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Abstract—An example of physically realizable non-linear non-holonomic mechanical system
is proposed. The dynamical equations are written following a general method proposed in an
earlier paper. In order to make this paper self-contained, an improved and shortened approach
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1. INTRODUCTION

The aim of this paper is to propose a simple example of non-holonomic mechanical system with
non-linear constraints, called non-holonomic double pendulum, and to write the corresponding
dynamical equations by applying the general methods exposed in earlier papers [1, 2].

In order to make this paper self-contained, an improved and shortened approach to these methods
is illustrated in the preliminary Sections 2 and 3.

Our non-holonomic double pendulum consists of two mass-points (P1,m1) and (P2,m2) moving
on the Cartesian plane (x, y). Let �1 and �2 be the straight lines passing through P1 and P2 and
orthogonal to the respective instantaneous velocities v1 and v2. If not parallel, these two lines have
an intersection point P0. This point is constrained to move on the y-axis, as shown in Fig. 1.

Fig. 1
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Fig. 2

An equivalent description of this system is given in Fig. 2, where we have splitted the (x, y)-plane
into two half-planes (x1, y) and (x2, y).

This second description shows how it is possible to create a device that achieves this non-
holonomic constraint, as illustrated in Fig. 3, by using mass points placed at the center of sharpened
wheels which run along two thin rods �1 and �2 pivoting in the point P0 running along the y-axis.

Fig. 3

Figure 4 illustrates a configuration of the double pendulum, given by the location of the two
points (P1, P2). Note that if the masses of the lines �1 and �2 and of the pivoting point P0 are
negligible compared to the masses m1 and m2, then in any configuration the pivoting point P0 can
assume any position on the y-axis and its coordinate y0 plays the role of a hidden variable. Thus,
the configuration manifold of the double pendulum is Q = R

4 = (x1, y1, x2, y2). A set made of the
two pairs (P1,v1) and (P2,v2), where the instantaneous velocities are thought of as vectors attached
to the corresponding points, is a kinematic state (briefly, a state) of the double pendulum. The
state manifold is the tangent bundle TQ covered by the coordinates (x1, y1, x2, y2; ẋ1, ẏ1, ẋ2, ẏ2)

Figure 4 also illustrates two states compatible with the non-holonomic constraints corresponding
to the same configuration.

Remark 1. We have to pay attention to those states in which the pivoting point P0 is undeter-
mined. They occur in the following cases⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(a) : x1 = x2 = 0,

(b) : ẏ1 = ẏ2 = 0,

(c) : v1 = v2 = 0.

(1.1)

These are called singular states (see Subsection 3.1). ♦
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Fig. 4

Figure 5 illustrates two distinct constrained states (v1,v2) (solid vectors) and (v′
1,v

′
2) (dotted

vectors) corresponding to the same configuration (P1, P2), but with two distinct hidden locations
of the pivoting point, P0 and P ′

0.

Fig. 5

It is clear that the two sums v1 + v′
1 and v2 + v′

2, represented by the dashed vectors, do not
provide a state compatible with the constraint, because the dashed lines orthogonal to them no
longer meet in a point of the y-axis. This shows that the non-holonomic constraint is non-linear.
The non-linearity is confirmed by the following analytical description.
Theorem 1. The non-holonomic constraint of the double pendulum is represented by the quadratic-
homogeneous equation

x1 ẋ1 ẏ2 − x2 ẋ2 ẏ1 + (y1 − y2) ẏ1 ẏ2 = 0 (1.2)

in the Lagrangian velocities.

Proof. The equations of the lines �1 and �2 are:⎧⎨
⎩

�1 : ẋ1 (x − x1) + ẏ1 (y − y1) = 0,

�2 : ẋ2 (x − x2) + ẏ2 (y − y2) = 0.
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The point P0 = (0, y0) must satisfy both equations,

ẏ1 (y0 − y1) = ẋ1 x1, ẏ2 (y0 − y2) = ẋ2 x2.

By multiplying the first equation by ẏ2, the second equation by ẏ1, and taking the difference of the
two equations so obtained, we get equation (1.2). �

Remark 2. From this proof we get two equations which provide the coordinate y0 of the point P0:

y0 =
ẋ1

ẏ1
x1 + y1, y0 =

ẋ2

ẏ2
x2 + y2. ♦ (1.3)

Remark 3. Non-holonomic constraints are geometrically represented by a subset C ⊂ TQ of
the state-space TQ. By excluding the singular states this subset becomes a submanifold (see
Subsection 3.1). In the present case, we have to consider the function

C(x, y; ẋ, ẏ) = x1 ẋ1 ẏ2 − x2 ẋ2 ẏ1 + (y1 − y2) ẏ1 ẏ2 (1.4)

and compute the matrix of the partial derivatives with respect to the Cartesian velocities,⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂C

∂ẋ1

∂C

∂ẏ1

∂C

∂ẋ2

∂C

∂ẏ2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1 ẏ2

(y1 − y2) ẏ2 − x2 ẋ2

−x2 ẏ1

(y1 − y2) ẏ1 + x1 ẋ1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

It can be seen that all the elements of this matrix computed for C = 0 vanish in one of the three
cases (1.1). ♦
Remark 4. It is worthwhile to notice that if we want to consider also the point P0 endowed with
a mass m0, even very small in comparison with m1 and m2, then the non-holonomic constraint
becomes linear. Indeed, in this case the configuration manifold is Q ⊂ R

5 = (x1, y1, x2, y2, y0), and
Fig. 6 illustrates two distinct configurations.

Fig. 6

Note that, apparently, Fig. 6 does not differ from Fig. 4, except for the mere graphic fact that
the pivoting point P0 in Fig. 6 is marked with a bullet, instead of a circle, just for emphasizing that
now it has a mass. Figure 7 illustrates two distinct constrained kinematic states (v1,v2,v0) (solid
vectors) and (v′

1,v
′
2,v

′
0) (dotted vectors) corresponding to the same configuration (P1, P2, P0).

We observe that the sums v1 + v′
1, v2 + v′

2, and v0 + v′
0 provide a third state, at the same

configuration, which is compatible with the constraints. This shows that the non-holonomic

REGULAR AND CHAOTIC DYNAMICS Vol. 16 No. 5 2011



THE NON-HOLONOMIC DOUBLE PENDULUM 421

Fig. 7

constraint is linear. This is confirmed by the fact that now the velocities v1 and v2 must be
orthogonal to the vectors P0P1 and P0P2, respectively: P0P1 · v1 = 0, P0P2 · v2 = 0. Thus, the non-
holonomic constraint is represented by the two linear equations

x1 ẋ1 + (y1 − y0) ẏ1 = 0, x2 ẋ2 + (y2 − y0) ẏ2 = 0. ♦

2. HOLONOMIC SYSTEMS
2.1. Geometry

A holonomic mechanical system is a set of material points {Pν , ν ∈ B} free to occupy any position
in the Euclidean three-space or subject to constraints, called internal constraints, such that their possible
configurations with respect to a reference frame form an n-dimensional manifold Q called the configuration
manifold.

Here, ν is an index labeling the points of the system and belonging to a certain set B,1) which may be
continuous or discrete. For simplicity, but without loss of generality for our purposes, we assume that the
system is made of a finite number N of points Pν . Then ν = 1, 2, . . . , N .

