exact’ profiles of the flat barotropic
universes

If we consider sufficiently reliable the estimate of the age of the universe found
above, then we should consider equally reliable the choice of the present-day
time t, as reference time for the scale factor. In doing so we get a ‘sufficiently
reliable’ (or ‘ezact’) numerical evaluation of the universe profile, for any value
of the parameter u.

Theorem 5.6 — With the present-day reference time x, the profiles of the
universe are

(5:34) | alu;2,50) = [e (cosh(ur) 1) B _ [; C(}i} L

def 1

. e ~0.2299194811
(5.35) €% T T 022091948

ProoF — With x; = x, the profiles (5.25) read

1

a(u; x, ) = [% % € (cosh(uz) — 1)] 3u
By imposing the normalization condition a(u;z,, x,) = 1 we get

€ (cosh(uz,) —1) =1

==

1
2

ie.

(5.36)

N [=
==

with ¢, defined by (5.35). m

The graphs of a(u;z, x,) are plotted in Fig. 5.2 with respect to the variable
uz for some relevant values of u. Whatever u, they all pass through the
point (z,,1), as expected. In Fig. 5.3 the profiles are plotted with respect
to the variable . In both representation we observe (i) a different way of
approaching the origin « = 0 and (ii) the presence of inflection points z;, for
certain values of u.

Theorem 5.7 — (i) The profiles approach the beginning of the universe x =0
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in different ways:

>2 = i da +
u 5 1My, _,0 — = o0
3 O dx
. da
(537) u = % —  lim,_,g E =3 2¢,
u< 2 = lim @ =0
3 0

(ii) For u > 2 there is an inflection point at the time

1 1
(5.38) | zip(u) = - log [3u— 14+4/Bu—1)2— 1] = —arccosh(3u — 1)

u

CL(’U,; Zz, xo) / y,
2
e
-1
v=3
2
-3
u = 1: matter
1 4
inﬂect.ion U= 3: radiation
points
O<u< 2 uint L
3 quintessencp
f } ‘ ‘
0 b 2 Ut 3 4 ur
=L ~1.762 ~2.361

Figure 5.2: Graphs of a(u;x,z,) in the variable ux.

Remark 5.7 - This theorem indicates the value u = % (corresponding to
w = —%) as a threshold parameter: for any small variation of this value
the profile a(u, z) changes radically. Due to this sort of ‘instability’ we should

consider inadmissible the case u© = % °

Proor — (i) (5.26) and (5.34) =

@71 eum_|_171 1 L (eum_1)2 B%Sum_Fl
dx_Baeum_l_B (2C0) euT eur — 1
x 2

=5 (e e (e ey (e -
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da 1 = _1
2 2(1 3u (pUT _1)3
ill,%dx—sbcﬂ) (e 1)3u " =
0 = E2-1>0 < Z>u,
_ 1 2 _ 2
= 5V2C < 5;-1=0 <= $=u,
+00 —= £2-1<0 <= Z<u
Note that $+/2¢, ~ 0.2260378.
a(u; x, z,)
2 ) ) / /
1 s T T LT R T T R T Y
inflection
points
0 1 2z, 3 4 T
~ 1.317 ~ 2.361
~ 1.322 today

Figure 5.3: Graphs of a(u; x, z,) in the variable x.

(ii) (5.29) = =

d2a71 da X +1 d X+1
d? S|dr X—1 ‘Gz x_—1

_1, l(X+1)2 uX(X-1)—-(X+DHuX :la%(x+1)2_2uX
3 3(X—1)2 (X—1)2 3 (X—1)2

2

%:0¢>%(X+1)2—2UX:O¢>X2+2(1—3U)X—|—1:0

— X =3u—-1=£+Bu—-1)2-1. With the — sign X < 1, rejected.
X =e"" = (5.38). n

Remark 5.8 - The inflection point marks the transition from decelerated to
accelerated expansion.
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Component | w | u Tip(u) tip(u) = 67" wip(u)

Matter 0 1.316958 7.70601 Gyr

1
4| 1.322067 | 7.73591Gyr

Radiation

W=

Table 5.3: Estimate of the inflection time.

