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Everything has a generating family.





Preface

A Hamiltonian structure is a mathematical model of a physical phenomenon
in which symplectic geometry plays a basic role. The Hamiltonian formulation
of analytical mechanics as well as the Hamiltonian formulation of geometri-
cal optics, place of birth of the Hamilton–Jacobi equation, are well-known
examples. Other examples can be added, for instance, the control of static
mechanical systems and of the equilibrium states of thermodynamic systems.

A generating family is a smooth real function that is able to describe special
subsets of a cotangent bundle, here called Lagrangian sets. A Lagrangian set
may be a Lagrangian submanifold. However, as we show, several examples of
physically meaningful phenomena are in fact represented by Lagrangian sets
that are not submanifolds.

The sense of this dichotomy, nonsmooth and smooth, becomes clear when
we deal with symplectic relations, one of the most important tools used in
this book. A symplectic relation is defined, at a first stage, as a Lagrangian
submanifold of the product of two symplectic manifolds. If these symplec-
tic manifolds are cotangent bundles, then a symplectic relation has (locally
or globally) a generating family. Relations can be composed according to a
well-defined rule, but the composition of two smooth relations (i.e., subman-
ifolds) may not be smooth; that is, a Lagrangian subset of the product of two
cotangent bundles. However, besides the composition of symplectic relations,
we have a composition rule of their generating families which yields another
smooth generating function. In other words, although the composition of two
symplectic relations may produce a nonsmooth object, the composition of
their generating families is always smooth. Then, the symplectic creed formu-
lated by Alan Weinstein in his article “Symplectic geometry” (1981)

everything is a Lagrangian submanifold,

which means that one should try to express objects in symplectic geometry
and mechanics in terms of Lagrangian submanifolds, is here replaced by

everything has a generating family.
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viii Preface

In order to make this book self-contained and to clarify the notations, the
first two chapters are devoted to those basic notions of calculus on manifolds
that are strictly necessary to our purposes.

Chapter 3 is devoted to the notion of symplectic relation within the cate-
gory of the symplectic manifolds. In Chaps. 4 and 5 we specialize our analysis
within the category of the cotangent bundles. Our analysis is based on the
notion of a generating family of a Lagrangian set, which is an extension of
that of a generating family of a Lagrangian submanifold (or of a symplec-
tic relation). This extension turns out to be necessary in dealing with the
composition of symplectic relations.

Indeed, if the composition of two smooth symplectic relations, which are
submanifolds of Cartesian products, no longer yields a smooth relation, then
we can replace the composition of the relations with the composition of their
generating families, which are always smooth objects.

The symplectic formulation of Hamiltonian optics, presented in Chaps. 6
and 7, is based on the fact that, from a geometrical viewpoint, a Hamilton–
Jacobi equation is a coisotropic submanifold of a cotangent bundle and that
a geometrical solution is a Lagrangian set contained in it. The solutions of
a Hamilton–Jacobi equation are then described by generating families, and
not by an “ordinary” function as in the classical theory.

There are two fundamental symplectic relations associated with a Hamilton–
Jacobi equation, the characteristic relation and the characteristic reduction.
The two corresponding generating families are called Hamilton principal func-
tions and complete solutions.

The characteristic relation is a singular Lagrangian submanifold, thus the
Hamilton principal function is necessarily a generating family and not a two-
point function as it appears in the classical theory. Furthermore, Cauchy
data (or sources of systems of rays), mirrors, and lenses are represented by
symplectic relations, thus by generating families. Then the Cauchy problem
and the action of a lens or of a mirror on a system of rays are translated into
the composition of symplectic relations or of generating families.

In Chap. 5 it is shown that the use of generating families cannot be avoided
if we want to give a global meaning to the Hamilton characteristic function,
from which all solutions of the Hamilton–Jacobi equation can be derived, or
if we want to describe very singular optical phenomena.

Symplectic relations and generating families can also play an interesting
role in the control theory of static systems, including thermostatic systems.
Chapter 8 is devoted to this matter. Our approach is based on the notion of
control relation and on an extended version of the virtual work principle for
constrained systems with noncontrolled degrees of freedom (hidden variables).
Several examples of singular phenomena concerning static and thermostatic
systems are illustrated. In particular, it is shown that the Maxwell rule of
equal areas is a theorem following, through pure mathematical reasoning,
from the extended virtual work principle. Thermostatics of simple and com-
posite systems are described here in the four-dimensional state space, with



Preface ix

global coordinates (S, V, P, T ), entropy, volume, pressure, and absolute tem-
perature, endowed with the natural symplectic structure induced by the first
principle of thermodynamics.

Supplementary topics are illustrated in Chap. 9. Chapter 10 is devoted to
the calculus of global Hamilton principal functions for the eikonal equations
on the two-dimensional sphere S2 and pseudo-sphere H2.
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Chapter 1

Basic Notions of Calculus on Manifolds

Abstract It is assumed that the reader is acquainted with the notion of a
real, finite-dimensional differentiable manifold (smooth manifold). The aim
of this chapter is to focus on the basic tools of calculus on manifolds and on
the terminology and notation adopted in this book. A particular attention is
paid to the concepts of rank of a map, clean and transverse intersection of
submanifolds, and derivation of exterior forms.

1.1 Tangent vectors and tangent bundles

Let M be a smooth manifold of dimension m. We denote by:

• TxM the tangent space of M at a point x ∈M , the linear m-dimensional
space of the tangent vectors based at (or applied to) x.

• TM the tangent bundle of M , the set of all tangent vectors of M .
• τM : TM →M the tangent fibration over M , which maps a tangent vector
v ∈ TM to the point x ∈M such that v ∈ TxM .

• F (M) = C∞(M,R) the ring of all smooth real-valued functions on M .

A curve on M is a smooth map γ : I →M , where I ⊆ R is an open interval
containing 0. We say that the curve is based at the point x = γ(0).

We refer to two equivalent definitions of tangent vector:

1. A tangent vector v at a point x ∈ M is a derivation on F (M) that is, a
map v : F (M)→ R such that

{
v(aF + bG) = a v(F ) + b v(G) a, b ∈ R, (linearity)

v(FG) = v(F )G(q) + F (q) v(G) (Leibniz rule).

We use angle brackets to denote the derivative of a function with respect
to a vector:

, Universitext, 1S. Benenti, Hamiltonian Structures and Generating Families
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2 1 Basic Notions of Calculus on Manifolds

v(F ) = 〈v, dF 〉.
2. A tangent vector v at a point x ∈M is an equivalence class [γ] of curves.

Two curves γ and γ′ on M are equivalent at a point x if

{
γ(0) = γ′(0) = x,

D(F ◦ γ)(0) = D(F ◦ γ′)(0) for all F ∈ F (M).

Here, D is the symbol of derivative of a real-valued function on R.

The link between these two definitions is given by

v = [γ] ⇐⇒ v(F ) = D(F ◦ γ)(0).

If x ∈ M and (xi) is a local coordinate system on a domain containing the
point x, then the components of v with respect to these coordinates are the
numbers defined by

vi = 〈v, dxi〉
or

vi = Dγi(0).

In the first definition, a coordinate xi is interpreted as a function. In the
second definition, equations

xi = γi(t), t ∈ I,

are the parametric equations of the representative curve γ. It follows that

〈v, dF 〉 = vi ∂iF (x), ∂i =
∂

∂xi
.

We denote by
(xi, δxi) or (xi, ẋi)

the coordinates on TM corresponding to coordinates (xi) on M . They are
defined as follows: if v ∈ TxM then xi(v) are the values of the coordinates at
the point x and vi = δxi(v) = ẋi are the components of the vector in these
coordinates.

There is a map δ : F (M) → F (TM ), from functions on M to functions
on TM , defined by

δF =
∂F

∂xi
δxi.

The function δF is linear on the fibers of TM .
With each curve γ : I → M we associate a curve γ̇ : I → TM , called the

tangent lift, or the tangent prolongation of γ, defined by

〈γ̇, F 〉 = D(γ ◦ F ).
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Its local parametric equations are

{
xi = γi(t),

ẋi = Dγi(t).

Mechanical interpretation. If a manifoldQ represents the n-dimensional
configuration manifold of a holonomic mechanical system with n degrees of
freedom, then a curve γ : I → Q represents a motion of the system (t ∈ I is
the time). coordinates (qi) on Q are called Lagrangian coordinates. A tangent
vector v ∈ TqQ represents a virtual displacement or a virtual velocity of the
system at the configuration q ∈ Q. The curve γ̇(t) represents the velocity of
the system at each instant t.

1.2 The tangent functor

Any smooth map ϕ : M → N can be extended to its tangent map

Tϕ : TM → TN

between the corresponding tangent bundles. The tangent map Tϕ is defined
by the equation

〈Tϕ(v), dF 〉 = 〈v, d(F ◦ ϕ)〉, for all F ∈ F (N),

where a vector v ∈ TxM , x ∈ M , is interpreted as a derivation, or by the
equation

Tϕ([γ]) = [ϕ ◦ γ],

where a vector is interpreted as a class of curves on M . Because v ∈ TxM
implies Tϕ(v) ∈ TyN , y = ϕ(x), we have

τN ◦ Tϕ = ϕ ◦ τM ,

where τM and τN denote the tangent fibrations. This means that the diagram

TM .............................................................................................................. ................. TN
Tϕ

M .............................................................................................................. ................. N
ϕ

.................................................................................................
........
..
.......
........
..

τM

.................................................................................................
........
..
.......
........
..

τN

is commutative. The functorial rules
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T (idM ) = idTM , T (ϕ ◦ ψ) = Tϕ ◦ Tψ

hold. Then the operator T which associates with any manifold M its tangent
bundle TM and with any map ϕ between manifolds its tangent map Tϕ is a
covariant functor, called the tangent functor .

If in local coordinates ϕ is represented by equations ya = ϕa(xi), then Tϕ
is represented by equations

ya = ϕa(xi), ẏa =
∂ϕa

∂xi
ẋi. (1.1)

1.3 Rank of a map and special maps

We denote by Txϕ : TxM → Tϕ(x)N the restriction of Tϕ : TM → TN to the
tangent space TxM . It is a linear map.

Definition 1.1. The rank of a map ϕ : Mm → Nn at a point x ∈ M is the
dimension of the image of the linear map Txϕ,

rank xϕ = dim(image of Txϕ). ♥

If ya = ϕa(xi) is a coordinate representation of ϕ, then Tϕ is represented
by Eqs. (1.1), so that

rank xϕ = rank of the matrix

[
∂ϕa

∂xi

]

m×n

at x.

By means of the notion of rank we can distinguish some special maps:

Definition 1.2. A smooth map ϕ : Mm → Nn, is
an immersion if Txϕ is injective for all x ∈M ,
a submersion if Txϕ is surjective for all x ∈M ,
a subimmersion if Txϕ has constant rank. ♥

Remark 1.1. Notice that:

• ϕ is an immersion ⇐⇒ m ≤ n and rank xϕ = m for all x ∈M ,
• ϕ is a submersion ⇐⇒ m ≥ n and rank xϕ = n for all x ∈ M ,
• immersions and submersions are subimmersions.

Then, for any local representation yα = ϕα(xi) of ϕ,
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ϕ is an immersion ⇐⇒ rank

[
∂ϕα

∂xi

]
= m ≤ n,

ϕ is a submersion ⇐⇒ rank

[
∂ϕα

∂xi

]
= n ≤ m,

ϕ is a subimmersion ⇐⇒ rank

[
∂ϕα

∂xi

]
= constant.

This classification does not involve topology. ♦
There are other special maps whose definition involves topology:

Definition 1.3. An embedding is an immersion that is also a homeomor-
phism onto the image ϕ(M) ⊆ N , in the induced topology. A diffeomorphism
is an embedding ϕ : M → N admitting the inverse ϕ−1 : N → M which is
also an embedding.1 Two manifolds M and N are diffeomorphic if there ex-
ists a diffeomorphism ϕ : M → N . A transformation of a manifold M is a
diffeomorphism ϕ : M →M . ♥
Definition 1.4. A fibration is a surjective map ϕ : M → N such that for
each q ∈ N there exist a neighborhood U and a manifold F such that the set
ϕ−1(U) ⊆ M is diffeomorphic to the product U × F in such a way that the
restriction of ϕ to ϕ−1(U) coincides with the canonical projection of U × F
over U . ♥

This is illustrated by the commutative diagram

M ⊃ ϕ−1(U ) ..................................................................................................................... ................. U × F

N ⊃ U ..................................................................................................................... ................. U
idU

...........................................................................................................
.......
...
.......
.......
...

ϕ

...........................................................................................................
.......
...
.......
.......
...

prU

A fibration is a surjective submersion. The manifolds M and N are re-
spectively called the fiber bundle and the base manifold of the fibration. If
for all q ∈ N the corresponding manifolds F are diffeomorphic (this happens
for instance when the manifold N is connected), then F is called the fiber-
type of the fibration. A fibration ϕ : M → N is trivial if the commutative
diagram above holds for U = N . This means that, up to a diffeomorphism,
M = N × F .

A map S : N →M such that ϕ ◦S = idN (i.e., S(p) ∈ ϕ−1(p)) is a section
of the fibration.

The tangent fibration τM : TM →M is an example of fibration. When the
tangent fibration is trivial (i.e., TM = M ×Rm) then the manifold M is said
to be parallelizable.

1 In this case, m = n.
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1.4 The rank theorem

A basic tool for the analysis of maps is the so-called rank theorem:

Theorem 1.1. Let ϕ : Mm → Nn be a smooth map and x0 be a point of M .
(i) If rank x0ϕ = r, then there exist coordinates (xi) around x0 and coordi-
nates (ya) around y0 = ϕ(x0) such that ϕ is represented by equations






y1 = x1,

y2 = x2,

· · ·
yr = xr,






yr+1 = ϕr+1(xi),

yr+2 = ϕr+2(xi),

· · ·
yn = ϕn(xi).

(1.2)

(ii) If rank xϕ = r in a neighborhood of x0, then the representation (1.2) of
ϕ can be reduced to the form





y1 = x1,

y2 = x2,

· · ·
yr = xr,





yr+1 = 0,

yr+2 = 0,

· · ·
yn = 0.

(1.3)

Proof. (i) Let yα = ϕα(x̄i) any representation of ϕ around a point x0 ∈ M .
If rank x0ϕ = r then we can always assume that

det

[
∂ϕa

∂x̄b

]

x0

6= 0, for a, b = 1, . . . , r.

Consequently, in a neighborhood of x0 we can define a new coordinate system
(xi), 





x1 = ϕ1(x̄i),

x2 = ϕ2(x̄i),

· · ·
xr = ϕr(x̄i),






xr+1 = x̄r+1,

xr+2 = x̄r+2,

· · ·
xm = x̄m.

In these coordinates the representation of ϕ assumes the form (1.2).
(ii) For a representation of the form (1.2) the matrix

[
∂ϕα

∂x̄i

]

is composed of four submatrices,




1r 0

∂ϕa

∂xb

∂ϕa

∂xc


 ,
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where a = r + 1, . . . , n, b = 1, . . . , r, and c = r + 1, . . . , m. Assume that
rank xϕ = r in a neighborhood of x0. We observe that if an element of the
submatrix [

∂ϕa

∂xc

]
, a = r + 1, . . . , n, c = r + 1, . . . , m,

does not vanish, then the rank of the whole matrix would be greater than r.
Hence, all the elements of this submatrix must vanish:

∂ϕa

∂xc
= 0, a = r + 1, . . . , n, c = r + 1, . . . , m.

This means that in a neighborhood of x0 the functions ϕr+1, . . . , ϕn depend
on the coordinates x1, x2, . . . , xr only. At this point the representation (1.2)
assumes the form






y1 = x1,

y2 = x2,

· · ·
yr = xr,






yr+1 = ϕr+1(x1, x2, . . . , xr),

yr+2 = ϕr+2(x1, x2, . . . , xr),

· · ·
yn = ϕn(x1, x2, . . . , xr).

(1.4)

Taking into account these two sets of equations, we can perform the following
transformation of the coordinates yα:






ȳ1 = y1,

ȳ2 = y2,

· · ·
ȳr = yr ,






ȳr+1 = yr+1 − ϕr+1(y1, y2, . . . , yr),

ȳr+2 = yr+2 − ϕr+2(y1, y2, . . . , yr),

· · ·
ȳn = yn − ϕn(y1, y2, . . . , yr).

In the coordinates (xi, ȳα) we get a representation of the kind (1.3). ⊓⊔

1.5 Submanifolds

There are several notions of submanifold. For the purposes of this book it is
not necessary to go into details of a fine analysis. It is sufficient to base our
approach on the following definition.

Definition 1.5. A submanifold S of a smooth manifold Mm is a subset S ⊂
M having this property: around each point x0 ∈ S there exists a coordinate
system (xi) on M , with domain U containing x0, such that the intersection
S ∩U is described by the m− s equations

xs+1 = 0, xs+2 = 0, . . . , xm = 0. (1.5)
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These coordinates are said to be adapted to the submanifold. The pair (U, xi)
is called an adapted chart. ♥
Remark 1.2. Any adapted chart (U, xi) generates a chart on S:

(S ∩ U, x1, . . . , xs).

In this way, adapted charts generate an atlas of S, and S becomes a manifold
of dimension s and of codimension m − s. ♦
Remark 1.3. An open subset U ⊆M is a submanifold of dimension m. ♦
Definition 1.6. A vector v ∈ TM is tangent to a submanifold S ⊂ V if
v(f) = 0 for all functions f ∈ F (M) constant on S, or equivalently, if it can
be represented by a curve γ : I →M lying on S: γ(I) ⊂ S. ♥
Remark 1.4. The tangent of a submanifold S ⊂ Q, which is also called the
tangent prolongation of S, is the set TS ⊂ TQ, made of all vectors tangent to
S. This is a submanifold of dimension 2(n− k), where k is the codimension
of S. ♦

Submanifolds arise and are described in various ways. Here we look at the
most common cases.

Theorem 1.2. Let ϕ : Mm → Nn be a subimmersion of rank r.2 Then for
any x0 ∈ M there exists a neighborhood U such that the image ϕ(U ) is a
submanifold of N of dimension equal to r.

Proof. Since ϕ has constant rank r, the assumptions of item (ii) of the rank
theorem 1.1 are fulfilled and a local coordinate representation of the kind
(1.3) holds for ϕ, 





y1 = x1,

y2 = x2,

· · ·
yr = xr,






yr+1 = 0,

yr+2 = 0,

· · ·
yn = 0.

The second set of these equations, compared with Eq. (1.5) of Definition 1.5,
shows that (yi) are adapted coordinates of ϕ(U) ⊆ N and that dimϕ(U) = r.

⊓⊔
This theorem shows that the image of a subimmersion is a piecewise sub-

manifold. Self-intersections or other strange phenomena may occur.

Theorem 1.3. Let ϕ : Mm → Nn be a smooth map and y0 a fixed point of
N . If ϕ has constant rank r in a neighborhood of the set S = ϕ−1(y0) the S
is a submanifold of codimension r and moreover,

TxS = ker(Txϕ) for all x ∈ X. (1.6)

2 Recall that immersions and submersions are special cases of subimmersions; Remark
1.1.
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Proof. The restriction of the map ϕ to the neighborhood of S is a subim-
mersion. We can apply item (ii) of Theorem 1.1 and consider coordinates in
which the representation (1.3) of ϕ holds:






y1 = x1,

y2 = x2,

· · ·
yr = xr,






yr+1 = 0,

yr+2 = 0,

· · ·
yn = 0.

Let cα = yα(y0) be the coordinates of the point y0, α = 1, . . . , n. It follows
that

cr+1 = 0, cr+2 = 0, . . . cn = 0.

Hence, the system of coordinates (x̄i) on M defined by






x̄1 = x1 − c1,
x̄2 = x2 − c2,
· · ·
x̄r = xr − cr,






x̄r+1 = xr+1,

x̄r+2 = xr+2,

· · ·
x̄m = xm,

are adapted to S; see Definition 1.5 and Remark 1.2. In order to prove Eq.
(1.6) we observe that

v ∈ ker Txϕ ⇐⇒ v(f ◦ ϕ) = 0 for all f ∈F (N)

and that

v ∈ TxS ⇐⇒ v(g) = 0 for all g ∈F (M) constant on S.

Any composition of the type f ◦ ϕ is constant on S, therefore the sec-
ond condition implies the first; that is TxS ⊆ ker Txϕ. Conversely, if f =
f(yα) is the representation of f in the coordinates considered above, then
f(x1, . . . , xr, 0, . . . , 0) is the representation of f ◦ ϕ. It follows that the con-
dition v(f ◦ ϕ) = 0 for all f ∈F (N) is equivalent to equation

v1 ∂g

∂x1
+ v2 ∂g

∂x2
+ · · ·+ vr ∂g

∂xr
= 0

for all functions g(x1, . . . , xr). This means that v1 = v2 = · · · = vr = 0; that
is v ∈ TS. Hence, kerTxϕ ⊆ TxS. ⊓⊔

The following theorem can be proved in a similar way.

Theorem 1.4. If ϕ : Mm → Nn is a subimmersion and S0 is a submanifold
of N then S = ϕ−1(S0) is a submanifold of M .



10 1 Basic Notions of Calculus on Manifolds

1.5.1 Submanifolds defined by equations

Definition 1.7. Let F a ∈ F (M), a = 1, ·, r, be a set of r functions. They
are called independent at a point x ∈M if their differentials dxF

a are linear
independent. ♥

A system of equations like

F a(xi) = 0 :






F 1(xi) = 0,

F 2(xi) = 0,

· · ·
F n(xi) = 0,

(1.7)

where (xi) are local coordinates on a manifold Mm with domain U , define a
subset S ⊂M . Here, F a(xi) are local representatives of real-valued function
F a on M .

Definition 1.8. Equations (1.7) are called independent if the differentials
dxF

a are linearly independent at each point x ∈ S. ♥

Remark 1.5. The functions F a are independent if and only if the matrix

[
∂F a

∂xi

]

n×m

(1.8)

has a maximal rank r in the domain of the coordinates. Note that if the
functions are independent at a point x, then they are independent in a neigh-
borhood of x. ♦

Question: when is S a submanifold of M according to Definition 1.5? A
first answer is the following.

Theorem 1.5. If the matrix (1.8) has a constant rank r in the domain of
the coordinates, then S ∩ U is a submanifold of dimension r.

Proof. Consider the map ϕ : M → Rn : (xi) 7→ Sα(xi) and apply Theorem
1.3 for y0 = 0. ⊓⊔

Example 1.1. Take M = R3, (xi) = (x, y, z) and equations

F 1 .
= z = 0, F 2 .

= z − x2 y2 = 0.

In this case, U = R3 and S is the union of the x-axis and the y-axis. S is not
a submanifold. Because F 1(x, y, z) = z and F 2(x, y, z) = z − x2 y2 , we have

[
∂F a

∂qi

]
=

[
0 0 1

−2xy2 −2yx2 1

]
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and

rank

[
∂F a

∂qi

]

S

= rank

[
0 0 1

0 0 1

]
= 1.

The rank is constant on S but not in a neighborhood of S. This example
shows that if the rank of the matrix (1.6) is not the same on S and in a
neighborhood of S, then S may not be a submanifold. ♦

Definition 1.9. When r = n, that is when the rank of the matrix is maximal
(equal to number of equations) then the equations are called independent. ♥

Remark 1.6. If S ⊂M is described by Eqs. (1.6) then TS is described by the
equations

F a(xi) = 0,
∂F a

∂xi
ẋi = 0. ♦ (1.9)

1.5.2 Clean intersection

This concept plays an important role in dealing with the reduction of sub-
manifolds, Sect. 2.3.1 and Sect. 3.7.

Definition 1.10. Two submanifolds S1 and S2 of a manifoldM have a clean
intersection if:3

• S1 ∩ S2 is a submanifold
• T (S1 ∩ S2) = TS1 ∩ TS2 ; that is,

Tx(S1 ∩ S2) = TxS1 ∩ TxS2 for all x ∈ S1 ∩ S2. ♥ (1.10)

Remark 1.7. (i) The inclusion

T (S1 ∩ S2) ⊆ TS1 ∩ TS2

is always valid for two submanifolds such that their intersection is a subman-
ifold. Indeed, if v = [γ] ∈ T (S1 ∩ S2) is a vector represented by a curve γ on
S1 ∩ S2, then γ is a curve on S1 and on S2 simultaneously, so that v ∈ TS1

and v ∈ TS2. (ii) S1 ⊂ S2 and S1 ∩S2 = ∅ are two cases of clean intersection.
♦

Theorem 1.6. Let F1 : M → Rn1 and F2 : M → Rn2 be of constant rank r1
and r2 on a neighborhood of

S1 = F−1
1 (0) and S2 = F−1

2 (0),

respectively. If the map

3 (Bott 1954), (Weinstein 1973, 1977).
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(F1, F2) : M → Rn1 ×Rn2

defined by
(F1, F2)(x) = (F1(x), F2(x))

has a constant rank in a neighborhood of S1∩S2, then S1 and S2 have a clean
intersection.

Proof. Because S1 ∩ S2 = (F1, F1)−1(0), S1 ∩ S2 is a submanifold due to
Theorem 1.3. By an elementary property of linear algebra,

kerTxF1 ∩ kerTxF2 = kerTx(F1, F2) for all x ∈ M. (1.11)

Then we have:

Tx(S1 ∩ S2) = ker Tx(F1, F2), Theorem 1.3,

= ker TxF1 ∩ ker TxF2, Formula (1.11),

= TxS1 ∩ TxS2, Theorem 1.3.

⊓⊔

The preceding theorem can be reinterpreted as follows.

Theorem 1.7. If S1 and S2 are two submanifolds of M defined by equations

{
Fα

1 (xi) = 0, α = 1, . . . , n1,

F a
2 (xi) = 0, a = 1, . . . , n2,

(1.12)

such that in neighborhoods of S1 and S2 the matrices

[
∂Fα

1

∂xi

]
,

[
∂F a

2

∂xi

]
(1.13)

and [
∂Fα

1

∂xi

∣∣∣∣
∂Fα

2

∂xi

]
(1.14)

have constant rank, then the intersection of S1 and S2 is clean.

Example 1.2. Take M = R3, (xi) = (x, y, z), and equations

F1 = z = 0, F2 = z − x2 y2 = 0.

These are just the equations of example 1.1 but now interpreted as equations
of two submanifolds S1 and S2. The two matrices (1.13) are now

[0, 0, 1] and [−2x y2 , −2y x2 , 1].

They have constant rank everywhere. The matrix (1.14) is
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[
0 0 1

−2xy2 −2yx2 1

]
.

On S1 ∩ S2 it becomes [
0 0 1
0 0 1

]

and its rank is 1. But outside S1∩S2 its rank may be greater than 1. In other
words, its rank is constant on S1 ∩ S2 but not in a neighborhood of S1 ∩ S2.
This example shows the relevance of the assumption that the matrix (1.14)
also must have a constant rank. ♦

1.5.3 Transverse intersection

Definition 1.11. Two submanifolds S1 and S2 of a manifoldM have a trans-
verse intersection if for each point x ∈ S1 ∩ S2 the tangent spaces TxS1 and
TxS2 together span the space TxM :

TxS1 + TxS2 = TxM for all x ∈ S1 ∩ S2. (1.15)

♥

Theorem 1.8. A transverse intersection implies a clean intersection.

Proof. Let S1 and S2 be defined by independent equations (1.12),

{
Fα

1 (xi) = 0, α = 1, . . . , n1,

F a
2 (xi) = 0, a = 1, . . . , n2.

The matrices (1.13) have maximal rank, n1 and n2, respectively. The tangent
spaces TxS1 and TxS2 are defined by equations

∂Fα
1

∂xi
ẋi = 0 and

∂F a
2

∂xi
ẋi = 0,

respectively. Then the differential forms

φα
1 =

∂Fα
1

∂xi
dxi and φa

2 =
∂F a

2

∂xi
dxi

annihilate the vectors of TxS1 and TxS2, respectively, and any linear com-
bination λα φ

α
1 + λa φ

a
2 annihilates any vector belonging to the intersection

TxS1 ∩ TxS2. But, due to (1.15), such a form must be the zero-form:

λα
∂Fα

1

∂xi
+ λa

∂F a
2

∂xi
= 0.
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This is a system of m equations, linear in the coefficients λ, which must admit
the trivial solution λα = λa = 0 only. This occurs if and only if the matrix

[
∂Fα

1

∂xi

∣∣∣∣
∂Fα

2

∂xi

]

has maximal rank. Then we can apply Theorem 1.7. ⊓⊔

1.6 Vector fields

A vector field on a manifold M is a section of the tangent bundle TM ; that
is a smooth map X : M → TM which assigns to each point x ∈ M a vector
X(x) ∈ TxM at that point. Such a section is locally described by equations

ẋi = Xi(x).

The functions Xi are the components of the vector field X in the coordinates
(xi).

There is an equivalent definition: a vector field is a derivation on F (M);
that is a map X : F (M)→ F (M) such that

{
X(aF + bG) = aX(F ) + bX(G), a, b ∈ R (linearity),

X(FG) = X(F )G+ F X(G) (Leibniz rule).

We use the notation
X(F ) = 〈X, dF 〉.

This function is called the derivative of F with respect to X. The link between
these two definitions is given by equation

〈X, dF 〉(x) = 〈X(x), dF 〉.

The components of a vector field X are the derivatives of the coordinates,

Xi = 〈X, dxi〉,

so that
〈X, dF 〉 = Xi ∂iF.

We denote by X (M) the set of the smooth vector fields on M . It is a module
over the ring F (M) and an infinite-dimensional vector space over R, the sum
and the product by a function being defined by

(X + Y )(x) = X(x) + Y (x), (fX)(x) = f(x)X(x).
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1.7 Integral curves and flows

Let X be a vector field on a manifold M . An integral curve of X is a curve
on M , γ : I →M , such that γ̇(t) = X(γ(t)) for all t ∈ I (i.e., γ̇ = X ◦γ). The
integral curves of X are locally represented by the solutions of a first-order
differential system in normal form,

dxi

dt
= Xi(x).

Hence, a vector field can be interpreted as a dynamical system. We say that
an integral curve is based at a point x if γ(0) = x. For smooth vector fields the
Cauchy theorem asserts that for each point x there exists a unique maximal
integral curve γx : Ix → M based on x, such that any other integral curve
based at x is defined on an interval I ⊆ Ix. When Ix = R for all x, then the
field is said to be complete.

A flow on a manifold M is a smooth map

ϕ : R×M →M : (t, x) 7→ ϕ(t, x)

such that for all t, s ∈ R the map

ϕt : M →M : x 7→ ϕ(t, x)

is a transformation of M and

ϕt ◦ ϕs = ϕt+s.

It follows that 




ϕ0 = idM ,

ϕt ◦ ϕs = ϕs ◦ ϕt,

ϕ−t = (ϕ)−1.

The set of all ϕt, t ∈ R, is said to be a one-parameter group of transforma-
tions.

A complete vector field X generates a flow ϕX : R×M →M defined by

ϕX (t, x) = γx(t).

Conversely, a flow ϕ generates a complete vector field X by setting

X(x) = γ̇x(0), (1.16)

where γx : R→M is the curve defined by

γx(t) = ϕ(t, x).
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These curves are the maximal integral curves of X. A noncomplete vector
field generates local flows, defined on open subsets of R×M . If

xi = ϕi(t, xh
0) (1.17)

is a local representation of a flow ϕ in local coordinates (xi) then, according
to Eq. (1.16), the components of the associated vector field at the point x0

are given by
Xi(x0) = Dϕi(0, x0),

where D represents the derivative with respect to the variable t.
If ϕX

t is the one-parameter group of transformations generated by a com-
plete vector field X, then

TϕX
t : TM → TM

is a one-parameter group of transformations of TM , generating a vector field
on TM which we denote by Ẋ . The vector field Ẋ is projectable onto X.
This means that the following diagram is commutative,

TTM ..................................................................................................................... ................. TM
TτM

TM ..................................................................................................................... ................. M
τM

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

...................

.................

Ẋ

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

...................

.................

X

that is
TτM ◦ Ẋ = X ◦ τM .

The components of Ẋ in coordinates (xi, ẋi) of TM are (Xi, Ẋi) where
Xi are the components of X and

Ẋi(xh
0 , ẋ

j
0) = ϕ̇i

j(0, x
h
0) ẋj

0,

where

ϕi
j(t, xh

0) =
∂ϕi

∂xj
0

,

being ϕi(t, xh
0) the local representative of ϕX

t ; see Eq. (1.17).
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1.8 First integrals

A first integral or integral function of a vector field X on M is a function
F ∈ F (M) such that

〈X, dF 〉= 0.

The first integrals can be locally determined by integrating the first-order
linear partial differential equation

Xi∂iF = 0.

There is an equivalent definition: a first integral is a function F that takes a
constant value along any integral curve:

D(F ◦ γx) = 0.