Local coordinates (qi) on Q are called Lagrangian coordinates.
For each point Pν , there exists a map from Q to the Euclidean vector space E3,

rν : Q → E3, (2.1)

which gives the position vector rν(q) = OPν (in the chosen reference frame with origin at the point O) at the
configuration q ∈ Q. These maps are represented by vector-valued functions of the Lagrangian coordinates,

rν = rν(qi). (2.2)

These functions play a fundamental role in the holonomic system theory, because they define a link between
the configurations as points of Q and the configurations as configurations of points in the Euclidean space.

2.2. Kinematics

A motion of a holonomic system is represented by a curve I → Q : t �→ q(t) on the configuration
manifold Q, where I ⊂ R is an interval and the parameter t ∈ I is interpreted as time. If qi = qi(t) are
local parametric equations of this curve, then the positions, the velocities and the accelerations of the points
Pν along with the motion are determined by the functions⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

rν(t) = rν(qi(t)),

vν(t) =
∂rν

∂qi

dqi

dt
,

aν(t) =
∂2rν

∂qj∂qi

dqi

dt

dqj

dt
+

∂rν

∂qi

d2qi

dt2
.

(2.3)

1)B stands for “body”.
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A kinematic state (briefly, a state) of a holonomic system is a collection of pairs position-velocity
(rν , vν) compatible with the internal constraints. The set of all possible kinematic states is represented by
the tangent bundle TQ of Q. If (qi) are Lagrangian coordinates on Q and (qi, q̇i) are the corresponding
natural coordinates on TQ, then the coordinates (q̇i) are called Lagrangian velocities. Due to the first
two equations (2.3), the kinematic states in the domain of the coordinates (q, q̇) = (qi, q̇i) are given by the
vector-valued functions ⎧⎪⎪⎨

⎪⎪⎩
rν = rν(qi),

vν =
∂rν

∂qi
q̇i,

(2.4)

where (q̇i) can assume any value in R
n.

2.3. Dynamics

The dynamics of each point Pν of a holonomic system is assumed to be governed by the Newton
equation

mν aν = Aν + Rν , (2.5)

where Aν is the active force acting on Pν and Rν is the reactive force, due to the internal constraints
imposed to all points.

The active forces Aν are in general known functions depending on the kinematic states of the system. The
reactive forces Rν , which are a priori unknown, have the role of maintaining the internal constraints satisfied
along with any motion of the system. Then we have to specify the type of reactive forces the constraints are
able to supply. This means to assume a constitutive condition of the constraints.

In the fundamental approach to the holonomic dynamics it is assumed that the constraints are ideal.

Definition 1. A holonomic system is called ideal (or perfect) if the reactive forces obey to equation∑
ν

Rν · wν = 0, (2.6)

for all virtual displacements wν .

Definition 2 (Intuitive). A virtual displacement is a small displacement from a state s0 = (q0, q̇0) ∈ TQ
to a neighboring state s = (q0, q̇) at the same configuration q0 ∈ Q.

Definition 3 (Rigorous). Let c : I → TQ : t �→ (qi(t), q̇i(t)) be a state-valued curve starting from s0 and
preserving the initial configuration (q0),

c(0) = (q0, q̇0), c(t) = (q0, q̇(t)).

then the tangent vector to this curve at t = 0 is a virtual displacement from the state s0 = (q0, q̇0).

The curve c(t) generates a one-parameter family of states compatible with the internal constraints,⎧⎪⎪⎨
⎪⎪⎩

rν = rν(qi
0) = constant,

vν(t) =
∂rν

∂qi

∣∣∣∣
qi=qi

0

q̇i(t).
(2.7)

It follows that ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

drν

dt
= 0,

dvν

dt
=

∂rν

∂qi

∣∣∣∣
qi=qi

0

dq̇i

dt
.

(2.8)

Hence, if we set

dq̇i

dt

∣∣∣∣
t=0

= wi,
dvν

dt

∣∣∣∣
t=0

= wν , (2.9)
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then we can write

wν(q0, w) =
∂rν

∂qi

∣∣∣∣
qi=qi

0

wi (2.10)

with w = (wi) ∈ R
n. This formula gives the virtual displacements of the points Pν at a state s0 = (q0, q̇0).

Remark 5. Due to the Newton equations (2.5), the definition (2.6) of ideal constraint is equivalent to
equation ∑

ν

(mν aν − Aν) · wν = 0. (2.11)

This equation expresses the so-caled virtual work principle or D’Alembert–Lagrange principle. ♦

Due to (2.10), we can write

wν =
∂rν

∂qi
wi, (2.12)

so that equation (2.11) becomes equivalent to
∑

ν

mν aν · ∂rν

∂qi
=

∑
ν

Aν · ∂rν

∂qi
, (2.13)

since the wi are arbitrary. Furthermore, due to the expression (2.3) of the accelerations, we can write
∑

ν

mν aν · ∂rν

∂qi
=

∑
ν

mν
∂2rν

∂qj∂qk
· ∂rν

∂qi

dqj

dt

dqk

dt
+

∑
ν

mν
∂rν

∂qi
· ∂rν

∂qj

d2qj

dt2
.

Then, if we put
∑

ν mν
∂rν

∂qi
· ∂rν

∂qj
= gij ,

∑
ν mν

∂2rν

∂qj∂qk
· ∂rν

∂qi
= Γjk,i,

∑
ν Aν · ∂rν

∂qi
= Ai,

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(2.14)

equation (2.13) reads

gij
d2qj

dt2
+ Γjk,i

dqj

dt

dqk

dt
= Ai. (2.15)

This is just the form assumed by the Lagrange equations

d

dt

(
∂K

∂q̇i

)
− ∂K

∂qi
= Ai (2.16)

where K is the kinetic energy:

K = 1
2

∑
ν

mνvν · vν = 1
2 gij q̇iq̇j , (2.17)

and Ai are the so-called Lagrangian active forces. The remarkable fact is that these coefficients can be
interpreted as the covariant components of a metric tensor on the configuration manifold Q. It follows that
Γjk,i are the Christoffel symbols of the metric gij . By using the inverse matrix [gij ] of [gij ], equations (2.15)
become equivalent to

d2qi

dt2
+ Γi

hk

dqh

dt

dqk

dt
= Ai. (2.18)

where Γi
hk = gij Γhk,j are the coefficients of the Levi-Civita connection associated with this metric, and

Ai = gij are the contravariant Lagrangian forces.
This is a well-known matter. But, in the following, we need an explicit reference to the above written

formulae.
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At last, it is important to observe that the second-order dynamical equations (2.18) can be transformed
into a first-order system

D :

⎧⎪⎪⎨
⎪⎪⎩

dqi

dt
= q̇i,

dq̇i

dt
= − Γi

hk q̇h q̇k + Ai,

(2.19)

associated with a vector field D on TQ. This passage should also clarify the different meaning of the symbols
q̇i and di/dt: q̇i denotes a coordinate on TQ (i.e., a Lagrangian velocity), dqi/dt denotes the derivative of
the function qi(t).

3. NON-HOLONOMIC SYSTEMS
A non-holonomic system is a holonomic system with additional constraints on the velocities.2)

3.1. Geometry

Non-holonomic constraints are geometrically represented by a subset C of the state manifold TQ. The
constraint sets C we are going to consider, apart from a set of singular states, satisfy the following
regularity conditions:

• C is a submanifold of dimension n + m, with m < n = dimQ.

• For all q ∈ Q, the set Cq = C ∩ TqQ is a submanifold of dimension m.

• The restriction to C of the tangent fibration τQ : TQ → Q is a surjective submersion.3)

Then we call C a constraint submanifold. A constraint submanifold can be represented in two ways:

• By m equations,

q̇i = ψi(q, z), (3.1)

where z = (zα), α = 1, . . . , m < n are called parameters. This is a parametric representation. Note
that (q, z) can be interpreted as local coordinates on C.