The two times x;,(1) and :cl-p(%) are very close. The phase of accelerated
expansion starts ~ 6.08 — 6.11 billion years ago. Note that x;, does not

depend on the choice of the normalization time. o

5.8 The profiles of the energy density

Theorem 5.8 — In the barotropic flat models the profiles e(u; x) of the energy
density do not depend on the reference time ty and admit the following two
equivalent representations

A 4 et A 2
(5.39) e(ujz) = M e(u; ) = X cosh(uz) — 1

>

ur _ | 2
(5.24) = a®(usm,m4) = T & A u.
PROOF —

(5.25) = a®(u; @, @) = S ¢ % (cosh(uz) —1).

3

(6.10) = e(usz,z4) = = (5.39). =

a®*(u; T, 3)

Remark 5.9 — The evolution of the energy density does not depend on the
choice of the normalization time but only on the parameter u and on the ratio
A/x. As a consequence, since we know a ‘reliable’ numerical value of A/y (see
Table 5.2)

(5.40)

R

5.238276649771- 10720 m " kg 52

= | =

then we can get a ‘reliable’ numerical estimate of the evolution of the energy
density for any value of the parameter u (Fig. 5.4). The formula to be used
for plotting e(u; ) is

1
;o) = 5.238276649771 % 2 ——————.
e(u;z) = 5.238276649771 * cosh(ar7) 1 .
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€(u,z) units 10719 m " kgs?
10 A
+ These functions do not depend on
the normalization time 4.
5 u = 1 matter
1 U= % radiation
€o
g \\
1 1 1 1 1
0 1 T 5 =gt
~ 2.361

Figure 5.4: Graphs of €(u, x).

Remark 5.10 - The present-day value ¢, of the energy density does not
depend on the barotropic parameter u. Due to (5.36), (5.35) and (5.40) we
have

A
€0 = 2Co — ~ 2% 0.2299194811 % 5.238276649771 - 10~ 1'm ™' kgs~2,
X
(5.41) €0 ~ 2.408763697 - 10 1%m L kgs 2. e

5.9 Superluminal recession speed and the Hub-
ble radius

Let ¢4 be the distance of two galaxies at the reference time ¢4. This distance
evolves with time according to the law (1.28)

(5.42) Oust, ty) = a(u;t, ty) by,

with an expansion speed é(u;t,tﬁ) = a(u;t, ty) ¢4 that may becomes greater
than the light speed c.
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Theorem 5.9 — The recession speed é(u, t,ty) is superluminal
O(ust,ty) > c

in the time interval defined by the inequality

(5.43) (X+1)% (X —1)2%>CX || X Yewr || oY pe

where the dimensionless constant C is defined by

3u

o su AT

(5.44) clfy g A 2
X € é?“

This constant does not depend on the choice of the reference time ty.

ProoF - (1) l(w;t, ty) = B0 (w;x,xp) and ' = a' {y =

idces 0351 g > e
B V3A 3A
1
5.45 a > .
( ) T V3A Y
da X +1 X (X-12?]5
r__ l . . e l_ Su
(ii) (5.29): o’ = == 30% 7 (5.24): a(u; x, zy) [4 T
Y (X=1)2]% X +1
éa’—%[%xeﬁ X 3 X_1
e e X (XD (X 1%
- [CL] - [3] 4 Aeﬁ X (X_l){)’u
1
iii) (5.45) <= [d]?* > ———
tper X (XD (X + 1% 1
<~ [3] 4 Aeﬁ X (X_ 1)3u - [\/3_A]3u élgu
3u
(X —1)?73%(X +1)3 4-3% N 4.372
X Tx[VEAPre AT v

(>c = (X -1 (X +1)°>CX,
where C is defined as in (5.44). (iv) By virtue of (5.10) e(t)a®(t,ty) 3" =
€4 (3" = constant in ¢, i.e.
et) PU(t) = es 3, V.