Indeed, the local expression of this condition is

d

dt
F (γi(t)) = ∂iF γ̇

i(t) = ∂iF X
i(t) = 0.

A vector field may not have global first integrals. However,

Theorem 1.9. In a neighborhood of a nonsingular point x ∈ M (X(x) 6= 0)
there exist n− 1 independent first integrals.

This follows from the next theorem.

Theorem 1.10. In a neighborhood of a non-singular point x ∈ M (X(x) 6=
0) there exists a coordinate system (xi) such that X = ∂/∂x1.

These coordinates are said to be adapted to X.

1.9 Lie bracket

The Lie-bracket [X, Y ] of two vector fields is the vector field defined by

[X, Y ]F = X(Y F )− Y (XF ).

In local coordinates,

[X, Y ]i = Xk ∂kY
i − Y k ∂Xi.

This operation satisfies the following properties.



18 1 Basic Notions of Calculus on Manifolds






[X, Y ] = − [Y,X] (anticommutativity),

[aX + bY, Z] = a[X,Z] + b[Y, Z], a, b ∈ R (R-linearity),
[
X, [Y, Z]

]
+

[
Y, [Z,X]

]
+

[
Z, [X, Y ]

]
= 0 (cyclic or Jacobi identity).

Thus, the space of the vector fields X (M) endowed with the Lie bracket is
a Lie-algebra. We say that two vector fields commute if [X, Y ] = 0. Indeed,
the following theorem can be proved.

Theorem 1.11. The flows of two (complete) vector fields commute, that is

ϕX
t ◦ ϕY

s = ϕY
s ◦ ϕX

t ,

for all t, s ∈ R, if and only if [X, Y ] = 0.

A vector field is tangent to a submanifold S ⊂ M when all its values
X(x) are vectors tangent to S. This holds if and only if any integral curve
intersecting S lies on S. The following can be proved.

Theorem 1.12. If two vector fields X and Y are tangent to a submanifold
S, then [X, Y ] is also tangent to S.

1.10 One-forms

A one-form on a manifold M is a map θ : TM → R linear on each tangent
space TxM . We use the notation

θ(v) = 〈v, θ〉.

An equivalent definition is the following. A one-form is a linear map from
vector fields to functions, θ : X (M)→ F (M). We use the notation

θ(X) = 〈X, θ〉.

The link between these two definitions is

〈X, θ〉(x) = 〈X(x), θ〉.

The linearity implies that
〈X, θ〉 = Xi θi,

where θi are functions called the components of θ (with respect to the coor-
dinates (xi)). It follows that

θi = 〈∂i, θ〉.
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We can define the sum of two one-forms and the product of a one-form with
a function (or a number) in an obvious way.

A special case of one-form is the differential of a function dF . It is defined
by

〈X, dF 〉= XF

and its components are
(dF )i = ∂iF.

It follows that in a coordinate system any one-form can be represented by a
linear combination of the differentials dqi,

θ = θi dx
i.

Thus, a one-form is also called a linear differential form. We call an ele-
mentary one-form a one-form of the kind F dG, where F and G are smooth
functions on M .

1.11 Exterior forms

Let ×p
MTM be the subset of the Cartesian power (TM )p made of ordered

sets of p tangent vectors applied to a same point. It is a manifold of dimension
(p+ 1) dimM . An exterior form of order p, briefly a p-form, on a manifold
M is a multilinear skew-symmetric smooth map from this space to R,

ω : ×p
M TM → R : (v1, . . . , vp) 7→ ω(v1 , . . . , vp).

The value ω(v1, . . . , vp) changes in sign by interchanging any two arguments.
It follows that for linearly dependent vectors ω(v1, . . . , vp) = 0. Thus, any
p-form for p > n vanishes identically.

A zero-form (p = 0) is a function F : M → R. For p = 1 we get the
definition of one-form.

An equivalent definition is the following. A p-form is a multilinear and
skew-symmetric smooth map from the Cartesian power (X (M))p of the space
of vector fields to F (M),

ω : (X (M))p → F (M) : (X1, . . . , Xp) 7→ ω(X1 , . . . , Xp).

The sum of two p-forms and the multiplication of a p-form with a function
or a real number are defined in an obvious way. We denote by Φp(M) the
linear space of all p-forms. It is a module on the ring F (M). In particular,
Φ0(M) = F (M) and Φp(M) = 0 for p > n. We set Φp(M) = 0 for p < 0 and
denote by Φ(M) the direct sum of all these spaces,
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Φ(M) =

+∞⊕

p=−∞

Φp(M).

An exterior or differential form is an element of this space.

1.12 Exterior algebra

The exterior product ϕ ∧ ψ of a p-form ϕ times a q-form ψ is the p+ q-form
defined by

ϕ ∧ ψ =
(p+ q)!

p! q!
A(ϕ ⊗ ψ),

A being the antisymmetrization operator. On any p-linear form η : ×p
M TM →

R it is defined by

Aη =
1

p!

∑

S∈Gp

εSη ◦ S,

where Gp is the permutation group of order p and εS = ±1 is the signature
of the permutation S. For a 0-form (function), Af = f . For p < 0 or q < 0,
ϕ ∧ ψ = 0. If one of the two forms is a function, then

ϕ ∧ ψ = ϕψ.

By a linear extension of the exterior product to the direct sum Φ(M) we
get the exterior algebra. It is a commutative and associative graded algebra,





Φp(M) ∧ Φq(M) ⊂ Φp+q(M),

ϕ ∧ ψ = (−1)pqψ ∧ ϕ,
(ϕ ∧ ψ) ∧ ϕ = ϕ ∧ (ψ ∧ ϕ).

For two one-forms the exterior product is anticommutative, ϕ∧ψ = −ψ∧ϕ.
An elementary p-form is a p-form of the kind

ω = F dG1 ∧ · · · ∧ dGp,

where F,G1, . . . , Gp are functions. Then the exterior product of two elemen-
tary exterior forms is obtained by applying the associative rule and the com-
mutation rules F ∧dG = dG∧F and dF∧dG = −dG∧dF . Any p-form can be
locally expressed as a sum of elementary p-forms. Indeed, in any coordinate
system we have the representation

ω =
1

p!
ωi1···ip

dxi1 ∧ · · · ∧ dxip ,

where ωi1···ip
= ω(∂i1 , . . . , ∂ip

) are the components of ω.
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1.13 Pullback of forms

Let α : M1 →M2 be a smooth map. For each p ∈ Z we define a linear map

α∗ : Φp(M2)→ Φp(M1)

by setting






α∗ω(v1, . . . , vp) = ω(Tα(v1), . . . , Tα(vp)),

α∗ω = ω ◦ α,
α∗ω = 0,

p > 0,

p = 0,
p < 0.

By a linear extension we get a linear map

α∗ : Φ(M2)→ Φ(M1),

called a pullback, with the properties:






α∗(ω ∧ ψ) = α∗ω ∧ α∗ψ,

id∗
M = idΦ(M),

(β ◦ α)∗ = α∗ ◦ β∗.

The last two properties show that the operator

∗ :

{
M 7→ Φ(M),

α 7→ α∗

is a covariant functor from the category of the smooth manifolds into the
category of the graded algebras, the exterior functor.

If ι : S → M is the canonical injection of a submanifold S ⊂M , then the
pullback ι∗ω of a form on M is the restriction of ω to S and it is also denoted
by ω|S. In fact, it is the restriction of ω : ×p

M TM → R to the submanifold
×p

STS.
If in local coordinates the map α is represented by equations ya

2 = αa(xi
1),

then the pullback of a form is obtained by replacing these functions in the
local coordinate representation. It follows that the pullback is locally repre-
sented by equations

(α∗ω)i1···ip
= ωa1···ap

∂αa1

∂xi1
1

· · · ∂α
ap

∂x
ip

1

.
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1.14 Derivations

Definition 1.12. A derivation of degree r ∈ Z on the exterior algebra Φ(M)
is a map D : Φ(M)→ Φ(M) satisfying the following rules.






DΦp(M) ⊂ Φp+r(M), p ∈ Z,

D(aϕ+ bψ) = aDϕ + bDψ, a, b ∈ R,

D(ϕ ∧ ψ) = Dϕ ∧ ψ + (−1)pr ϕ ∧Dψ, ϕ ∈ Φp(M).

(1.18)

♥
Hence, D maps a p-form to a (p + r)-form, it is R-linear and satisfies a

graded Leibniz rule. From the linearity and the Leibniz rule it follows that
Da = 0 for any number a ∈ R interpreted as a constant 0-form.

The general theory of derivations is due to (Frölicher and Nijenhuis 1956)
and it is based on the following theorems.

Theorem 1.13. Let D be a derivation. If ϕ, ψ ∈ Φ(M) are two exterior
forms such that ϕ|U = ψ|U in an open subset U ⊂ M , then Dϕ|U = Dψ|U
(locality of a derivation).

Theorem 1.14. Any derivation is uniquely determined by its action on
Φ0(M) and Φ1(M) (i.e., on functions and one-forms).

In other words: any map D : Φ0(M)⊕Φ1(M)→ Φ(M) satisfying the rules
(1.18) is extended in a unique way to a derivation of degree r on Φ(M). Note
that if r = −2, then D has an image in Φ−2 ⊕ Φ−1 = 0 ⊕ 0, so that its
extension is necessarily the zero-map. Thus,

Theorem 1.15. Any derivation of degree r < −1 is trivial: D = 0.

Definition 1.13. The commutator of two derivations D1 and D2, of degree
r1 and r2, respectively, is the derivation of degree r1 + r2 defined by

[D1, D2] = D1D2 − (−1)r1r2D2D1. ♥ (1.19)

Indeed, the composition D1D2 = D1 ◦ D2 is linear but it does not satisfy
the graded Leibniz rule, which is instead satisfied by the operator defined in
(1.19).

There are three special important derivations: the differential, the interior
product, and the Lie derivative.

1.15 The differential

Definition 1.14. The differential is the derivation d of degree 1 whose action
on functions and one-forms is defined by
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〈X, df〉 = Xf

and
dθ(X, Y ) = 〈X, d〈Y, θ〉〉 − 〈Y, d〈X, θ〉〉 − 〈[X, Y ], θ〉,

respectively. ♥

As a consequence, it can be proved that

d(ϕ ∧ ψ) = dϕ∧ ψ + (−1)pϕ ∧ dψ, ϕ ∈ Φp(M),

and
d2 = 0.

For an elementary p-form ω = F dG1 ∧ · · · ∧ dGp,

dω = dF ∧ dG1 ∧ · · · ∧ dGp.

The pullback α∗ associated with a map α commutes with the differential,

dα∗ω = α∗dω.

In particular, the differential commutes with the restriction of forms to sub-
manifolds,

d(ω|S) = (dω)|S.
A p-form ω is said to be closed if dω = 0, andexact if there exists a (p−1)-

form φ, called a potential form, such that ω = dφ. An exact form is closed,
because d2 = 0. Conversely, it can be proved that a closed form is locally
exact (Poincaré–Volterra lemma).

A derivation D is called a i∗-type derivation if it is trivial on functions:
Df = 0. It is called a d∗-type derivation if it commutes with the differential:

Dd = (−1)rdD.

Theorem 1.16. (i) Any derivation can be decomposed in a unique way as a
sum of a derivation of type i∗ and a derivation of type d∗. (ii) Any derivation
of type d∗ is uniquely determined by its action on functions.

We have two fundamental derivations of type i∗ and d∗ associated with a
vector field: the interior product and the Lie derivative.

1.16 Interior product

Definition 1.15. The interior product (or the Cartan product) with respect
to a vector field X is the derivation iX of degree −1 and type i∗ defined by
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the following action on functions and one-forms,

iXf = 0, iXθ = 〈X, θ〉. ♥

It has the following properties,

iX(ϕ ∧ ψ) = iXϕ ∧ ψ + (−1)p ϕ ∧ iXψ,

where p is the degree of ϕ;

iXfϕ = f iXϕ, iY iXω = ω(X, Y )

for a two-form. A similar formula holds for any p-form.

iX iY = −iY iX , i2X = 0.

In local coordinates,

iX dxi = Xi, (iXω)i2···ip
= Xi1ωi1i2···ip

.

1.17 Lie derivative

Definition 1.16. The Lie derivative with respect to a vector field X is the
derivation of type d∗ and degree 0 defined by

ddX = dXd and dXf = iXdf. ♥

For the Lie derivative there are other two (equivalent) definitions,

dX = [iX , d] = iXd+ diX , dXω = lim
t→0

1

t
(ϕ∗

tω − ω) .

The first equation is known as the Cartan formula (the Lie derivative is the
commutator of the Cartan product and the differential). The Lie derivative
has the following properties,

dX(ϕ ∧ ψ) = dXϕ ∧ ψ + ϕ ∧ dXψ,

[dX , dY ] = dXdY − dY dX = d[X,Y ],

[dX , iY ] = dXiY − iY dX = i[X,Y ],

dθ(X, Y ) = dXiY θ − dY iXθ − i[X,Y ]θ.

For a two-form ω,

dω(X, Y, Z) = i[X,Y ]iZω − dXiY iZω + c.p.,
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where c.p. means the sum of the similar terms obtained by all cyclic permu-
tations of the vector fields.

A form ω ∈ Φ(M) is said to be invariant with respect to a transformation
ϕ : M →M if ϕ∗ω = ω. The following can be proved.

Theorem 1.17. A form ω is invariant with respect to the group ϕt generated
by a (complete) vector field X if and only if dXω = 0.





Chapter 2

Relations

Abstract We examine the notion of “relation”, which is central to this book,
at various progressive levels: relations on sets (Sect. 2.1), linear relations on
vector spaces (Sect. 2.2), smooth relations and reductions (Sect. 2.3), linear
symplectic relations (Sect. 3.1), symplectic relations on symplectic manifolds
(Chap. 3), and symplectic relations on cotangent bundles (Chap. 4).

2.1 Relations on sets

A relationR between two sets A and B is a subset of their Cartesian product:

R ⊆ B × A.

The sets A and B are the domain and the codomain of the relation, respec-
tively. For a relation we use the notation1

R : B ← A, or A
R← B.

The composition of two relations R : B ← A and S : C ← B is the relation

S ◦R : C ← A

defined by

(c, a) ∈ S ◦R ⇐⇒
{

There exists b ∈ B such that

(b, a) ∈ R and (c, b) ∈ S.
1 This is not the most common convention, but the use of the backward arrow (i.e.,
from right to left) turns out to be more convenient in dealing with the composition
of relations.
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The composition of relations is associative:

(S ◦R) ◦Q = S ◦ (R ◦Q).

Then “sets” and “relations” are objects and morphisms of a category.

2.1.1 The transposition functor

With a relation R ⊆ B × A we associate the transpose relation or inverse
relation

R⊤ ⊆ A×B,
made of the same pairs of R, but in reverse order. The contravariant trans-
position rule

(S ◦R)⊤ = R⊤ ◦ S⊤

holds. Hence, if we put by definition A⊤ = A for all sets, the transposition
operator ⊤ is a contravariant functor in the category of set relations.

A relation R ⊆ B ×A is symmetric if A = B and R⊤ = R.
A map ρ : A → B can be interpreted as a relation by its graph, R =

graph(ρ) ⊂ B × A:

(b, a) ∈ R ⇐⇒ b = ρ(a).

Hence, a relation R ⊆ B × A is a map if and only if

{
R⊤ ◦B = A,

(b, a) ∈ R, (b′, a) ∈ R =⇒ b′ = b.

The diagonal of a product A× A is denoted by ∆A,

∆A = {(a, a′) ∈ A ×A | a = a′}.

It behaves as the identity relation over the set A; if R : B ← A then
R ◦∆A = R and ∆B ◦R = R.

Remark 2.1. In the category of relations it is convenient to interpret a subset
S ⊆ A as a relation S ⊆ A × {0} where {0} is a singleton, an arbitrary set
made of a single element. If R : B ← A then R ◦ S is the image of the subset
S by the relation R. In particular R ◦A ⊆ B is the image of the relation R

and R⊤ ◦B ⊆ A is the inverse image of R. ♦
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2.2 Linear relations

Definition 2.1. A linear relation R : B ← A is a linear subspace of the
direct sum B ⊕A of two vector spaces A and B. ♥

The direct sum is the Cartesian product endowed with the natural struc-
ture of a vector space. This definition is suggested by the fact that a map
f : A→ B is linear if and only if its graph R is a linear subspace of B⊕A. It
can be shown that the composition of two linear relations is a linear relation.
Vector spaces and linear relations form a category (Benenti and Tulczyjew
1979).

2.3 Smooth relations and reductions

Definition 2.2. A smooth relation is a submanifold R ⊆ M2 ×M1 of the
product of two smooth manifolds M1 and M2. ♥

The composition of two smooth relations may not be a smooth relation;
that is S ◦ R may not be a submanifold. The graph of a smooth map is a
special case of smooth relation.

With a smooth relation R : M2 ←M1 we associate the tangent relation

TR ⊂ TM2 × TM1 ≃ T (M2 ×M1).

This is always a smooth relation. If R is the graph of a map ρ : M1 → M2,
then TR is the graph of the tangent map Tρ : TM1 → TM2.

Definition 2.3. A reduction is a smooth relation R : M0 ← M which is the
graph of a surjective submersion ρ : C → M0 from a submanifold C ⊆ M
onto M0. The transpose R⊤ of a reduction R is called coreduction. A fiber
of a reduction R : M0 ← M is the inverse image of a point of M0: R⊤{p},
p ∈M0. ♥

Remark 2.2. A fiber of a reduction is a submanifold (Theorem 1.3). If all
fibers are connected and S0 ⊆ M0 is a submanifold, then S = R⊤ ◦ S0 ⊆ M
is a submanifold. ♦

Remark 2.3. (i) A surjective submersion is a reduction (case C = M). (ii)
The transpose of the injection of a sumanifold C ⊆ M is a reduction (case
C = M0). (iii) A reduction is always the compositions of reductions of type
(ii) and (i). ♦

Remark 2.4. The composition of two reductions is a reduction. Reductions
are morphisms of a category (Benenti 1983). ♦
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2.3.1 Reduction of submanifolds

Let R : M0 ←M be a reduction, ρ : C →M0 the associated submersion, and
Λ ⊂ M a submanifold. We call Λ0 = R ◦ Λ the reduced set. In general, Λ0 is
not a submanifold of M0. This depends on the way Λ intersects C and the
fibers of R.

In order to give an answer to this question, let us consider, for each point
x ∈ Λ ∩ C, the subspace Vx ⊂ TxC of the vectors tangent to the fiber of the
submersion ρ passing through x (vertical vectors). Furthermore, let us denote
by ρ′ : Λ ∩ C →M0 the restriction of ρ to the intersection Λ ∩ C.

Theorem 2.1. Assume that (i) Λ and C have a clean intersection,2 and that
(ii) dim(Vx ∩ TxΛ) does not depend on the point x ∈ Λ ∩ C. Then ρ′ is a
subimmersion and for each point x0 ∈ N ∩ C there exists a neighborhood U
of x0 in N ∩C such that R ◦ U is a submanifold of M0.

Proof. Let L : A→ B be a linear map. We define

{
rank (L)

.
= dim(image of L),

ker(L)
.
= L−1(0).

We know that dim ker(L) + dim(image of L) = dimA. Then,

rank (L) = dimA − dim(ker(L)).

Apply this formula to L = Txρ
′ : Tx(Λ ∩ C)→ Tρ′(x)M0:

rank (Txρ
′) = dim(Tx(Λ ∩ C))− dim(ker(Txρ

′)).

Observe that ker(Txρ
′) = Vx ∩ Tx(Λ ∩ C). Then,

rank (Txρ
′) = dim(Tx(Λ ∩ C))− dim(Vx ∩ Tx(Λ ∩C))

Due to the clean intersection,

Vx ∩ Tx(N ∩ C) = Vx ∩ TxN ∩ TxC = Vx ∩ TxΛ,

inasmuch as Vx ⊂ TxC . Then,

rank (Txρ
′) = dim(Tx(Λ ∩ C))− dim(Vx ∩ TxΛ). (2.1)

Hence, due to assumption (ii), rank (Txρ
′) = constant. This proves that ρ′ is

a subimmersion. Then apply Theorem 1.2. ⊓⊔

2 Recall Definition 1.10 of a clean intersection: Λ∩C is a submanifold and Tx(Λ∩C) =
TxΛ ∩ TxC for all x ∈ Λ ∩ C.



Chapter 3

Symplectic Relations on Symplectic

Manifolds

Abstract In this chapter we examine the notion of “relation” in the presence
of a symplectic structure. To continue with the study of the relations between
symplectic manifolds, we begin with the simplest but fundamental case of
linear relations between symplectic vector spaces.

3.1 Linear symplectic relations

3.1.1 Symplectic vector spaces

A symplectic vector space is a pair (E, ω) where E is a real even-dimensional
vector space and ω : E×E → R is a real-valued bilinear, nondegenerate, and
skew-symmetric form,

{
ω(u, v) = − ω(v, u),

ω(u, v) = 0 for all v ∈ E =⇒ u = 0.

A linear map ϕ : E1 → E2 between two symplectic spaces (E1, ω1) and
(E2, ω2) is symplectic if

ω2 (ϕ(u), ϕ(v)) = ω1(u, v)

for all pairs of vectors u, v ∈ E1. It can be proved that symplectic spaces and
linear symplectic maps form a category.
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3.1.2 The symplectic dual functor

Let (E, ω) be a symplectic vector space. The dual space E∗ of E is the space
of covectors (i.e., of the linear maps f : E → R). The map ♭ : E → E∗ : u 7→ u♭

defined by1

〈v, u♭〉 = ω(u, v)

is a linear isomorphism, because ω is nondegenerate. Then we can define on
E∗ the dual symplectic form

ω∗(u♭, v♭) = ω(u, v).

The dual symplectic space of (E, ω) is the pair (E∗, ω∗).
If ωAB = ω(eA, eB) ∈ R are the components of ω in any basis (eA) of E,

then the elements of the inverse matrix of [ωAB], defined by ωABωCB = δAC
are the components of ω∗, and the map ♭ corresponds to the operation of
lowering the indices, (v♭)A = vBωBA.

The dual map of a linear map α : E → F is the linear map α∗ : F ∗ → E∗

defined by
〈u, α∗(f)〉 = 〈α(u), f〉.

It can be proved that the operator ∗ defined by

{
∗ : (E, ω) 7→ (E∗, ω∗),

∗ : f 7→ F ∗,

is a contravariant functor on the category of symplectic spaces.

3.1.3 The symplectic polar operator

With each subspace A of a vector space E we associate the dual subspace
A◦ ⊆ E∗ or polar subspace defined by

A◦ = {α ∈ E∗ such that 〈u, α〉 = 0 for all u ∈ A}.

The polar operator ◦ : A 7→ A◦ satisfies the following fundamental rules:






dim(A) + dim(A◦) = dim(E),

A◦ ⊂ B◦ ⇐⇒ B ⊂ A,

(A +B)◦ = A◦ ∩B◦,

A◦ +B◦ = (A ∩B)◦,

A◦◦ = ι(A),

(3.1)

1 We use the pairing 〈u, f〉 for the evaluation between vectors and covectors.
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where ι : E → E∗∗ is the natural isomorphism defined by 〈α, ι(v)〉 = 〈v, α〉,
α ∈ E∗, v ∈ E.

If E is endowed with a symplectic structure, then with a subspace A we
associate the symplectic polar subspace2 A§ ⊆ E defined by

A§ = {v ∈ E such that ω(u, v) = 0 for all u ∈ A}.

The symplectic polar operator § : A 7→ A§ satisfies rules that are formally
similar to (3.1): 





dim(A) + dim(A§) = dim(E),

A§ ⊂ B§ ⇐⇒ B ⊂ A,

(A +B)§ = A§ ∩B§,

A§ +B§ = (A ∩B)§,

A§§ = A.

(3.2)

The correspondence between (3.1) and (3.2) follows from equation ♭(A§) =
A◦. Notice that A§◦ = A◦§.

3.1.4 Special subspaces

Definition 3.1. A subspace A of a symplectic space (E, ω) is called






isotropic if A ⊆ A§,

coisotropic if A§ ⊆ A,

Lagrangian if A§ = A,

symplectic if A§ ∩ A = 0,

♥

By means of the formulae above we can prove the following properties.3

1. If A is isotropic (coisotropic, Lagrangian) thenA§ is coisotropic (isotropic,
Lagrangian).

2. If A is isotropic (coisotropic, Lagrangian) then dimA ≤ 1
2 dimE (≥, =,

respectively).
3. A subspace A is isotropic if and only if ω(u, v) = 0 for all u, v ∈ A.
4. A subspace of dimension 1 (codimension 1) is isotropic (coisotropic).
5. A subspace A ⊆ E is coisotropic (isotropic, Lagrangian) if and only

if its polar A◦ ⊆ E∗ is isotropic (coisotropic, Lagrangian) in the symplectic
dual space (E∗, Ω).

2 Many authors use the term symplectic orthogonal subspace and the notation A⊥.
This notation may conflict with that used for orthogonal subspaces in Euclidean
spaces.
3 This list is rather long, but very important for the applications that follow.
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6. A subspace A ⊆ E contained in (containing) a Lagrangian subspace L
is isotropic (coisotropic).

7. A Lagrangian subspace L of a coisotropic subspace C contains the sym-
plectic polar C§.

3.1.5 Linear symplectic relations

Let (A, α) and (B, β) be symplectic vector spaces. On the direct sum B ⊕A
a bilinear skew-symmetric form β ⊖ α is defined by

(β ⊖ α) ((b, a), (b′, a′)) = β(b, b′)− α(a, a′).

This form is non-singular, thus it is a symplectic form. With a linear relation
R ⊆ B × A we associate its symplectic dual relation R§ ⊆ B × A, where §

is the symplectic polar operator with respect to β ⊖ α, namely,

(b, a) ∈ R§ ⇐⇒ β(b, b′) − α(a, a′) = 0 for all (b′, a′) ∈ R. (3.3)

According to the terminology used for special subspaces, a linear relation
R ⊆ B×A between symplectic vector spaces is called Lagrangian if R§ = R,
isotropic if R ⊆ R§, or coisotropic if R§ ⊆ R. A Lagrangian linear relation
is also called symplectic or canonical. Note that if R is a linear symplectic
relation, then R⊤ is symplectic.

A basic property of linear relations between symplectic vector spaces is
the following symplectic functorial rule.

Theorem 3.1. If S ◦ R is the composition of two linear relations between
symplectic vector spaces, then

(S ◦R)§ = S§ ◦R§ (3.4)

A proof of this fundamental formula is given in Sect. 9.3.4 By using this
formula we can easily prove the following two fundamental statements.

Theorem 3.2. The composition of two linear symplectic relations is a linear
symplectic relation.5

Proof. If R§ = R and S§ = S, then (S ◦R)§ = S§ ◦R§ = S ◦R. ⊓⊔
Theorem 3.3. The image R ◦ K of an isotropic (coisotropic, Lagrangian)
subspace K by a linear symplectic relation R is an isotropic (coisotropic,
Lagrangian) subspace.

4 It is taken from (Benenti 1988) and it is rather cumbersome. Finding a simpler
proof is desirable.
5 Symplectic spaces and symplectic linear relations form a category (Benenti and
Tulczyjew 1981).
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Proof. Let R : B ← A be a symplectic linear relation and K ⊂ A an isotropic
subspace: K ⊆ K§. Then R ◦ K ⊆ R ◦ K§, and due to (3.4), (R ◦ K)§ =
R ◦ K§ ⊇ R ◦K. This shows that the image R ◦K is isotropic. There is a
similar proof for K coisotropic. ⊓⊔

Definition 3.2. A linear symplectic reduction is a Lagrangian subspace R ⊆
B × A that is the graph of a linear surjective map from a subspace K ⊆ A
onto B. ♥

Theorem 3.4. If R : B ← A is a linear symplectic reduction then K = R⊤ ◦
B is a coisotropic subspace, and R⊤ ◦ {0} = K§.

Proof. By the functorial rule (3.4) we have K§ = (R⊤ ◦ B)§ = R§)⊤ ◦ B =
R⊤ ◦B§ = R⊤ ◦ {0} ⊂ K. ⊓⊔

3.2 Symplectic manifolds

A symplectic manifold is a pair (M,ω) consisting of an even-dimensional
manifold M endowed with a symplectic form ω (i.e., a nondegenerate closed
two-form).

In coordinates (xA), A = 1, . . . , m,m = dimM , any two-form onM admits
the representation

ω = 1
2
ωAB dx

A ∧ dxB,

with
dxA ∧ dxB = dxA ⊗ dxB − dxB ⊗ dxA, ωAB = ω(∂A, ∂B).

Here, ∂A denotes the partial derivative ∂/∂xA interpreted as a vector field.
The components ωAB(x) form a skew-symmetric m×m matrix, [ωAB ], ωAB =
− ωBA. A two-form is nondegenerate if ω(u, v) = 0 for all vectors v implies
u = 0. This is equivalent to

det[ωAB] 6= 0.

This shows that the dimension of a symplectic manifold is even. A two-form
is closed if dω = 0. This is equivalent to ∂AωBC dx

A ∧ dxB ∧ dxC = 0; that is
to

∂{AωBC} = 0,

where {· · · } denotes the sum over the cyclic permutations of the indices.
A symplectic map between two symplectic manifolds (M1, ω1) and (M2, ω2)

is a smooth map ϕ : M1 → M2 that “preserves” the symplectic forms, that
is such that

ϕ∗ω2 = ω1.
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It can be shown that symplectic manifolds and symplectic maps are objects
and morphisms of a category. Isomorphisms and automorphisms in this cat-
egory are called symplectomorphisms and canonical transformations.

It is well-known that a symplectic form ω gives rise to two basic operations:
• An R-linear map from the space F (M) of smooth real-valued functions

on M to the space X (M) of smooth vector fields on M ,

F (M)→X (M) : H 7→ XH ,

defined by equation

iXH
ω = − dH (3.5)

where i∗ is the interior product (Sect. 1.16). The vector field XH is called
the Hamiltonian vector field generated by the Hamiltonian H .
• A binary internal operation {F,G}, called the Poisson bracket, on the

space F (M) is defined by equation

{F,G} = ω(XF , XG) (3.6)

equivalent to equation

{F,G} = iXG
iXF

ω = XFG = 〈XF , dG〉 (3.7)

The Poisson bracket satisfies the following properties.

{F,G} = − {G, F }

{aF + bG,H} = a {F,H}+ b {G,H} a, b ∈ R,

{F, {G,H}}+ {G, {H, F}}+ {H, {F,G}}= 0 (Jacobi identity),

{F,GH} = {F,G}H + {F,H}G (Leibniz rule),

{F,G} = 0, for all F =⇒ dG = 0 (regularity).

(3.8)

The first three properties show that the space F (M) endowed with the Pois-
son bracket is a Lie-algebra. Because of the Leibniz rule (and the R-linearity)
the Posisson bracket is a biderivation (on functions).

In components with respect to any coordinate system (xA), Eq. (3.5) reads

XAωAB = − ∂BH.

If we introduce the inverse matrix [ωAB] of the matrix components [ωAB],
defined by

ωAB ωCB = δAC ,
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then we get the explicit definition of the components of XH ,

XA = − ωAB ∂BH = ∂BH ωBA,

and of the Poisson bracket,

{F,G} = ωAB ∂AF ∂BG (3.9)

Remark 3.1. It can be shown that the Jacobi identity is equivalent to dω = 0.
♦

Two functions are said to be in involution if {F,G} = 0. Due to the
regularity property, if a function is in involution with all other functions,
then it is constant on the connected components of M .

A manifold endowed with a bracket on functions satisfying conditions (3.8),
except the regularity, is called a Poisson manifold (for further information
and references see, for instance, (Weinstein 1998), (Libermann and Marle
1987), and (Vaisman 1994).

A remarkable property, relating the Poisson bracket of functions to the Lie
bracket of Hamiltonian vector fields, is expressed by the formula

[XF , XG] = X{F,G} (3.10)

which shows the following.

Theorem 3.5. The Lie bracket [XF , XG] of two Hamiltonian vector fields is
the Hamiltonian vector field generated by the Poisson bracket {F,G}.

This means that the map H 7→ XH is a Lie-algebra homomorphism. An
equivalent form of (3.10) is

i[XF , XG]ω = − d{F,G} (3.11)

3.3 Special submanifolds

For each point p ∈M of a symplectic manifold (M,ω), the tangent space TpM
is a symplectic vector space: the symplectic two-form is given by the restric-
tion ωp of ω to the vectors of TpM . Then the notion of “special subspaces”
given in Sect. 3.1.4 can be extended to that of “special submanifolds”.

Let K be a submanifold of a symplectic manifold (M2n, ω). For each point
p ∈ K we define

T §
pK = {v ∈ TpM such that p ∈ K and ω(u, v) = 0 for all u ∈ TpK}.
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We consider the set TK of all vectors tangent to K and the set

T §K =
⋃

p∈K

T §
pK.