• By r = n − m independent equations,

Ca(q, q̇) = 0, a = 1, . . . r. (3.2)

’Independent’ means that the differentials dCa are linearly independent at each point of C. This is
an implicit representation.

In these two representations, the regularity conditions are equivalent to

rank
[

∂ψi

∂zα

]
n×m

= m (maximal rank)

rank
[
∂Ca

∂q̇i

]
n×r

= r (maximal rank)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.3)

respectively.
By differentiating the identity Ca(q, ψ(q, z)) = 0,

dCa =
(

∂Ca

∂qi
+

∂Ca

∂q̇j

∂ψj

∂qi

)
dqi +

∂Ca

∂q̇j

∂ψj

∂zα
dzα = 0,

we get the following relations between the two representations,

∂Ca

∂qi
+

∂Ca

∂q̇j

∂ψj

∂qi
= 0

∂Ca

∂q̇j

∂ψj

∂zα
= 0

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.4)

2)Such constraints are usually called non-holonomic constraints and consequently the mechanical system is
called “non-holonomic”.

3)This definition of regularity is taken from [3, 4].
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3.2. Kinematics

In any motion of a holonomic system the velocities and the accelerations of the points Pν are given by
(2.3). If the non-holonomic constraints are described by parametric equations (3.1), then the derivatives
dqi/dt must be replaced by ψi(q(t), z(t)). We find that the velocities and the accelerations of the points Pν

along with any motion compatible with the constraints, are given by

vν(t) =
∂rν

∂qi
ψi,

aν(t) =
∂2rν

∂qi∂qj
ψiψj +

∂rν

∂qi

(
∂ψi

∂qj
ψj +

∂ψi

∂zα

dzα

dt

)
⎫⎪⎪⎬
⎪⎪⎭

(3.5)

where in ψi(q, z) the variables qi and zα are replaced by their functions in t, qi = qi(t) and zα = zα(t).

By these expressions we can write these vectors as functions of the states compatible with the constraints,
namely:

vν(q, z) =
∂rν

∂qi
ψi,

aν(q, z, ż) =
∂2rν

∂qi∂qj
ψiψj +

∂rν

∂qi

(
∂ψi

∂qj
ψj +

∂ψi

∂zα
żα

)
⎫⎪⎪⎬
⎪⎪⎭

(3.6)

Further parameters ż = (żα) are introduced for representing the accelerations.

3.3. Dynamics I

For the study of the foundations of the non-holonomic dynamics it is convenient to rely on the parametric
representation of the constraints.

This dynamics is based on the same principles of the holonomic dynamics. We just have to adapt the
notion of virtual displacement to the case in which non-holonomic constraints are present. To do this we
have to impose that the curves considered in Definition 3 be compatible with these constraints. This simply
amounts to replace the derivatives dqi/dt in equations (2.7) by ψi(q, z). Then equations (2.8) are replaced
by ⎧⎪⎪⎪⎨

⎪⎪⎪⎩

drν

dt
= 0,

dvν

dt
=

(
∂rν

∂qi

∂ψi

∂zα

)
qi=qi

0

dzα

dt
.

(3.7)

The final result is that equation (2.10) is replaced by

wν(q0, z0, ż) =
[
∂rν

∂qi

∂ψi

∂zα

]
0

żα (3.8)

with ż = (żα) ∈ R
m, where [. . .]0 means the computation at q = q0 and z = z0. This formula gives the virtual

displacements of the points Pν at a state s0 = (q0, z0).

Remark 6. The acceleration (3.5) can be decomposed into a sum

aν = a0ν + aαν żα (3.9)

where

a0ν =
(

∂2rν

∂qi∂qj
ψi +

∂rν

∂qi

∂ψi

∂qj

)
ψj

aαν =
∂rν

∂qi

∂ψi

∂zα
.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.10)

We observe that the first vector a0ν in the decomposition (3.9) depends only on the state of the system,
whereas the second vector aαν żα is a virtual displacement,

aαν żα = wν(q, z, ż). ♦ (3.11)
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Theorem 2. The dynamics of a non-holonomic system with ideal constraints represented by parametric
equations q̇i = ψi(q, z) is governed by the differential equations

Z :

⎧⎪⎪⎨
⎪⎪⎩

dqi

dt
= ψi(q, z)

dzα

dt
= Gαβ ∂ψi

∂zβ

(
Ai − Γjk,i ψj ψk − gij

∂ψj

∂qh
ψh

) (3.12)

where [Gαβ ] is the inverse matrix of [Gαβ ] defined by

Gαβ = gij
∂ψi

∂zα

∂ψj

∂zβ
(3.13)

Remark 7. The dynamical equations (3.12) are the first-order equations associated with a vector field Z
on the constraint manifold C. ♦
Remark 8. If we introduce the vectors

ψα =
[
Gαβ ∂ψi

∂zβ

]

and the co-vector

φ =
[
Ai − gij

∂ψj

∂qh
ψh

]
,

then the dynamical equations (3.12) can be put in the synthetic form
⎧⎪⎪⎨
⎪⎪⎩

dqi

dt
= ψi(q, z)

dzα

dt
= 〈ψα, φ〉

♦ (3.14)

Proof. The second equation (3.5) and the definition (3.11) of virtual displacement imply

aν · wν =
[

∂2rν

∂qj∂qk
ψjψk +

∂rν

∂qj

(
∂ψj

∂qk
ψk +

∂ψj

∂zα

dzα

dt

)]
· ∂rν

∂qi

∂ψi

∂zβ
żβ

=
[

∂2rν

∂qj∂qk
· ∂rν

∂qi
ψjψk +

∂rν

∂qj
· ∂rν

∂qi

(
∂ψj

∂qk
ψk +

∂ψj

∂zα

dzα

dt

)]
∂ψi

∂zβ
żβ.

Hence,
∑

ν

mν aν · wν =
[
Γjk,i ψj ψk + gij

(
∂ψj

∂qk
ψk +

∂ψj

∂zα

dzα

dt

)]
∂ψi

∂zβ
żβ.

Since (żβ) ∈ R
m in the definition of virtual displacement can take arbitrary values, the virtual work

principle (2.11) becomes equivalent to the differential equations[
gij

(
∂ψj

∂qh

dqh

dt
+

∂ψj

∂zα

dzα

dt

)
+ Γjk,i

dqj

dt

dqk

dt
− Ai

]
∂ψi

∂zβ
= 0. (3.15)

where gij , Γjk,i and Ai are defined as in (2.14). By setting ψi = dqi/dt (first equations (3.12)) and by
introducing the symbols Gαβ (3.13), equations (3.15) are transformed into equations

Gαβ
dzα

dt
+

(
gij

∂ψj

∂qh
ψh + Γjk,i ψj ψk − Ai

)
∂ψi

∂zβ
= 0. (3.16)

In the non-singular states the matrix [
∂ψi

∂zα

]

has maximal rank. Thus, the symmetric m × m-matrix [Gαβ ] is regular and positive-definite. By using the
inverse matrix [Gαβ ], equations (3.16) can be solved with respect to dzα/dt. �
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3.4. Dynamics II

So far, our analysis was based on the parametric representation of non-holonomic constraints. Now we
analyze the dynamics based on the implicit representation, that leads us to a re-visitation of the Lagrange
multipliers method.