This shows that the product ey éé”“ does not depend on the choice of the
reference time ¢3. Hence, also C is independent. m
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Theorem 5.10 — The constant C has the form

Lﬁ 3u

4 _ (ke
(5.46) (411)
where

3 /(1 )2 % 3 "
def — et v 3u
(5.47) | L= /5 (7> -3 [2(cosh(u:cﬁ)—1)]
» 3 Alf%u
Proor - (5.44): C€'4.32 =
X el
A 4ev” A 2
(5:39): e(ui@) = T Tz = Y, cosh(ua) =1
3u 3u
3u ATy (L—ew)? Bu AT 2 (1 eu®s)?

= . 2 .= = 2 .

=43 Xég’“ A 4evr: 3 éi’“ eurs
3 1 1 3u
3N\ZE (1 —evrr)2 1 3\3 /(1 —e®e)2\3u 1

=(2)2 L. = (2 S [ —— AT7).

C (A) euTy é?“ A euTy é?u = (5 7)
(e - 1)

The alternative expression of Ly follows from 2 (cosh(z) — 1) = "

eZ

We can continue the analysis of the superluminal recession speed only with
the specification of the barotropic parameter u. We will consider the case
u = 1: dust-matter universe.

Theorem 5.11 — For u = 1 the superluminal expansion condition (5.43) is
equivalent to

((1;t,t5) > ¢

(5.48) — fCGX) Y XL B-OX2 4+ B+ )X +120

with the constant C given by

Ly \3 Xy —1)2 def o
(5.49) - (_ﬁ> L=y 2 a7 X = e
éﬁ A Xﬁ Xﬁ — Tt

PrOOF — (5.43) = (X + 13 (X —-1)"!1>CX «— (X+132>CX(X-1)
= X34+3X?24+3X+1>CX%2-CX
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— X3+3X?-CX?24+CX+3X+1>0 < (5.48). m

According to this theorem the analysis of the occurrence of the superluminal
phenomenon is reduced to the analysis of the roots of the cubic polynomial
f(C; X), whose coefficients depends on the constant C. The graphs of f(C, X)
are plotted in Fig. 5.5 for various values of C. Some relevant facts must be
highlighted:

1. As shown by (5.49) C is the cube of the ratio of two lengths, Ly and ¢;.
Ly has the property of being computable regardless of the given value of
galactic distance ¢4 (see item 7 below).

2. The analysis makes sense only in the interval X = e® > 1, corresponding
tot > 0, since t = 0 is the date of birth of the universe.

3. Whatever C, f(C,0) = 1 and f(C,1) = 8: all graphs pass through the
points (0,1) and (1,8). Furthermore, f(C,X) has a real negative root
close to X = 0 and the other real roots (if any) are located in the
unbounded interval X > 1.

f(Ca; X)
Ca= 10.3923

Cu; X

f( )\
Cyg =

13 15.343
X =¢é”

7 9 10 Ay — gm0
10.6043
today

first root X
of f(C; X)
~ 1.791299

second root Xy

of f(Cw; X)

Figure 5.5: Graphs of f(C; X).

4. There exists a discriminant value

Ca ~10.3923
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for which f(Ca,X) is tangent to the X-axis at a point Xa ~ 3.7324.
The point X corresponds to the value?

| ta ~ 7.706513 Gyr |

of the cosmic time.

5. For C < Ca, there are no real roots X > 1 of f(C;X) and we have
a permanent superluminal recession speed. For C > Ca the polyno-
mial f(C; X) has two (positive) simple roots X; < Xs. The recession
speed is subluminal in the interval (X;, X») delimited by these roots
and containing Xa.

6. There exists a special value Cz > Ca given by*

(€™ +1)°
e®o (e®o — 1)

(5.50) Cu = ~ 15.34304824

such that the polynomial f(Cg, X) has a root
(5.51) Xo ~10.604396924 > Xa

corresponding to the present-day time

(5.52) t, ~ 13.816581 Gyr (x, ~ 2.3612687193)
and a root
(5.53) X, ~1.791299 < XA

corresponding to the cosmic time

(5.54) t, ~ 3.41098505 Gyr (7, ~ 0.582941054).