Both TK and T §K are submanifolds of TM . If dimK = k, then

dim(TK) = 2k, dim(T §K) = k + (2n− k) = 2n.
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Fig. 3.1 Submanifold K of a symplectic manifold (M,ω)

Definition 3.3. A submanifold K is





isotropic if TK ⊆ T §K,

coisotropic if T §K ⊆ TK,

Lagrangian if T §K = TK.

♥

In these three cases we have respectively,

dimK ≤ n, dimK ≥ n, dimK = n.

Note that a Lagrangian submanifold is simultaneously coisotropic and isotropic,
and that it is an isotropic submanifold of maximal dimension as well as a
coisotropic submanifold of minimal dimension.
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Fig. 3.2 Coisotropic submanifold
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Fig. 3.3 Lagrangian submanifold

As shown by the following theorems, the isotropy of a submanifold is char-
acterized by means of the symplectic form, and the coisotropy is characterized
by means of the Poisson bracket.

Theorem 3.6. A submanifold K is isotropic
(i) if and only if ω|K = 0; that is ω(u, v) = 0 for all u, v ∈ TK,

or

(ii) if and only if ι∗ω = 0, where ι : I → M is any injection (injective
immersion) of a manifold I into M with image ι(I) = K.
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Fig. 3.4 Isotropic injection

Remark 3.2. If the injection ι is represented by parametric equations xA =
xA(κα), then its image is isotropic if and only if

ωAB
∂xA

∂κα

∂xB

∂κβ
= 0 (3.12)

The left-hand side of this equation is the precursor of the so-called Lagrange
bracket. ♦

This suggests the following extension of the definition of Lagrangian sub-
manifold: a Lagrangian immersion is an immersion ι : K → M into a sym-
plectic manifold such that dimK = 1

2 dimM and ι∗ω = 0. An immersed
Lagrangian submanifold is the image Λ = ι(K) of a Lagrangian immersion.
If the immersion is an embedding, then we have a Lagrangian submanifold
in the ordinary sense.6

Theorem 3.7. A submanifold K is coisotropic if and only if

{F,G}|K = 0

for all functions F,G ∈ F (M) whose restrictions F |K and G|K to K are
constant.

Proof. Take any point x ∈ M . The space TxK is coisotropic in the tangent
symplectic space (TxM,ωx) if and only if the polar space T ◦

xK is isotropic

6 For a detailed discussion and further references on Lagrangian immersions and
Lagrangian embeddings, as well as for special submanifolds of symplectic manifolds,
see, for example e.g. (Marmo et al. 1990).
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in the dual vector space (T ∗
xM,Ωx),7 see Sect. 3.1.4. Observe that T ∗

xM is
spanned by the differentials dxF , at the point x, of the functions on M and,
in particular, that T ◦

xM is spanned by the differentials dxF of the functions
constant on K, being 〈v, dxF 〉 = 0 for all v ∈ TxK. Hence, T ◦

xM is isotropic
in (T ∗

xM,Ωx) if and only if Ωx(dxF, dxG) = 0 for all pairs (F,G) of such func-
tions. But, by definition of the Poisson bracket, the last equation is equivalent
to {F,G}x = 0. ⊓⊔

As corollaries of this theorem we the following theorems.

Theorem 3.8. If K is defined by equations Ka = 0, then it is coisotropic if
and only if {Ka, Kb}|K = 0.

Theorem 3.9. A submanifold of dimension 1 is isotropic. A submanifold of
codimension 1 is coisotropic.

Theorem 3.10. On a symplectic manifold of dimension 2n, the maximal
number of independent functions in involution indexIdependent!functions in
involution is n (i.e., if n+ k functions are in involution then they are neces-
sarily dependent).

3.4 Characteristic foliation of a coisotropic submanifold

If Cm ⊆ M2n is a coisotropic submanifold, then T §C is a subbundle of TC,
whose fibers have dimension r = 2n−m, equal to the codimension of C. In
other words, T §C is a regular distribution on C of rank r = 2n −m, which
we call the characteristic distribution of C and denote by ΓC. Note that it is
an isotropic distribution.

A characteristic vector field of C is a vector field X on M , tangent to C
and such that its image is contained in the characteristic distribution,

X(p) ∈ T §
pC, for all p ∈ C.

This is equivalent to equation ω(X,Z) = 0 or 〈Z, iXω〉 = 0 for all vectors Z
tangent to C.

The characteristic vector fields form a linear subspace of X (M). As we
show below–Theorem 3.12 and Remark 3.4–this subspace is also a Lie subal-
gebra.

Theorem 3.11. (i) A Hamiltonian vector field XH is a characteristic vector
of a coisotropic submanifold C if and only if H is constant on C. (ii) A
Hamiltonian vector field XH is tangent to a coisotropic submanifold C if and
only if H is constant on the characteristics of C.

7 In accordance with a notation adopted below, by T∗
x M we actually mean the space

(TxM)∗ dual of TxM .
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Proof. By applying the equality ω(XH , v) = 〈v, iXH
ω〉 = − 〈v, dH〉 for all

v ∈ TC and for all v ∈ T §C we get items (i) and (ii), respectively. ⊓⊔

Now we can state two fundamental geometrical properties of the coisotropic
submanifolds.

Theorem 3.12. The characteristic distribution of a coisotropic submanifold
is completely integrable.

This means that for each point p ∈ C there exists an integral manifold
of ΓC; that is a submanifold of dimension r = codim(C) containing p and
tangent to ΓC. The integral manifolds of ΓC are called characteristics of C.
A maximal connected integral manifold is called a maximal characteristic of
C. Thus, any coisotropic submanifold admits a characteristic foliation made
of maximal characteristics.

Proof. Let the submanifold C be (locally) described by r = 2n − m inde-
pendent equations Ca = 0. Because of the coisotropy, the functions Ca are
in involution (at least on C), {Ca, Cb}|C = 0, Theorem 3.8. It follows that
the Hamiltonian vector fields Xa generated by the functions Ca commute,
[Xa, Xb]|C = 0, formula (3.10). The differentials dCa are pointwise linearly
independent, thus these vector fields are pointwise independent characteristic
vector fields of C, Theorem 3.11. Thus, they span the characteristic distribu-
tion. The corresponding (local) flows ϕa

t commute. Thus, starting from any
fixed point x0 ∈ C, the set of points x ∈ C such that x = φ1

t1 ◦ · · · ◦ ϕr
tr

(x0)
defines a submanifold of dimension r which is tangent at each point to the
vector fields Xa. Hence, this submanifold is an integral manifold of the char-
acteristic distribution of C. ⊓⊔
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Fig. 3.5 Characteristic foliation of a coisotropic submanifold
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Theorem 3.13. A Lagrangian submanifold Λ contained in a coisotropic sub-
manifold C is the union of characteristics of C.

This property is known as the absorption principle (Vinogradov and Ku-
perschmidt 1977).

Proof. It is a consequence of a property of linear symplectic algebra: if L ⊆
K ⊆ E, where E is a symplectic space, K is a coisotropic subspace and L is
Lagrangian, then K§ ⊆ L§ = L. ⊓⊔

Remark 3.3. (i) The dimension of the characteristics is equal to the codimen-
sion of C. The characteristics are isotropic submanifolds.

(ii) Any submanifold of codimension 1 is coisotropic; hence, its character-
istics are (one-dimensional) curves.

(iii) If C is Lagrangian then the maximal characteristics coincide with the
connected components of C . ♦

Remark 3.4. In Sect. 9.1 we apply Theorem 3.12 for proving the Frobenius
theorem concerning the complete integrability of regular distributions. In re-
verse, we can use the Frobenius theorem to prove Theorem 3.12. We show
that the characteristic vector fields form a Lie-subalgebra of X (M). (i) The
Lie bracket of two vector fields tangent to a submanifold C is tangent to C
(this is a general property of the Lie bracket of vector fields). (ii) The intrin-
sic definition of the differential of a two-form is expressed by the following
formula.

dω(X, Y, Z) = dX (ω(Y, Z)) + dY (ω(Z,X)) + dZ (ω(X, Y ))

− ω([X, Y ], Z)− ω([Y, Z], X)− ω([Z,X], Y ).

If ω is closed, X and Y are characteristic vectors and Z is tangent to C, then
we get 0 = ω([X, Y ], Z) for each vector Z tangent to C . This shows that the
Lie bracket of two characteristic vector fields is a characteristic vector field.
♦

3.5 Symplectic relations

Let (M1, ω1) and (M2, ω2) be two symplectic manifolds. The productM2×M1

is then endowed with four symplectic forms,

± pr∗2ω2 ± pr∗1ω1,

where pr1 : M2 × M1 → M1 and pr2 : M2 × M1 → M2 are the canonical
projections. However, one of them turns out to be of particular interest.

Definition 3.4. A symplectic relation (also called canonical relation)
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R : (M2, ω2)← (M1, ω1)

from a symplectic manifold (M1 , ω1) to a symplectic manifold (M2, ω2) is
a Lagrangian submanifold of the symplectic manifold (M2 ×M1, ω2 ⊖ ω1),
where8

ω2 ⊖ ω1 = pr∗2ω2 − pr∗1ω1. (3.13)

The symplectic manifold (M2 ×M1, ω2 ⊖ ω1) is also denoted by (M2, ω2)×
(M1,−ω1). ♥

This definition is suggested by the following property.

Theorem 3.14. A diffeomorphism ϕ : M1 → M2 between two symplectic
manifolds is a symplectomorphism; that is it preserves the symplectic forms,

ϕ∗ω2 = ω1,

if and only if its graph R ⊂M2 ×M1 is a Lagrangian submanifold of (M2 ×
M1, ω2 ⊖ ω1).9

Proof. The graph R is the image set of the injective map

ι = (ϕ, idM1) : M1 →M2 ×M1 : a 7→ (ϕ(a), a) .

Since pr1 ◦ ι = idM1 and pr2 ◦ ι = ϕ, it follows that

ι∗(ω2 ⊖ ω1) = ι∗(pr∗2ω2 − pr∗1ω1) = ι∗pr∗2ω2 − ι∗pr∗1ω1

= (pr2 ◦ ι)∗ω2 − (pr1 ◦ ι)∗ω1 = ϕ∗ω2 − ω1.

Thus, R is isotropic if and only if ϕ∗ω2 = ω1. For a diffeomorphism, dimR =
1
2 (dimM2 + dimM1). ⊓⊔

Remark 3.5. A Lagrangian submanifold Λ of a symplectic manifold (M,ω)
can be considered as a symplectic relation, because it is a Lagrangian sub-
manifold of the symplectic manifold M × {0}. ♦

In general, symplectic relations do not compose nicely, inasmuch as this
may occur for the smooth relations. However, it can be shown10 that

Theorem 3.15. Let R : (M2, ω2) ← (M1, ω1) and S : (M3, ω3) ← (M2, ω2)
be symplectic relations. Assume that:

(i) S ◦R is a submanifold,
(ii) T(p3,p1)(S ◦ R) = T(p3,p2)S ◦ T(p2,p1)R for all (p3, p2, p1) such that

(p3, p2) ∈ S and (p2, p1) ∈ R, .
Then S ◦R is a symplectic relation.

8 Later on we also use the symplectic form ω2 ⊕ ω1 = pr∗2ω2 + pr∗1ω1.
9 (Sniatycki and Tulczyjew 1972), (Tulczyjew 1974, 1977b).
10 (Sniatycki and Tulczyjew 1972).
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3.6 Symplectic reductions

We have already introduced the notion of “reduction”, at the level of smooth
relations, Definition 2.3, and at the level of linear symplectic reductions,
Definition 3.2. Now we extend this notion to the level of smooth symplectic
relations.

Definition 3.5. A symplectic reduction is a symplectic relation that is a re-
duction according to Definition 2.3. ♥

Reductions and symplectic reductions are morphisms of categories (Be-
nenti 1983a, b, c). The notion of symplectic reduction plays a fundamental
role in the global symplectic formulation of the Cauchy problem for a first-
order partial differential equation (Sect. 3.9) and of the Jacobi theorem (Sect.
6.6).

Theorem 3.16. Let R : M0 ←M be a symplectic reduction. Then:
(i) The inverse image R⊤◦N ⊆M of a coisotropic (isotropic, Lagrangian)

submanifold N ⊆M0 is a coisotropic (isotropic, Lagrangian) submanifold.
(ii) C = R⊤ ◦M0 is a coisotropic submanifold.
(iii) A fiber R⊤◦{p0}, p0 ∈M0, is an integral manifold of the characteristic

distribution of C.

Proof. The inverse image of a submanifold by a submersion is a submanifold.
A reduction R is the graph of a (surjective) submersion ρ : C →M0. Thus, the
inverse image R⊤◦N of any submanifoldN ⊆M0 (in particular of a point) is
a submanifold ofC = R⊤◦M0. Let (p0, p) ∈ R. Then T(p0,p)R ⊂ Tp0M0×TpM
is a linear symplectic relation; that is a Lagrangian subspace,

(T(p0,p)R)§ = T(p0,p)R.

Because of the definition of submersion, this linear relation is the graph of
a surjective linear map. Thus, T(p0,p)R is a linear symplectic reduction, with
inverse image TpC.

(T(p0,p)R)⊤ ◦ Tp0M0 = TpC.

Due to Theorem 3.3, items (i) and (iii) are proved (note thatM0 is coisotropic).
Moreover,

(T(p0,p)R)⊤ ◦ {0} = T §
pC, 0 ∈ Tp0M0.

Let us consider the fiber Ip0 = R⊤ ◦ {p0}. We have

TpIp0 = {v ∈ TpC such that Tρ(v) = 0}

= {v ∈ TpC such that T(p,p0)R ◦ {v} = 0}

= (T(p0,p)R)⊤ ◦ {0} = T §
pC.
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This shows that the tangent space of a fiber at a point p coincides with the
tangent space of the characteristic containing that point. This proves item
(iii). ⊓⊔

3.7 Reduction of Lagrangian submanifolds

The operation considered in Theorem 3.16 is called coreduction of a subman-
ifold. A coreduction preserves the submanifold structure and the symplectic
type. On the contrary, the operation of reduction of a submanifold is more
delicate and requires a closer analysis.

Here we limit ourselves to the most interesting case: the symplectic re-
duction of a Lagrangian submanifold. We have at our disposal Theorem
2.1, that we have to adapt to the present case: (i) the vertical spaces
Vx ⊂ TxC tangent to the fibers of the submersion ρ now coincide with
T §

xC and (ii) TxΛ = T §
xΛ, because Λ is Lagrangian. Then formula (2.1),

rank (Txρ
′) = dim(Tx(Λ∩C))− dim(Vx ∩ TxΛ), where ρ′ is the restriction of

ρ to Λ ∩ C, gives

rank (Txρ
′) = dim(Tx(Λ ∩ C))− dim(T §

xC ∩ TxΛ)

= dim(Tx(Λ ∩ C))− dim(T §
xC ∩ T §

xΛ) = · · ·

because TxΛ = T §
xΛ. Now, recall formulae (3.2):

= dim(Tx(Λ ∩ C))− dim(TxC + TxΛ)§

= dim(Tx(Λ ∩ C))− codim (TxC + TxΛ)

= dim(Tx(Λ ∩ C)) + dim(TxC + TxΛ)− dimM = · · · .

Due to the clean intersection and the Grassmann formula,

· · · = dim(TxΛ ∩ TxC) + dim(TxC + TxΛ)− dimM

= dimTxΛ+ dimTxC − dimM

= dimΛ+ dimC − dimM.

= n+ dimC − 2n = n− c,

where n = dim(Λ) = 1
2 dimM and c = codim C. The result of this calcula-

tion,
rank (Txρ

′) = n− c = constant, (3.14)

not only shows that ρ′ is a subimmersion but also highlights two facts:
(1) In the present case, item (ii) in Theorem 2.1 is redundant.
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(2) Since the dimension of M0 is 2(n− c), the dimension of the image of
Txρ

′, is just 1
2 dimM0, which is the dimension of any Lagrangian submanifold

of M0. Hence, due to the property expressed in Theorem 3.3 at the level of
linear symplectic relations, we conclude the following.

Theorem 3.17. Let R : M0 ← M be a symplectic reduction and Λ ⊂ M a
Lagrangian submanifold. If Λ and C = R⊤ ◦M0 have a clean intersection
then for each x0 ∈ Λ ∩ C there exists a neighborhood U of x0 in Λ ∩ C such
that R ◦ U is a Lagrangian submanifold of M0.

11

But we can say something more if we consider the special case of transverse
intersection of Λ and C, Definition 1.11:

TxΛ+ TxC = TxM for all x ∈ Λ ∩ C. (3.15)

Remark 3.6. Since T §
xΛ = TxΛ, this condition is equivalent to

TxΛ ∩ T §
xC = 0. ♦ (3.16)

Recall that a transverse intersection is clean, Theorem 1.8, Tx(Λ ∩ C) =
TxΛ ∩ TxC. Then,

T §
x(Λ ∩ C) = T §

xΛ+ T §
xC = TxΛ+ T §

xC,

and, due to (3.16),

dim(T §
x (Λ ∩ C)) = dim(TxΛ) + dim(T §

xC).

This shows that

codim (Λ ∩ C) = n+ codim C = n + c,

that is, due also to (3.14),

dim(Λ ∩ C) = n− c = rank (Txρ
′).

This means that the dimension ρ′ : Λ ∩ C → M0 is an immersion, and from
Theorem 3.17 we get the following.

Theorem 3.18. If Λ and C = R⊤ ◦M0 have a transverse intersection then
Λ0 = R ◦ Λ is an immersed Lagrangian submanifold of M0.

If the intersection of Λ and C = R⊤ ◦M0 is not clean, then it may happen
that Λ0 = R ◦Λ is not a submanifold. As we show, mainly in Chaps. 5 and 6,
this circumstance occurs in fact in many practical applications. We are thus
led to introduce the notion of Lagrangian set.

11 (Weinstein 1977).
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Definition 3.6. A Lagrangian set is the symplectic reduction Λ0 = R ◦ Λ of
a smooth Lagrangian submanifold Λ.12 ♥

3.8 Symplectic relations generated by a coisotropic

submanifold

Let Cm ⊆M2n be a coisotropic submanifold. Let us denote byMC the reduced
set of M by C (i.e., the set of the maximal connected characteristics of C).
A coisotropic submanifold C ⊆M generates two relations:13

• the characteristic relation DC : M ←M ,
• the characteristic reduction RC : MC ←M .

DC is made of pairs of points (p, p′) belonging to a same characteristic of C,

(p, p′) ∈ DC ⇐⇒ there exists γ ∈MC such that p, p′ ∈ γ.

RC is defined by
(γ, p) ∈ RC ⇐⇒ p ∈ γ.

It follows that

DC = R⊤
C ◦RC (3.17)

According to its definition, DC is a relation from C to C , because it in-
volves points of C only. However, it is convenient to consider DC as a relation
inM . Indeed, by using local coordinates adapted to the characteristics (whose
existence is due to the local Frobenius theorem) it can be proved that it is
(locally) a 2n-dimensional submanifold of M ×M and moreover, that it is a
Lagrangian submanifold with respect to the symplectic form ω ⊖ ω.14

In general, the reduced set MC is not a smooth manifold, so that RC is
not a smooth relation. However,

Theorem 3.19. If the reduced set MC has a differentiable structure such that
the canonical projection

ρ : C →MC : p 7→ γ such that p ∈ γ

is a surjective submersion, then:
(i) There is a unique reduced symplectic form ωC such that 15

12 One can extend this definition by considering the composition Λ0 = R ◦ Λ, where
R is a symplectic relation. Alan Weinstein pointed out (private communication) the
possibility of other more general definitions. However, the definition adopted here is
sufficient for the purposes of this book.
13 (Tulczyjew 1975).
14 See, for instance, (Benenti and Tulczyjew 1980).
15 (Lichnerowicz 1975) (Weinstein 1977).
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ω|C = ρ∗(ωC). (3.18)

(ii) With respect to this symplectic form RC ⊂ MC ×M is a symplectic
relation.

(iii) DC = R⊤
C ◦RC is a symplectic relation.
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Fig. 3.6 The reduced set MC

We call (MC , ωC) the reduced symplectic manifold and RC the symplectic
reduction associated with C. Note that

dimMC = dimC − codim C = 2 dimC − dimM = 2 (m− n).

Proof. (i) The reduced symplectic form is defined by equation

ωC(v, v′) = ω(w,w′), for all (w,w′) ∈ TC ×C TC

such that Tρ(w) = v, Tρ(w′) = w.
(3.19)

By the definition of pullback this is equivalent to (3.18). Definition (3.19) does
not depend on the choice of the vectors (w,w′). Consider a point p ∈ C and
w,w′, w̄, w̄′ ∈ TpC with Tρ(w) = v = Tρ(w̄), Tρ(w′) = v′ = Tρ(w̄′). Then
the vectors w − w̄ and w′ − w̄′ project onto the zero-vector; this means that
they are tangent to the characteristic at p. Hence, w−w̄, w′−w̄′ ∈ T §

pC. This
subspace is isotropic, thus ω(w − w̄, w′ − w̄′) = 0 and ω(w,w′) = ω(w̄, w̄′).
This proves the independence of Definition (3.19) from the choice of the
vectors (w,w′) at a fixed point p. Consider the (local) flow φt : C → C of a
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Hamiltonian characteristic vector field (generated by a Hamiltonian constant
on C). For all admissible t ∈ R we have pt = φt(p) ∈ C and ρ ◦ φt = ρ. Then
the vectors wt = Tφt(w) ∈ Tpt

C and w′
t = Tφt(w

′) ∈ Tpt
C still project onto

the vectors (v, v′). Since φt is symplectic, ω(w,w′) = ω(wt, w
′
t). Moreover, we

observe that any two points p and p′ on the same characteristic can be joined
by a finite number of integral curves of characteristic Hamiltonian vector
fields. This proves the independence of (3.19) from the choice of the point p
on a fixed characteristic. The fact that ωC is nondegenerate is a consequence
of the fact that Tpρ is everywhere surjective (by definition of submersion).
The fact that ωC is closed follows from (3.18).

(ii) The relation RC is the image of the topological immersion ι : C →
MC ×M : p 7→ (ρ(p), p). It follows that

ι∗(ωC ⊖ ω) = ι∗(pr∗MC
ωC − pr∗Mω)

= (prMC
◦ ι)∗ωC − (prM ◦ ι)∗ω

= ρ∗ωC − ω|C = 0.

This shows that RC is isotropic. On the other hand, dimMC = 2 (m − n),
dim(MC ×M) = 2m, and dimRC = dim graph(ρ) = dimC = m. This shows
that RC is Lagrangian.

(iii) From an atlas on M of charts adapted to the submersion ρ we can
construct an atlas of charts adapted to DC . Thus, DC is a submanifold of
dimension equal to 2n = dimM . Any vector tangent to DC , interpreted as an
equivalence class of curves on DC , is a class of pairs of curves on C that are
pointwise projected by ρ on a same curve of MC . This implies that a vector
w tangent to DC at a point (p, p′) is a pair of vectors (v, v′) ∈ T(p,p′)C ⊂
T(p,p′)M whose images by Tρ coincide, Tρ(v) = Tρ(v′). The projections of
w = (v, v′) onto the first and second factor M are v ∈ TpC ⊂ TpM and
v′ ∈ Tp′C ⊂ Tp′M , respectively, therefore it follows that for two vectors w
and w̄ at the same point (p, p′),

ω ⊖ ω(w, w̄) = ω(v, v̄)− ω(v′ , v̄′).

By definition of ωC , this last difference is equal to

ωC(Tρ(v), Tρ(v̄)) − ωC(Tρ(v′)− Tρ(v̄′)).

But these two terms are equal, because Tρ(v′) = Tρ(v) and Tρ(v̄′) = Tρ(v̄).
Thus, ω ⊖ ω(w, w̄) = 0 and DC is isotropic. ⊓⊔

The reduced Poisson bracket associated with the reduced symplectic form
can be directly defined as follows.

Theorem 3.20. Under the same assumptions as in Theorem 3.19, a Poisson
bracket {f, g}C on the reduced manifold MC is defined by setting
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ρ∗{f, g}C = {F,G}|C, (3.20)

where F and G are any two local extensions to M of the functions ρ∗f and
ρ∗g, and {F,G}|C is the restriction to C of the Poisson bracket {F,G} com-
puted on M .

This theorem is based on a lemma.

Lemma 3.1. Let C be a coisotropic submanifold of a symplectic manifold
M . (i) If F and G are two functions on M constant on the characteristics of
C, then {F,G} is constant on the characteristics. (ii) Let (F, F ′) and (G,G′)
be two pairs of functions on M coinciding on C: F |C = F ′|C, G|C = G′|C.
Then their Poisson brackets also coincide on C: {F,G}|C = {F ′, G′}|C.

Note that, thanks to this lemma, Eq. (3.20) makes sense: (i) since {F,G}
is constant on the characteristics, it is reducible to a function on MC ; (ii)
{f, g}C does not depend on the extensions F and G.

Proof. If F and G on M are constant on the characteristics of C, then the
corresponding Hamiltonian vector fields XF and XG are tangent to C –
Theorem 3.11, item (ii). Thus, also [XF , XG] is tangent to C. But [XF , XG]
is the Hamiltonian vector field generated by {F,G}: Theorem 3.5, formula
(3.10). Hence, by applying Theorem 3.11, item (ii), once more, {F,G} is
constant on the characteristics. The proof of item (ii) is similar. ⊓⊔
Proof. Proof of the theorem. After the lemma, it is straightforward to
prove that the bracket defined by (3.20) fulfills all the characteristic properties
of a Poisson bracket. In particular, the regularity condition follows from the
fact that, if a function F is constant on the characteristics and if {F,G}C = 0
for all functions G constant on the characteristics, then iXG

dF |C = 0. But
the Hamiltonian fields of the kindXG generate at each point of C the tangent
spaces of C. It follows that dF |C = 0 and for the reduced function df = 0. ⊓⊔
Remark 3.7. Canonical symplectic structure of the complex projective spaces.16

The quotient set of Cn+1 with respect to the equivalence relation

(zα) ≡ (z′α) ⇐⇒ zα = λ z′α, λ ∈ C− 0, α = 0, 1, . . . , n,

is denoted by CP n. For each κ = 0, 1, . . . , n we define

Uκ = {(zα) ∈ Cn+1; zκ 6= 0}

and
φκ : Uκ → Cn : (zi/zκ), i 6= κ.

Each pair (Uκ, φκ) defines a chart on CP n of dimension 2n. These n+1 charts
define an analytic atlas on CP n. On M = Cn+1 we consider the canonical
symplectic form

16 (Weinstein 1977), (Benenti 1988), (Libermann and Marle 1987).
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ω = dyα ∧ dxα = − i
2
dzα ∧ dz̄α,

where zα = xα +i yα and z̄α = xα−i yα. In M we consider the unitary sphere
C = S2n+1, defined by equation

∑

α

zαz̄α =
∑

α

[(xα)2 + (yα)2] = 1.

Being of codimension 1, C is coisotropic. Furthermore, a surjective submer-
sion ρ : C → CP n which maps each (zα) to its equivalence class. It can be
proved that

• The characteristics of C are the fibers of ρ.
• The characteristics of C are orbits of the action of R on M defined by

(t, zα) 7→ eit zα.
• The characteristics of C are maximal circles.

Then, the manifold CP n coincides with the reduced manifold MC and
consequently, it is endowed with a reduced symplectic form ωC such that
ρ∗ωC = ω|C. If we take for instance the coordinates (ξi, ηj) associated with
the chart (U0, φ0), which are defined by the equations

ξi + i ηi =
zi

z0
,

then, taking into account that these equations give the local representation
of the submersion ρ, we can find the local representation of the symplectic
form ωC:

ωC = γ2
[
dηi ∧ dξi − γ2 (ξh dξh + ηh dηh) ∧ (ηk dξ

k − ξk dηk)
]

(3.21)

where
γ−2 = 1−

∑

i

[(ξi)2 + (ηi)
2]. ♦ (3.22)

Remark 3.8. For n = 1 we have C = S3, CP 1 = S2, and the surjective
submersion ρ : S2 → S2 is the Hopf fibration. Eqs. (3.21) and (3.22) now give

ωC =
1

(1 + ξ2 + η2)2
dη ∧ dξ.

This shows an interesting fact: ωC is the area-element of the unitary sphere
S2, because (ξ, η) are stereographic coordinates. These coordinates are not
canonical. A canonical coordinate system (a, b), in which ωC = db ∧ da, is
defined by

a =
ξ2 + η2

1 + ξ2 + η2
, b = 1

2
arcsin

η√
ξ2 + η2

. ♦
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Remark 3.9. The mechanical interest of the complex projective spaces is also
due to the fact that the symplectic manifold (MC , ωC) describes the isoen-
ergetic Hamiltonian system, with energy 1

2 , of the harmonic oscillator of
dimension n+ 1. ♦

Remark 3.10. The orbit-manifold of the Kepler motions. The germ of
the notion of reduced symplectic manifold dates back to Lagrange, when
he studied the variations of the arbitrary constants (Souriau 1970) for the
planetary motions. In the case of the n-dimensional Kepler motions the phase
space is the cotangent bundle M = T ∗Q of the configuration manifold Q =
Rn − 0. Then, M = (Rn − 0) × Rn. Let x be the vector of the Cartesian
coordinates of Q and y the vector of the Cartesian coordinates on the fibers
Rn. Let us consider on M the natural symplectic form ω = dyi∧ dxi and the
Hamiltonian

H(x, y) = 1
2

y2 − 1

|x| .

For each value of the energy constant E, equationH = E defines a coisotropic
submanifold CE of M . For each dimension n, we have three types of such
submanifolds, determined by the three conditions E > 0 (hyperbolic case),
E = 0 (parabolic case), and E < 0 (elliptic case).

It is not easy to find the reduced manifold of CE , that is, the manifold of
the orbits.17 However, Pham Mau Quan (1980) was able to find a trick, valid
for any dimension n, that simplifies the matter considerably. He observed
that, for E = −1/2, the submanifold C−1/2, defined by equation

|x| (1 + y2) = 2,

can be also described by equation

K(x, y) =
1

2
(1 + y2) |x|,

and that, for n = 2, K(x, y) is the Hamiltonian of the geodesics on the sphere
S2 ⊂ R3, in the coordinates y corresponding to the stereographic projection
with pole (1, 0, 0). Hence, the orbits are in a one-to-one correspondence with
the oriented maximal circles of the sphere. In turn, these circles are in a
one-to-one correspondence with the unit vectors issued from the center of
the sphere and thus, with the points of the sphere itself. Consequently, it
has been proved that the orbit manifold with negative energy (hence, of all
the bounded orbits) of the two-dimensional Kepler problem is isomorphic to
the sphere S2. Inasmuch as S2 has a natural symplectic form given by its
Euclidean area-element, we are induced to think of this form as the reduced
symplectic form (up to a factor). It can be proved that it is so. ♦
17 This problem is related to that of the regularization of the Kepler problem. See
(Moser 1970), (Pham Mau Quan 1980, 1983a, 1983b), (Souriau 1983), and (Cordani
1986, 2003).
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3.9 Symplectic background of the Cauchy problem

The following theorem is an important application of the results of the pre-
ceding section.

Theorem 3.21. Let ΛI ⊂M be a Lagrangian submanifold having a clean in-
tersection with a coisotropic submanifold C ⊆M . Then there exists a unique
connected immersed Lagrangian submanifold Λ contained in C and containing
C ∩ ΛI . This Lagrangian submanifold is defined by the composition formula

Λ = DC ◦ ΛI,

thus, it is the union of the maximal characteristics of C intersecting ΛI .
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C

◦ RC ◦ ΛI = Λ

Fig. 3.7 The Cauchy problem

Proof. Due to Theorem 3.17, RC ◦ ΛI is an immersed Lagrangian subman-
ifold of MC and, due to Theorem 3.16, Λ = R⊤

C ◦ RC ◦ ΛI is a Lagrangian
submanifold of M . The uniqueness follows from the absorption principle. ⊓⊔

Remark 3.11. As we show, when applied to cotangent bundles, this statement
can be interpreted as a symplectic background of the Cauchy problem: C
represents a first-order PDE, ΛI (or C∩ΛI) the initial or boundary conditions,
and Λ the corresponding solution. However, the case in which the intersection
C ∩ΛI is not clean occurs in many interesting applications of this theory. In
this case, RC ◦ΛI and Λ = DC ◦ΛI may not be Lagrangian submanifolds. ♦
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Remark 3.12. A remarkable application of the above considerations concerns
the composition of symplectic relations.18 Let R1 ⊂ (M1 ×M0, ω1 ⊖ ω0) and
R2 ⊂ (M2×M1, ω2⊖ω1) be smooth symplectic relations; then the composed
relation can be interpreted as a reduced set,

R2 ◦R1 = RC ◦ (R2 × R1),

where R2 × R2 ⊂ M = M2 ×M1 ×M1 ×M0 is interpreted as a Lagrangian
submanifold with respect to the symplectic form

ω = ω2 ⊖ ω1 ⊕ ω1 ⊖ ω0,

and RC is the reduction relation generated by the coisotropic submanifold

C = M2 ×∆M1 ×M0,

where ∆M1 ⊂ M1 ×M1 is the diagonal. In this case the reduced symplectic
manifold MC is just (M2 ×M0, ω2 ⊖ ω0). It follows that if C and R2 × R1

have a clean (or transverse) intersection, then the composite relation R2 ◦R1

is a smooth (possibly immersed) symplectic relation. ♦

3.10 Isomorphism of symplectic reductions

Theorem 3.22. Assume that a symplectic reduction R ⊂ M0 ×M has con-
nected fibers. Then the symplectic reductionRC associated with the coisotropic
submanifold C = RT ◦M0 is isomorphic to R; that is, the composition

RC ◦R⊤ : MC ←M0

is the graph of a symplectomorphism ϕ : M0 → MC from (M0, ω0) to the
reduced symplectic manifold (MC , ωC).