If we introduce the Lagrangian reactive forces

Ri
.=

∑
ν

Rν · ∂rν

∂qi
, (3.17)

then, because of (3.11), the definition (2.6) of ideal constraint becomes equivalent to the equations

Ri
∂ψi

∂zα
= 0 (3.18)

On the other hand, because of the regularity conditions (3.3), the r vectors Ca = [Cai] defined by

Cai .= gij ∂Ca

∂q̇j
, (3.19)

are pointwise independent, as well as the m vectors

ψα =
[

∂ψi

∂zα

]
.

The second set of equations (3.4) is equivalent to

Ca · ψα = 0.

As a consequence, these vectors form an orthogonal splitting of the tangent space TqQ at each q ∈ Q, and,
if a vector v is such that v · ψα = 0, that is

vi
∂ψi

∂zα
= 0

for all α, then v is a linear combination of the vectors Ca:

vi = λa
∂Ca

∂q̇i
.

Hence, by applying this result to equation (3.18), we find that

Theorem 3. Non-holonomic constraints defined by r equations Ca(q, q̇) = 0 are ideal if and only if there
exist r functions λa(q, q̇) such that

Ri = λa
∂Ca

∂q̇i
(3.20)

Theorem 4. Let the non-holonomic constraints be defined by r equations Ca(q, q̇) = 0. If the constraints
are ideal then the motions of the non-holonomic system are represented by the integral curves, whose initial
conditions satisfy the constraints, of the dynamical equations

D :

⎧⎪⎪⎨
⎪⎪⎩

dqi

dt
= q̇i,

dq̇i

dt
= F �

(
δi
� − Gab

∂Cb

∂q̇�

∂Ca

∂q̇j
gij

)
− Gab

∂Cb

∂q�

∂Ca

∂q̇j
gij q̇�

(3.21)

where

F i(q, q̇) = Ai − Γi
hk q̇h q̇k (3.22)

and [Gab] is the inverse of the r × r symmetric matrix [Gab] defined by

Gab = gij ∂Ca

∂q̇i

∂Cb

∂q̇j
(3.23)

Equations (3.21) are the first-order equations associated with a vector field D on TQ, tangent to the constraint
submanifold C.
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Proof. 1. Following the method applied to the holonomic system one can prove that if the non-holonomic
constraints are ideal then the Newton equations mν aν = Aν + Rν are equivalent to Lagrange equations of
the form

gij
d2qj

dt2
+ Γjk,i

dqj

dt

dqk

dt
= Ai + λa

∂Ca

∂q̇i
. (3.24)

2. In turn, these second-order differential equations are equivalent to the first-order system

Dλ :

⎧⎪⎪⎨
⎪⎪⎩

dqi

dt
= q̇i,

dq̇i

dt
= gij

(
Ai − Γhk,i q̇h q̇k + λa

∂Ca

∂q̇j

) (3.25)

associated with a vector field Dλ on TQ. Actually, this is a family of vector fields depending on the Lagrangian
multipliers λ = (λa). Thus, we have to see if in this family there exist values of λ for which the constraint
equations are invariant with respect to Dλ. This is equivalent to look for values of λ such that Dλ is tangent
to the constraint submanifold C.

3. As a derivation, the vector field Dλ is given by

Dλ = q̇i ∂

∂qi
+

(
λa

∂Ca

∂q̇j
gji − Γi

hk q̇h q̇k + Ai

)
∂

∂q̇i
. (3.26)

Then Dλ is tangent to C if and only if

DλCa(q, q̇) = fa(C1, . . . , Cr)

where fa are smooth functions of r variables, fa(x1, . . . , xr), such that fa(0, . . . , 0) = 0. Since the restriction
to C of Dλ does not depend on these functions (they vanish on C) and we are interested only on the integral
curves of Dλ lying on C, we can assume fa = 0 without loss of generality. Then equations DλCa(q, q̇) = 0
assume the form

q̇i ∂Ca

∂qi
+ Gab λb + F i ∂Ca

∂q̇i
= 0,

where F i and [Gab] are defined as in (3.22) and (3.13).

4. Because of the regularity conditions, det[Gab] 
= 0. By using the inverse matrix [Gab] we can solve these
equations with respect to the Lagrangian multipliers. This proves that Dλ is tangent to C if and only if

λa(q, q̇) = − Gab

(
F i ∂Cb

∂q̇i
+ q̇i ∂Cb

∂qi

)
(3.27)

By substituting these values of the Langrangian multipliers into the second group of the dynamical equations
(3.25) we get the differential system (3.21). �

Remark 9. Formula (3.27) allows the computation of the reactive Lagrangian forces,

Ri(q, q̇) = − Gab

(
F j ∂Cb

∂q̇j
+ q̇j ∂Cb

∂qj

)
∂Ca

∂q̇i
♦ (3.28)

Remark 10. The right-hand sides Di of the second group of the dynamical equations (3.21) can be
constructed by computing, in the order, the following objects.

1. The kinetic energy K = 1
2 gij q̇i q̇j and the inverse matrix [gij ] of [gij ].

2. F i are obtained by the Lagrange equations written in the form

dq̇i

dt
= Ai − Γi

hk q̇h q̇k = F i.

3. Ca
i =

∂Ca

∂q̇i
.
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4. Cai = gij Ca
i .

5. Gab = gij Ca
i Cb

j = Cai Cb
i .

6. [Gab] = [Gab]−1.

7. X i
a = Gab Cbi.

8. πj
i = Ca

i Xj
a.

9. (δi
j − πi

j)F j .

10. Di = (δi
j − πi

j)F j − X i
a q̇� ∂Cb

∂q�
. ♦

We have to pay attention to the special case of non-holonomic constraints defined by a single equations.

Theorem 5. If the non-holonomic constraints are defined by a single equation C(q, q̇) = 0, then the
components Di are

Di = (δi
� − πi

�)F � − q̇� ∂C

∂q�
X i (3.29)

These components can be constructed by computing, in the order, the following objects.

1. As above.

2. As above.

3. Ci =
∂C

∂q̇i
.

4. Ci = gij Cj.

5. G = Ci Ci.

6. X i = G−1 Ci.

7. πj
i = Ci Xj.

8. (δi
j − πi

j)F j.

4. DYNAMICS THE DOUBLE PENDULUM

Let us apply Theorem 5 to the double pendulum. In order to show how this theorem can be
put into practice, the calculations are performed in all the details, as may appear in a worksheet
written by a software.

4.1. Worksheet

For the double pendulum, a natural choice of the Lagrangian coordinates is

(q1, q2, q3, q4) = (x1, y1, x2, y2).

Note that the constraint equation (1.2) can be written in the two equivalent forms⎧⎪⎪⎨
⎪⎪⎩

(y1 − y2) ẏ2 − x2 ẋ2 = −x1
ẋ1 ẏ2

ẏ1
,

(y1 − y2) ẏ1 + x1 ẋ1 = x2
ẋ2 ẏ1

ẏ2
.

(4.1)

These equations are used throughout the following calculation.

1 Kinetic energy.

K = K1 + K2 = 1
2 m1 (ẋ2

1 + ẏ2
1) + 1

2 m2 (ẋ2
2 + ẏ2

2).
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[gij ] = diag [m1,m1,m2,m2], [gij ] = diag
[

1
m1

,
1

m1
,

1
m2

,
1

m2

]

2 The components of the metric are constant; the Christoffel symbols vanish. Thus,

F i = Ai

Note that the Lagrangian active forces Ai can be determined by computing the virtual work

δW = Ai δq
i = Ax1δx1 + Ay1δy1 + Ax2δx2 + Ay2δy2.