3 XaA =ePta = Btp =log XA ~ 1.317051 = tA = B! log XA =~ 7.706513.
4 PROOF — £(C, Xo) ' X3 +(3—C) X2 + (3+ C) Xo + 1 with X % ev0, 2, X 5y,

FIC,X0)=0 +—= X2+B-0OX2+B+0O)Xo+1=0
= X3+3X2-CX2+3Xo+CXo+1=0

= X3+3X2+3Xo+1=CXo(Xo—1) < (Xo+1)3=CXo(Xo—1)
(Xo +1)3 10.60439692 + 1)3

Xo(Xo—1)" = (10.60439692- (10.60439692 — 1)

~ 15.34304824.
The estimate (5.53) of the first root X; < Xa is a matter of numerical analysis.
It follows that

<— Cy =

0.582941054

te=Bllog X, ~ ————""— "~
s =0 g X = 01087343

Gyr ~ 3.41098505 Gyr. m
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7. Since the definition of C does not depend on the choice of the reference
time ¢4 (Theorem 5.9) we can write the definition (5.49) for C = Cy by
taking the reference times t, and t, of item 6 above:

o (Y, Ly = fE 2

(5.55) ((t,) AV X
| o (L<t0>>3 RN R IC O
A=\t ) (t) =17 X,

Since L(t.) and L(t,) are computable (see below), and Cg is known
(item 4), from (5.55) we can derive the lengths ¢(t,) and ¢(¢,):

(t) = I;(?) ’ 3
(5.56) B cy= DT g sas04804,
L(to) e*o (e*o —1)
é(tf)) = )
$/Chr

For the way in which we arrived to its definition, £(t,) is the present-day
distance of two galaxies crossing the boundary beyond which the recession
velocity exceeds the speed of light. This boundary is called Hubble radius
(of the Hubble sphere). In turn, ¢(¢.) is the distance at the time ¢, at
the early universe when their recession speed crossed this boundary in the
opposite sense: from superluminal to subluminal.

Computation of ((t,) and £(t,).

1. A ~ 1.087769524444422834 - 10~°2m~2 (table 5.2) =

== % ~ 2.7579371664528356 - 1052 m?

/3
== A= 1.66070381659489 - 10%¢ m = 1.66070381659489 - 1023 km.

Conversion to light-years: 1023 km ~ 10.570234105227 Gly —>

% ~ 17.554028120851 Gly

2. Cy ~15.34304824 —> | {/Cpy ~ 2.4848712052

3. X, ~1.791299 — g ~ (0.349553 = ‘/ ~ (0.7044297

= L(t,) ~ 17.55402812- 0.7044297 Gly = | L(tx) ~ 12.36557 Gly
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L(t,) _  12.36557

4. 0(t,) = ~ ly = | 0(t,) ~ 4.976342 GI
) = == Tasastizo5e Y At.) = 4.976342 Gly
(X, —1)° of (Xo — 1)
5. Xo = 10.604396924 — e = 8.69869743 — || =
0 0

2.056607463 = L(t,) ~ 17.55402812- 2.056607463 Gly —

L(t,) ~ 36.10174523 Gly

L(t,) _ 36.10174523
3/Ch  2.4848712052

We can obtain the evolution of the Hubble radius in the cosmic time by
suppressing the index 0 in (5.55) and (5.56):

\/79 = — () = =0 \/57 e 1",

6. ((t,) = Gly = | ((t,) ~ 14.52861828 Gly

(e” +1)° C/Cr VA Yem 1)
Co=——7—"=
er (e —1)
3eft—1
5.57 ly(t) =\~
(5.57) u(®) Aeft+1
¢5(t) Hubble radius
D e
17+
151 14.528
10+
54976/
1,,
O L D (R RN
tx=3.41 %g;ﬁ; cosmic time

Figure 5.6: Graph of the Hubble radius £ (t).



Chapter 6

Transmission of photons

A human lives in a celestial body O and observes in its sky another celestial
body B by means of optical or electro-magnetic devices. This requires that
B is capable of emitting electro-magnetic signals in form of ‘photons’ in a
broad sense i.e., in form of particles whose world-lines in space-time are light-
like geodesics. We also assume that the world-lines of B and O are time-like
geodesics belonging to the galactic fluid.! The observer asks a number of
questions: how far is B? On what date the photons that I am receiving now
have been issued by B? When B has appeared in my sky? As long as it will
be visible? ...