Proof. It is clear that Φ = RC ◦ R⊤ ⊆ MC ×M0 is a one-to-one smooth
relation. In order to prove that it is the graph of a symplectomorphism we
have to prove that Φ is a Lagrangian submanifold. For this we consider the
relation RC×R from (M,ω)×(M,−ω) to (MC , ωC)×(M0,−ω0). We observe
that it is a symplectic reduction with inverse image C ×C and that Φ is the
image by RC of the characteristic relation DC ⊂ C × C . Because DC is a
Lagrangian submanifold having a clean intersection with C × C (inasmuch
as it is contained in C × C), it follows that Φ is a Lagrangian submanifold;
recall Remark 1.7 and Theorem 3.17. ⊓⊔

Let us repeat the process.

18 (Weinstein 1977).
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1. Consider a symplectic reduction from M to M0.
2. Take the inverse image of M0 by R. This is a coisotropic submanifold C

of M .
3. Consider the symplectic reduction RC associated with C and the reduced

symplectic manifold MC .
4. The two symplectic manifolds M and MC are symplectomorphic.



Chapter 4

Symplectic Relations on Cotangent

Bundles

Abstract Any cotangent bundle is endowed with a canonical structure of
exact symplectic manifold. Then it becomes “natural” to apply what we have
designed for the symplectic manifolds in general in the previous chapter to the
special case of cotangent bundles. The material associated with this reduction
becomes very rich. Among the various terms that arise spontaneously, the
main one is the “generating function” of a Lagrangian submanifold, which is
extended to the more general notion of “generating family”. This notion is
in fact the fulcrum around which the entire analysis of the following chapters
is built up.

4.1 Cotangent bundles

A tangent covector on a manifold Q is a linear map

f : TqQ→ R : v 7→ 〈v, f〉.

We denote by
T ∗

q Q

the cotangent space at the point q (i.e., the dual space of the tangent space
TqQ). The cotangent bundle T ∗Q of a manifold Qn is the set of all covectors
(i.e., the union of all cotangent spaces). It is a 2n-dimensional manifold. We
denote by

πQ : T ∗Q→ Q

the cotangent fibration of Q, which maps a covector f ∈ T ∗Q to the point
q ∈ Q where it is applied. We denote by

(qi, pi)

, Universitext,S. Benenti, Hamiltonian Structures and Generating Families

DOI 10.1007/978-1-4614-1499-5_4, © Springer Science+Business Media, LLC 2011
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the canonical coordinates on T ∗Q corresponding to coordinates q = (qi) (i =
1, . . . , n) on Q. They are defined as follows. If f is a covector at a point q
in the domain of the coordinates, then qi(f) are the coordinates of q and
pi(f) are the components of the covector in these coordinates, such that for
all v ∈ TqQ,

〈v, f〉 = q̇i pi = pi δq
i.

There are two mechanical interpretations of a cotangent bundle.
(1) If Q is a configuration manifold, then a covector f ∈ T ∗Q represents a

force and the evaluation 〈v, f〉 the virtual work of the force corresponding to
the virtual displacement v (or the virtual power if v is interpreted as a virtual
velocity).

(2) If Q is a configuration manifold, then a covector p ∈ T ∗Q represents
an impulse and the cotangent bundle T ∗Q the phase space of the mechanical
system.

It is useful to consider the vectors tangent to a cotangent bundle: they
form the manifold T (T ∗Q) = TT ∗Q. Natural canonical coordinates (qi, pi)
on T ∗Q generate coordinates

(qi, pi, q̇
i, ṗi) = (qi, pi, δq

i, δpi)

on TT ∗Q, where (q̇i, ṗi) = (δqi, δpi) are the components of the tangent vec-
tors w ∈ TT ∗Q.

A vector w tangent to T ∗Q is called vertical if is tangent to a fiber. A vector
is vertical if and only if TπQ(w) = 0. The vertical vectors are characterized
by equations δqi = 0.
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Fig. 4.1 The structure of a cotangent bundle



4.2 The canonical symplectic structure of a cotangent bundle 59

4.2 The canonical symplectic structure of a cotangent

bundle

Definition 4.1. Let Q be a manifold. The Liouville one-form or fundamental
form θQ on T ∗Q is defined by one of the following three equations:

〈w, θQ〉 = 〈TπQ(w), τT∗Q(w)〉 (4.1)

for all tangent vectors w ∈ T (T ∗Q),

σ∗θQ = σ (4.2)

for all one-form σ on Q, and

θQ = pi dq
i (4.3)

for any choice of the coordinates (qi) on Q. ♥

Each one of these definitions needs an explanation.

Definition (4.1) – With each vector w tangent to a cotangent bundle
T ∗Q we can associate “in a natural way” a real number. Let w ∈ Tp(T ∗Q).
The point p where w is attached is an element of T ∗Q; that is, a covector.
As a covector, p is attached at a point q ∈ Q. Let u be the image of the
vector w by the tangent map TπQ : TT ∗Q→ TQ of the cotangent fibration
πQ : T ∗Q → Q. It is a vector u ∈ TqQ attached at the same point q of p.
Thus, the evaluation 〈u, p〉 makes sense. This is just the number associated
with w. If we consider the map defined in this way,

θQ : TT ∗Q→ R : w 7→ 〈u, p〉, (4.4)

we can see that it is linear over the fibers of T (T ∗Q), so that it can be
interpreted as a one-form over T ∗Q, and instead of (4.4) we can write

〈w, θQ〉 = 〈u, p〉. (4.5)

By the process illustrated above we have

u = TπQ(w), p = τT∗Q(w),

where
τT∗Q : T (T ∗Q)→ T ∗Q

is the tangent fibration over T ∗Q. It follows from (4.5) that the intrinsic
definition of the Liouville form is just (4.1).
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Definition (4.2) – The one-form σ ∈ Φ1(Q) is interpreted at the left-hand
side as a section σ : Q→ T ∗Q: Eq. (4.2) means that the pullback by the map
σ of the Liouville form θQ, which is a one-form on T ∗Q, is a one-form on Q
coinciding with σ itself.

Definition (4.3) – In this definition, (qi, pi) are the natural canonical
coordinates corresponding to coordinates (qi) of Q. Let us consider another
system (q̄i, p̄i) of natural canonical coordinates. From the transformation law

p̄j =
∂qi

∂q̄j
pi,

it follows that

pi dq
i = pi

(
∂qi

∂q̄j
dq̄j

)
= p̄j dq̄

j .

This shows that Definition (4.3) does not depend on choice of the coordinates.
Now, let us look at the equivalence of the three definitions.

• Definition (4.1) ⇐⇒ Definition (4.2). This is shown by the
following reversible calculation:

〈u, σ∗θQ〉 = 〈Tσ(u), θQ〉 definition of pullback,

= 〈TπQ(Tσ(u)), τT∗Q(Tσ(u))〉 equation (4.1),

= 〈T (πQ◦σ)(u), σ(τQ(u))〉 because τT∗Q ◦ Tσ = σ ◦ τQ,

= 〈u, σ(τQ(u))〉 because πQ ◦ σ = idQ,

= 〈u, σ〉.

• Definition (4.1) ⇐⇒ Definition (4.3). Any one-form on T ∗Q is of
the type θQ = θi dq

i + θi dpi. Hence, in components, Eq. (4.5) is equivalent
to wiθi + wiθ

i = piu
i. However, wi = ui due to the condition u = TπQ(w),

and we get wi(θi−pi)+wiθ
i = 0. This holds for all values of the components

(wi, wi). Hence θi = 0 and θi = pi.

Definition 4.2. The differential of the fundamental one-form is the canonical
symplectic form on T ∗Q,

ωQ = dθQ (4.6)

In coordinates,

ωQ = dpi ∧ dqi (4.7)

♥
Note that ωQ is closed, because it is exact. Moreover, it is nonsingular, as

can be seen easily from (4.7).
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The corresponding expression of the canonical Poisson bracket is

{F,G} =
∂F

∂pi

∂G

∂qi
− ∂F

∂qi

∂G

∂pi
(4.8)

and the first-order equations corresponding to a Hamiltonian vector field XH

are the Hamilton equations

q̇i =
∂H

∂pi
, ṗi = − ∂H

∂qi
(4.9)

There is an important link between closed one-forms and Lagrangian sub-
manifolds.

Theorem 4.1. The image σ(Q) ⊂ T ∗Q of a one-form (interpreted as a sec-
tion) is a Lagrangian submanifold if and only if σ is closed, dσ = 0.

We can give two proofs of this theorem. The first is related to the definition
in coordinates (4.7).

Proof. The image Λ = σ(Q) is a submanifold of dimension n = 1
2 dimT ∗Q.

If we consider the canonical symplectic form restricted to Λ, then we get

ωQ|Λ = dσi ∧ dqi = ∂jσi dq
j ∧ dqi.

It follows that ωQ|Λ = 0 (isotropy condition) if and only if ∂jσi = ∂iσj ; that
is, dσ = 0. ⊓⊔

The second proof is related to Definition (4.2) of the Liouville form.

Proof. The differential commutes with the pullback, thus we have σ∗dθQ =
dσ∗θQ = dσ. The section σ is an embedding ofQ into T ∗Q, therefore its image
is an isotropic submanifold if and only if dσ = 0. Moreover, the dimension of
this image is one half of the dimension of T ∗Q. ⊓⊔

Remark 4.1. Let G : Q → R be a smooth function. Its differential dG is an
exact, thus closed, one-form. Then its image

Λ = dG(Q),

which is locally described by the n equations

pi =
∂G

∂qi
,

is a Lagrangian submanifold. This is the case when the closed one-form σ is
exact: σ = dG. Then G is said to be a global generating function of Λ. Of
course any other function G+ constant is a generating function. ♦
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4.3 Basic observables and canonical Poisson bracket on

a cotangent bundle

There is a one-to-one correspondence between the vector fields X on a man-
ifold Q and the first-degree homogeneous functions PX on T ∗Q defined by

PX : T ∗Q→ R : p 7→ 〈X, p〉 = Xi(q) pi.

Moreover, any function f : Q→ R can be interpreted as a function f : T ∗Q→
R constant on the fibers (we use the same symbol for simplicity). We call
these functions the basic observables. On the basic observables we define an
internal operation {· , ·} by setting






{f, g} = 0,

{PX , f} = Xf,

{PX , PY } = P[X,Y ].

(4.10)

We observe that these rules are fulfilled by the Poisson bracket associated
with the canonical symplectic form on T ∗Q. Conversely, assuming the rules
(4.10) as fundamental, we can extend the operation {· , ·} in a unique way
to a Poisson bracket on functions over T ∗Q. The resulting Poisson bracket
coincides with the canonical one. Hence, Eqs. (4.10) characterize the canonical
Poisson bracket on a cotangent bundle, and provide a direct definition that
avoids the use of the canonical symplectic form.

4.4 One-forms as sections of cotangent bundles

A one-form (or linear differential form) on a manifold Q can be interpreted
in three equivalent ways.

(i) As a map
σ : TQ→ R : v 7→ 〈v, σ〉, (4.11)

which is linear when restricted to each tangent space TqQ, q ∈ Q.
(ii) As a section of the cotangent bundle, that is, as a map

σ : Q→ T ∗Q : q 7→ σ(q), (4.12)

such that σ(q) is a covector in T ∗
q Q (in this interpretation, we can say that a

one-form is a field of covectors.
(iii) As an object locally expressed as a linear combination of the differen-

tials of coordinates
σ = σi(q) dq

i, (4.13)
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where σi are the components of σ. The link between (4.11) and (4.13) is given
by 〈v, σ〉 = q̇i σi. The link between (4.12) and (4.13) is given by pi = σi(q).
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Fig. 4.2 The image of a one-form as a section of a cotangent bundle

4.5 Lagrangian singularities and caustics

Let Λ ⊂ T ∗Q be a Lagrangian submanifold of a cotangent bundle. A regular
point p ∈ Λ is a point where Λ is transversal to the fibers , that is, where the
tangent space TpΛ is complementary to the space Vp of the vertical vectors
at p:

TpΛ ∩ Vp = 0, TpΛ+ Vp = Tp(T ∗Q).

Observe that these two conditions, which express the complementarity of the
two subspaces TpΛ and Vp, are in fact equivalent, because the subspaces TpΛ
and Vp are both Lagrangian subspaces of Tp(T ∗Q),

TpΛ ∩ Vp = 0 ⇐⇒ (TpΛ ∩ Vp)§ = Tp(T ∗Q)

⇐⇒ (TpΛ)§ + (Vp)§ = Tp(T ∗Q)

⇐⇒ TpΛ+ Vp = Tp(T ∗Q).

A nonregular point is called singular or critical. A singular point of a La-
grangian submanifold is also called Lagrangian singularity or catastrophe. The
set Γ (Λ) ⊂ Q of the points of Q on which are based all the singular points is
called the caustic of Λ.

A point p is regular if and only if the tangent space TpΛ does not contain
vertical vectors except the zero-vector. A point is regular if and only if the
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restriction π : Λ → Q of the cotangent fibration πQ : T ∗Q → Q to Λ is a
submersion at p.

To measure the degree of singularity we introduce the rank of a point
p ∈ Λ: it is the dimension of the projection onto TqQ, q = πQ(p), of the
tangent space TpΛ:

rank(p) = dim (TπQ(TpΛ)) .

A point p is regular if and only if rank (p) = n = dimQ. A Lagrangian
submanifold is called regular if all its points are regular.
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Fig. 4.3 Singular points and caustic

As for any submanifold, a Lagrangian submanifold can be represented,
at least locally, by parametric equations or by implicit equations. For a La-
grangian submanifold there is, however, a third local representation, by means
of generating families. This is examined in the next section. In this section
we consider the particular case of a representation by means of generating
functions.

4.5.1 Parametric equations

A system of 2n parametric equations in n parameters (uk),

{
qi = qi(uk),

pi = pi(u
k),

(4.14)
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represents a local immersion ι : Λ → T ∗Q of an n-dimensional manifold Λ,
with coordinates (uk), if and only if

rank

[
∂qi

∂uk

∣∣∣∣
∂pi

∂uk

]
= n (max). (4.15)

Indeed, the tangent map Tι is represented by equations





q̇i =
∂qi

∂uk
u̇k,

ṗi =
∂pi

∂uk
u̇k,

and this is a linear injective map at each point if and only if the rank of
the matrix (4.15) is maximal (q̇i = 0 and ṗi = 0 must imply u̇k = 0). The
submanifold Λ is Lagrangian if and only if

∂qi

∂uk

∂pi

∂uj
− ∂qi

∂uj

∂pi

∂uk
= 0. (4.16)

Indeed, these equations are equivalent to the isotropy condition ι∗dθQ = 0.
The left-hand sides of (4.16) are called Lagrangian brackets. In this represen-
tation, the rank of a point is given by

rank(p) = rank

[
∂qi

∂uk

]

p

,

where the evaluation at the point p of the matrix means its evaluation at
those values of the parameters uk corresponding to the point p. Indeed, the
tangent map Tπ : TΛ → TQ is described by equations q̇i = ∂qi/∂uk u̇k.
Hence,

p regular ⇐⇒ det

[
∂qi

∂uk

]

p

6= 0.

This proves the following.

Theorem 4.2. If a Lagrangian submanifold is represented by parametric
equations (4.14) then the set of its singular points is determined by equation

det

[
∂qi

∂uk

]

Λ

= 0 (4.17)
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4.5.2 Implicit equations

A submanifold Λ ⊂ T ∗Q of codimension n (thus, of dimension n) can be
represented (at least locally) by n independent equations

Λi(q, p) = 0. (4.18)

This means that

rank

[
∂Λi

∂qk

∣∣∣∣
∂Λi

∂pk

]
= n (max)

at each point of Λ that is, for each set of values of the coordinates satisfying
Eqs. (4.18). The submanifold Λ is Lagrangian if and only if it is coisotropic:
that is, if and only if {Λi, Λj}|Λ = 0. In this representation,

rank(p) = rank

[
∂Λi

∂pk

]

p

. (4.19)

Indeed, the tangent subbundle TΛ ⊂ TT ∗Q is described by equations

∂Λi

∂qk
q̇k +

∂Λi

∂pk
ṗk = 0,

so that at any point p the dimension of the space of the vertical vectors, for
which q̇i = 0, is given by the corank of the matrix (4.19) at that point; this
is the codimension of the space Tpπ(TpΛ). Hence,

p regular ⇐⇒ det

[
∂Λi

∂pk

]

p

6= 0. (4.20)

This proves the following.

Theorem 4.3. If a Lagrangian submanifold is represented by implicit equa-
tions 4.18) then the set of its singular points is determined by equation

det

[
∂Λi

∂pk

]

Λ

= 0 (4.21)

4.5.3 Generating functions

In a neighborhood of a regular point p a Lagrangian submanifold can be
described by equations of the kind

pi =
∂G

∂qi
, (4.22)
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where G(q) is a function in a neighborhood of the point q = πQ(p). Indeed,
due to condition (4.20), Eqs. (4.18) are locally solvable with respect to pi,
pi = Si(q

j). Being Λ Lagrangian, the form S = Si dq
i is closed, thus locally

exact.
However, there are cases in which a representation of the kind (4.22) holds

also in a neighborhood of a singular point. A simple example is the following.

Example 4.1. Let us consider Q = R = (q), T ∗Q = R2 = (q, p), and Λ the
curve q = p3. All points of Λ are regular except (q, p) = (0, 0). Since p = q1/3,
this Lagrangian submanifold is the image of the one-form S = q1/3 dq; thus, it
is generated by the function G(q) = 3

4 q
4/3. Note that this function is only C1

(it does not admits the second derivative at the point q = 0). However, as we
show in Example 4.2, this Lagrangian submanifold admits a C∞ “generating
family”. ♦
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Fig. 4.4 Example 4.1

4.6 Generating families and Morse families

Let there be given a fibration ζ : Z → Q over a manifold Q and a smooth
function G : Z → R. With the fibration ζ we associate a relation R̂ : T ∗Q←
T ∗Z defined by

(p, f) ∈ R̂ ⇐⇒






(p, f) ∈ T ∗
q Q× T ∗

z Z, (q, z) ∈ R and

〈v, p〉 = 〈w, f〉, for all v ∈ TqQ and w ∈ TzZ

such that Tζ(w) = v.

(4.23)

With the function G we generate a Lagrangian submanifold Λ = dG(Z) of
T ∗Z.
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Definition 4.3. The image of Λ by the relation R̂,

Λ◦ = R̂ ◦ Λ ⊂ T ∗Q,

is the Lagrangian set in T ∗Q generated by the generating family (ζ, G). ♥

Due to (4.23) the explicit definition of Λ◦ is

p ∈ Λ ⇐⇒






p ∈ T ∗
q Q, and

〈v, p〉 = 〈w, dG〉, for all v ∈ TqQ and w ∈ TzZ

such that q = ζ(z) and Tζ(w) = v.

(4.24)

This definition needs an explanation. As we show in Sect. 5.1 and Sect.
5.2, the relation R̂ is in fact a symplectic reduction. Its inverse image, C =
R̂⊤ ◦ T ∗Q, which is a coisotropic submanifold of T ∗Z, turns out to be the
conormal bundle of the vertical vectors. The vertical vectors form a subbundle
of TZ defined by

V (ζ) = {w ∈ TZ such that Tζ(w) = 0},

and the conormal bundle is defined by

V ◦(ζ) = {f ∈ T ∗
z Z such that 〈w, f〉 = 0, for all w ∈ Vz(ζ)}. (4.25)

Then, by virtue of Theorem 3.18, we can state the following.

Theorem 4.4. If Λ and C = V ◦(ζ) have a transverse intersection, then Λ◦

is a (may be immersed) Lagrangian submanifold of T ∗Q.

Although it is a special case, the transverse intersection plays an important
role in this context and deserves to be highlighted in a definition.

Definition 4.4. If Λ and C = V ◦(ζ) have a transverse intersection then the
generating family (ζ, G) is called a Morse family.1 ♥
1 For a general survey on the notion of “generating family”, or “generating function”,
and its applications to analytical mechanics see (Tulczyjew 1974), (Weinstein 1977),
(Tulczyjew 1977b), (Arnold 1986) and (Libermann and Marle 1987). The definition
given here differs from that given for instance in (Arnold 1986) and in (Chaperon
1995), where the term “generating family” is introduced for what here, or in (Wein-
stein 1977), is called a “Morse family”. In (Chaperon 1995) Sect. 1.3, the term “phase
function” is used for a function on Z = Q×E, where E is a finite-dimensional vector
space. As remarked in (Arnold 1986) the notion of generating family already appears
in the works of Jacobi and Lie and in (Whittaker 1927). The expression generating

family or Morse family is suggested by the fact that G is regarded as a family of
functions parametrized by the points q ∈ Q.
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A fundamental fact is that any Lagrangian submanifold of a cotangent
bundle is locally generated by Morse families:

Theorem 4.5. Maslov–Hörmander theorem. If Λ ⊂ T ∗Q is a Lagrangian
submanifold, then for each p ∈ Λ there exists a Morse family generating an
open neighborhood U ⊆ Λ containing p.2

Remark 4.2. A hard, very intriguing and alive problem is the study of the
existence of global generating families. Although this argument goes beyond
the scope of this book, notable examples of global generating functions are
discussed in Chaps. 7, 8, and 10. ♦

Remark 4.3. In almost all examples of generating families discussed in this
book the fibration ζ : Z → Q is trivial: Z = Q × U and ζ : Q × U → Q is
the canonical projection. Then the manifold U is called the supplementary
manifold and Q the configuration manifold. For a generating family

G : Q× U → R

we sometimes use the shorthand notation

G(Q;U)

in which a semicolon separates the configuration manifold Q from the sup-
plementary manifold U . Similarly, any local coordinate representation of a
generating family G(Q;U) is denoted by

G(qi; uα),

where (qi) are coordinates on Q and (uα) are coordinates on U . The (uα) are
called extra or supplementary variables. ♦

Example 4.2. The Lagrangian submanifold of Example 4.1 is generated by
the global C∞ Morse family G(q; u) = uq − 1

4
u4. ♦

Remark 4.4. In considering generating families that are Morse families, as is
commonly done in the literature, we lose the possibility of dealing with many
physically interesting applications. For instance, there are systems of rays or
sets of equilibrium states of static systems that are Lagrangian sets, and not
Lagrangian submanifolds (see Chaps. 5 and 6); there are global Hamilton
principal functions that are not Morse families (Chap. 8),3 ♦

Before going on, we must introduce an additional object related to a gen-
erating family.

2 Go to Sect. 9.5.
3 See also (Cardin 2002), where such an example arises in the construction of global
solutions of the Cauchy problem for a t-dependent Hamilton–Jacobi equation).
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Definition 4.5. The critical set of a generating family (ζ, G) is the subset
Ξ ⊂ Z of the stationary points of G along the fibers of ζ (i.e., of those points
where the differential of the function G restricted to the fibers vanishes). ♥

Remark 4.5. Let πZ : T ∗Z → Z be the cotangent fibration over Z. Then

Ξ = πZ(Λ ∩ C). (4.26)

The Lagrangian submanifold Λ is the image of a section of πZ : T ∗Z → Z.
Then Λ∩C is a submanifold if and only if the critical set Ξ is a submanifold
of Z. ♦

4.7 Coordinate representation of generating families

Let us consider a local coordinate representation G(qi; uα) of a generating
familyG(Q;U) and denote by (pi; πα) the canonical momenta associated with
(qi; uα).

Theorem 4.6. The Lagrangian set Λ◦ is described by equations

Λ◦ :






pi =
∂G

∂qi
,

0 =
∂G

∂uα
,

(4.27)

in the sense that a point p ∈ T ∗Q belongs to Λ◦ if and only if its coordinates
(qi, pi) satisfy equations (4.29) for some value of the (uα).

Proof. The Lagrangian submanifold Λ is described by equations

Λ :






pi =
∂G

∂qi
,

πα =
∂G

∂uα
.

(4.28)

In (4.24) equation 〈v, p〉 = 〈w, dG〉 and condition Tζ(W ) = v become piv
i =

πiw
i + παw

α and wi = vi, respectively. It follows that

pi = πi, πα = 0,

and (4.27) is proved. ⊓⊔

Remark 4.6. The critical set Ξ is described by equations

∂G

∂uα
= 0. ♦ (4.29)
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Remark 4.7. Equations (4.29) are equivalent to the “differential equation”

pi dq
i = dG, (4.30)

or to the “variational equation”

pi δq
i = δG. ♦ (4.31)

Theorem 4.7. A generating family is a Morse family, that is, the subman-
ifolds Λ and C have a transverse intersection, if and only if the r × (n + r)
matrix

[
Guq

∣∣ Guu

]
=

[
∂2G

∂uα∂qi

∣∣∣∣
∂2G

∂uα∂uβ

]
(4.32)

has maximal rank ( = n) at each point of the critical set Ξ.

Proof. Due to Eqs. (4.28), the spaces TxΛ are defined by equations






ṗi −
∂2G

∂qi∂qj
q̇j − ∂2G

∂qi∂uα
u̇α = 0,

π̇α −
∂2G

∂uα∂qj
q̇j − ∂2G

∂uα∂uβ
u̇β = 0.

On the other hand, the spaces (TxC)§, whose vectors are tangent to the

fibers of R̂, are characterized by the conditions q̇i = ṗi = π̇α = 0. Then the
equations of TxΛ ∩ (TxC)§ are






∂2G

∂qi∂uα
u̇α = 0,

∂2G

∂uα∂uβ
u̇β = 0,

(4.33)

The transversality condition is equivalent to TxΛ∩ (TxC)§ = 0 (Remark 3.6).
Then Eqs. (4.33) must have u̇α = 0 as a unique solution. This is equivalent
to saying that the matrix (4.32) has maximal rank. ⊓⊔

4.8 Equivalence and reduction of generating families

We can say that two generating families (or Morse families) are equivalent
if they generate the same Lagrangian set (or the same Lagrangian submani-
fold).4 Two generating families differing by an additive constant are obviously
equivalent.

4 For the equivalence theory of Morse families, and related references, see (Arnold
1986), (Libermann and Marle 1987), (Viterbo 1992), and (Théret 1999).
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In some cases it is possible to reduce the dimension of the supplemen-
tary manifold (i.e., the number of the supplementary variables) of a given
generating family G and get an equivalent reduced generating family. This
depends on the critical set of G. For instance, if the critical set is the image
of a section ξ : Q → Z of ζ, then Λ is generated (in the ordinary sense) by
the function G◦ξ : Q→ R. This is, of course, an extreme case. In general, we
can remove some of the extra variables (uα) when, by means of Eqs. (4.29)
of the critical set, they can be expressed as functions of the coordinates and
of the remaining extra variables. Note that the extra variables can be totally
removed, so that one gets an ordinary generating function, if and only if

det

[
∂2G

∂uα∂uβ

]

Ξ

6= 0.

This is the case of a regular Lagrangian submanifold (no caustic), in accor-
dance with the next Theorem 4.8.

4.9 The caustic of a Lagrangian submanifold generated

by a Morse family

Theorem 4.8. If a Lagrangian submanifold Λ◦ ⊂ T ∗Q is generated by a
Morse family G : Q × U → R, then the caustic Γ ⊆ Q of Λ◦ is the set
described by equations

det

[
∂2G

∂uα∂uβ

]
= 0,

∂G

∂uα
= 0 (4.34)

A point q ∈ Q belongs to the caustic Γ if and only if its coordinates (qi)
satisfy equations (4.34) for some values of the extra variables (uα).

Equations (4.34) can be summarized by the single equation

det

[
∂2G

∂uα∂uβ

]

Ξ

= 0 (4.35)

where Ξ is the critical set.

Proof. A point p ∈ Λ◦ is regular when the tangent space TpΛ◦ has no vertical
vectors except the zero-vector. This means that at the point p the condition
q̇i = 0 must imply ṗi = 0. From Eqs. (4.27) of Λ◦ we derive the equations of
TΛ◦:
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∗






pi =
∂G

∂qi
,

0 =
∂G

∂uα
,

∗ ∗






ṗi −
∂2G

∂qi∂qj
q̇j − ∂2G

∂qi∂uα
u̇α = 0,

∂2G

∂uα∂qj
q̇j +

∂2G

∂uα∂uβ
u̇β = 0.

(4.36)

If we put q̇i = 0 in the second set ∗∗ of these equations then we get, in
matrix notation, 




ṗ−Gqu u̇ = 0,

Guu u̇ = 0.

(i) If det Guu 6= 0 then u̇ = 0 and consequently ṗ = 0: regular point. (ii) If
det Guu = 0 then there exists a vector u̇ 6= 0 satisfying the second equation.
This means u̇ ∈ ker Guu. Suppose Gqu(u̇) = 0. This means that u̇ is also in
the kernel of Gqu. As a consequence, u̇ is in the kernel of the whole matrix
[Gqu,Guu]. But this matrix has maximal rank by assumption. Then u̇ = 0:
absurd. Hence, ṗ = Gqu(u̇) 6= 0: singular point. The second equation in ∗ tell
us that det Guu must be computed on the critical set Ξ. The first equation
∗ simply gives the values of the coordinates (pi) of the singular points. ⊓⊔

4.10 Generating families of symplectic relations

The image of the differential dG of a smooth function G : Q2 × Q1 → R,
interpreted as a section of the cotangent fibration T ∗(Q2 ×Q1)→ Q2 ×Q1,
is a Lagrangian submanifoldR′ of T ∗(Q2×Q1) with respect to the canonical
symplectic form θQ2×Q1 . But, in accordance with what we have established
in Sect. 3.5, this is not a symplectic relation because it is not Lagrangian with
respect to the symplectic form ωQ2⊖ωQ1 . In order to get a symplectic relation
we must apply the natural isomorphism T ∗(Q2 × Q1) → T ∗Q2 × T ∗Q1, so
that θQ2×Q1 can be identified with ωQ2⊕ωQ1 , and then apply the symplectic
transformation

ι : T ∗Q2 × T ∗Q1 → T ∗Q2 × T ∗Q1 : (p2, p1) 7→ (p2,−p1) (4.37)

so that
ι∗(ωQ2 ⊖ ωQ1) = ωQ2 ⊕ ωQ1 .

In this way we get a Lagrangian submanifold R = ι(R′) with respect to the
symplectic form ωQ2 ⊖ ωQ1 , that is, a symplectic relation R from T ∗Q1 to
T ∗Q2.

Let us denote by q1 and q2 two generic coordinate systems on Q1 and Q2,
and by p1 and p2 the corresponding momenta on T ∗Q1 and T ∗Q2. Here, we
can avoid the use of indices for labeling the coordinates so that we can write
simpler formulae. For instance,
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ωQ2 ⊖ ωQ1 = dp2 ∧ dq2 − dp1 ∧ dq1 (4.38)

instead of ωQ2 ⊖ ωQ1 = d(p2)i ∧ dqi
2 − d(p1)ι ∧ dqι

1. Conclusion:

Theorem 4.9. Any smooth real function G(q2, q1) on Q2 × Q1 generates a
symplectic relation R : T ∗Q2 ← T ∗Q1 by means of equations

p1 = − ∂G

∂q1
, p2 =

∂G

∂q2
(4.39)

But we know that not all Lagrangian submanifolds are generated in this
way. Hence, we are necessarily led to introduce a more general notion.

Definition 4.6. Let G : Q1×Q2×U → R be a smooth function. The subset
R ⊂ T ∗Q2 × T ∗Q1 defined by equations

p1 = − ∂G

∂q1
, p2 =

∂G

∂q2
, 0 =

∂G

∂u
(4.40)

is the symplectic relation R : T ∗Q2 ← T ∗Q1 generated by the family G. ♥
Note that this extension of the notion of symplectic relation is possible

because we are in the category of the cotangent bundles.