Then the contravariant components Ai = gij Aj are given by

A1 =
1

m1
A1, A2 =

1
m1

A2,

A3 =
1

m2
A3, A4 =

1
m2

A4,

so that

m1 A1 = Ax1 , m1 A2 = Ay1 ,

m2 A3 = Ax2 , m2 A4 = Ay2 .

⎫⎪⎬
⎪⎭ (4.2)

3 Compute Ci =
∂C

∂q̇i
, where C(x, y) is the left-hand side of the constraint equation (1.2). Use (4.1).

[Ci] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1 ẏ2

−x2 ẋ2 + (y1 − y2) ẏ2

−x2 ẏ1

x1 ẋ1 + (y1 − y2) ẏ1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1 ẏ2

− x1
ẋ1 ẏ2

ẏ1

− x2 ẏ1

x2
ẏ1 ẋ2

ẏ2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

4 Compute Ci = gij Ci.

[Ci] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1

m1
ẏ2

− x1

m1

ẋ1 ẏ2

ẏ1

− x2

m2
ẏ1

x2

m2

ẏ1 ẋ2

ẏ2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

5 Compute G = Ci Ci.

G =
1

m1
x2

1 ẏ2
2 +

1
m1

(
x1

ẋ1 ẏ2

ẏ1

)2

+
1

m2
x2

2 ẏ2
1 +

1
m2

(
x2

ẋ2 ẏ1

ẏ2

)2

=
x2

1 ẏ2
2

m1

(
1 +

ẋ2
1

ẏ2
1

)
+

x2
2 ẏ2

1

m2

(
1 +

ẋ2
2

ẏ2
2

)

=
x2

1 ẏ2
2

m1

ẋ2
1 + ẏ2

1

ẏ2
1

+
x2

2 ẏ2
1

m2

ẋ2
2 + ẏ2

2

ẏ2
2

=
x2

1 ẏ2
2

m1

v2
1

ẏ2
1

+
x2

2 ẏ2
1

m2

v2
2

ẏ2
2

,

REGULAR AND CHAOTIC DYNAMICS Vol. 16 No. 5 2011



THE NON-HOLONOMIC DOUBLE PENDULUM 431

where

v2
1 = ẋ2

1 + ẏ2
1, v2

2 = ẋ2
2 + ẏ2

2

Then,

G =
Δ

m1 m2 ẏ2
1 ẏ2

2

, Δ .= m1 x2
2 ẏ4

1 v2
2 + m2 x2

1 ẏ4
2 v2

1

6 Compute Xi = G−1 Ci.

[Xi] =
m1 m2 ẏ2

1 ẏ2
2

Δ

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1

m1
ẏ2

− x1

m1

ẋ1 ẏ2

ẏ1

− x2

m2
ẏ1

x2

m2

ẏ1 ẋ2

ẏ2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
1
Δ

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

m2 x1 ẏ2
1 ẏ3

2

− m2 x1 ẋ1 ẏ1 ẏ3
2

− m1 x2 ẏ2
2 ẏ3

1

m1 x2 ẋ2 ẏ2 ẏ3
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

7 Compute πj
i = Ci X

j .

[πj
i ] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C1 Xj

C2 Xj

C3 Xj

C4 Xj

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1 ẏ2 Xj

− x1
ẋ1 ẏ2

ẏ1
Xj

− x2 ẏ1 Xj

x2
ẏ1 ẋ2

ẏ2
Xj

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1 ẏ2 X1

− x1
ẋ1 ẏ2

ẏ1
X1

− x2 ẏ1 X1

x2
ẏ1 ẋ2

ẏ2
X1

x1 ẏ2 X2

− x1
ẋ1 ẏ2

ẏ1
X2

− x2 ẏ1 X2

x2
ẏ1 ẋ2

ẏ2
X2

x1 ẏ2 X3

− x1
ẋ1 ẏ2

ẏ1
X3

− x2 ẏ1 X3

x2
ẏ1 ẋ2

ẏ2
X3

x1 ẏ2 X4

− x1
ẋ1 ẏ2

ẏ1
X4

− x2 ẏ1 X4

x2
ẏ1 ẋ2

ẏ2
X4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
1
Δ

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

m2x
2
1ẏ

2
1 ẏ

4
2

− m2x
2
1ẋ1ẏ1ẏ

4
2

− m2x1x2ẏ
3
1 ẏ

3
2

m2x1x2ẋ2ẏ
3
1 ẏ

2
2

− m2x
2
1ẋ1ẏ1ẏ

4
2

m2x
2
1ẋ

2
1ẏ

4
2

m2x1x2ẋ1ẏ
2
1 ẏ

3
2

− m2x1x2ẋ1ẋ2ẏ
2
1 ẏ

2
2

− m1x1x2ẏ
3
1 ẏ

3
2

m1x1x2ẋ1ẏ
2
1 ẏ

3
2

m1x
2
2ẏ

4
1 ẏ

2
2

− m1x
2
2ẋ2ẏ

4
1 ẏ2

m1x1x2ẋ2ẏ
2
2 ẏ

3
1

− m1x1x2ẋ1ẋ2ẏ
2
1 ẏ

2
2

− m1x
2
2ẋ2ẏ

4
1 ẏ2

m1x
2
2ẋ

2
2ẏ

4
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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8 Compute [δj
i − πj

i ].

[δj
i − πj

i ] =
1
Δ

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Δ − m2x
2
1ẏ

2
1 ẏ

4
2

m2x
2
1ẋ1ẏ1ẏ

4
2

m2x1x2ẏ
3
1 ẏ

3
2

− m2x1x2ẋ2ẏ
3
1 ẏ

2
2

m2x
2
1ẋ1ẏ1ẏ

4
2

Δ − m2x
2
1ẋ

2
1ẏ

4
2

− m2x1x2ẋ1ẏ
2
1 ẏ

3
2

m2x1x2ẋ1ẋ2ẏ
2
1 ẏ

2
2

m1x1x2ẏ
3
1 ẏ

3
2

− m1x1x2ẋ1ẏ
2
1 ẏ

3
2

Δ − m1x
2
2ẏ

4
1 ẏ

2
2

m1x
2
2ẋ2ẏ

4
1 ẏ2

− m1x1x2ẋ2ẏ
2
2 ẏ

3
1

m1x1x2ẋ1ẋ2ẏ
2
1 ẏ

2
2

m1x
2
2ẋ2ẏ

4
1 ẏ2

Δ − m1x
2
2ẋ

2
2ẏ

4
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where

Δ = m1 x2
2 ẏ4

1 (ẋ2
2 + ẏ2

2) + m2 x2
1 ẏ4

2 (ẋ2
1 + ẏ2

1).

Diagonal terms:

Δ − m2 x2
1 ẏ2

1 ẏ4
2 = m1 x2

2 ẏ4
1 (ẋ2

2 + ẏ2
2) + m2 x2

1 ẏ4
2 (ẋ2

1 + ẏ2
1) − m2 x2

1 ẏ2
1 ẏ4

2

= m1 x2
2 ẏ4

1 (ẋ2
2 + ẏ2

2) + m2 x2
1 ẋ2

1 ẏ4
2.

Δ − m2 x2
1 ẋ2

1 ẏ4
2 = m1 x2

2 ẏ4
1 (ẋ2

2 + ẏ2
2) + m2 x2

1 ẏ4
2 (ẋ2

1 + ẏ2
1) − m2 x2

1 ẋ2
1 ẏ4

2

= m1 x2
2 ẏ4

1 (ẋ2
2 + ẏ2

2) + m2 x2
1 ẏ2

1 ẏ4
2 .