The focus of this chapter is to give an answer to these (and related) questions.

6.1 Emission-reception of photons

A photon is emitted by B at the time ¢. and received by O at the time ¢,.. Its
world-line is depicted in Fig. 6.1. At any intermediate time ¢ (in the figure
two of them are marked: ¢, <t,) a length £(t.,t) is defined: it is the distance
traveled by the photon till the time ¢ measured on the spatial section S;.2

If we look at the photon progression through the cosmic monitor, i.e. on the
quotient manifold (Fig. 6.2) then we observe that it moves along a geodesic
joining B to O with a speed given by equation (2.32):

7ds c

Tt a(t,ty)

(6.1) u(t)

1 In other words, we assume that B and O have to be considered as particles of the
galactic fluid.
2 It is a synchronous distance at the time ¢, as defined in Section 1.6.
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Figure 6.2: Photon trajectory observed on the cosmic monitor.
On the other hand, the synchronous traveled distance in space-time (depicted
in Fig. 6.1) is given by
(6.2) U(te,t) = alt, ty) £(te, t; 1),

where {(t.,t;t) is the traveled distance on the cosmic monitor, whose metric
is that of the spatial section at the reference time ¢;.%> Then at the time ¢ > ¢,
the traveled distance on the monitor is given by

t /
(6.3) ftetity =c [ 7
te a(

', ty)

3 The symbol ty has been inserted in this notation to emphasize the dependence on the
reference time of the scale factor.
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Consequently, the photon will reach O at the time ¢, if and only if

of tr dt/ of
(6.4) Ute, tr;ty) ot c/t P = éﬁBO 4! distance from B to O

provided that the integral exists as a finite number. In this case we say that B
is visible to O at the time t,. This property is independent from the choice
of t; and has a significant geometrical interpretation illustrated in Fig. 6.3: the
shaded area delimited by the graph of ¢/a(t,t;) upon the emission-reception
interval [t., t,] represents the integral (6.4) hence the co-moving distance éﬁBO.
Note that, from the dimensional view-point, this ‘area’ is in fact a time times
a velocity quantity, i.e. a length-dimensional quantity.

a(t, tﬁ)

The shaded area is equal
to the co-moving distance

of the galaxies B and O.
B

te tr t

Figure 6.3: Geometrical interpretation of equation (6.4).

te

Figure 6.4: Shift of the emission-reception intervals preserving
the shaded area.

If a second photon is emitted at . > t. then we have a different reception
time ¢, > t,. The two emission-reception intervals have (in general) different
magnitudes: t. —t. # t, —t.. However, the two shaded areas over these
intervals remain unchanged since both of them are equal to éﬁBO, according
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to equation (6.3) (Fig. 6.4). In other words, the shaded area behaves as a
planar incompressible fluid constrained to stay under the graph of c¢/a(t, ty)
and upon the emission-reception interval [te, ¢,].

6.2 FEvent horizon

The topic of the previous section is based on the existence of a finite reception
time ¢,.. However, one could object that the photon might not have enough
time to reach O before the end of the universe (at the time ¢,,). In fact, this
happens when

t /
def v odt .
. le,twity) = —
(6.5) it tsty) / i < o

as illustrated in Fig. 6.5:

Figure 6.5: Graphic representation of (6.5).

Alternatively, one can consider the boundary case where the reception time
coincides with the finish time of the universe. In this case, denoting by t, the
emission time, we have

t /
def v odt "
6.6 Uty toity) = - =Y
(6.6) (e 1) C/t* a(t' &) BO

Figure 6.6: Graphic representation of (6.6).
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If t, > t, is a second emission time, then
Ute,tw;ty) < Lty tuw;ty)

i.e.
UFor twsty) < Oy

and we fall in the previous case: any photon emitted after t, never reaches O.
So, t, s the boundary after which no event occurring on B will be observed
from O: it is the event boundary of B.