Remark 4.8. Equations (4.40) should read as follows: two points belong to
the relation if their canonical coordinates satisfy these equations for some
values of the coordinates u. Equations (4.40) are equivalent to the differential
equation

p2 dq2 − p1 dq1 = dG (4.41)

♦
Remark 4.9. In this context we may recall what was said in Remark 4.3: for
a generating family G : Q1 ×Q2 ×U → R of a symplectic relation we use the
shorthand notation

G(Q2 ×Q1;U)

or, for any coordinate representation,

G(q2, q1; u). ♦

4.11 Generating families of symmetric relations

Theorem 4.10. If a symplectic relation R : T ∗Q2 ← T ∗Q1 is generated by
G(Q2 ×Q1;U), then the transpose relation R⊤ : T ∗Q1 ← T ∗Q2 is generated
by the family
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G⊤(Q1 ×Q2;U)

defined by
G⊤(q1, q2; u) = −G(q2, q1; u). (4.42)

Proof. If R is described by Eqs. (4.40) then R⊤ is described by similar equa-
tions

p2 = − ∂G⊤

∂q2
, p1 =

∂G⊤

∂q1
, 0 =

∂G⊤

∂u
. (4.43)

The relations R and R⊤ must be described by equivalent equations, because
these two relations differ only by the order in the pairs. Equations (4.40) and
(4.43) coincide if S⊤ is defined as in (4.42). ⊓⊔

It follows that

Theorem 4.11. A symplectic relation D : T ∗Q← T ∗Q generated by G(Q×
Q;U) is symmetric,

D⊤ = D,

if and only if G is skew-symmetric, up to an additive constant, on the pairs
(q, q′) belonging to the critical set,

G(q, q′; u) = −G(q′, q; u) + c, (q, q′; u) ∈ Ξ, c ∈ R (4.44)

Proof. If D is symmetric then G(q, q′, u) = − G(q′, q, u) + c, where c is a
constant. If we replace G by Ḡ = G − c/2, then Ḡ(q, q′; u) + Ḡ(q′, q; u) =
G(q, q′; u) + G(q′, q; u)− c = 0. ⊓⊔

Remark 4.10. In all the following applications the generating families of sym-
metric relations are skew-symmetric in the proper sense, that is, with c = 0:

G(q, q′; u) +G(q′, q; u) = 0. ♦

4.12 The composition of generating families

Theorem 4.12. If two symplectic relations R1 : T ∗Q1 ← T ∗Q0 and
R2 : T ∗Q2 ← T ∗Q1 are generated by the families G1(Q1 × Q0;U1) and
G2(Q2 × Q1;U2), then the relation R2 ◦ R1 ← T ∗Q2 × T ∗Q0 is generated
by the family

G21(Q2 ×Q0;Q1 × U2 × U1)

defined by

G21(q2, q0; q1, u2, u1) = G2(q2, q1; u2) + G1(q1, q0; u1) (4.45)



76 4 Symplectic Relations on Cotangent Bundles

We denote this composition rule by5

G21 = G2 ⊕G1 (4.46)

Remark 4.11. In the generating family G21 the manifold Q1 plays the role of
supplementary manifold, together with U1 and U2. ♦

Proof. The two relations are respectively described by equations

R1 :






p0 = −∂G1

∂q0
,

p1 =
∂G1

∂q1
,

0 =
∂G1

∂u1
.

R2 :






p1 = −∂G2

∂q1
,

p2 =
∂G2

∂q2
,

0 =
∂G2

∂u2
.

In composing the two relations the two sets of coordinates p1 must coincide.
Thus, the relation R2 ◦R1 is described by equations






p0 = −∂G1

∂q0
,

p2 =
∂G2

∂q2
,






0 =
∂G2

∂q1
+
∂G1

∂q1
,

0 =
∂G2

∂u2
,

0 =
∂G1

∂u1
.

These equations are equivalent to the single equation

p2 dq2 − p0 dq0 = d(G2 + G1) (4.47)

This proves the composition rule (4.45). ⊓⊔

Remark 4.12. Equation (4.47), as an equivalent form of the composition rule
(4.45), is very useful in practical applications. ♦

5 The composition rule of “generating forms” of linear symplectic relations has been
introduced in ( Lawruk et al. 1975) and (Benenti and Tulczyjew 1981), and extended
to generating families of symplectic relations in (Benenti 1988).



Chapter 5

Canonical Lift on Cotangent Bundles

Abstract There exists an operation, that we call canonical lift and denote
by a “hat” ̂ , which creates “symplectic objects” on a cotangent bundle T ∗Q
starting from “objects” on the manifoldQ (vector fields, maps, submanifolds,
etc.). It plays an important role in the theory of symplectic relations and in
its applications. The basic lift, from which all other canonical lifts can be
derived, is that of a submanifold.

5.1 Canonical lift of submanifolds

Definition 5.1. The canonical lift of a submanifold Σ ⊆ Q is the set

Σ̂ = T ◦Σ ⊂ T ∗Q

of the covectors annihilating the vectors tangent to Σ,

p ∈ Σ̂ ⇐⇒





p ∈ T ∗

q Q, q ∈ Σ,

〈v, p〉 = 0, for all v ∈ TqΣ.
♥ (5.1)

Remark 5.1. The set Σ̂ has a mechanical interpretation: if Σ is a smooth
constraint imposed on the configuration manifold Q of a holonomic system,
then Σ̂ is the set of the reactive forces, whose virtual work is zero. If we
interpret these forces as vectors (by means of a metric tensor) then Σ̂ is the
set of all vectors orthogonal to Σ. Special remarkable cases are





Σ = q ∈ Q (a point of Q) 7−→ q̂ = T ∗

q Q (the fiber over q)

Σ = Q 7−→ Q̂ = Q (interpreted as the zero-section of T ∗Q).
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The zero-section of T ∗Q is the set of all zero-covectors; thus it is identified
with Q itself. ♦

Definition 5.2. Let Σ ⊆ Q be a submanifold and F : Σ → R a smooth

function. The canonical lift of a submanifold with function is the set (̂S, F ) ⊂
T ∗Q defined by

p ∈ (̂Σ, F ) ⇐⇒





p ∈ T ∗

q Q, q ∈ Σ,

〈v, p〉 = 〈v, dF 〉 for all v ∈ TqΣ.
♥ (5.2)

This is the set of the covectors p whose pairing 〈v, p〉 with any vector v
tangent to Σ is equal to the derivative of the function F with respect to
v. In this definition, F can be a function on the whole Q or on an open
neighborhood of Σ. Indeed, only the restriction of F to Σ is involved.

Remark 5.2. The second line of (5.2) is equivalent to p− dqF ∈ Σ̂. Note that

(̂Σ, c) = Σ̂, c = constant. If F represents a potential energy, then (̂S, F ) is
the set of equilibrium states. ♦

Theorem 5.1. The canonical lifts Σ̂ and (̂Σ, F ) are Lagrangian submani-
folds.1

This can be proved in a direct way2 or by using Morse families, as shown
by the following

Theorem 5.2. If Σ is defined by equations

Σα(q) = 0, α = 1, . . . , r, (5.3)

then (̂Σ, F ) is generated by the Morse family G : Q× Rr → R defined by

G(q;λα) = λα Σα(q) + F (q) (5.4)

Proof. The critical set Ξ is determined by equations ∂G/∂λα = Σα = 0,
thus it coincides with Σ × Rr. The maximal rank condition is fulfilled:

1 Lagrangian submanifolds of this kind have been introduced in (Tulczyjew 1977b).

The definition of the canonical lift bΣ can be extended to any subset Σ ⊂ Q, by a
suitable definition of the tangent TΣ of a subset given in (Tulczyjew 1989).
2 Let (qi) be local coordinates on Q adapted to Σ. This means that Σ is locally
described by equations qα = 0 (α = 1, . . . , r), r = codim(Σ). Then, TΣ is described
by equations qα = 0, q̇α = 0, and the condition 〈v, p〉 = 〈v, dF 〉, for all v ∈ TqΣ
becomes q̇a (pa − ∂aF ) = 0, for all (q̇a) ∈ Rn−r (where a = r + 1, . . . , n). Thus,

Λ = (̂Σ, F ) is a submanifold of dimension n described by the n equations qα = 0,
pa = ∂aF . Because of the dimension, the isotropy follows from coisotropic condition
{qα, pa − ∂aF} = 0.
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rank

[
∂2G

∂λα∂qi

∣∣∣∣
∂2G

∂λα∂λβ

]

Ξ

= rank

[
∂Σα

∂qi

∣∣∣∣0

]

Ξ

= rank

[
∂Σα

∂qi

]

Ξ

= r.

Thus, G is a Morse family and generates a Lagrangian submanifold Λ by
equations 





pi =
∂G

∂qi
= λα ∂iΣα + ∂iF,

0 =
∂G

∂λα
= Σα.

The vectors v tangent to Σ are characterized by equations

∂Σα

∂qi
q̇i = 0,

thus,
〈v, p〉 = q̇i pi = q̇i (λα ∂iΣα + ∂iF ) = q̇i ∂iF = 〈v, dF 〉

for all p ∈ Λ. This shows that Λ = Σ̂. ⊓⊔

Remark 5.3. The supplementary variables (λα) in (5.3) play the role of La-

grangian multipliers. We say that (̂Σ, F ) is the Lagrangian submanifold gen-
erated by the function F on the constraint Σ. The Lagrangian submanifold

Λ = (̂Σ, F ) projects onto Σ,

πQ(̂Σ, F ) = Σ,

and the restriction π : Λ→ Σ of πQ to Λ = (̂Σ, F ) is a surjective submersion.
Hence, all points have constant rank equal to dimS and the caustic is S,
unless Σ is an open subset of Q; in this case, Λ is regular. The canonical

lift Λ = (̂Σ, F ) is a Lagrangian submanifold of a special kind, which we
call exact; see Sect. 9.2. Indeed, from (5.2) it follows that for all w ∈ TpΛ,
〈w, θQ〉 = 〈v, p〉 = 〈v, dF 〉 = 〈w, π∗dF 〉, where v = Tπ(w). This means that

θQ|(̂Σ, F ) = dπ∗F. (5.5)

This shows that the pullback of the Liouville one-form to Λ is exact. For
F = 0 (or constant) we have in particular θQ|Σ̂ = 0. ♦

5.2 Canonical lift of relations

Definition 5.3. The canonical lift of a smooth relation R ← Q2 ×Q1 is the
symplectic relation R̂ ← T ∗Q2 × T ∗Q1 defined by
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(p2, p1) ∈ R̂ ⇐⇒






(p2, p1) ∈ T ∗
q2
Q2 × T ∗

q1
Q1, (q2, q1) ∈ R,

and

〈v2, p2〉 = 〈v1, p1〉 for all (v2, v1) ∈ T(q2,q1)R.

(5.6)

♥

Remark 5.4. It must be emphasized that this is not the “true” canonical lift
R̂ of the submanifold R which, according to (5.1), should be the set

R̂ =
{
p̄ ∈ T ∗

(q2,q1)
(Q2 ×Q1) such that (q2, q1) ∈ R,

and 〈v̄, p̄〉 = 0 for all v̄ ∈ T(q2,q1)R
}
.

This is a Lagrangian submanifold of R̂ ⊂ T ∗(Q2 × Q1) with respect to the
canonical symplectic form dθQ2×Q1 . Hence, it is not a symplectic relation
from T ∗Q1 to T ∗Q2. In order to get a symplectic relation from T ∗Q1 to
T ∗Q2 we use the natural identification T ∗(Q2×Q1) ≃ T ∗Q2×T ∗Q1 and the
symplectomorphism (4.37),

ι : T ∗Q2 × T ∗Q1 → T ∗Q2 × T ∗Q1 : (p2, p1) 7→ (p2,−p1).

Then we find (5.6). We use the same symbol R̂ for simplicity, inasmuch as
there is no danger of confusion. Indeed, if we consider a submanifold S ⊆ Q
as a zero-relationΣ ⊆ Q×0, then the canonical lift ofΣ as a relation, defined
in this section, is just the symplectic zero-relation in T ∗Q×0 associated with
the Lagrangian submanifold R̂ ⊂ T ∗Q defined in the preceding section. ♦

In a similar way we can introduce the canonical lift of a relation R ⊆
Q2 ×Q1 endowed with a function F : R → R or F : Q2 ×Q1 → R. It is the
following smooth symplectic relation.

Definition 5.4. The canonical lift of a smooth relationR : Q2 ← Q1 endowed
with a function F is the symplectic relation

(̂R, F ): T ∗Q2 ← T ∗Q1

defined by

(p2, p1) ∈ (̂R, F ) ⇐⇒





(p2, p1) ∈ T(q2,q1)(Q2 ×Q1), (q2, q1) ∈ R
and

〈v2, p2〉 − 〈v1, p1〉 = 〈(v2, v1), dF 〉 for all (v2, v1) ∈ T(q2,q1)R.

♥ (5.7)
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Remark 5.5. From this definition it follows that (see Eq. (5.5))

θQ2 ⊖ θQ1 |(̂R, F ) = π∗dF,

where π : (̂R, F )→ R is the surjective submersion associated with πQ2×πQ1 .
Hence, in particular,

θQ2 ⊖ θQ1 |R̂ = 0. ♦

We can apply Theorem 5.2 to build up a Morse family for R̂.

Theorem 5.3. If the relation R : Q2 ← Q1 is represented by equations

Rα(q2, q1) = 0, (5.8)

where q1 and q2 are local coordinates on Q2 and Q1, then R̂ is generated by
the Morse family

G(q2, q1;λα) = λαRα(q2, q1) (5.9)

through the equations






p1 = − ∂G

∂q1
= − λα ∂Rα

∂q1
,

p2 =
∂G

∂q2
= λα ∂Rα

∂q2
,

0 =
∂G

∂λα
= Rα(q2, q1).

(5.10)

Example 5.1. Take Q1 = R, (q1 = x), Q2 = R, (q2 = y) and the relation R
defined by the implicit equation x2 + y2 − 1 = 0. Apply (5.9) and (5.10) to

G(y, x;λ) = λ (x2 + y2 − 1).

Then, 




px = − ∂G

∂x
= − 2 λx,

py =
∂G

∂y
= 2λ y,

0 =
∂G

∂λ
= x2 + y2 − 1.

(5.11)

The components of the vectors tangent to the unit circle R at a point (x, y)
are of the kind

vx = α y, vy = − αx, α ∈ R,

and the first two Eqs. (5.11) tell us that 〈vx, px〉 = 〈vy, py〉, in accordance

with (5.6), the definiton of R̂. ♦
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5.3 Canonical lift of diagonal relations

Definition 5.5. The diagonal relation of a submanifoldΣ ⊆ Q is the relation
∆Σ ⊂ Q×Q defined by

(q, q′) ∈ ∆Σ ⇐⇒ q = q′ ∈ Σ. ♥

By applying (5.6) we find that the canonical lift ∆̂Σ of a diagonal relation
is defined by

(p2, p1) ∈ ∆̂Σ ⇐⇒





(p2, p1) ∈ T ∗
q2
Q× T ∗

q1
Q, (q2, q1) ∈ ∆Σ,

and

〈v2, p2〉 = 〈v1, p1〉 for all (v2, v1) ∈ T(q2,q1)∆Σ.

(5.12)

However, we observe that a tangent vector (v2, v1) ∈ T(q2,q1)∆Σ is an equiv-
alence class of a curve γ on ∆Σ and such a curve is necessarily of the form
t 7→ γ(t) = (q(t), q(t)). Thus, the pair (v2, v1) ∈ T(q2,q1)∆Σ is represented by
a unique vector v ∈ TqΣ. Then,

∆̂Σ ={(p2, p1)∈ T(q2,q1)(Q×Q), q2 = q1 ∈Σ, 〈v, p2−p1〉= 0, for all v ∈ Tq1Σ}

and, since the second condition in (5.12) means that 〈v, p2 − p1〉 = 0,

for all v ∈ TqΣ, we can state for ∆̂Σ the following.

Definition 5.6. The canonical lift of the diagonal relation of a submanifold
Σ ⊆ Q is the relation ∆̂Σ ⊂ T ∗Q× T ∗Q defined by

(p2, p1) ∈ ∆̂Σ ⇐⇒






πQ(p1) = πQ(p2) = q ∈ Σ,
and

〈v, p2 − p1〉 = 0 for all v ∈ TqΣ.

♥ (5.13)

An extension of Definition 5.6, justified by Eq. (5.7), is given by

Definition 5.7. The canonical lift of the diagonal relation of a submanifold
Σ ⊆ Q endowed with a function F : Σ → R is the relation ∆̂Σ,F ⊆ T ∗Q×T ∗Q
defined by



5.3 Canonical lift of diagonal relations 83

(p2, p1) ∈ ∆̂Σ,F ⇐⇒





πQ(p1) = πQ(p2) = q ∈ Σ
and

〈v, p2 − p1 − dqF 〉 = 0 for all v ∈ TqΣ

♥ (5.14)

The generating families of these two canonical lifts are given by the fol-
lowing theorem.

Theorem 5.4. If Σ is given by s equations Σα(q) = 0, then ∆̂Σ is generated
by the Morse family3

GΣ(q2, q1; λ
α, λi) = λαΣα(q1) + λi (qi

2 − qi
1), (5.15)

and ∆̂Σ,F by

GΣ,F (q2, q1;λα, λi) = F (q1) + λαΣα(q1) + λi (qi
2 − qi

1), (5.16)

where F (q1) is any extension of F from Σ to Q.

Proof. ∆Σ is described by the following s+ 1 equations

Σα(q1) = 0, q2 − q1 = 0.

Then (5.15) is a special case of (5.9) in Theorem 5.3. Regarding (5.16), the
associated differential equations are (we set G = GΣ,F for simplicity)

p1i = − ∂G

∂qi
1

= − ∂F

∂qi
1

− λα ∂Σα

∂qi
1

+ λi,

p2i =
∂G

∂qi
2

= λi,

0 =
∂G

∂λα
= Σα,

0 =
∂G

∂λi
= qi

2 − qi
1.

Then, for any vector vi we have

vi(p2i − p1i) = vi ∂F

∂qi
1

+ λα vi ∂Σα

∂qi
1

But the vectors tangent to Σ are characterized by equations vi ∂Σα/∂q
i = 0.

So, for them we have vi(p2i − p1i) = vi ∂F/∂qi
1, and we get Eq. (5.14). ⊓⊔

3 Here, q, q1, q2 denote a generic coordinate system on Q = Q1 = Q2.
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5.4 Canonical lift of reductions and diffeomorphisms

The definition of canonical lift of a relation, Sect. 5.2, can be applied to
(the graph of) a map, in particular to a diffeomorphism or to a surjective
submersion. These two last extensions are special cases of the canonical lift
of a reduction. Let R ⊂ Q2×Q1 be a smooth reduction, that is, the graph of
a surjective submersion ρ : A→ Q2 from a submanifoldA ⊆ Q1 onto Q2. Let
V (ρ) ⊂ TQ1 be the subbundle of the vertical vectors, that is, of the vectors
tangent to the fibers of ρ,

V (ρ) = {v ∈ TQ1 such that Tρ(v)} = 0

and V ◦(ρ) ⊂ T ∗Q1 the subbundle of the covectors annihilating the vertical
vectors,

V ◦(ρ) ={p ∈ T ∗Q1 such that 〈v, p〉= 0, for all v ∈ V (ρ)∩TqQ1, q = πQ1(p)}.

It can be proved that4

Theorem 5.5. The canonical lift of a reduction R : Q2 ← Q1, with under-
lying submersion ρ : A → Q2, is a symplectic reduction R̂ : T ∗Q2 ← T ∗Q1,
whose inverse image C = R̂⊤ ◦ T ∗

AQ2 ⊂ T ∗Q1 is the coisotropic submani-
fold C = V ◦(ρ) made of the covectors annihilating the vectors tangent to the
fibers of ρ. The underlying surjective submersion ρ̂ : C → T ∗Q2 is defined by
equation

〈Tρ(v), ρ̂(p)〉 = 〈v, p〉, (5.17)

where v ∈ TqQ1 and q = πQ1(p). As a consequence,

ρ̂∗θQ2 = θQ1 |T ∗
AQ1.

Theorem 5.6. The composition of two reductions S ◦R is a reduction and

Ŝ ◦R = Σ̂ ◦ R̂ (5.18)

We also observe that îdQ = idT∗Q. Then the last theorem shows that the
canonical lift is a covariant functor from the category of smooth reductions
to the category of symplectic reductions.

Remark 5.6. Canonical lift of a diffeomorphism. A diffeomorphism ρ : Q1 →
Q2 is a special case of reduction. By (5.17) we can see that its canonical lift
ρ̂ : T ∗Q1 → T ∗Q2 is the symplectomorphism defined by

〈v, ρ̂(p)〉 = 〈Tρ−1(v), p〉. (5.19)

4 (Benenti 1983b).
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It preserves the Liouville forms: ρ̂∗θQ2 = θQ1 . Note that the pair (ρ, ρ̂) is a
fiber-bundle isomorphism πQ2 ◦ ρ̂ = ρ ◦ πQ1 . ♦

5.5 Canonical lift of vector fields

Definition 5.8. The canonical lift of a vector field X on a manifoldQ is the
Hamiltonian vector field on T ∗Q generated by the function PX ,

i bXdθQ = − dPX . ♥

If Xi are the components of X in a coordinate system (qi) then the com-

ponents X̂i = 〈X̂, dqi〉 and X̂i = 〈X̂, dpi〉 in the canonical coordinates (qi, pi)
are

X̂i = Xi, X̂i = − ∂Xj

∂qi
pj. (5.20)

The canonical lift of vector fields has the following properties.

• The vector field X̂ is projectable onto X; that is,

TπQ ◦ X̂ = X ◦ πQ.

• The restriction of X̂ to the zero-section of T ∗Q coincides with X.
• The following equations hold.

i bXθQ = PX , d bXθQ = 0.

• The map X 7→ X̂ is a Lie-algebra homomorphism,

(aX + bY )̂ = aX̂ + bŶ (a, b ∈ R), [X̂, Ŷ ] = [X, Y ] .̂

• For each smooth function F on T ∗Q,

d bXF = {PX , F }.

The following theorem shows that the above definition of canonical lift of
vector fields is strictly related to the basic definition of the canonical lift of
relations.

Theorem 5.7. If X is a complete vector field with one-parameter group
ϕX

t : Q → Q, t ∈ R, then its canonical lift X̂ is complete and its one-
parameter group

ϕ
bX
t : T ∗Q→ T ∗Q

is the canonical lift of ϕX
t ,

ϕ
bX
t = (̂ϕX

t ).
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Proof. Let us put ϕX
t = ϕt for simplicity. Due to the definition of canonical

lift of a diffeomorphism, formula (5.19), we can write

〈v, ϕ̂t(p0)〉 = 〈Tϕ−1
t (v), p0〉 (5.21)

for all p0 ∈ T ∗
q0
Q and v ∈ TqQ, with q = ϕt(q0). Due to the functorial prop-

erties of T , ϕ̂t is a one-parameter group of transformations on T ∗Q. Let X̂
be the corresponding (complete) vector field, and let (Xi, Xi) be its compo-
nents in standard canonical coordinates (q, p) = (qi, pi). Let us consider a
local coordinate representation of ϕ̂t,

qi = ϕi(t, q0), pi = ϕi(t, q0, p0).

Then (see Sect. 1.7),

Xi(q0, p0) = ϕ̇i(0, q0), Xi(q0, p0) = ϕ̇i(0, q0, p0). (5.22)

On the other hand, Eq. (5.21) is equivalent to equation

viϕi(t, q0, p0) = p0i
∂ϕi(−t, q0)

∂qj
0

vj ,

for all (vi), thus to equation

ϕi(t, q0, p0) = p0j
∂ϕj(−t, q0)

∂qi
0

. (5.23)

From (5.22) and (5.23) it follows that

Xi(q0, p0) = p0j
∂ϕ̇j(−t, q0)

∂qi
0

∣∣∣∣
t=0

= − p0j
∂Xj

∂qi
0

= − ∂PX

∂qi
0

.

Due to (5.20), this is sufficient to prove that the vector field (Xi, Xi) is the
canonical lift of X = (Xi). ⊓⊔

5.6 Symplectic relations generated by a submanifold

It is useful to take a look of the symplectic relations that can be generated
by a submanifold Σ of a manifold Q.

At an early stage, a submanifold Σ ⊆ Q generates three smooth relations.

• The zero-relation

Σ × {0} ⊂ Q× {0}, (q, 0) ∈ Σ × {0} ⇐⇒ q ∈ Σ.
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• The injection-relation

RΣ ⊂ Σ ×Q, (q, q′) ∈ RΣ ⇐⇒ q = q′ ∈ Σ.

• The diagonal relation

∆Σ ⊂ Q×Q, (q, q′) ∈ ∆Σ ⇐⇒ q = q′ ∈ Σ.

By their canonical lifts we get three symplectic relations between cotangent
bundles, 





Σ̂ ⊂ T ∗Q× {0},

R̂Σ ⊂ T ∗Σ × T ∗Q,

∆̂Σ ⊂ T ∗Q× T ∗Q.

The first relation is the canonical lift of Σ interpreted as a zero-relation. The
third one has been examined in Sect. 5.3. It is an interesting fact that5

Theorem 5.8. The symplectic relations R̂Σ and ∆̂Σ are, respectively, the
reduction relation and the characteristic relation of the coisotropic submani-
fold

CΣ = T ∗
ΣQ = {p ∈ T ∗Q such that πQ(p) ∈ Σ}

made of the covectors based on points of Σ,

RCΣ
= R̂Σ, DCΣ

= ∆̂Σ.

Indeed, the characteristics of CΣ are the equivalence classes of the equiv-
alence relation defined by

p ∼ p′ ⇐⇒






πQ(p) = πQ(p′) = q ∈ Σ,
and

〈v, p− p′〉 = 0 for all v ∈ TqΣ.

Remark 5.7. The canonical lift Σ̂ is invariant under the characteristic relation
DCΣ

,

DCΣ
◦ Σ̂ = Σ̂.

Indeed,

DCΣ
◦ Σ̂ = {p ∈ T ∗Q such that there exists a p′ ∈ T ◦Σ

with (p, p′) ∈ DCΣ
}

= {p ∈ T ∗Q such that there exists a p′ ∈ T ◦Σ

with p− p′ ∈ T ◦Σ} = T ◦Σ = Σ̂.

5 (Benenti 1988).
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The same holds for the canonical lift with a function:

DCΣ
◦ (̂Σ, F ) = (̂Σ, F ). (5.24)

This fact can be interpreted as follows. The Lagrangian submanifold (̂Σ, F )
is the geometrical solution of the Hamilton–Jacobi C = T ∗

ΣQ determined by
the initial data (Σ, F ). ♦

Remark 5.8. The characteristics of CΣ = T ∗
ΣQ are vertical submanifolds (i.e.,

their tangent vectors are vertical) and the rays are the points of Σ (the “rays”
are the projections on Q of the characteristics; see Sect. 6.3). ♦

Remark 5.9. We can consider Σ as the zero-section of T ∗Σ. Then, Σ is a
Lagrangian submanifold of T ∗Σ. Hence, its inverse image R⊤

CΣ
◦ Σ is a La-

grangian submanifold of T ∗Q. This Lagrangian submanifold coincides with
the canonical lift of Σ,

R⊤
CΣ
◦Σ = Σ̂.

Indeed, because RCΣ
= R̂Σ and a covector p′ ∈ Σ ⊂ T ∗Σ is a zero-covector,

we have

R⊤
CΣ
◦Σ = {p ∈ T ∗Q such that there exists a p′ ∈ Σ

with (p′, p) ∈ R̂Σ}
= {p ∈ T ∗Q such that there exists a p′ ∈ Σ

with πQ(p′) = πQ(p) = q,

and 〈v, p− p′〉 = 0 for all v ∈ TqΣ}
= {p ∈ T ∗Q such that 〈v, p〉 = 0 for all v ∈ TqΣ} = Σ̂.

In a similar way it can be proved that

R⊤
CΣ
◦ dF (Σ) = (̂Σ, F ), (5.25)

dF (Σ) ⊂ T ∗Σ is the Lagrangian submanifold generated by F : Σ → R. ♦



Chapter 6

The Geometry of the Hamilton–Jacobi

Equation

Abstract A coisotropic submanifold of a cotangent bundle gives rise to sev-
eral geometric objects that allow an appropriate and quite general discussion
of the Hamilton–Jacobi equations. For example, the concept of “solution” ap-
pears to have two meanings: from a geometrical viewpoint, it is a Lagrangian
submanifold of C (or, possibly, a Lagrangian set contained in C), and, from
an analytical viewpoint, it is a generating family satisfying a certain system
of first-order PDE. One of the main problems related to a Hamilton–Jacobi
equation is how to generate a (possibly unique) maximal solution from suit-
able initial conditions (Cauchy problem). We illustrate a geometrical con-
struction of such a solution, by using the composition rule of symplectic
relations, then we can transform this geometrical construction into an an-
alytical method. Furthermore, other classical notions of geometrical optics,
such as the system of rays and caustic of a system of rays, are more easily
intelligible and manageable in a geometrical context.

6.1 The Hamilton–Jacobi equation

Definition 6.1. A Hamilton–Jacobi equation is a coisotropic submanifold C
of a cotangent bundle T ∗Q. A geometrical solution is a Lagrangian subman-
ifold or a Lagrangian set Λ contained in C. ♥

In particular we say that Λ is

• a smooth solution when it is a Lagrangian submanifold;
• a regular solution when it is a Lagrangian submanifold without singular

points;
• a nonsmooth solution when it is a Lagrangian set.

From an analytical viewpoint all these cases are included in a unique def-
inition.

, Universitext,S. Benenti, Hamiltonian Structures and Generating Families
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90 6 The Geometry of the Hamilton–Jacobi Equation

Definition 6.2. A solution of a Hamilton–Jacobi equation C ⊂ T ∗Q is a
family G(Q;U) generating a Lagrangian submanifold, or a Lagrangian set,
contained in C. ♥

Remark 6.1. Let us see why in the above definitions we have to consider a
coisotropic submanifold. Let us call integrable a submanifold C ⊂ T ∗Q such
that at each point p◦ ∈ C there exists a Lagrangian submanifold Λ contained
in C and containing p◦. Then we can state the following.

Theorem 6.1. A Hamilton–Jacobi equation C ⊂ T ∗Q is integrable if and
only if it is a coisotropic submanifold.

Proof. (i) Assume that C is integrable. From TpΛ ⊂ TpC it follows that
T §

pC ⊂ T §
pΛ = TpΛ, since Λ is Lagrangian. Thus, T §

pC ⊂ TpC, and C is
coisotropic. (ii) Assume that C is coisotropic. Take a point p ∈ C. There
always exists a neighborhood Cp ⊂ C of p, such that the reduced set M/Cp

(here, M = T ∗Q) is a manifold, thus a symplectic manifold, and a symplec-
tic reduction R = RCp

is defined from M to this manifold. Consider the
reduced point γ = R ◦ {p}. We observe that for each point of a symplec-
tic manifold there always exists a Lagrangian submanifold containing that
point.1 Consider a Lagrangian submanifold Λγ containing γ. The inverse im-
age Λ = R⊤ ◦ Λγ is a Lagrangian submanifold containing p. ⊓⊔

Note that this theorem is at the level of the category of symplectic mani-
folds: the cotangent bundle structure is not involved.2 ♦

In a canonical coordinate system (qi, pi) = (q, p) a Hamilton–Jacobi equa-
tion C ⊂ T ∗Q can be represented by a system of independent equations

Ca(q, p) = 0, a = 1, . . . , k. (6.1)

The coisotropy of C is characterized by equations

{Ca, Cb|C = 0.

Then, according to Definition 6.2, a “solution” is a generating familyG(qi; uα)
satisfying the following equations:

Ca

(
q,
∂G

∂q

)
= 0, a = 1, . . . , k,

∂G

∂uα
= 0, α = 1, . . . , r,

(6.2)

1 This follows from the existence of local canonical coordinates (Darboux theorem).
Indeed, if ω = dyi ∧dxi, where (xi, yi) are canonical coordinates such that xi(p) = 0,
then equations xi = 0 define a Lagrangian submanifold containing p.
2 In (Abraham and Marsden 1978) a coisotropic submanifold is also called an inte-

grable submanifold.
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for some values of the parameters u = (uα).