Δ − m1 x2
2 ẏ4

1 ẏ2
2 = m1 x2

2 ẏ4
1 (ẋ2

2 + ẏ2
2) + m2 x2

1 ẏ4
2 (ẋ2

1 + ẏ2
1) − m1 x2

2 ẏ4
1 ẏ2

2

= m1 x2
2 ẏ4

1 ẋ2
2 + m2 x2

1 ẏ4
2 (ẋ2

1 + ẏ2
1).

Δ − m1 x2
2 ẋ2

2 ẏ4
1 = m1 x2

2 ẏ4
1 (ẋ2

2 + ẏ2
2) + m2 x2

1 ẏ4
2 (ẋ2

1 + ẏ2
1) − m1 x2

2 ẋ2
2 ẏ4

1

= m1 x2
2 ẏ4

1 ẏ
)
2 + m2 x2

1 ẏ4
2 (ẋ2

1 + ẏ2
1).

Conclusion (i index of line).

Δ [δj
i − πj

i ] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

m1 x2
2 ẏ4

1 v2
2 + m2 x2

1 ẋ2
1 ẏ4

2

m2 x2
1 ẋ1 ẏ1 ẏ4

2

m2 x1 x2 ẏ3
1 ẏ3

2

− m2 x1 x2 ẋ2 ẏ3
1 ẏ2

2

m2 x2
1 ẋ1 ẏ1 ẏ4

2

m1 x2
2 ẏ4

1 v2
2 + m2 x2

1 ẏ2
1 ẏ4

2

− m2 x1 x2 ẋ1 ẏ2
1 ẏ3

2

m2 x1 x2 ẋ1 ẋ2 ẏ2
1 ẏ2

2

m1 x1 x2 ẏ3
1 ẏ3

2

− m1 x1 x2 ẋ1 ẏ2
1 ẏ3

2

m1 x2
2 ẏ4

1 ẋ2
2 + m2 x2

1 ẏ4
2 v2

1

m1 x2
2 ẋ2 ẏ4

1 ẏ2

− m1 x1 x2 ẋ2 ẏ2
2 ẏ3

1

m1 x1 x2 ẋ1 ẋ2 ẏ2
1 ẏ2

2

m1 x2
2 ẋ2 ẏ4

1 ẏ2

m1 x2
2 ẏ4

1 ẏ2 + m2 x2
1 ẏ4

2 v2
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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9 Compute q̇� ∂C

∂q�
= ẋ2

1 ẏ2 + ẏ2
1 ẏ2 − ẋ2

2 ẏ1 − ẏ1 ẏ2
2 = ẏ2 v2

1 − ẏ1 v2
2 .

10 Compute Di = (δi
� − πi

�)F � − q̇� ∂C

∂q�
Xi. Compute ΔDi with Δ = m1 x2

2 ẏ4
1 v2

2 + m2 x2
1 ẏ4

2 v2
1 and

F i = Ai:

ΔDi = Δ (δi
� − πi

�)A� − (ẏ2 v2
1 − ẏ1 v2

2)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

m2 x1 ẏ2
1 ẏ3

2

− m2 x1 ẋ1 ẏ1 ẏ3
2

− m1 x2 ẏ2
2 ẏ3

1

m1 x2 ẋ2 ẏ2 ẏ3
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

10.1 Compute ΔD1.

ΔD1 = (m1 x2
2 ẏ4

1 v2
2 + m2 x2

1 ẋ2
1 ẏ4

2)A1 + m2 x2
1 ẋ1 ẏ1 ẏ4

2 A2

+ m2 x1 x2 ẏ3
1 ẏ3

2 A3 − m2 x1 x2 ẋ2 ẏ3
1 ẏ2

2 A4

− m2 (ẏ2 v2
1 − ẏ1 v2

2)x1 ẏ2
1 ẏ3

2

= m1 x2
2 ẏ4

1 v2
2 A1 + m2 x2

1 ẋ1 ẏ4
2 (ẋ1 A1 + ẏ1 A2)

+ m2 x1 x2 ẏ1 (ẏ2 A3 − ẋ2 A4) − m2 x1 ẏ2
1 ẏ3

2 (ẏ2 v2
1 − ẏ1 v2

2).

Recall (4.2).

ΔD1 = x2
2 ẏ4

1 v2
2 Ax1 +

m2

m1
x2

1 ẋ1 ẏ4
2 (ẋ1 A1 + ẏ1 A2)

+ x1 x2 ẏ1 (ẏ2 Ax2 − ẋ2 Ay2) − m2 x1 ẏ2
1 ẏ3

2 (ẏ2 v2
1 − ẏ1 v2

2).
(4.3)

10.2 Compute ΔD2.

ΔD2 = m2 x2
1 ẋ1 ẏ1 ẏ4

2 A1 + (m1 x2
2 ẏ4

1 v2
2 + m2 x2

1 ẏ2
1 ẏ4

2)A2

− m2 x1 x2 ẋ1 ẏ2
1 ẏ3

2 A3 + m2 x1 x2 ẋ1 ẋ2 ẏ2
1 ẏ2

2 A4

+ m2 x1 ẋ1 ẏ1 ẏ3
2 (ẏ2 v2

1 − ẏ1 v2
2)

= m1 x2
2 ẏ4

1 v2
2 A2 + m2 x2

1 ẏ1 ẏ4
2 (ẋ1 A1 + ẏ1 A2)

− m2 x1 x2 ẋ1 ẏ2
1 ẏ2

2 (ẏ2 A3 − ẋ2 A4)

+ m2 x1 ẋ1 ẏ1 ẏ3
2 (ẏ2 v2

1 − ẏ1 v2
2).
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ΔD2 = x2
2 ẏ4

1 v2
2 Ay1 +

m2

m1
x2

1 ẏ1 ẏ4
2 (ẋ1 Ax1 + ẏ1 Ay1)

− x1 x2 ẋ1 ẏ2
1 ẏ2

2 (ẏ2 Ax2 − ẋ2 Ay2)

+ m2 x1 ẋ1 ẏ1 ẏ3
2 (ẏ2 v2

1 − ẏ1 v2
2).

(4.4)

The expressions of D3 and D4 are obtained from (4.3) and (4.4) by symmetry, that is, by
interchanging the lower indices 1 and 2.

11 Dynamical equations (3.21) for the double pendulum.
First group: ⎧⎪⎨

⎪⎩
dx1

dt
= ẋ1,

dy1

dt
= ẏ1,

⎧⎪⎨
⎪⎩

dx2

dt
= ẋ2,

dy2

dt
= ẏ2.