This general argument finds a concrete and fruitful application in the case of
a dust-matter flat universe. Indeed, in the case we have an estimate of the
age of the universe ¢,, so that we can take ¢, as reference time. Hence, by
virtue of (5.34) and (5.35), the boundary ¢, for which (6.6) holds,

+oo /
def dt
(67 fanbosstn) ®e [ 2 = tho
is implicitly defined by equation
+oo dt/
(6.8) = -y

3—\/C_0 i, Yeosh(Bt)—1 B
where ¢, >~ 0.2299194811 (dimensionless) and 3 ~ 0.170901087343 Gyr—!.

For t, = t, (today) we find what is called the (present-day) radius of the
event horizon:

(6.9) Ren(to) % o(t,, +00;t,) ~ 16.702920561 Gly

The event horizon encloses the set of bodies B from which the photons
emitted by t, onwards will never be received by an observer O in the future.*

6.3 Particle horizon

According to the physics of the early universe there is a date t, > 0 in which
the photons began to spread freely in the universe, as a consequence of a

4 If the time ¢ is expressed in Gyr units and we want g, (to) expressed in light-years
units, then we have to put ¢ =1 in (6.12) (the speed of light is equal to one light-year per
year). Since

1 1
N~ Gly ~ 1.6323304282 Gly,
¥e, . Yoo209104811 Y Y

B ~ 0.170901087343 Gyr—1!, and t, ~ 13.81658101781 Gyr, the formula to be used for the
estimation of the radius is

very large dx

1.6323304282 % / .
13.81658101781 4/cosh(0.170901087343 * x) — 1

Our estimate is in agreement with that provided in [14]: ~ 16,4 Glyr.



6.3. Particle horizon 87

phenomenon called recombination, whose current estimate is t, ~ 378,000 yr.
Thus, according to (6.3), the distance traveled by a photon from ¢, to a time
t is given by

t
d
(6.10) Uty tity) = c/ :
t

Jazty)
If at the time ¢ the co-moving distance éﬁBO is greater than £(t,,t;ty),
(6.11) Ute, tity) < Uy,

then the body B is not yet visible to the observer O. In this regard it must
be noted that, due to (1.19),

todz c todz
e@“um>:c/' - /' = a(ty ty) O(t o )
t t

*Q(Z,tﬁ) a(t*atﬁ) *Q(Z,tb)
and that, due to (1.21),

b
oo = alty, 1) Lyo
Hence, in changing the reference time, the inequality (6.11) remains invariant.

More precisely: both members are multiplied by the same factor a(ty, ).

In the case of a dust-matter flat model, for which we have an estimate of the
age of the universe t,, we can take t, as reference time. Hence, by virtue of
(5.34) and (5.35), from (6.10) we get

t dt/ t dt/
(6.12) Ute, tity) = c/ ..
t

La(t',to) - % ¢, ¥/cosh(Bt) — 1

where ¢, ~ 0.2299194811. For ¢t = t, we find®

(6.13) Rpn(to) 0ty to: t,) ~ 45.627196784 Gly

The meaning of this length is the following: a radiating body B is currently
not visible by an observer O if

(6.14) Ryn(to) < lpo,

where (%, is the present-day proper distance of B and O. Rpp(t,) is called the
(present-day) radius of the visible universe or radius of the particle
horizon.® The result (6.13) is in good agreement with the current estimate
of ~ 46 billion light years.

5 For this evaluation we follow the same procedure as for Rep(to), footnote of page 86.
Since t,« ~ 0.000378 Gyr the formula to be used for this computation is

13.816581 dz
1.63233*/ .
0.000378  /cosh(0.1709 * z) — 1

6 See for instance [16] (Section 2.2) and [21].
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6.4 Red-shift

first photon ~(t)

second
photon 7(¢)

cosmic
monitor

Figure 6.7: Two photons observed on the cosmic monitor.

Let us go back to the end of Section 6.1, p. 84. Assume that the emission time
t. of the second photon is very close to t. (Fig. 6.7). From Fig. 6.8 we infer
that the areas over the intervals I, = [t,t,] and I, = [t.,,] are both equal
to the co-moving distance éﬁBO. Since the central blank area is a common
part of these two areas, these two shaded areas are equal. If the magnitude
of the intervals I, = [t,t.| and I, = [t., ] are ‘extremely smaller’ than the
intervals I, and I.,, then the shaded areas can be considered equal to width
x height of the rectangles where they are contained. So, we can write with

‘great precision’”
. I
a(te, ty) B a(ty, ty)
i.e.,
a(tr, tﬁ) I,
6.15 —_— = —
( ) a(te, tﬁ) 1.