Remark 6.2. When C has codimension 1, we find the ordinary Hamilton–
Jacobi equation, that is, a single first-order PDE,

C

(
qi,

∂G

∂qi

)
= 0, (6.3)

where C(q, p) is a smooth function in 2n variables (q, p) = (qi, pi), and equa-
tions

pi =
∂G

∂qi
.

describe a regular Lagrangian submanifold contained in C .3 ♦

6.2 Examples of Hamilton–Jacobi equations

Example 6.1. The terminology we use is taken from geometrical optics, inas-
much as one of the most important examples of Hamilton–Jacobi equations
is the eikonal equation,

gij(q) pi pj − n2(q) = 0 (6.4)

determined by a positive-definite contravariant metric tensor gij on a mani-
fold Q and by a function n : Q→ R. A special but fundamental case is that
of an isotropic medium, where Q = R3 is the Euclidean three-space and n is
the refraction index,

n =
c

v
,

where v is the velocity of the light in the medium. A homogeneous medium
is characterized by n = constant, the vacuum by n = 1.4 ♦
3 The common geometrical interpretation of the “Hamilton–Jacobi equation” is a
hypersurface (i.e., a submanifold of codimension 1) of a cotangent bundle or of a
contact manifold, see (Vinogradov and Kupershmidt 1977) and (Arnold 1980). The
fundamental elements of the geometrical theory of the Hamilton–Jacobi equation,
interpreted as a submanifold C ⊂ T∗Qn of any dimension k < n, are given in the
short note (Tulczyjew 1975). Some of these elements have been developed in (Benenti
and Tulczyjew 1980) and (Benenti 1983a,b).
4 In the gravitational lensing theory the effective refraction index is n(x) = 1 −
2 U(x)/c2, where U(x) is the Newtonian potential of the mass distribution ρ(x),

U(x) = − G

Z

ρ(x′)

|x − x′|
d3x′.

See, for example, the article of N. Straumann in (Straumann et al. 1998).
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Example 6.2. The Hamilton–Jacobi equation of a holonomic time-independent
and conservative dynamical system, for a fixed value of the total energy
E ∈ R,

1
2 g

ij(q) pi pj + V (q)−E = 0. (6.5)

The reduced symplectic manifold RC is the manifold of the orbits of total
energy E (Souriau 1970). ♦

Example 6.3. The Hamilton–Jacobi equation of the Kepler motions in the
Euclidean space Rn with a fixed value of the energy E, see Eq. (6.5), Sect.
3.10. ♦

Example 6.4. The Hamilton–Jacobi equation of a holonomic time-independent
conservative system

1
2
gij(q) pi pj + V (q) + p0 = 0, (6.6)

in the cotangent bundle of the extended configuration manifold R×Q, where
R = (t) = (q0) is the time-axis. This way of considering classical dynamics is
called homogeneous formalism: time is considered as a Lagrangian coordinate.
It can be extended to time-dependent holonomic systems,

1
2
gij(t, q) pi pj + V (t, q) + p0 = 0. (6.7)

♦

Example 6.5. The Hamilton–Jacobi equation associated with a vector field
X = (Xi) on a manifold Q,

Xipi = 0, (6.8)

whose solutions are the first integrals of X. In order to avoid singularities, it
is convenient to consider its extension to the cotangent bundle of R ×Q,

Xipi + p0 = 0. ♦ (6.9)

Example 6.6. The Hamilton–Jacobi equation associated with a completely
integrable distribution,

Xi
αpi = 0, (6.10)

where Xα = (Xi
α) are r ≤ n independent vector fields spanning the distribu-

tion. In this case the coisotropic submanifold C has codimension r ≥ 1 (see
Sect. 9.1). ♦

Example 6.7. If Σ ⊂ Q is a submanifold then C = T ∗
Σ in a Hamilton–Jacobi

equation; see Remarks 5.7 and 5.8. ♦
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6.3 Characteristics and rays

Due to Theorem 3.11, if a coisotropic submanifold C is represented by k ≤ n
independent equations Ca = 0, then the functions Ca generate characteristic
vector fields Xa. The corresponding Hamilton equations are5

{
q̇i = ∂iCa,

ṗi = − ∂iCa.

These vectors are pointwise independent because the rank of the 2n×k matrix

[
∂iCa | ∂iCa

]

is maximal. By linear combinations X = λa Xa these fields span the charac-
teristic distribution. Thus, the differential system associated with a charac-
teristic vector field is of the kind

{
q̇i = λa ∂iCa,

ṗi = − λa ∂iCa,

where λa are k arbitrary functions.

Definition 6.3. The rays of a Hamilton–Jacobi equation C ⊂ T ∗Q are the
projections onto the configuration manifoldQ of the characteristics of C. ♥

Remark 6.3. The characteristics of C project onto (immersed) submanifolds
of Q of dimension equal to the codimension of C if the characteristics are
transversal to the fibers,6

T §C ∩ V (T ∗Q) = 0.

In this case we say that the Hamilton–Jacobi equation C is regular. This
condition is fulfilled if the rank of the n× k matrix [∂iCa] is maximal,

rank
[
∂iCa

]
= k. (6.11)

Indeed, the vertical vectors are characterized by equations q̇i = 0. A vertical
vector in T §C is the zero-vector if equations λa ∂iCa = 0 imply λa = 0 thus,
ṗi = 0. This happens if the matrix (6.11) has maximal rank. ♦
5 Notation:

∂i =
∂

∂pi

, ∂i =
∂

∂qi
.

6 The converse is not true in general. Let us consider, for instance, the Lagrangian
submanifold of Example 4.1. It is a coisotropic submanifold with only one character-
istic, the submanifold itself, which is not transversal to the fiber at the origin, and it
projects onto a submanifold, the q-axis.
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Remark 6.4. In the case codim C = 1, the characteristics are transversal to
the fibers if rank[∂iC] = 1. Then the rays are (one-dimensional) curves. ♦

Remark 6.5. In the case of the eikonal equation, we have C = |p|2 − n2(q) so
that ∂iC = gij pj . It follows that the transversality condition is satisfied for
all (pi) 6= 0 ∈ Rn, thus, for all p ∈ C, because n 6= 0. ♦

Theorem 6.2. For the vacuum eikonal equation, gijpipj = 1, the rays are
oriented geodesics of the Riemannian manifold (Q, gij). For the eikonal equa-
tion gij pipj = n2, with n 6= 0, the rays are the oriented geodesics of the Jacobi
metric

ḡij =
1

n2
gij.

Proof. The integral curves on T ∗Q of the Hamiltonian dynamical system
generated by H = 1

2 g
ij pipj project onto the integral curves (on Q) of the

Lagrange equations associated with L = 1
2 gij q̇

i q̇j. These integral curves
describe motions with constant scalar velocity on geodesic trajectories. ⊓⊔

Example 6.8. The characteristics of the Hamilton–Jacobi equation (6.8),

Xi pi = 0, are the unparametrized integral curves of the canonical lift X̂
starting from the points satisfying this equation. Recall that X̂ is the Hamil-
tonian vector field generated by the Hamiltonian PX = Xipi (see Sect. 5.5).
The rays are the unparametrized integral curves of X (i.e., the orbits of X).
♦

Example 6.9. The rays of the Hamilton–Jacobi equation (6.9),Xi pi +p0 = 0,
are parametrized integral curves of X: two integral curves describing the same
unparametrized curve differ by the initial point. ♦

Example 6.10. The rays of the Hamilton–Jacobi equation (6.10), Xi
αpi = 0,

associated with an integrable distribution, are the integral manifolds of the
distribution (see Sect. 9.1 for details). ♦

6.4 Systems of rays and wave fronts

Definition 6.4. A system of rays associated with a Hamilton–Jacobi equa-
tion C ⊆ T ∗Q is the set of the projections on the configuration manifold Q
of the characteristics contained in a geometrical solution Λ ⊆ C . ♥

If C is regular (see Sect. 6.3), then all characteristics project onto sub-
manifolds of dimension equal to the codimension of C; so, if Λ is a smooth
solution (i.e., a Lagrangian submanifold) then the corresponding system of
rays is made of a set of these submanifolds, with possible points of inter-
section. In all other cases a system of rays may be a complicated family of
subsets of Q.
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Let us consider for simplicity the case of a smooth geometrical solution.
Assume that Λ is the image of a closed one-form ϕ on an open domainU ⊂ Q,
and that ϕ 6= 0 everywhere. Then on the domainU two regular and integrable
distributions are defined.

The first distribution ∆W ⊂ TU has the one-form ϕ as a characteristic
form; that is, it is made of the vectors annihilated by ϕ. The one-form is
closed, thus this distribution is completely integrable with integral manifolds
of codimension 1. These integral manifolds are called wave fronts of the so-
lution Λ. If ϕ = dG, then the wave fronts are described by the equations
G = constant.

The second distribution ∆R ⊂ TU is the projection onto TU of the char-
acteristic distribution T §C restricted to Λ. By the absorption principle this
restriction is well defined: T §

ΛC ⊂ TΛ. If we assume that on Λ the character-
istic distribution is transversal to the fibers (as we have seen, this condition is
also satisfied by the eikonal equation), then the distribution R is completely
integrable and its integral manifolds form a system of rays (whose dimension
coincides with the codimension of the Hamilton–Jacobi equation C). Note
that ∆W and ∆R have a complementary rank.

The distribution ∆R is spanned by the projections on Q of the character-
istic vector fields Xa restricted to Λ. The dynamical systems corresponding
to these projected vector fields are the first set of the Hamilton equations

q̇i = ∂iCa(q, p), (6.12)

where in the right-hand sides the momenta p are replaced by their expressions
in terms of the coordinates q, defined by the components of the one-form
ϕ = ϕi dq

i:
pi = ϕi(q).

Remark 6.6. In the case of the eikonal equation, Eqs. (6.12) become

q̇i = 2 gij pj,

and on a regular solution Λ generated by G,

q̇i = 2 gij ∂jG.

This shows that the gradient of the generating function G is a vector field
spanning the distribution∆R. Since G is constant on the wave fronts, we have
that a regular solution of the eikonal equation generates a system of geodesics
(the rays) orthogonal to a system of hypersurfaces (the wave fronts).

In fact, this is an equivalence: any orthogonally integrable system of
geodesics corresponds to a regular solution of the eikonal equation. This was
one of the leading ideas of Hamilton’s Theory of Systems of Rays (Hamilton
1828). Inasmuch as the wave fronts are orthogonal to a system of geodesics,
they are geodesically parallel; that is, the ray segments between two given
wave fronts have constant length. ♦
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Remark 6.7. The wave fronts of the Hamilton–Jacobi equations (6.8) or (6.9),
Xipi = 0, are defined by equationsG = constant, where G is any first integral
of the vector field X. Since G is constant along the integral curves, in this case
any wave front is made of rays. The same property holds for the Hamilton–
Jacobi equation (6.10) associated with a completely integrable distribution.
♦

Remark 6.8. The above description of the wave fronts and rays fails in a
neighborhood of a singular point: when rays and wave fronts approach the
caustic of Λ. An even more complicated situation is that arising from a non-
smooth geometrical solution, that is, from a Lagrangian set generated by a
solution G (with supplementary variables) that is not a Morse family. In this
case wave fronts and caustics are not defined. ♦

Remark 6.9. The vectorial form of the (vacuum) eikonal equation in a Eu-
clidean affine space Q = Rn is

|p|2 = 1.

A system of parallel (oriented) rays is represented by a unit (constant) vector
u. The generating function of the corresponding Lagrangian submanifold is

G(x) = x · u. (6.13)

The wave fronts are the n− 1-planes orthogonal to u. ♦

Remark 6.10. In an Euclidean space, the system of rays originated by a fixed
point x0 is generated by the function

G1(x) = |x− x0|

(this distance function, as a generating family, is examined in detail in Sect.
6.1) or by the Morse family

G2(x; a) = (x − x0) · a, a ∈ Sn−1,

with supplementary manifold Sn−1. The generating function G1 yields out-
going rays only, because

p =
∂G1

∂x
=

x − x0

|x− x0|
. (6.14)

Note that it is not differentiable for x = x0, so that the Lagrangian subman-
ifold described by Eq. (6.14) is not defined over the point x0. The generating
family G2 is globally defined and differentiable. The corresponding equations

0 =
∂G2

∂a
, p =

∂G2

∂x
,
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are equivalent to (see Remark 7.10 below)

{
x− x0 ‖ a (‖ = parallel to),

p = a.

Thus, G2 provides the outgoing as well as the incoming rays. ♦

6.5 The Hamilton principal function

The characteristic relation DC ⊂ T ∗Q × T ∗Q determined by a coisotropic
submanifold C ⊂ T ∗Q is a symplectic relation between cotangent bundles.
Thus, at least locally, it is generated by generating families on the product
manifold Q ×Q. It is a symmetric relation, therefore its generating families
are skew-symmetric, in the sense of Theorem 4.11.

Definition 6.5. A Hamilton principal function (also called characteristic
function) of a Hamilton–Jacobi equation C ⊂ T ∗Q is a generating family
S(Q ×Q;A) of the characteristic relations DC : T ∗Q← T ∗Q. ♥

As we show, a Hamilton principal function can be used for computing (i)
all solutions of the Hamilton–Jacobi equation, and (ii) the system of rays
associated with any solution.

Remark 6.11. If S(qi, qi
0; aα) is a local representative of a Hamilton princi-

pal function, where (qi) and (qi
0) are local coordinates on Q and (aα) local

coordinates on A, then DC is locally described by equations

p0i = − ∂S

∂qi
0

, pi =
∂S

∂qi
, 0 =

∂S

∂aα
♦ (6.15)

Remark 6.12. If p0 is a point of C, then the set DC ◦ {p0} is the maximal
characteristic containing p0. If in Eqs. (6.15) the coordinates (q, p) are just the
coordinates of p0, then these equations describe (locally) this characteristic
and consequently the corresponding ray. A system of rays corresponding to
a solution of the Hamilton–Jacobi equation C can be computed in this way.
♦

Theorem 6.3. If the coisotropic submanifold C is not a section of the cotan-
gent bundle T ∗Q, then the characteristic relation DC is singular over the
diagonal of Q×Q.

Proof. Assume that DC is regular at a point (q, q) ∈ ∆Q. Hence, it is locally
generated by a function S(q, q0) which is skew-symmetric, Theorem 4.11. In
this case Eqs. (6.15) reduce to
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p0i = − ∂S

∂qi
0

, pi =
∂S

∂qi
.

S is skew-symmetric, therefore these equations show that for q = q0 we have
p = p0. This means that we have a unique covector p ∈ T ∗

q Q ∩ C. This is in
contradiction to the assumption that C is a section. ⊓⊔
Remark 6.13. If C is a section, then it is a Lagrangian submanifold. If it is
connected, then we have only one characteristic (the manifold C itself) and
the characteristic relation DC is defined by

(p, p0) ∈ DC ⇐⇒ p, p0 ∈ C.

If G : Q → R is a global generating function of C, then DC is generated by
the global (skew-symmetric) generating function

S(q, q0) = G(q)−G(q0). ♦

Remark 6.14. Theorem 6.3 shows that, except for the case considered in Re-
mark 6.13, a global Hamilton principal function is necessarily a generating
family. In other words, a global Hamilton principal function cannot be a func-
tion on Q×Q only; that is, a two-point function. This is a novelty with respect
to the classical Hamilton–Jacobi theory, where S is intended to be a function
of pairs of points of Q, locally represented by a function S(q1, q0) of 2n co-
ordinates.7 Moreover, in the classical theory the Hamilton principal function
is defined as an action integral. This is due to the following general property.
♦
7 The Hamilton principal function S was introduced by Hamilton as a function de-
pending on 2n+2 variables (q1, q0, t1, t0), where q0 are the initial values of coordinates
(at the time t0) of a holonomic system, and q1 are their final values (at the time t1).
This function satisfies the Hamilton–Jacobi equations

8

>

>

>

<

>

>

>

:

∂S

∂t1
+ H

„

q1,
∂S

∂q1
, t1

«

= 0

∂S

∂t0
+ H

„

q0,−
∂S

∂q0
, t0

«

= 0,

where H = H(q,p, t) is the (time-dependent) Hamiltonian function of the mechanical
system. We have used here the classical notation adopted by Levi-Civita (Levi-Civita
and Amaldi 1927) Chap. XI, n. 27. In the homogeneous formalism of Hamiltonian
dynamics, time is considered as a coordinate and the n-dimensional configuration
manifold Q of the system is replaced by the n+1-dimensional extended configuration

manifold R × Q. The notion of Hamilton principal function as a generating function
of the characteristic relation of a coisotropic submanifold or as a generating function
of the symplectic relation Dt ⊂ T∗Q × T∗Q, between the initial values (at t0 = 0)
and the final values (at t = t1) of the coordinates in the motions generated by the
Hamiltonian H, has been introduced in (Tulczyjew 1975, 1977b). In Hamiltonian
optics other “characteristic functions” are considered (see e.g. (Synge 1962), Chap.
II, (Luneburg 1964) p. 100, (Buchdahl 1970) p. 8. What we are considering here is
just a generalization of the so-called point-characteristic function.
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Theorem 6.4. If we exclude the singular points and assume that the remain-
ing part of DC is an exact Lagrangian submanifold (Sect. 9.2), then a potential
function of DC is the integral

I(p1 , p0) =

∫

c[p0,p1]

θQ, (6.16)

where c[p0, p1] is any path with extremal points (p0, p1) and contained in the
characteristic containing these two points.

Proof. From the definition of potential function of a Lagrangian submanifold
it follows that a potential function of the Lagrangian submanifold DC ⊂
(T ∗Q× T ∗Q, dθQ ⊖ dθQ) is given by the integral

I(p1, p0) =

∫

c

θQ ⊖ θQ,

taken along any path c over DC joining a fixed pair (p̄1, p̄0) with the moving
pair (p1, p0). This path can be represented by two curves c1(t) and c0(t) on
C and defined on the real closed interval [0, 1] such that ci(0) = p̄i, ci(1) = pi

(i = 0, 1), 6and (c1(t), c0(t)) ∈ DC . Hence,

I(p1, p0) =

∫

c1

θQ −
∫

c0

θQ =

∫

c′1

θQ −
∫

c′0

θQ

where c′ = (c′1, c
′
0) is another path having the same property. By choosing

c′0 = c0 we see that ∫

c1

θQ =

∫

c′1

θQ.

This means that θQ is exact for the chosen paths from p̄1 to p1, as well as
for those from p̄0 to p0. Moreover, for each t ∈ [0, 1] the two points c1(t) and
c0(t) are the endpoints of a curve γt(s) defined for s ∈ [0, 1] with the image
on a characteristic. The characteristic are isotropic, therefore θQ is exact on
all γ1. It follows that

A =

∫

c1

θQ +

∫

γ1

θQ −
∫

c0

θQ

is a number depending only on the fixed end points (p̄1, p̄0). Thus,

I(p1, p0) =

∫

c1

θQ −
∫

c0

θQ = A −
∫

γ1

θQ.

A depends only on the fixed points (p̄1, p̄0), and the path γ1 goes from p1 to
p0, thus the integral (6.16) is a potential function. ⊓⊔
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As a consequence of this theorem we have another link with the classical
theory.

Theorem 6.5. For the eikonal equation gijpipj = 1 the characteristic rela-
tion DC outside the diagonal is locally generated by the distance function

d(q0, q1) =

∫ t1

t0

√
gij q̇iq̇j dt

where the integral is taken along the geodesic q(t) such that q(t0) = q0, and
q(t1) = q1.

Proof. The rays are the geodesics, therefore, because of the preceding theo-
rem, a local potential function is given by

I(p1 , p0) =

∫

c

pidq
i =

∫ t1

t0

piq̇
i dt = 2

∫ t1

t0

gijpipj dt,

where c is a characteristic from p0 to p1 and the integrals are taken along
a geodesic qi(t) such that q̇i = 2 gijpj ; see Eq. (6.15. The kinetic energy of
the motion qi(t) is K = 1

2 v
2 = 1

2 gij q̇
iq̇j = 2 gijpipj = 2, so that the scalar

constant velocity is v = ds/dt = 2. This means that the Euclidean distance
is such that ds = 2 dt. Hence the last integral above is just the integral of
ds. This shows that the characteristic function projects onto the generating
function given by the distance. ⊓⊔

6.6 The Jacobi theorem

A Hamilton principal function can be derived, at least locally, from another
characteristic function associated with a coisotropic submanifold C .

Definition 6.6. A complete solution (or a complete integral) of a Hamilton–
Jacobi equation C ⊆ T ∗Q is a smooth function W : Q × A→ R, where A is
a manifold, such that:

• For each a ∈ A, the function

Wa : Q→ R : q 7→ W (q, a)

is a generating function of a Lagrangian submanifold Λa contained in C,
thus, a regular solution of the Hamilton–Jacobi equation. This means that,
if Cκ(q, p) = 0 are k independent equations of C, then W satisfies the
differential equations

Cκ

(
q,
∂W

∂q

)
= 0, κ = 1, . . . , k = codim C (6.17)
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for any fixed value of a ∈ A.
• The set {Λa, a ∈ A} forms a Lagrangian foliation of C: for each p ∈ C

there exists a unique a ∈ A such that p ∈ Λa. This means that, if (aα) are
local coordinates on A, then the n×m matrix

[
∂2W/∂q∂a

]
has maximal

rank,

rank

[
∂2W

∂qi∂aα

]
= m = dimA (6.18)

This is called the completeness condition.
• The canonical projection π : C → A, which maps a point p ∈ C to the

point a ∈ A such that p ∈ Λa, is a smooth map. Because each Λa is
described by equations

pi =
∂Wa

∂qi
(6.19)

this means that by solving these equations with respect to a = (aα) the
resulting functions aα(q, p) are differentiable. ♥

Remark 6.15. From this definition it follows that m = n− k; that is,

dimA = dimQ− codim C.

As we show below, the canonical projection π (which is obviously surjective)
is a submersion. ♦
Remark 6.16. We can extend this definition by considering generating families
Wa(q; v) parametrized by a ∈ A and defining a Lagrangian foliation ofC with
singular points. In classical Hamilton–Jacobi theory, W is locally represented
by a function of the coordinates q of Q and a set of constants of integration
(aα), which represent a point a ∈ A. No extra variables are present, because
in the classical theory only ordinary generating functions are considered.8 ♦
Remark 6.17. When a coisotropic submanifold C of a symplectic manifold
(M,ω), in particular, of a cotangent bundle T ∗Q, is given, then the main

8 According to Levi-Civita (Levi-Civita and Amaldi 1927), Ch. X, n. 38, the letter W
is used for denoting a complete solution of the time-independent reduced Hamilton–

Jacobi equation H − E = 0, for any fixed value of the energy E. It is a function of
the n Lagrangian coordinates q and of n constant parameters π = (πi), satisfying the
completeness condition

det

»

∂2W

∂q∂π

–

6= 0

Actually, because the energy E becomes a function of these constants, for a fixed
value of E, they are not all independent. So, they can be expressed as functions of
n− 1 independent parameters a satisfying the completeness condition (6.18). This is
in accordance with Definition 6.6, being in this case m = n− 1 because codim C = 1.
For a time-independent Hamiltonian H one can think of a complete solution of the
Hamilton–Jacobi equation ∂V/∂t+H(q,∂V/∂q) = 0 of the form V = −Et+W . Then,
this equation reduces to H − E = 0. In this reduction procedure, Jacobi considered
W as depending on E and on further n − 1 constant parameters a.
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problem is to find its characteristics. Indeed, if the characteristics are known,
then we can solve the Cauchy problem; that is, we can construct geometrical
solutions (Lagrangian submanifolds) Λ ⊂ C starting from initial data (see
Sect. 3.9). ♦

For solving this problem the notion of complete integral plays a crucial
role, as shown by the following version of what is known as the theorem of
Jacobi

Theorem 6.6. Let W : Q×A→ R be a complete solution of the Hamilton–
Jacobi equation (coisotropic submanifold) C ⊆ T ∗Q.9 Then,

• W generates a symplectic coreduction R⊤ : T ∗Q← B such that R⊤ ◦B =
C, where B is an open submanifold of T ∗A.

• The characteristics of C are the connected components of the inverse im-
ages R⊤ ◦ {b} of the points b ∈ B.

• The reduction R is isomorphic to the reduction relation RC; that is, there
exists a symplectomorphism ϕ : T ∗Q/C → B such that R = ϕ ◦RC.10

Proof. (i) Let (q, a) = (qi, aα) be local coordinates of Q×A. Let (q, p; a, b) =
(qi, pi; a

α, bα) be the corresponding canonical coordinates on T ∗Q×T ∗A. Let
us consider the symplectic relation R ⊂ T ∗Q×T ∗A generated by the function
W : it is described by equations

pi =
∂W (q, a)

∂qi
, bα = − ∂W (q, a)

∂aα
(6.20)

The Lagrangian submanifolds Λa are determined by the first Eqs. (6.20),
also see Eq. (6.19). Due to the completeness condition and by the implicit
function theorem we get smooth functions

aα = aα(q, p) (6.21)

representing the canonical projection π : C → A. By inserting these functions
into the second Eqs. (6.20) we get functions

bα = bα(q, p). (6.22)

Equations (6.21) and (6.22) are equivalent to Eqs. (6.20). This shows that R
is the graph of a smooth map ρ : C → T ∗A. By a formal derivation of Eqs.
(6.20) we get equations

9 Definition 6.6.
10 This is a simplified version of the global Jacobi theorem treated in (Tulczyjew
1975) (Benenti and Tulczyjew 1980, 1982a, 1982b), and (Benenti 1983a, 1988). See
(Libermann and Marle 1987) for a general review.
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



ṗi =
∂2W

∂qi ∂qj
q̇j +

∂2W

∂qi ∂aα
ȧα

ḃα = − ∂2W

∂qj ∂aα
q̇j − ∂2W

∂aα ∂aβ
ȧβ ,

(6.23)

which represent the tangent map Tρ. If we assign any arbitrary value to
(ȧα, ḃα), due to the completeness condition (6.18) the second equation (6.23)
admits a solution q̇i and, due to the first equation (6.23), we get values for ṗi.
This shows that ρ is a submersion, thus, that R is a reduction. By applying
Theorem 1.2 to this case we can see that R is a symplectic reduction onto an
open subset of T ∗A, and the first item is proved. The second and third items
are a consequence of Theorems 1.3 and 3.22, respectively. ⊓⊔

As a complement of this theorem we observe that, when only the first item
is considered, it is reversible.

Theorem 6.7. If a function W : Q×A→ R generates a symplectic coreduc-
tion R⊤ : T ∗Q← B such that R⊤ ◦B = C, where B is an open submanifold
of T ∗A, then it is a complete solution of the Hamilton–Jacobi equation C.

Proof. Assume that W is the generating function of a symplectic coreduction
R⊤ ⊂ T ∗Q × B, with B ⊆ T ∗A open and C = R⊤ ◦ B. Then the first Eqs.
(6.20) describe Lagrangian submanifolds Λa = R⊤ ◦ (T ∗A ∩ B) that are
contained in C. Since the fibers T ∗

aA ∩ B form a Lagrangian foliation, the
Lagrangian submanifolds Λa form a foliation. The canonical projection π is
a submersion, because it is the composition of two submersions, π = πA ◦ ρ,
where ρ is the submersion associated with the reduction R. ⊓⊔

Remark 6.18. Regarding the third requirement in Definition 6.6 of com-
plete solution we observe that there are cases in which a smooth function
W : Q × A → R generates a Lagrangian foliation of C such that the canon-
ical projection π is not differentiable. An example is the following: Q = R,
C = T ∗Q = R2, A = R, W (q, a) = a3q. The Lagrangian submanifold Λa

is described by equation p = a3 and the map π is described by a = p1/3.
This map is not differentiable for p = 0 (a = 0). Hence, W is not a complete
integral. Instead, the functionW (q, a) = aq is a complete integral and defines
the same foliation. ♦

6.7 From a complete integral to a Hamilton principal

function

Theorem 6.8. If W (q, a) is a complete integral of the Hamilton–Jacobi equa-
tion C ⊂ T ∗Q, then the generating family S(Q ×Q;A) defined by
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S(q, q′; a) = W (q, a)−W (q′, a) (6.24)

is a Hamilton principal function.

Proof. The characteristic relation DC of a coisotropic submanifold is given
by the composition DC = R⊤

C ◦ RC; see Eq. (3.17). Assume that we know a
complete integral W (q, a) of C. Then, according to the third item of Theorem
6.6, it generates a coreduction R⊤ of a reduction R that is isomorphic to the
reduction RC . This means that

Φ = RC ◦R⊤

is the graph of a symplectomorphism; see Theorem 3.22. Thus, instead of
DC = R⊤

C ◦RC we can write

DC = R⊤ ◦R.

Let us recall Theorem 4.10: if W (q, a) generates the coreduction R⊤, then R
is generated by the function W⊤(a, q) defined by

W⊤(a, q) = −W (q, a).

and by composing W⊤ with W , according to Theorem 4.12, we get the gen-
erating family (6.24) of DC . ⊓⊔
Remark 6.19. Note that in the generating family S the manifold A plays the
role of supplementary manifold. Note that S is skew-symmetric, in accordance
with the symmetry ofDC and Theorem 4.11. The Hamilton principal function
S defined by (6.24) is a Morse family. Indeed, due to completeness condition
(6.18), the matrix

[
∂2S

∂qi ∂aα

∣∣∣∣
∂2S

∂qi′ ∂aα

∣∣∣∣
∂2S

∂aβ ∂aα

]

=

[
∂2W (q, a)

∂qi ∂aα

∣∣∣∣ −
∂2W (q′, a)

∂qi′ ∂aα

∣∣∣∣
∂2W (q, a)

∂aβ ∂aα
− ∂2W (q′, a)

∂aβ ∂aα

]

has maximal rank m everywhere. ♦
Remark 6.20. From the third item of Theorem 6.6 it follows that a necessary
condition for the existence of a global complete integral is that the reduced
symplectic manifold T ∗Q/C be symplectomorphic to a cotangent bundle (or
at least to an open subset of a cotangent bundle). If W (q, a) is a local repre-
sentative of a complete solution, then Eqs. (6.20) generate an open subrelation
of R. In general, by integrating the Hamilton–Jacobi equation we can find
only local complete solutions, which generate Lagrangian foliations on open
subsets of C. Then the composition formula (6.24) generates local principal
functions. ♦
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Remark 6.21. There are cases in which a global principal function S exists,
whereas a global complete solution does not. An example is the eikonal equa-
tion on the sphere S2 ⊂ R3, for which the reduced manifold is S2 (indeed, any
oriented geodesic on the unit sphere S2 ⊂ R3 is represented by a unit vector
orthogonal to the plane on which it lies). In these cases a global principal
function may be determined by other methods (for S2 see Chap. 8). ♦

Remark 6.22. All the above definitions and results concerning a complete
solution can be extended to the case of a generating family: W (Q × A;V ),
where V is a supplementary manifold, with coordinates (va). Then W and S
depend on these extra variables and equations

0 =
∂S

∂va
, 0 =

∂W

∂va
,

must be added to systems (6.15) and (6.20), respectively. ♦

Example 6.11. Let us consider, for example, the eikonal equation of the Eu-
clidean plane Q = R2,

C(x, y, px, py)
.
= p2

x + p2
y − 1 = 0.

In Sect. 7.3 it is proved that:

• The reduced symplectic manifold (T ∗Q)/C is symplectomorphic to T ∗S1.
• A global complete integral is

W : R2 × S1 → R, W (x,a) = a · x. (6.25)

• The characteristic relationDC is generated by the Hamilton principal func-
tion

S(R2 ×R2; S1), S(x,x′; a)
.
= (x− x′) · a. (6.26)

Note that RC is a regular Lagrangian submanifold that admits a global or-
dinary generating function (without supplementary variables), and DC is
singular over the diagonal ∆Q ⊂ Q×Q. Out of the diagonal, DC is made of
two branches, which are regular Lagrangian submanifolds generated by the
functions

S(x,x′) = ±|x− x′|.
Note that these functions are not differentiable for x = x′, that is, over the
diagonal. All these results have a natural extension to the space Rn. The unit
circle S1 is replaced by the unit sphere Sn−1 (see Sect. 7.3). Note that for
n = 2, instead of the generating familiesW and S defined in (6.25) and (6.26),
one can use the equivalent generating families W (R2; R) and S(R2 × R2; R)
defined by

W (x; θ) = x cos θ + y sin θ

and
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S(x,x′; θ) = (x− x′) cos θ + (y − y′) sin θ,

respectively. ♦

6.8 Sources

In this and in the next sections we deal with the generation and transforma-
tion of geometrical solutions of a Hamilton–Jacobi equation. Recall that:

• A Hamilton–Jacobi equation is represented by a coisotropic submanifold
of a cotangent bundle C ⊂ T ∗Q.

• A geometrical solution is a Lagrangian set Λ ⊂ C.
• A smooth geometrical solution represents a system of rays (Definition 6.4).

However, for a better understanding of what is discussed, hereafter it is more
effective to identify the latter two concepts and use the term “system of rays”
for any geometrical solution Λ ⊂ C .

The topics touched on here are recalled in Sect. 7.4, where some basic
applications to geometrical optics are discussed.