(4.5)

Second group:

dẋ1

dt
=

1
Δ

[
x2

2 ẏ4
1 v2

2 Ax1 +
m2

m1
x2

1 ẋ1 ẏ4
2 (ẋ1 Ax1 + ẏ1 Ay1) +

+ x1 x2 ẏ3
1 ẏ2

2 (ẏ2 Ax2 − ẋ2 Ay2) + m2 x1 (ẏ1 v2
2 − ẏ2 v2

1) ẏ2
1 ẏ3

2

]

dẏ1

dt
=

ẏ1

Δ

[
x2

2 ẏ3
1 v2

2 Ay1 +
m2

m1
x2

1 ẏ4
2 (ẋ1 Ax1 + ẏ1 Ay1) +

+ x1 x2 ẋ1 ẏ1 ẏ2
2 (ẋ2 Ay2 − ẏ2 Ax2) + m2 x1 ẋ1 ẏ3

2 (ẏ2 v2
1 − ẏ1 v2

2)
]

(4.6)

dẋ2

dt
=

1
Δ

[
x2

1 ẏ4
2 v2

1 Ax2 +
m1

m2
x2

2 ẋ2 ẏ4
1 (ẋ2 Ax2 + ẏ2 Ay2) +

+ x1 x2 ẏ3
2 ẏ2

1 (ẏ1 Ax1 − ẋ1 Ay1) + m1 x2 (ẏ2 v2
1 − ẏ1 v2

2) ẏ2
2 ẏ3

1

]

dẏ2

dt
=

ẏ2

Δ

[
x2

1 ẏ3
2 v2

1 Ay2 +
m1

m2
x2

2 ẏ4
1 (ẋ2 Ax2 + ẏ2 Ay2) +

+ x1 x2 ẋ2 ẏ2 ẏ2
1 (ẋ1 Ay1 − ẏ1 Ax1) + m1 x2 ẋ2 ẏ3

1 (ẏ1 v2
2 − ẏ2 v2

1)
]

(4.7)

where ⎧⎪⎨
⎪⎩

Δ = m1 x2
2 ẏ4

1 v2
2 + m2 x2

1 ẏ4
2 v2

1 ,

v2
1 = ẋ2

1 + ẏ2
1, v2

2 = ẋ2
2 + ẏ2

2.

(4.8)

These dynamical equations hold for whatever active forces: A1 = [A1, A2] = [Ax1 , Ay1 ] acting on
P1, and A2 = [A3, A4] = [Ax2 , Ay2 ] acting on P2 (Fig. 8).
Note that, in the dynamical equations,⎧⎪⎨

⎪⎩
ẋ1 Ax1 + ẏ1 Ay1 = v1 · A1,

ẋ1 Ay1 − ẏ1 Ax1 = v1 × A1 · k,

(4.9)

(the same for 1 replaced by 2) where k is the unit vector orthogonal to the Cartesian plane.
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Fig. 8

4.2. The Energy Constants

If Kν and Wν are the kinetic energy of the point Pν and the power of the active force acting on
the same point,

Kν = 1
2 mν v2

ν , Wν = vν · Aν ,

then

d

dt

∑
ν

Kν =
∑

ν

Wν .

For the double pendulum we observe that this equation splits into two equations,

dK1

dt
= W1,

dK2

dt
= W2.

Theorem 6. Let W1 be the power of the active forces acting on P1 and K1 its kinetic energy. Then

dK1

dt
= W1

Proof.

dK1

dt
= ẋ1

dẋ1

dt
+ ẏ1

dẏ1

dt
= ẋ1 D1 + ẏ1 D2,

and

W1 = v1 · A1 = ẋ1 Ax1 + ẏ1 Ay1.

Compute Δ (ẋ1 D1 + ẏ1 D2):
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

= ẋ1 x2
2 ẏ4

1 v2
2 Ax1

+
m2

m1
x2

1 ẏ4
2 ẋ2

1 (ẋ1 Ax1 + ẏ1 Ay1)

+ẋ1 x1 x2 ẏ3
1 ẏ2

2 (ẏ2 Ax2 − ẋ2 Ay2)

+m2 x1 ẋ1 (v2
2 ẏ1 − v2

1 ẏ2) ẏ2
1 ẏ3

2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

+x2
2 ẏ5

1 v2
2 Ay1

+
m2

m1
x2

1 ẏ2
1 ẏ4

2 (ẋ1 Ax1 + ẏ1 Ay1)

+x1 x2 ẋ1 ẏ3
1 ẏ2

2 (ẋ2 Ay2 − ẏ2 Ax2)

+m2 x1 ẋ1 ẏ2
1 ẏ3

2

(
v2
1 ẏ2 − v2

2 ẏ1

)
.
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The last terms of the columns cancel each other.⎡
⎢⎢⎢⎢⎢⎣

= ẋ1 x2
2 ẏ4

1 v2
2 Ax1

+
m2

m1
x2

1 ẏ4
2 ẋ2

1 (ẋ1 Ax1 + ẏ1 Ay1)

+ẋ1 x1 x2 ẏ3
1 ẏ2

2 (ẏ2 Ax2 − ẋ2 Ay2)

⎡
⎢⎢⎢⎢⎢⎣

+x2
2 ẏ5

1 v2
2 Ay1

+
m2

m1
x2

1 ẏ2
1 ẏ4

2 (ẋ1 Ax1 + ẏ1 Ay1)

+x1 x2 ẋ1 ẏ3
1 ẏ2

2 (ẋ2 Ay2 − ẏ2 Ax2)

The last terms of the columns cancel each other.⎡
⎢⎢⎣

= x2
2 ẏ4

1 v2
2 (ẋ1 Ax1 + ẏ1 Ay1) +

m2

m1
x2

1 ẏ4
2 v2

1 (ẋ1 Ax1 + ẏ1 Ay1)

=
Δ
m1

(ẋ1 Ax1 + ẏ1 Ay1)

since Δ .= m1 x2
2 ẏ4

1 v2
2 + m2 x2

1 ẏ4
2 v2

1 . Consequently,

m1 (ẋ1 D1 + ẏ1 D2) = ẋ1 Ax1 + ẏ1 Ay1 .

�

As a consequence, in the case of conservative forces with potentials V1(x1, y1) and V2(x2, y2), we
have two separated constants of energy,

K1 + V1 = E1, K2 + V2 = E2. (4.10)

4.3. Special Cases and Examples

The dynamic equations (4.6) and (4.7) are very cumbersome. When the active forces are assigned,
to study the behavior of the double pendulum is almost always necessary to resort to numerical
integration. Nevertheless, let us see how we can analyze them in some simple examples.

4.3.1. Spontaneous Motions

These are the motions in absence of active forces. In this case, the dynamical equations (4.6)
and (4.7) reduce to

dẋ1

dt
=

m2 x1 (ẏ1 v2
2 − ẏ2 v2

1) ẏ2
1 ẏ3

2

m1 x2
2 ẏ4

1 v2
2 + m2 x2

1 ẏ4
2 v2

1

,

dẏ1

dt
=

m2 x1 ẋ1 ẏ1 ẏ3
2 (ẏ2 v2

1 − ẏ1 v2
2)

m1 x2
2 ẏ4

1 v2
2 + m2 x2

1 ẏ4
2 v2

1

,

(4.11)

dẋ2

dt
=

m1 x2 (ẏ2 v2
1 − ẏ1 v2

2) ẏ2
2 ẏ3

1

m1 x2
2 ẏ4

1 v2
2 + m2 x2

1 ẏ4
2 v2

1

,

dẏ2

dt
=

m1 x2 ẋ2 ẏ2 ẏ3
1 (ẏ1 v2

2 − ẏ2 v2
1)

m1 x2
2 ẏ4

1 v2
2 + m2 x2

1 ẏ4
2 v2

1

.

(4.12)

For these motions the kinetic energies of the two points are constant,

v2
1 = ẋ2

1 + ẏ2
1 = const., v2

2 = ẋ2
2 + ẏ2

2 = const.

Example 1. Motions with v2(t) = 0. Equations (4.12) are identically satisfied. Equations (4.11)
give

�→

⎧⎪⎪⎨
⎪⎪⎩

dẋ1

dt
= − ẏ2

1

x1

dẏ1

dt
=

ẋ1 ẏ1

x1
.
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The solution is ⎧⎨
⎩

x1 = A cos(ω t + φ)

y1 = A sin(ω t + φ) + B

⎧⎨
⎩

x1(0) = A cos φ

y1(0) = A sin φ + B,

Figure 9 illustrates the initial conditions. The fixed point P2 lies on the x-axis.