7 This argument is taken, with minor modifications, from [13], pp.126-127.
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Figure 6.8: The two shaded areas are equal.

This argument can be correctly applied when the two events of emission of the
two photons correspond to successive crests of a monochromatic light-wave
emitted by B with wavelength

Ae =cl,.

In this case the two reception-events correspond to successive crests of the
same light-wave received by O with wavelength

A =cl,.

Then (6.15) is translated into equation

Ar
6.16 — = —
(6.16) =

This formula describes the well-known spectral shift phenomenon:

a(ty,ty) > alte,ty) <= A >A <=
alty, ty) < alte,ty) <= A <A =

<= shift of the original wavelength towards the red
<= shift of the original wavelength towards the blue

Remark 6.1 - The term ‘shift’ sounds like ‘translational displacement’, and
this may cause a misunderstanding. In fact, if we write (6.16) in the form

_ a(thtﬁ)
" alte, ty)

then we observe that the spectrum of a galaxy is multiplied by a(t,, t3)/a(t., t;)
and not translated as a whole. o

€
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6.5 Red-shift versus the emission-time

If we introduce the so-called red-shift parameter

Zdéf)\r_)\e:ﬁ_l

6.17
( ) )\8 )\8

then equation (6.16) can be written as

(6.18) =1+z

This formula can be used for determining the time of emission ¢, of a photon
from a galaxy B knowing the red-shift z observed from another galaxy O.
Indeed, since the reception time ¢, is equal to the today time ¢,, then by
taking the reference time ¢; of the profile a(t,¢3) equal to ¢, equation (6.18)
reduces to

1

(6.19) altote)

=14z

because a(t,,t,) = 1. As a consequence, if we know the analytic expression of
the profile a(t, t,) then from (6.19) we can extract the emission time t. as a
function of z.

We apply this result to the barotropic flat model with u = 1 (pure matter).

Theorem 6.1 — If we know the present-day red-shift z of a galaxy B observed
from a galazy O, then the dimensionless emission time x. is given by

(6.20) x. = arccosh(y) = log (y + \/yQ——l)

(6.21) der L LAY L 202200104810
. y —_— C0(1+Z)3 _CO )\T I 0 — .
ProoF — From (5.34) we derive a®(1;2,z,) = ¢, (cosh(z) — 1)

= ¢; 1 a3(1;2,2,) = cosh(z) — 1 = cosh(z) = c; L a®(1;2,2,) + 1

= x = arccosh[c; 1 a®(1; 2, z,) + 1] = z. = arccosh|c;t a®(1; ze, x,) + 1].
By virtue of (6.19) we obtain the emission dimensionless time z.. m

The emission time ¢, in Gyr is given by t. = z./3 with 37! ~ 5.8513378 Gyr

(table 5.2, page 68). Thus, the formula to be used for computing the emission
cosmic time t, is

1
1
0.22001048 % (1 + 208 )

(6.22) te(z) = 5.8513378 % arccosh (




6.5.

Red-shift versus the emission-time

te(z) emission time (Gyr)

reﬁ—shiftz

Figure 6.9: Red-shift z versus the emission time t..

red-shift | emission time red-shift | emission time
z t. (Glyr) z t. (Glyr)

0.0 13.8166 1.0 5.8543
0.0005 1.1 5.4696
0.001 1.2 5.1234
0.002 1.3 4.8109
0.003 1.4 4.5278
0.004 1.5 4.2705
0.005 1.6 4.0360
0.006 1.7 3.8216
0.1 12.4646 1.8 3.6251
0.2 11.2925 1.9 3.4445
0.3 10.2722 2.0 3.2782
0.4 9.3808 2.1 3.1246
0.5 8.5990 2.2 2.9824
0.6 7.9107 2.3 2.8505
0.7 7.3027 2.4 2.7280
0.8 6.7633 2.5 2.6138
0.9 6.2832 2.6 2.5073

Table 6.1: Red-shift z versus the emission time t,.
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