Let Σ ⊂ Q be a submanifold. The composition of the canonical lift Σ̂ ⊂
T ∗Q with the characteristic relation DC ,

Λ = DC ◦ Σ̂ (6.27)

gives rise to a geometrical solution Λ ⊂ C which is the union of the (max-

imal) characteristics of C intersecting Σ̂. More generally, we can consider
a submanifold Σ with a function F : Σ → R, the canonical lift a function

(̂Σ, F ), and the set

Λ = DC ◦ (̂Σ, F ) (6.28)

which is still a geometrical solution of C. Then the pair (Σ, F ) has the role
of source of the system of rays represented by Λ, because it yields the initial
data of the Cauchy problem11 In terms of generating families we can then
affirm the following.

Theorem 6.9. If S is a Hamilton principal function of C and G is a gen-

erating family of (̂Σ, F ),12 then the composed family S ⊕ G generates the

geometrical solution Λ = DC ◦ Σ̂ of the Hamilton–Jacobi equation C.

11 Sect. 3.9, see also (Cardin 1989, 2002).
12 See (5.4)
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Remark 6.23. S⊕G is in any case a smooth solution of the Hamilton–Jacobi
equation, whereas Λ may not be a smooth geometrical solution. If the inter-

section C∩ (̂Σ, F ) is clean then S⊕G is a Morse family and Λ is an immersed
Lagrangian submanifold. ♦

Remark 6.24. Let q = (qα, qa) be coordinates adapted to Σ, so that Σ is

locally described by equations qα = 0. It follows that (̂Σ, F ) is described by
equations qα = 0 and pa−∂aF = 0. Assume that C is defined by independent

equations CA(q, p) = 0. Then the intersection C∩(̂Σ, F ) is clean if the matrix
(the symbol denotes a square submatrix)




δα
β −∂β∂aF ∂βC

A

0 −∂b∂aF ∂bC
A

0 0 ∂αCA

0 δa
b ∂bCA




has constant rank in a neighborhood of C ∩ (̂Σ, F ), Theorem 1.7. Only the
restriction of F to Σ is relevant, therefore the coordinates qα can be chosen
such that F does not depend on them, so that the above matrix becomes




δα
β 0 ∂βC

A

0 −∂b∂aF ∂bC
A

0 0 ∂βCA

0 δa
b ∂bCA




.

This matrix must be computed for CA = 0 and pi = ∂iF . In the case of the
canonical lift of Σ (with F = 0 or constant) we have




δα
β 0 ∂βC

A

0 0 ∂bC
A

0 0 ∂βCA

0 δa
b ∂bCA




.

In the case of the eikonal equation we have C = gijpipj − n2, and the last
columns in the above matrices reduce to a single column,
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


δα
β 0 ∂βC

0 −∂b∂aF ∂bC

0 0 2gβipi

0 δa
b 2gbipi




.

For F = 0 on Σ̂ we have pa = 0 and the matrix becomes




δα
β 0 ∂βC

0 0 ∂bC

0 0 2gβγpγ

0 δa
b 2gbγpγ




.

Because at least one vβ = gβγpγ 6= 0 (due to the eikonal equation, otherwise
all pi = 0), this last matrix has maximal rank. This shows that for the eikonal

equation, C and Σ̂ have a clean intersection. Consequently, Λ = DC ◦ Σ̂ is a
Lagrangian submanifold. ♦

6.9 Mirror-relations

The first transformation that a system of rays may undergo is the
reflection by a mirror. For this elementary optical phenomenon, and
also for other transformations through lenses and refractions, we can
build up a mathematical model based on the composition of symplec-
tic relations of a special kind. In the next sections these relations are
introduced within a quite general setting. Later on (Sect. 7.4) we show
some applications to geometrical optics in Euclidean spaces.

Let Σ ⊂ Q be a submanifold representing a mirror. The incident system
of rays (input) and the reflected system (output) are represented by two
Lagrangian sets, ΛI ⊂ C and ΛO ⊂ C (I = input, O = output). Both are
geometrical solutions of the Hamilton–Jacobi equation.

We assume that they are related by equation

ΛO = DC ◦ ∆̂Σ ◦ ΛI (6.29)
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where ∆̂Σ ⊂ T ∗Q × T ∗Q is the canonical lift of the diagonal ∆Σ ⊂ Q ×Q,
defined by

(p2, p1) ∈ ∆̂Σ ⇐⇒





p1, p2 ∈ T ∗

q Q, q ∈ Σ,

〈v, p2 − p1〉 = 0 for all v ∈ TqΣ.
. (6.30)

Definition 6.7. We call a mirror-relation the composition

MΣ = DC ◦ ∆̂Σ ♥ (6.31)

Then formula (6.29) becomes

ΛO = MΣ ◦ ΛI (6.32)
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Input
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Fig. 6.1 The relation ∆̂Σ and the mirror-relation MΣ

Definition 6.7 is justified by its application to the geometrical optics in the
n-dimensional Euclidean space. If Σ ⊂ Q = Rn is a regular r-dimensional
surface, and covectors are interpreted as vectors, then a pair (p2, p1) based

on a point q ∈ Σ belongs to the relation ∆̂Σ if and only if the vector p2 − p1

is orthogonal to the tangent plane TqΣ. It follows that any p2 in relation
to a fixed p1 belongs to the n − r-dimensional plane Π1 orthogonal to TqΣ
determined by the endpoint of p1. In other words, all pairs (p2, p1) whose
endpoints are on this plane belong to the relation. The role of the character-
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istic relation DC is that of picking up among all the p2 related to p1 that one
which belongs to C and propagating it along the characteristic to which it
belongs. In other words, the Lagrangian set ∆Σ ◦ΛI plays the role of source.

Remark 6.25. It must be observed, especially in view of the applications, that
the action of the characteristic relation DC gives rise to two Lagrangian sets:
one is the output ΛO, the other is the input ΛI itself. Indeed, among all the
p2 related to p1 belonging to C there is also p1. This remark should be taken
into account also in the following sections. ♦

6.10 Generating family of a mirror-relation

Theorem 6.10. The generating family of a mirror-relation is

GMΣ
(qO, qI; aκ, λα) = S(qO , qI; aκ) + λα Σα(qI) (6.33)

where S(qO , qI; aκ) is a generating family of DC , and Σα(q) = 0 are the
equations of the mirror Σ.13

Proof. In dealing with the composition MΣ = DC ◦ ∆̂Σ we have to consider,
from a formal viewpoint, three manifolds, Q1, Q2, and Q3, as shown by the
diagram:

T ∗Q2T ∗Q3 T ∗Q1.................................................................................................................................................................................................................................

∆̂ΣDC
DC ◦ ∆̂Σ :

However, these manifolds are actually the same manifold Q. Taking into
account this fact, in accordance with what we have seen in Sect. 5.3, the
canonical lift ∆̂Σ : T ∗Q2 ← T ∗Q1 is generated by the Morse family

GΣ
1 (q2, q1; λα, µi) = λαΣα(q1) + µi (qi

2 − qi
1), (6.34)

being Σα(q) = 0 (α = 1, . . .m) the equations of the mirror Σ. If S(q2, q1; a
κ)

is a generating family of the characteristic relation DC : T ∗Q3 ← T ∗Q2 =
T ∗Q← T ∗Q, then by the composition rule we obtain the generating family
GMΣ

of the mirror-relation MΣ by the ordinary sum of functions

GMΣ
= S(q3, q2; aκ) +GΣ

1 (q2, q1;λ
α, µi)

and, as a second step, by considering the coordinates q2 of the intermediate
manifold Q2 = Q as supplementary variables. Hence, due to (6.34), we can

13 In this section we denote by q1, q2, q̄, . . . generic coordinate systems (qi
1), (qi

2),
(q̄i), . . . on the manifold Q, with i = 1, . . . , n = dim Q.
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write

GMΣ
(q3, q1; q2, a

κ, λα, µi) = S(q3, q2; a
κ) +GΣ

1 (q2, q1;λ
α, µi)

= S(q3, q2; aκ) + λαΣα(q1) + µi (qi
2 − qi

1).
(6.35)

Since Eq. (6.32) shows that the mirror-relation transforms the incoming sys-
tem of rays represented by the Lagrangian set ΛI , into the the reflected system
of rays represented by the Lagrangian set ΛO, it turns out to be convenient
to apply the change of notation

q3 7→ qO (O = output), q1 7→ qI (I = input), q2 7→ q̄.

Then we can write (6.35) in the form

GMΣ
(qO, qI; q̄, aκ, λα, µi) =

= S(qO , q̄; a
κ) + λα Σα(qI) + µi (q̄i − qi

I).
(6.36)

However, this generating family can be reduced (Sect. 4.8). The critical set
of the generating family GMΣ

(6.36) is described by equations

0 =
∂GMΣ

∂q̄i
=
∂S

∂q̄i
+ µi, 0 =

∂GMΣ

∂λα
= Σα(qi

I),

0 =
∂GMΣ

∂aκ
=

∂S

∂aκ
, 0 =

∂GMΣ

∂µi
= q̄i − qi

I .

The last equation, q̄i = qi
I, allows the removal of the parameters q̄i and µi

from the generating family, which reduces to (6.33). ⊓⊔

Theorem 6.11. If the generating family S(qO , qI; ak) of DC is a Morse fam-
ily, then the generating family (6.33) of the mirror-relation is a Morse family.

Proof. We write G instead of GMΣ
for simplicity. The first derivatives of G

are 




∂G

∂qO
=

∂S

∂qO
,

∂G

∂qI
=

∂S

∂qI
+ λα ∂Σα

∂qI
,






∂G

∂ak
=

∂S

∂ak
,

∂G

∂λα
= Σα(qI).

Hence,
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


∂2G

∂ak ∂qO

∂2G

∂ak ∂qI

∂2G

∂ak ∂aℓ

∂2G

∂ak ∂λβ

∂2G

∂λα ∂qO

∂2G

∂λα ∂qI

∂2G

∂λα ∂aℓ

∂2G

∂λα ∂λβ




=




∂2S

∂ak ∂qO

∂2S

∂ak ∂qI

∂2S

∂ak ∂aℓ
0

0
∂Σα(qI)

∂qI
0 0


 .

The generating family GMΣ
is a Morse family if and only if the matrix




∂2S

∂ak ∂qO

∂2S

∂ak ∂qI

∂2S

∂ak ∂aℓ

0
∂Σα(qI)

∂qI
0


 (6.37)

has maximal rank on the critical set Ξ of GMΣ
itself. This is described by

equations
∂G

∂ak
=

∂S

∂ak
= 0,

∂G

∂λα
= Σα(qI) = 0.

The first equation shows that the critical set of GMΣ
is also the critical set

of S. Equations Σα(q) = 0, α = 1, . . . , s, are independent, thus the matrix

[
∂Σα(qI)

∂qI

]

n×s

has maximal rank, equal to s. If S is a Morse family, the matrix

[
∂2S

∂ak ∂qO

∂2S

∂ak ∂qI

∂2S

∂ak ∂aℓ

]

Ξ

(6.38)

also has maximal rank on the critical set Ξ of S. Since DC is a symmetric
relation, in accordance with Theorem 4.11 and Remark 4.10 the Morse family
S(qO, qI; ak) is skew-symmetric on the critical set Ξ. This implies that the
maximal rank of the matrix (6.38) is equivalent to the maximal rank of the
matrix [

∂2S

∂ak ∂qO
0

∂2S

∂ak ∂aℓ

]

Ξ

.

It follows that the matrix (6.37) has maximal rank. ⊓⊔

Remark 6.26. Theorem 6.10 shows that, under the nonrestrictive assumption
that S is a Morse family, the mirror-relation MΣ ⊂ T ∗Q × T ∗Q is a La-
grangian submanifold. ♦
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Example 6.12. Mirror-relation in the Euclidean plane. It is opportune to give
now an example of application of the overall results so far found. As we show
in Sect. 7.3, the global Hamilton principal function of the eikonal equation
in the Euclidean space R2 is

S(xO,xI ; a) = (xO − xI) · a,

where a2 = 1. The generating family (6.33) of the mirror-relation is

GMΣ
(xO ,xI ; a) = (xO − xI) · a + λαΣα(xI). (6.39)

In the Euclidean plane (n = 2) the unit vector a can be expressed as a
function of an angle θ: ax = cos θ, ay = sin θ, and the mirror is given by a
single equation Σ(x) = 0. Then the generating family (6.39) of the mirror-
relation assumes the expression

GMΣ
(xO,xI ; θ)

= (xO − xI) cos θ + (yO − yI) sin θ + λΣ(xI)
(6.40)

If GI(x; ζ) is the generating family of the incoming Lagrangian set ΛI , then
the generating family of the Lagrangian set ΛO = MΣ ◦ ΛI is

G(x; xI , θ, ζ) = (x− xI) cos θ + (y − yI) sin θ

+ λΣ(xI) + GI(xI ; ζ)
(6.41)

Note that in the passage from (6.40) to (6.41) the label O in xO has been
omitted.

Now, let us consider an incoming ray parallel to the x-axis, and a mirror-
line Σ defined by equation y −mx = 0. In this case GI is

GI(x) = x,

and the generating family of the Lagrangian set ΛO = MΣ ◦ ΛI is

G(x; xI , θ) = (x− xI) cos θ + (y − yI ) sin θ + λ (yI −mxI) + xI (6.42)

The Lagrangian set ΛO representing the reflected rays is then described by
the equations

px =
∂G

∂x
= cos θ, py =

∂G

∂y
= sin θ, (6.43)

together with the equations of the critical set:
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




0 =
∂G

∂xI
= − cos θ −mλ+ 1,

0 =
∂G

∂yI
= − sin θ + λ,

0 =
∂G

∂θ
= (xI − x) sin θ + (y − yI) cos θ,

0 =
∂G

∂λ
= yI −mxI .

The first two equations imply





λ = sin θ

λ =
1

m
(1− cos θ)

=⇒ m sin θ = 1− cos θ.

This last equation has two solutions:14





sin θ = 0,

cos θ = 1,
or





sin θ =
2m

1 + m2
,

cos θ =
1−m2

1 +m2
.

Consequently, due to equations (6.43), we find two reflected system of rays:





px = 1,

py = 0,
and






px =
1−m2

1 + m2
,

py =
2m

1 + m2
.

But the first solution represents nothing but the incoming rays, and we have
to disregard it in accordance with Remark 6.25. Then the valid solution is
the second one. For m = 1 it represents rays parallel to the y-axis, with the
same orientation, as expected. ♦

14 For m = 0 we have the double solution sin θ = 0, cos θ = 1.
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Fig. 6.2 Case m = 1 in Example 6.12

6.11 Lens-relations

By a method similar to that followed for a mirror we can define the lens-
relation. In this case the submanifold Σ is endowed with a function F , and
∆̂Σ is replaced by the canonical lift ∆̂Σ,F defined in Eq. (5.14), Definition
5.7,

(p2, p1) ∈ ∆̂Σ,F ⇐⇒




p2, p1 ∈ T ∗

q Q, q ∈ Σ,

〈v, p2 − p1 − dqF 〉 = 0, for all v ∈ TqΣ.

Definition 6.8. We call a lens-relation the composition

LΣ,F = DC ◦ ∆̂Σ,F (6.44)

for which we have

ΛO = LΣ,F ◦ ΛI (6.45)

We call F the characteristic function of the lens. ♥
Remark 6.27. Actually, formula (6.45) represents the transition from an input
ΛI to the output ΛO through an ideal lens. A real lens is in fact represented
by a sequence (may be continuous) of compositions of refraction-relations
(see below). ♦
Remark 6.28. By adapting to the present case what we have seen in Sect.
6.9), if Σ is a regular r-dimensional surface, and covectors are interpreted as
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vectors, then a pair (p2, p1) based on q ∈ Σ belongs to the relation ∆̂Σ,F if
and only if the vector p2−(p1 +∇qF ) is orthogonal to the tangent plane TqΣ.
It follows that all p2 in relation with a fixed p1 belong to the n−r-dimensional
plane Π2 orthogonal to TqΣ determined by the end point of p1 + ∇qF ; see
Fig. 6.3. Moreover, if Π1 is the plane passing through p1 and orthogonal to
TqΣ, then all pairs (p2, p1) whose endpoints are on these two planes belong to
the relation. As for the case of the mirror-relation, the characteristic relation
DC picks up among all the p2 related to p1 that one which belongs to C and
propagates it along the characteristic to which it belongs. ♦

Remark 6.29. From (6.31) and (6.44) it follows that

LΣ,c = MΣ, ∆̂Σ,F = LΣ,F ◦ Σ̂, LΣ,−F = L⊤
Σ,F . ♦ (6.46)
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Fig. 6.3 The relation ∆̂(Σ,F ) and the lens-relation L(Σ,F )

6.12 Generating family of a lens-relation

Theorem 6.12. The generating family of a lens-relation is

GLΣ,F
(qO, qI; aκ, λα) = S(qO , qI ; aκ) + F (qI) + λαΣα(qI) (6.47)
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where S(qO , qI; aκ) is a generating family of DC , and Σα(q) = 0 are the
equations of the mirror Σ.15

Proof. Due to the general Theorem 5.4 and formula (5.16), the generating
family (6.36) of the mirror-relation

GMΣ
(qO, qI; q̄, aκ, λα, µi) = S(qO , q̄; a

κ) + λα Σα(qI) + µi (q̄i − qi
I),

can be adapted to the lens-relation as follows.

GLΣ,F
(qO, qI; q̄, aκ, λα, µi)

= S(qO, q̄; a
κ) + F (qI) + λαΣα(qI) + µi (q̄i − qi

I).
(6.48)

However, this generating family can be reduced. The critical set of the gen-
erating family GMΣ

(6.36) is described by equations (we write G instead of
GLΣ,F

for simplicity):

0 =
∂G

∂q̄
=
∂S

∂q̄
+ µi, 0 =

∂G

∂λα
= Σα(qI),

0 =
∂G

∂aκ
=

∂S

∂aκ
, 0 =

∂G

∂µi
= q̄i − qi

I.

Due to the last equation, q̄ = qI , the parameter q̄ can be removed from (6.48),
as well as µi. ⊓⊔
Remark 6.30. The comparison between (6.33) and (6.47) shows a surprising
fact: the generating families of the mirror-relation and of the lens-relation
differ by the term F (qI), namely:

GLΣ,F
(qO, qI; aκ, λα) = GMΣ

(qO, qI ; aκ, λα) + F (qI). ♦

As a consequence, a proof similar to that of Theorem 6.11 shows the
following.

Theorem 6.13. If the generating family S(qO , qI; ak) of DC is a Morse fam-
ily, then the generating family (6.47) of the lens-relation is a Morse family.

6.13 Reflection and refraction

If, due to an eikonal equation, p1 and p2 have a prescribed constant length
n = v/c, equal to the refraction index, then only the vectors belonging to
the sphere of radius n are involved in the mirror-relation and in the lens-
relation. Consequently, in the case of hypersurface of codimension 1, the
mirror-relation reproduces the well-known reflection law (Fig. 6.4).

15 In this section we use for the coordinates the same notation of Sect. 6.10.
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Consider now covectors having a different length in the two half-spaces
separated by a hypersurface Σ. This is the case of two different eikonal equa-
tions C1 and C2 in T ∗Q, corresponding to two different media, with refraction
index n1 and n2 and separated by a surface Σ. If we consider these two media
coexisting in the whole space, then we have to deal with two characteristic
relations DC1 and DC2 and with a surface Σ.

Fig. 6.4 Reflection law ....................................................................................................................................................................................................................................................................................................................................................................

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

......

.................................................................

............
............
............
............
............
............
............
............
............
............
.........................
................

............
............

............
............

............
............

............
............

............
............

.........................................

•............
............
............
............
............
............
............
............
............
............
.........

............
............

............
............

............
............

............
............

............
............

.........

···
···
···
··
···
···
···
···
··
···
···
···
···
··
···
···
···
···
··
···
···
···
···
··
···
···
···
···
···
···
···
··
···
···
···
···
··
···
···
···
···
··
···
···
···
···
··
···
···
···
···
··
···
···
···
···
··
···
···
···
···
··
···
···
···
···
··
···
···
···
···
··
···
···
···
···
··
···
···
···
···
··
···
···
···
···
··
···
···
···
···
··
···
···
···
···
··
···
···
···
···
··
···
···
···
···
···
···
···
··
···
···
···
···
··
···
···
···
···
··
···
···
···
···
··
···
···
···
···
··
···
···
···
··

q

ΣTqΣ

p1p2

.......

.......

.......

.......

.......
.......
.......
........
........
........
........
.........
.........

..........
...........

............
...............

....................
.....................................................................................................................................................................................................................................................................................................................................................................................................................................................................................
.................

..............
...........
...........
.........
.........
........
........
........
.......
........
.......
.......
.......
.......
.......
.......
......

|p1| = |p2| = n

Fig. 6.5 Refraction law ....................................................................................................................................................................................................................................................................................................................................................................

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

......

.................................................................

............
............
............
............
............
............
............
............
............
............
.........................
................

.........
.........
.........
.........
.........
........
.........
.........
.........
........
.................
................

.........
.........
.........
.........
.........
........
.........
.........
.........
........
.................
................

•............
............
............
............
............
............
............
............
............
............
.........

.........
.........
.........
.........
.........
........
.........
.........
.........
........
.

.........
.........
.........
.........
.........
........
.........
.........
.........
........
.

···
···
···
··
···
···
···
···
··
···
···
···
···
··
···
···
···
···
···
···
···
··
···
···
···
···
··
···
···
···
···
··
···
···
···
···
··
···
···
···
···
··
···
···
···
···
··
···
···
···
···
··
···
···
···
···
··
···
···
···
···
··
···
···
···
···
··
···
···
···
···
··
···
···
···
···
··
···
···
···
···
··
···
···
···
···
··
···
···
···
···
··
···
···
···
···
···
···
···
··
···
···
···
···
··
···
···
···
···
··
···
···
···
···
··
···
···
···
···
··
···
···
···
···
··
···
···
···
···
··
···
···
···
··

q

ΣTqΣ

p1p2

.......

.......

.......

.......

.......
.......
.......
........
........
........
........
.........

..........
..........

...........
............

...............
......................

..................................................................................................................................................................................................................................................................................................................................................................................................................................................................................
.................

..............
............
...........
.........
.........
........
........
........
........
........
.......
.......
.......
.......
.......
.......
...........

.......

.......

.......
.......
........
........
........
.........

..........
...........

...............
.....................................................................................................................................................................................................................................................................................................................................................
...............

...........
..........
.........
........
........
.......
.......
.......
.......
.......
.......

|p1| = n1

|p2| = n2

If Λ1 is a Lagrangian subset of C1 (i.e., a system of rays in the first
medium), then the composition

Λ2 = DC2 ◦MΣ ◦ Λ1 (6.49)

gives a solution of C2 representing the refracted system of rays, in the second
medium.
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Actually, with an incident vector p1 this relation associates two refracted
vectors p2. Only one of them (and only a half-line determined by it) has a
physical meaning.

Remark 6.31. Malus theorem. The possible applications to geometrical optics
of the matter exposed in this chapter are quite evident. They are treated in
the next chapter. The philosophy is the following: a system of rays emitted by
a source is represented by a Lagrangian submanifold (or a Lagrangian set) Λ0.
Along the way this system can be modified by a sequence of mirrors, lenses
and refractions, which in turn are represented by a sequence of compositions
with symplectic relations:

Λ0 −→ Λ1 = R1 ◦ Λ0 −→ Λ2 = R2 ◦ Λ1 −→ · · ·

Consequently, the sequence Λ0, Λ1, Λ2, . . . is made of Lagrangian submani-
folds (or Lagrangian sets) representing systems of rays. These compositions of
relations are expressed in terms of compositions of generating families. This
fact is nothing but the contents and the (simple) proof of the ancient and cel-
ebrated theorem of Malus (1807). This theorem, according to the translation
of V. V. Koslov (Koslov 2003) states that if a system of rays is orthogonal
to a regular surface, then it is a Hamilton system and remains a Hamilton
system after an arbitrary number of reflections and refractions.16 ♦

16 According to our approach, and lenses should be added. A real lens is nothing but
a sequence of refractions.





Chapter 7

Hamiltonian Optics in Euclidean Spaces

Abstract According to Hamilton (Hamilton 1828), a “system of rays” is a
congruence of straight lines in the Euclidean three-space, orthogonal to a
family of surfaces. This orthogonal integrability of the rays fails in the pres-
ence of a caustic. Moreover, a system of rays can be modified through the use
of optical devices, as mirrors and lenses, or by passing through surfaces that
delimit two media with different refraction index. In our approach, a system
of rays without caustic is represented by a regular Lagrangian submanifold of
the cotangent bundle of the Euclidean space, whereas all the optical devices
are represented by symplectic relations. This chapter discusses some of the
most important elementary examples.

7.1 The distance function

Let Q = Rn = {x} = {(xi)} be the Euclidean n-space. We can identify the
tangent bundle TQ = {(x, p)} with the cotangent bundle T ∗Q = {(xi, pi)}.
Notation: u · v =

∑
i u

ivi is the scalar product of two vectors and |u| =√
u · u; for n = 3, u× v is the cross-product of two vectors.
Let U ⊂ Q be a regular and orientable r-dimensional surface (locally)

described by parametric equations x = u(uα), α = 1, . . . , r. Let us consider
the distance function Φ : Q× U → R defined by

Φ(x; uα) = |x− u(uα)| (7.1)

as a generating family on Q with supplementary manifoldU , and supplemen-
tary coordinates (uα).

Theorem 7.1. The distance function is a smooth Morse family for x 6= u.
It generates the Lagrangian submanifold ΛU defined by

, Universitext,S. Benenti, Hamiltonian Structures and Generating Families
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122 7 Hamiltonian Optics in Euclidean Spaces

(x, p) ∈ ΛU ⇐⇒





p =

x− u

|x− u| , u ∈ U, u 6= x,

p ⊥ U,

(7.2)

and contained in the one-codimensional coisotropic submanifold C ⊂ T ∗Q
defined by equation

|p|2 =
∑

i

p2
i = 1. (7.3)
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Fig. 7.1 Theorem 7.1

Proof. The equations of the Lagrangian set ΛU generated by Φ are






p =
∂Φ

∂x
=

x− u

|x− u| ,

0 =
∂Φ

∂uα
=

1

|x− u| ∂α(x − u) · (x− u) = − eα · p,

(7.4)

where

eα = ∂αu

(
∂α =

∂

∂uα

)

are the coordinate vectors tangent to U . Equations (7.4) are equivalent to
(7.2). From the first equation (7.4) it follows that |p| = 1. From the second
Eq. (7.4) it follows that the critical set Ξ is made of pairs of vectors (x,u)
such that x − u is perpendicular to U at the point u. Let us set

Aαβ = eα · eβ , ∂αeβ = Γ γ
αβ eγ + Bαβ.

Then Aαβ are the components of the first fundamental form of the surface
U , Γ γ

αβ are the Christoffel symbols, and Bαβ are vector fields orthogonal
to U , representing the external curvature of the surface. Note that if U is of
codimension 1, then Bαβ = Bαβ n, where n = is a unit vector field orthogonal
to U . Thus, Bαβ are the components of the second fundamental form of the
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surface U . It follows that

∂p

∂uα
=

∂2Φ

∂x ∂uα
= − ∂αu

|x− u| −
1
2

x − u

|x− u|3 2 (x − u) · ∂α(x− u)

=
(p · eα) p− eα

|x− u| ,

and

∂2Φ

∂uα ∂uβ
= − ∂α(eβ · p) = − ∂αp · eβ − p · (Γ γ

αβeγ +Bαβ n)

=
Aαβ − (p · eα)(p · eβ)

|x− u| − p · (Γ γ
αβeγ +Bαβ n).

On the critical set Ξ we have p · eα = 0, so that






∂2Φ

∂x ∂uα
=

∂p

∂uα
= − eα

|x− u| ,

∂2Φ

∂uα∂uβ
=

Aαβ

|x− u| −Bαβ · p.

(7.5)

The vectors eα are independent, thus the first submatrix of the matrix

[
∂2Φ

∂uα ∂xi

∣∣∣∣
∂Φ

∂uα ∂uβ

]

Ξ

has maximal rank. This proves that the distance function is a Morse family.
⊓⊔

Remark 7.1. The Lagrangian submanifold ΛU is contained in the coisotropic
submanifold C defined by Eq. (7.3). This is the eikonal equation of the Eu-
clidean plane. The rays are oriented straight lines, Theorem 6.2. The system
of rays corresponding to ΛU is the set of outgoing straight lines perpendicu-
lar to U . Here, the submanifold U behaves as a source of a system of rays,
according with the theory developed in Sect. 6.8 (where a source was denoted
by Σ). ♦
Remark 7.2. The caustic ΓU of ΛU is described by Eqs. (4.34), Theorem 4.8,
which in the present case become

det[∂αβΦ] = 0, ∂αΦ = 0.

Due to (7.4)2 and to the second Eq. (7.5), these equations are equivalent to





det

[
p · Bαβ −

1

|x− u| Aαβ

]
= 0,

p · eα = 0.

♦ (7.6)
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Let us consider the special case of an oriented surface U in the three-space:
n = 3, r = 2. The first Eq. (7.6) is equivalent to

det

[
Bαβ −

1

(x − u) · n
Aαβ

]
= 0, (7.7)

and the second one to x−u ⊥ U . Because the characteristic equation of the
main curvatures of a surface is

det [Bαβ − λAαβ] = 0,

we find

λ =
1

(x− u) · n
=

1

|x− u| .

This proves the following.

Theorem 7.2. The caustic ΓU of the Lagrangian manifold ΛU generated by
the distance function Φ(x,u) = |x− u| is the set of the centers of curvature
of the surface U .

Corollary 7.1. The only sources U that generate systems of rays without
caustics are the plane surfaces.

Remark 7.3. The caustic of a curve U in the plane (i.e., the set of the centers
of curvature of U according to Theorem 7.2) is tangent to all lines orthogonal
to U . ♦

Remark 7.4. Let us consider the following parametric representation of ΛU

in the three parameters (uα, µ):





p = n(uα) =

e1 × e2

|e1 × e2|
,

x = u(uα) + µp.

(7.8)

The determinant of the second-order derivatives of x is equal to

p · (e1 + µ ∂1p)× (e2 + µ ∂2p) = µ2 p · ∂1p× ∂2p + p · e1 × e2

= µ2 p ·

e1 × e2

|x− u|2 + p · e1 × e2 =

(
1 +

µ2

|x− u|2
)

n · e1 × e2 6= 0.

Hence, the representation (7.8) is an immersion. ♦

The previous results can be adapted to the case of a curve U in the Eu-
clidean plane R2 = (x, y).

Theorem 7.3. If a curve U ∈ R2 = (x, y) is described by parametric equa-
tions x = x(t), y = y(t), then the caustic ΓU is described by parametric
equations
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




x = x(t)− ẋ2 + ẏ2

ẋ ẏ − ẏ ẋ ẏ,

y = y(t) +
ẋ2 + ẏ2

ẋ ẏ − ẏ ẋ ẋ.
(7.9)

Proof. Let us consider the Morse family

G(x; a, t) = a · (x− x(t))

with supplementary variables a ∈ S1 and t ∈ R. By setting

a =

[
cos θ

sin θ

]

we observe that this Morse family is equivalent to

G(x, y; θ, t) = (x− x(t)) cos θ − (y − y(t)) sin θ,

with supplementary variables θ, t ∈ R. The corresponding Lagrangian sub-
manifold is then described by equations






∂G

∂θ
= (y − y(t)) cos θ − (x− x(t)) sin θ = 0,

∂G

∂t
= ẋ cos θ + ẏ sin θ = 0,

(7.10)

and 




px =
∂G

∂x
= cos θ,

py =
∂G

∂y
= sin θ.

(7.11)

Equations (7.10) describe the critical set. The vectorial expressions of Eqs.
(7.10) and (7.11) are

p = a, [x− u(t)]× p = 0, u̇(t) · p = 0.

The last equation means that p ⊥ U . The second equation means that x−u(t)
is parallel to p. Because |p|2 = 1, this equation becomes equivalent to

p = ± x − u(t)

|x − u(t)| .

Thus, the Lagrangian submanifold generated by this function has two con-
nected components. By choosing the + sign we find Eqs. (7.2) of the La-
grangian submanifold ΛU generated by the distance function. The caustic of
this Lagrangian submanifold is described by equation
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det




∂2G

∂θ ∂θ

∂2G

∂θ ∂t

∂2G

∂t ∂θ

∂2G

∂t ∂t


 = 0 (7.12)

together with Eqs. (7.10). From (7.12) we get

[(x− x(t)) cos θ + (y − y(t)) sin θ] (ẋ cos θ + ẏ sin θ)

− (ẋ sin θ − ẏ cos θ)2 = 0.

By combining this equation with the first Eq. (7.10) we obtain the linear
system 




ξ cos θ + η sin θ = X,

ξ sin θ − η cos θ = 0,

where

X =
(ẋ sin θ − ẏ cos θ)2

ẋ sin θ+ ẏ sin θ
, ξ = x− x(t), η = y − y(t).