Fig. 9

The coordinate of the point P0 is given by the first equation (1.3),

y0 =
ẋ1

ẏ1
x1 + y1.

Since ẏ1 = ω x1,

y0 =
ẋ1

ẏ1
x1 + y1 =

ẋ1

ω
+ y1

=
−ω A sin(ω t + φ)

ω
+ A sin(ω t + φ) + B = B.

Thus, also P0 remains at rest. Fig. 10 illustrates the orbit of P1.

Fig. 10

Example 2. Motions with v2 of constant direction. Fig. 11 illustrates the initial conditions;
the point P2 lies on the x-axis; its velocity v2(0) is assigned as well as the position of P1.
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Consequently, the position of P0 and the direction of v1 are uniquely determined. In order to
find a motion such that v2 as a constant direction, we have to find a suitable value of the scalar
velocity v1.

Fig. 11

Figure 11 shows a geometrical construction of the length of v1 (dotted lines) through the
construction of the velocity v0 of P0. Two angles θ1 and θ2 are put in evidence, such that

v0 = v1 tan θ1, y1 − y0 = x1 tan θ1,

and

v0 = v2 tan θ2, x2 tan θ2 = y0, tan θ2 =
ẋ2

ẏ2
.

It follows that

v1 = v2
tan θ2

tan θ1
= v2 x1

tan θ2

y1 − y0
=

v2 x1

y1 − y0

ẋ2

ẏ2
,

where

y0 =
x2 ẋ2

ẏ2
.

Thus,

v1 =
x1 ẋ2 v2

y1 ẏ2 − x2 ẋ2
. (4.13)

This formula provides the scalar velocity v1 in terms of v2 = (ẋ2, ẏ2), x2 and (x1, y1).

On the other hand, the computation of
d

dt

ẏ2

ẋ2
with the intervention of the dynamical equations

shows that the condition ẏ2/ẋ2 = constant implies

x2 (ẏ1 v2
2 − ẏ2 v2

1) ẏ2 ẏ3
1 v2

2 = 0,

that is, ẏ1 v2
2 = ẏ2 v2

1 . Then the dynamical equations imply

dẋ1

dt
=

dẏ1

dt
=

dẋ2

dt
=

dẏ2

dt
= 0.

The velocities v1 and v2 are constant. Moreover, since

y0 =
ẋ2

ẏ2
x2 + y2,
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also the point P0 moves with a constant velocity

ẏ0 =
ẋ2

2

ẏ2
+ ẏ2 =

v2
2

ẏ2
.

This is in agreement with the previous considerations. The conclusion is that uniform rectilinear
motions of the two points of the double pendulum are possible, provided that the velocities and the
starting positions satisfy equation (4.13).

4.3.2. Constant gravitational field

The active forces are parallel to the x-axes and proportional to the masses (Fig. 12).

Fig. 12

One can think of a possible realization of such a non-holonomic system by means of two inclined
planes on a horizontal desk, as shown in Fig. 13.

Fig. 13

The active forces are ⎧⎪⎨
⎪⎩

Ax1 = m1 g,

Ax2 = m2 g,

⎧⎪⎨
⎪⎩

Ay1 = 0,

Ay2 = 0,
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where g is the gravity acceleration reduced to the inclined planes. As shown by a straightforward
calculation, the dynamical equations (4.6) and (4.7) reduce to

dẋ1

dt
= g +

m2 Θ
Δ

x1 ẏ2
1 ẏ3

2 ,
dẋ2

dt
= g − m1 Θ

Δ
x2 ẏ2

2 ẏ3
1

dẏ1

dt
= −m2 Θ

Δ
x1 ẋ1 ẏ1 ẏ3

2 ,
dẏ2

dt
=

m1 Θ
Δ

x2 ẋ2 ẏ2 ẏ3
1

(4.14)

with

Δ = m1 x2
2 ẏ4

1 v2
2 + m2 x2

1 ẏ4
2 v2

1 ,

Θ = (g x2 + v2
2) ẏ1 − (g x1 + v2

1) ẏ2.

⎫⎪⎬
⎪⎭ (4.15)

Note that Θ is skew-symmetric in the indices 1 and 2.

Example 3. Coinciding motions. Assume that, from the very beginning and at each instant t,
the two points have the same positions and velocities. This kind of motion is compatible with the
dynamical equations. Indeed, in this case Θ is constantly zero and the dynamical equations give

dẋ1

dt
= g,

dẏ1

dt
= 0,

dẋ2

dt
= g,

dẏ2

dt
= 0.

These are the equations of a free-falling particle (Fig. 14).

Fig. 14

Example 4. Symmetrical motions. Consider a motion for which⎧⎨
⎩

x2 = x1, ẋ2 = ẋ1,

y2 = − y1, ẏ2 = − ẏ2,

for all t (Fig. 15).

Proposition 1. Such a motion is compatible with the dynamical equations iff m1 = m2.

Proof. (i) Assume that the dynamical equations admit such a solution. In this case they give

dẋ1

dt
= g − m2 Θ

Δ
x1 ẏ5

1 ,

dẏ1

dt
=

m2 Θ
Δ

x1 ẋ1 ẏ4
1 ,

dẋ1

dt
= g − m1 Θ

Δ
x1 ẏ5

1 ,

dẏ1

dt
=

m1 Θ
Δ

x1 ẋ1 ẏ4 ,

with

Δ = (m1 + m2)x2
1 ẏ4

1 v2
1 , Θ = 2 (g x1 + v2

1) ẏ1.
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Fig. 15

These equations are simultaneously satisfied iff m1/Δ = m2/Δ i.e., iff m1 = m2. Conversely, for
m1 = m2 the problem is totally symmetric and the symmetry of the kinematical states is preserved
during the motion. �

Proposition 2. In this motion y0 = 0 and r1 = r2 = constant.

Proof. For y1 = −y2 and x1 = x2 the constraint equation (1.2) reduces to

x1 ẋ1 + y1 ẏ1 = 0 (PP1 · v1 = 0). (4.16)

Because of (1.3) we find

y0 =
ẋ1

ẏ1
x1 + y1 = 0.

Furthermore,

dr2
1

dt
=

d

dt
(x2

1 + y2
1) = 2x1 ẋ1 + 2y1 ẏ1 = 0.

�

Note that the integration of the dynamical equations, with m1 = m2 = m, x = x1 = x2 and
y = y1 = −y2, reduces to the integration of the differential system⎧⎪⎪⎨

⎪⎪⎩

dẋ

dt
= g − g x + v2

x v2
ẏ2,

dẏ

dt
=

g x + v2

x v2
ẋ ẏ.

(4.17)

Since ri = r2 = � = const., we can write⎧⎨
⎩

x = � cos θ, ẋ = −� θ̇ sin θ.

y = � sin θ, ẏ = � θ̇ cos θ,

v2 = �2 θ̇2,

where θ is the angular deviation of the pendulum PP1 from the x-axis. Then the second equation
(4.17) takes the form

� (θ̈ cos θ − θ̇2 sin θ) = −(g cos θ + � θ̇2) sin θ,

which reduces to � θ̈ + g sin θ = 0. This is the equation of the mathematical pendulum.

I am grateful to Nicolas Petit who has verified the validity of the results presented here through
various numerical simulations. These simulations, along with additional arguments on the non-
holonomic double pendulum, will be the subject of a future paper.
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