It follows that

ξ = −
∣∣∣∣∣
X sin θ

0 − cos θ

∣∣∣∣∣ , η = −
∣∣∣∣∣
cos θ X

sin θ 0

∣∣∣∣∣ .

From the second Eq. (7.10) we get cos θ = ρ ẏ and sin θ = − ρ ẋ with 1 =
ρ2 (ẋ2 + ẏ2). Then,

ξ = −

∣∣∣∣∣∣∣∣

ρ
(ẋ2 + ẏ2)2

ẋẏ − ẏẋ −ρẋ

0 −ρẏ

∣∣∣∣∣∣∣∣
= ρ2 (ẋ2 + ẏ2)2

ẋẏ − ẏẋ ẏ =
ẋ2 + ẏ2

ẋẏ − ẏẋ ẏ.

This proves the first Eq. (7.9). The second equation is proved in a similar
way. ⊓⊔

Example 7.1. Caustic of a parabola, F. 7.2. For the parabola y = 1
2 x

2, by
setting x = t, Eqs. (7.9) give the following parametric equations of the caustic:

x = − t3, y = 1 + 3
2 t

2. ♦

Remark 7.5. Instead of the distance function we can consider the function

Φ′(x; u) = 1
2 |x− u|2.

This is the Euclidean version of the world function introduced by Synge for a
generic Riemannian manifold (Synge 1960). By considering this function as
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a generating family we write equations

p =
∂Φ′

∂x
= x − u, 0 =

∂Φ′

∂uα
= − p · eα.

From the first equation it follows that

∂p

∂uα
= − eα.

This shows that Φ′ is a Morse family. This Morse family is now everywhere
differentiable. The corresponding Lagrangian submanifold is defined by

(x, p) ∈ Λ′
U ⇐⇒

{
p = x − u, u ∈ U,
p ⊥ U.

Moreover,

∂2Φ′

∂uβ∂uα
= − ∂βp · eα − p · ∂β · eα = Aαβ − p ·

(
Γ γ

βα eγ + Bβα n
)
.

Hence, under the condition ∂αΦ
′ = 0, which is also in this case equivalent to

p · eα = 0, we find

∂β∂αΦ = Aβα − n · (x − u)Bβα,

and the equation of the caustic is identical to Eq. (7.7). Thus, Γ ′
U = ΓU . Note

that the Lagrangian submanifold Λ′
U is not contained in the submanifold C

of equation p2 = 1. ♦
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Fig. 7.2 Caustic of a parabola as a source of rays
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7.2 From wave optics to geometrical optics

Any component u(x, t) of an electromagnetic potential is a solution of the
wave equation

∂2u

∂t2
−∆U = 0, (7.13)

where ∆ is the Laplace–Beltrami operator. In Cartesian coordinates

∆ =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
.

1 – Let us consider the special class of spherical solutions,

u = u(r, t), r = |x|.

Since ∆u = div(grad(u)), for such a function we have

∆u =
1

r

∂2

∂r2
(ru),

and from (7.13) it follows that

∂2v

∂t2
− ∂2v

∂r2
= 0, v = r u.

The general solution of this last equation is v = f(r + t) + g(r − t), where
f and g are arbitrary (smooth) functions. Solutions of the kind f(r + t) and
g(r − t) are called incoming waves and outgoing waves, respectively. Thus,
the general spherical solution of the wave equation is

u =
f(r + t)

r
+
g(r − t)

r
.

Such a function represents the electromagnetic radiation generated by a point
source (the origin of the coordinates).

2 – Among the spherical solutions let us consider oscillatory outgoing solu-
tions of the kind

uω(r, t) =
c

r
eiω(r−t), ω ∈ R+, c ∈ R.

If the source is located at the point u, then the corresponding solution of this
kind is

u(ω,u) = c(u) e−iωt e
iω|x−u|

|x − u| .

The factor
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I = c(u)
eiω|x−u|

|x− u|
is called the intensity of the radiation.

3 – Let us consider the radiation generated by a surface U made of pointwise
sources. The resulting intensity at any point x is given by the integral

Iω(x) =

∫

U

c(u)
eiω|x−u|

|x− u| du (7.14)

This is a surface integral of the kind

Iω =

∫

U

a(u) eiω Φ(u) du,

called an oscillatory integral. The function Φ(u) is called the phase function.
In the present case

Φ(u) = |x− u|, a(u) =
c(u)

|x− u| .

Regarding this integral we have two fundamental theorems of the station-
ary phase (see, e.g., (Guillemin and Sternberg 1977, 1984) for proofs and
references).

Theorem 7.4. If x is such that duΦ 6= 0 at all points of U , then for all
m ∈ N,

Iω(x) = O(ω−m).

The meaning of this theorem is that for ω → ∞, the radiations of all
sources interfere in such a way that the total intensity is negligible at any
point x.

Theorem 7.5. If x is such that duΦ = 0 at a finite number of points u∗ ∈ U ,
then the following asymptotic formula holds

Iω(x) =

(
2π

ω

)n/2 ∑

∗

a(u∗) eiωΦ(u∗) e
iπ/4signH∗√

det H∗

(
1 + O(ω−1)

)
(7.15)

where n = dimU , H is the Hessian matrix of Φ, and

sign(H) = #(positive eigenvalues)−#(negative eigenvalues).

A first consequence of this theorem is that the non negligible contribution
to the intensity Iω comes only from those points u∗ where duΦ = 0; that is,

∂Φ

∂u
= 0. (7.16)
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In our case Φ(u) = |x−u|, for any chosen x, therefore the points u∗ satisfying
this condition are the points where the line from u∗ to x (i.e., the vector
x − u∗) is orthogonal to U , and this holds for any other point x′ on this
line. This means that for an observer located at any point x on the line
perpendicular to U at the point u∗ only the radiation emitted by the source
u∗ is detected. This line is called the ray issued from u∗. It is parallel to the
vector

p =
∂Φ

∂x
. (7.17)
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Fig. 7.3 The ray issued from a point of a surface

Furthermore, from formula (7.15) we observe that the intensity Iω(x) is
unbounded at the points x where det H∗ = 0; that is,

det

[
∂2Φ

∂uα∂uβ

]

∗

= 0, (7.18)

where (uα) are local parameters of U and ∗ means the evaluation at the point
u∗. These points form the caustic. Equations (7.16), (7.17) and (7.18) are just
the equations of the Lagrangian submanifold ΛU and of the corresponding
caustic generated by the distance function Φ, as shown in the previous section.

7.3 The global Hamilton principal function for the

eikonal equation

Let C ⊂ T ∗Rn be the coisotropic submanifold of codimension 1 defined by
equation

∑
i p

2
i = |p|2 = 1 (7.19)
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This is the eikonal equation for the homogeneous (empty) Euclidean n-space.
The characteristics of C can be found by integrating the Hamilton equations
generated by the Hamiltonian H =

∑
i p

2
i ,

{
ẋi = λpi,

ṗi = 0,

where λ is any function. By choosing λ = 1, we find that: (i) the character-
istics are the straight lines described by parametric equations

{
x = a t− b,

p = a,
a ∈ Sn−1, b ∈ Rn, (7.20)

because p ∈ Sn−1 (the unit sphere) is equivalent to p ∈ C; (ii) the rays are
oriented straight lines in Rn.

It is convenient to choose b orthogonal to a, that is, b tangent to the sphere
Sn−1 at the “point” a. In this way, through Eqs. (7.20), any characteristic of
C is determined by a pair of vectors (a, b), where a ∈ Sn−1 and b is a vector
tangent to the sphere and orthogonal to a. This defines a one-to-one map
from the set MC of the characteristics to the tangent bundle TSn−1, which is
identified with the cotangent bundle T ∗Sn−1. The minus sign in front of b is
chosen in order to get a symplectomorphism between the reduced symplectic
manifold MC and the cotangent bundle T ∗A = T ∗Sn−1 (see below).

Fig. 7.4 Equations (7.20)
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It follows from (7.20) that two pairs (x, p) and (x′, p′), representing two
points of T ∗Q, belong to a same characteristic if and only if





p = p′ = a ∈ Sn−1,

x− x′ || p.
(|| = parallel to). (7.21)
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Thus, the characteristic relation DC is defined by these conditions.

Remark 7.6. With each pair (a,x) ∈ A×Q = Sn−1×Rn we associate a unique
element ((a, b), (x, p)) ∈ T ∗A × T ∗Q belonging to the reduction relation
RC. Indeed, as proved below, RC is a regular Lagrangian submanifold of
T ∗(A×Q). ♦

Remark 7.7. With each pair (x,x′) ∈ Rn × Rn = Q × Q such that x 6= x′

we can associate two elements of DC differing by the sign, ((x, p), (x′, p′))
and ((x,−p), (x′,−p′)). This means that DC is two-folded over the points of
Q×Q out of the diagonal, and over the diagonal (i.e., for x′ = x) it is made
of pairs ((x,−p), (x,−p′)) such that p = p′ ∈ Sn−1. Indeed, as proved below,
DC is a regular (and two-folded) Lagrangian submanifold of T ∗(Q ×Q) out
of the diagonal, and it is singular over the diagonal (Sect. 6.5). ♦

For the construction and the analysis of the characteristic relation DC we
can follow another way: to look for a complete solution of C and use it for
constructing a Hamilton principal function.

Theorem 7.6. A global complete solution of the eikonal equation (7.19)
|p|2 = 1 is the function on Q× Sn−1 defined by

W (x,a) = a · x, a ∈ Sn−1. (7.22)

Proof. The partial differential equation associated with the eikonal equation
(7.19) is

∑

i

(
∂W

∂xi

)2

= 1.

It is integrable by separation of variables. A solution is

W =
∑

i

ai x
i (7.23)

with integration constants such that
∑

i a
2
i = 1. This means a = (ai) ∈ Sn−1.

The function (7.23) is a complete solution because for each p ∈ C there
is a unique Lagrangian submanifold Λa, generated by the functions Wa(x)
containing p. Indeed, the vectorial equation of Λa is p = a. Moreover, the
map π : C → A is a submersion. ⊓⊔

Remark 7.8. Each Lagrangian submanifold Λa corresponds to a system of
parallel rays or plane waves (see Remark 6.9). ♦

Remark 7.9. The function W generates the transpose R⊤ of a symplectic
reduction R ⊂ T ∗A × T ∗Q, A = Sn−1, whose inverse image is C. As a
consequence, (i) the reduced set MC is symplectomorphic to the cotangent
bundle T ∗A = T ∗Sn−1; and (ii) the equations of R⊤ ⊂ T ∗Q× T ∗A are
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




b = − ∂W

∂a
= − (x − x · a a) = − Pa(x),

p =
∂W

∂x
= a.

♦ (7.24)

Remark 7.10. In the first Eq. (7.24) Pa denotes the projection operator onto
the plane orthogonal to a,

Pa(x) = (I − a⊗ a)(x) (I = identity).

Here, we have used the following general property: assume that a hypersurface
A (of codimension 1) in Rn is (locally) described by a vector function a(aα)
depending on n− 1 parameters (surface coordinates) in such a way that the
vectors tangent to A,

eα =
∂a

∂aα
= ∂αa,

are pointwise independent. Let f(a) be any function on A. This function is
locally represented by a function f(aα) of the surface coordinates. The partial
derivatives

bα =
∂f

∂aα
(7.25)

are the covariant components of a vector b = bα eα tangent to the surface,
being bα = Aαβb

β and Aαβ = eα · eβ the components of the first fundamental
form of the surface (see Sect. 7.1). Since bα = b · eα, we can write (7.25) in
the vectorial form

b =
∂f

∂a
. (7.26)

Let f(x) be any (local) extension of f(a) in a neighborhood of the surface.
Its gradient,

∇f =
∂f

∂x
,

is not (in general) a vector tangent to the surface. However, its tangent com-
ponent coincides with the vector (7.26). It follows that

∂f

∂a
= Pn (∇f(a)) ,

where n is a unit vector orthogonal to the surface at the point a, and

Pn = I − n⊗ n

is the projection operator onto the (n − 1)-dimensional plane orthogonal to
n (and tangent to the surface). Note that for A = Sn−1 we have n = a. Note
that Eqs. (7.24) coincide with Eqs. (7.20) for t = x · a. ♦

Theorem 7.7. The generating family S : (Q × Q; Sn−1) → R, with supple-
mentary manifold A = Sn−1, defined by
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S(x,x′; a) = (x− x′) · a, a ∈ Sn−1 (7.27)

is a global Hamilton principal function of the eikonal equation on the Eu-
clidean space Q = Rn.

Proof. The co-reduction relation R⊤ is generated by W (x,a) (Remark 7.9).
The reduction relation R is generated by W⊤(a,x) = −W (x,a). According
to formula (7.22), by composing these generating families we get the gener-
ating family (7.27) of the characteristic relation DC = R⊤ ◦R. ⊓⊔

Remark 7.11. The equations of DC generated by S are

p′ = − ∂S

∂x′
= a,

p =
∂S

∂x
= a,

0 =
∂S

∂a
= Pa(x − x′).

These equations are equivalent (7.21). ♦

Remark 7.12. The reduction relationRC is a regular Lagrangian submanifold,
because it is generated by an ordinary generating function W (without extra
variables). On the contrary, the characteristic relation is singular over the
diagonal so that, in the neighborhood of the diagonal, it is generated by a
generating family. ♦

Theorem 7.8. The generating family S(x,x′; a) = (x − x′) · a is a Morse
family and the caustic of DC is the diagonal of Q×Q.

Proof. Let us consider a parametric representation a(uα) of the sphere in the
n− 1 parameters (uα). The vectors eα = ∂αa are independent and tangent
to the sphere. Since

∂αS = (x − x′) · eα, ∂α = ∂/∂uα,

the critical set Ξ is given by the pair of vectors such that x − x′ ⊥ Sn−1.
Moreover,

∂α∂βS = (x− x′) · ∂βeα = (x − x′) · (Γ γ
βα eγ + Bβα a)

and
∂i∂αS = ei

α, ∂i = ∂/∂xi,

∂i′∂αS = ei
α, ∂i′ = ∂/∂x′

i
,

where eiα are the Cartesian components of the vector eα. Then the matrix

[
∂α∂iS

∣∣∣∣ ∂α∂i′S

∣∣∣∣ ∂α∂βS

]
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has maximal rank everywhere, inasmuch as the submatrix [∂α∂iS] = [eiα] has
maximal rank, with the vectors (eα) independent. Hence, S is a Morse family.
On the critical set,

∂α∂βS = (x− x′) · a Bβα.

The vector x − x′ is parallel to a and on the sphere det[Bβα] 6= 0, thus we
have det

[
∂α∂βS

]
= 0 if and only if x − x′ = 0. ⊓⊔

Theorem 7.9. Outside the diagonal of Q×Q the characteristic relation DC

is the union of two disjoint regular symplectic relations generated by the func-
tions

S±(x,x′) = ± |x− x′| (7.28)

Proof. The symplectic relation generated by S+ is represented by equations

p′ = − ∂S+

∂x′
=

x− x′

|x− x′| , p =
∂S+

∂x
=

x′ − x

|x− x′| .

The requirements (7.21) are fulfilled. With S− we get the opposite pair
(−p,−p′). ⊓⊔

Remark 7.13. According to Theorem 4.11 (see also Remark 6.19), the global
Hamilton principal function (7.27) is skew-symmetric in (x,x′). Instead, the
generating functions (7.28) S± are symmetric. This is not a contradiction,
because these functions are “nonglobal” Hamilton principal functions: each
generates only a branch of the symplectic relation DC . ♦

Up to now, it seems that in the literature the concept of a global
Hamilton principal function for the eikonal equation does not exists,
except in the form given by Theorem 7.9 which, however, excludes
the case of two coincident points: x = x′. It should therefore be em-
phasized that with the concept of generating family, as done through
Theorems 7.7 and 7.8, it is possible to give a comprehensive defini-
tion of this function, which plays a basic role in analytical mechanics,
geometrical optics, and other branches of mathematical physics.

7.4 Generating families of systems of rays

The Hamilton principal function (7.27) is the basis for an algorithm that
allows the analysis of the formation and evolution of systems of rays in the
Euclidean spaces. This algorithm is explained, by elementary examples, in
the following subsections.
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The majority of these examples involve the Euclidean plane, where things
are easier to handle, but the reader can extend them to three or more dimen-
sions with a little effort. The advantage of the dimension 2 is basically this:
the Hamilton principal function (7.27) is reducible to the Morse family

S(x0,xI ; θ) = (xO − xI) cos θ + (yO − yI) sin θ,

with a single parameter θ ∈ R.
Let us recall Eqs. (6.31) and (6.44) defining the mirror-relation and the

lens-relation:

MΣ = DC ◦ ∆̂Σ, LΣ,F = DC ◦ ∆̂Σ,F . (7.29)

For a Euclidean space, the respective generating families can be obtained,
by a simple change of notation, from the general formulae (6.33) of Theorem
6.10 and (6.47) of Theorem 6.12. They are:

GMΣ
(xO ,xI ; a) = (xO − xI) · a + λαΣα(xI), (7.30)

and

GMΣ
(xO ,xI ; a) = (xO − xI) · a + λαΣα(xI) + F (xI). (7.31)

In these formulae the submanifold Σ ⊂ Rn, defined by equations Σα(x) = 0,
represents the mirror or the lens. The function F (x) over Σ represents the
optical characteristics of the lens.

Furthermore, because S(xO,xI ; a) = (xO − xI) · a is a Morse family
(Theorem 7.8) we can apply Theorems 6.11 and 6.13 and state the following.

Theorem 7.10. Both the generating families (7.30) and (7.31) are Morse
families.

Consequently, we have the following.

Theorem 7.11. In the Euclidean space Rn the mirror-relations and the lens-
relations are Lagrangian submanifolds.

7.4.1 System of rays generated by a hypersurface

Let Σ ⊂ Rn be an r-dimensional regular surface described by n− s indepen-
dent equations Σα(x) = 0. The canonical lift Σ̂ is generated by the Morse
family, see Eq. (5.4),

GΣ(x; λ) = λaΣa(x), λ = (λa) ∈ Rn−s. (7.32)

The system of rays outcoming from Σ is represented (see Sect. 7.1) by the
Morse family
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G1(x; u) = |x− u|, u ∈ Σ. (7.33)

Due to Theorem 6.9, the system of outgoing and incoming rays is described
by the generating family

G2(x; x′,a,λ) = (x − x′) · a + λαΣα(x′), (7.34)

with supplementary variables x′ ∈ Rn, a ∈ Sn−1, λ = (λa) ∈ Rn−s. This fol-
lows from the composition of GU (7.32) with the Hamilton principal function
(7.27). It is remarkable that this is always a Morse family, whatever Σ (see
Remark 6.24).

7.4.2 System of rays generated by a point

If the surface Σ reduces to a point x0, then Σ̂ = x̂0 is the fiber over this
point and the generating families (7.32), (7.33), and (7.34) become

Gx0 (x; λ) = λ · (x− x0),

G1(x) = |x− x0|,

G2(x; x′,a,λ) = (x − x′) · a + λ · (x′ − x0), a ∈ Sn−1, λ ∈ Rn,

(7.35)

respectively. However, one of the equations of the critical set of G2 is

0 = ∂G2/∂x
′ = λ− a.

Thus, the generating family G2 reduces to (we use the same symbol)

G2(x; a) = (x − x0) · a, a ∈ Sn−1 (7.36)

Note that the third generating family in (7.35) describes only outgoing rays,
whereas the family (7.36) describes both incoming and outgoing rays.

7.4.3 Mirrors

Let us recall from Example 6.12 that in the plane the mirror-relation MΣ

and the output Lagrangian set ΛO = MΣ ◦ ΛI are generated by

GMΣ
(xO ,xI ; θ) = (xO − xI) cos θ + (yO − yI) sin θ + λΣ(xI). (7.37)

and
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G(x; xI , θ, ζ) = (x−xI) cos θ+ (y− yI) sin θ+λΣ(xI) +GI(xI ; ζ), (7.38)

respectively. The equations of ΛO are






0 =
∂G

∂xI
= − cos θ + λ

∂Σ

∂xI
+
∂GI

∂xI
,

0 =
∂G

∂yI
= − sin θ + λ

∂Σ

∂yI
+
∂GI

∂yI
,

0 =
∂G

∂θ
= −(x− xI) sin θ+ (y − yI) cos θ,

0 =
∂G

∂λ
= Σ(xI),

0 =
∂G

∂ζκ
=
∂GI

∂ζκ
= fκ(xI , ζ),






px =
∂G

∂x
= cos θ,

py =
∂G

∂y
= sin θ,

(7.39)
where the first group represents the critical set.

7.4.4 The coffee cup

If you hold in your hand a cup of Italian “espresso” and in the room
there is a sufficiently concentrated source of light, you can observe
on the surface of your coffee, of a nice brown color, a strange double
curve drawn by the light, like this:
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Let a mirror be a semicircle of radius R, centered at the origin, in the
positive half-plane x > 0. Let the incoming rays be parallel to the x-axis and
with the same orientation, represented by the unit vector pI . In this case,

Σ(xI ) = 1
2 (x2

I + y2
I −R2), GI = xI ,
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and (7.39) become






cos θ = λxI + 1,

sin θ = λ yI ,

x2
I + y2

I = R2,

0 = −(x− xI) sin θ + (y − yI ) cos θ,

{
px = cos θ,

py = sin θ,
(7.40)

In order to find the reflected Lagrangian set ΛO
1 we have to solve these

equations with respect to (x, y, px, py), in the sense that (x, y, px, py) ∈ ΛO if
and only if there are values of (xI , yI, λ, θ) such that (x, y, px, py; xI , yI , λ, θ)
is a solution of (7.40).
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Fig. 7.5 Parallel rays reflected by a circular mirror

Theorem 7.12. The reflected Lagrangian set ΛO is a Lagrangian submani-
fold described by the parametric equations

{
x = R cos φ+ u (sin2 φ− cos2 φ),

y = R sinφ− 2 u sinφ cosφ,

{
px = sin2 φ− cos2 φ,

py = −2 sinφ cos φ,
(7.41)

with parameters u and φ.

Proof. 1. The first two (7.40) imply 1 = (λxI + 1)2 + λ2 y2
I , that is, λ2 R2 +

2λxI = 0. The two roots are

1 We disregard here the fact that a ray can be multireflected by the mirror. See the
figure.
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λ = 0, λ = −2 xI

R2
.

For λ = 0: {
cos θ = 1,

sin θ = 0,

{
px = 1,

py = 0.

This solution gives ΛO = ΛI in accordance with Remark 6.25. The relevant
root is then

λ = − 2 xI

R2
,

for which the first two (7.40) give

px = cos θ = 1− 2 x2
I

R2
=
y2

I − x2
I

R2
= sin2 φ− cos2 φ,

py = sin θ = −2 xI yI

R2
= −2 sinφ cos φ,

and the equations of the second group (7.41) are proved.
2. The third (7.40) allows us to write

xI = R cosφ, yI = R sinφ. (7.42)

3. The fourth equation shows that p is parallel to the vector x − xI . Then
the point x belongs to the line

x = xI + up ⇐⇒





x = R cos φ+ u cos θ,

y = R sinφ+ u sin θ.

⇐⇒





x = R cos φ+ u (sin2 φ− cos2 φ),

y = R sinφ− 2 u sinφ cos φ.

and the equations of the first group (7.41) are proved.
4. In Sect. 4.5.1 we have seen that the parametric equations represent an
immersion if and only if the matrix (4.15)

[
∂qi

∂uk

∣∣∣∣
∂pi

∂uk

]

has maximal rank. In the present case this matrix is




∂x

∂u

∂y

∂u

∂px

∂u

∂py

∂u

∂x

∂φ

∂y

∂φ

∂px

∂φ

∂py

∂φ


 , (7.43)
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where, due to Eqs. (7.41),





∂x

∂u
= sin2 φ− cos2 φ = px,

∂x

∂φ
= −R sinφ+ 4 u sinφ cos φ = −R sinφ− 2 u py,

∂y

∂u
= − 2 sinφ cosφ = py,

∂y

∂φ
= R cosφ+ 2 u (sin2 φ− cos2 φ) = R cos φ+ 2 u px,

(7.44)






∂px

∂u
= 0,

∂px

∂φ
= 4 sinφ cos φ = − 2 py,






∂py

∂u
= 0,

∂py

∂φ
= 2 (sin2 φ− cos2 φ) = 2 px.

Hence, the matrix (7.43) becomes




px py 0 0

−R sinφ− 2 u py R cosφ+ 2 u px −2 py 2 px



 . (7.45)

Since

det




px 0

−R sinφ− 2 u py 2 px


 = 2 p2

x,

det




py 0

R cos φ+ 2 u px −2 py



 = −2 p2
y,

and p2
x + p2

y = 1, the matrix (7.45) has maximal rank everywhere on ΛO. ⊓⊔

Theorem 7.13. The caustic of ΛO is represented by the parametric equations

x = R cosφ (1
2 + sin2 φ), y = R sin3 φ (7.46)

with −π/2 < φ < π/2.

Proof. We apply the general Theorem 4.2 to this case: the equation of the
caustic is

det

[
∂qi

∂uk

]

ΛO

= det




∂x

∂u

∂y

∂u

∂x

∂φ

∂y

∂φ




ΛO

= 0. (7.47)

We have already seen in (7.44) that on ΛO,
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∂x

∂u
= px,

∂x

∂φ
= −R sinφ− 2 u py,

∂y

∂u
= py,

∂y

∂φ
= R cosφ+ 2 u px

Then (7.47) becomes

R (cos φ px + sinφ py) + 2 u = 0. (7.48)

But on ΛO we have

cosφ px + sinφ py = cos φ (sin2 φ− cos2 φ)− 2 sin2 φ cosφ = − cos φ.

and (7.48) gives 2u = R cosφ. By inserting this result into the first Eqs.
(7.41) we obtain the parametric equations (7.46). About the range of the
parameter φ we observe that, due to (7.42), the limitation π/2 < φ < 3π/2
implies xI < 0, whereas the points of reflection (xI , yI) lie in the half-plane
X > 0. ⊓⊔

If we plot Eqs. (7.46) we see this:
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Fig. 7.6 Caustic of the coffee cup

7.4.5 Concave and convex ideal lenses

A generating family of the lens-relation has been given in (6.47), Theorem
6.12. In the Euclidean space Rn it can be written in the form

GL(Σ,F )(xO,xI ; a,λ) = a · (xO − xI) + F (xI) + λa Σa(xI), (7.49)
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with a2 = 1. In the Euclidean plane it becomes

GL(Σ,F )(xO ,xI ; θ, λ)

= (xO − xI) cos θ+ (yO − yI ) sin θ + F (xI) + λΣ(xI)
(7.50)

where the lens-curve is given by the implicit equation Σ(x) = 0.
Let us examine an application of this generating family.

Assume that:
1. The lens is the y-axis: Σ(x) = x.
2. The incoming rays are parallel to the x-axis. The incoming Lagrangian

set ΛI is then described by the Morse family GI(x) = x.

Problem: find the characteristic function F (y) on Σ such that the lens-
relation transforms the incoming parallel rays to a system of rays focused at
a fixed point (c, 0) on the x-axis.

The generating family of the lens-relation (7.50) is now

GL(Σ,F )(xO,xI ; θ, λ) =

= (xO − xI) cos θ + (yO − yI) sin θ + F (yI) + λxI,
(7.51)

and its composition withGI(x) = x gives the generating family of the output
Lagrangian set ΛO:

GO(x; xI , θ, λ) =

= (x− xI) cos θ + (y − yI) sin θ + F (yI) + (λ + 1)xI .
(7.52)

The equations of its critical set are:

0 =
∂GO

∂xI
= λ+ 1− cos θ,

0 =
∂GO

∂yI
= F ′(yI)− sin θ,

0 =
∂GO

∂θ
= (y − yI) cos θ − (x− xI) sin θ,

0 =
∂GO

∂λ
= xI .

They allow us to reduce the generating familyGO to the family (for simplicity
we put yI = u)

G(x, y; θ, u) = x cos θ + (y − u) sin θ + F (u) (7.53)

This is a Morse family, ΛO is a Lagrangian submanifold for px = cos θ 6= 0
or for px = cos θ = 0 and F ′′(v) 6= 0. Indeed, the matrix
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


∂2G

∂θ ∂θ

∂2G

∂θ ∂u

∂2G

∂θ ∂x

∂2G

∂θ ∂y

∂2G

∂u∂θ

∂2G

∂u∂u

∂2G

∂u∂x

∂2G

∂u∂y




=

[ − x cos θ − (y − u) sin θ − cos θ − sin θ cos θ

− cos θ F ′′(u) 0 0

]
(7.54)

has maximal rank for px = cos θ 6= 0. For px = cos θ = 0 it becomes

[±(y − u) 0 ±1 0

0 F ′′(u) 0 0

]
,

and the rank is maximal only for F ′′(u) 6= 0. Since (7.53) is a Morse family,
we can apply Theorem 4.8 for computing the caustic of ΛO. The first equation
is obtained by putting to zero the determinant of the first square submatrix
(7.54),

det




∂2G

∂θ ∂θ

∂2G

∂θ ∂u

∂2G

∂u∂θ

∂2G

∂u∂u


 = −F ′′(u) [x cos θ + (y − u) sin θ] − cos2 θ = 0.

The remaining equations are the equations of the critical set of G:

F ′(u) = sin θ, x sin θ − (y − u) cos θ = 0.

For F ′′(u) 6= 0 we get a linear system in (x, y− u),





x cos θ + (y − u) sin θ = − cos2 θ

F ′′(u)
,

x sin θ − (y − u) cos θ = 0,

whose solution is

x = − cos3 θ

F ′′(u)
, y − u = − sin θ cos2 θ

F ′′(u)
.

From F ′(u) = sin θ and px = cos θ ≥ 0 it follows that cos θ = 1 − F ′2(u).
Then we have proved the following.

Theorem 7.14. If the ideal lens Σ coincides with the y-axis and the incom-
ing rays are parallel to the x-axis, then the caustic of the outgoing system of
rays is given by the parametric equations
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x = −
[
1− F ′2(u)

]3/2

F ′′(u)
, y = u− F ′(u)

[
1− F ′2(u)

]

F ′′(u)
(7.55)

where F (u) is the characteristic function of the lens.

The caustic reduces the single point (c, 0) when

c = −
[
1− F ′2(u)

]3/2

F ′′(u)
, 0 = u− F ′(u)

[
1− F ′2(u)

]

F ′′(u)
. (7.56)

Due to the first equation, the second equation gives −u
[
1− F ′2(u)

]1/2
=

c F ′(u), and by taking the square of both sides we find

F ′2(u) =
u2

c2 + u2
, that is, F ′(u) = ± u√

c2 + u2
.

Hence, up to an inessential additive constant, we find two solutions of our
problem (recall that u = y):

F (y) = ±
√
c2 + y2 (7.57)

Since

F ′′(u) = ± c2

(c2 + u2)3/2
,

due to the first Eq. (7.56), we conclude that:

• F (y) =
√
c2 + y2 =⇒ c < 0. This is the case of a concave lens:
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Fig. 7.7 Concave ideal lens
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• F (y) = −
√
c2 + y2 =⇒ c > 0. This is the case of a convex lens:
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Fig. 7.8 Convex ideal lens

The corresponding lens-relations are generated by (see Eq. (7.53)):

G(x, y; θ, u) = x cos θ + (y − u) sin θ ±
√
c2 + u2 (7.58)

Remark 7.14. In this case the characteristic function F (y) has an interesting
meaning: it is, up to the sign, the distance from the focus (c, 0) to the point
of intersection of an incoming ray with the lens Σ. ♦

7.5 Hamilton principal function on a space

of constant negative curvature

In the space T ∗Rn = {(x, p)} = {(xa, pa)} we consider the modified eikonal
equation

|p|2 + (p · x)2 = 1,
∑

a p
2
a + (

∑
a x

apa)
2

= 1. (7.59)

This can be interpreted as the eikonal equation associated with the modified
contravariant metric tensor

H = G + x ⊗ x, Hab = δab + xaxb, (7.60)

where G = [δab] is the natural metric tensor.

Theorem 7.15. The eikonal equation (7.59) admits a global complete solu-
tion W : Q× A = Rn × Sn−1 → R defined by
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W (x,a) = log
(
a · x +

√
1 + (a · x)2

)
= arcsinh(a · x), (7.61)

with a ∈ Sn−1.

Proof. The vector

p =



p1

...
pn


 =

∂W

∂x
=

a√
1 + (a · x)2

(7.62)

satisfies Eq. (7.59) for any a. From this equation we derive






p · x =
x · a√

1 + (x · a)2
,

(p · x)2 =
(x · a)2

1 + (x · a)2
< 1,






(x · a)2 =
(p · x)2

1− (p · x)2
,

1 + (x · a)2 =
1

1− (p · x)2
.

Then the map π : C → A : p 7→ a is given by

a =
p√

1− (p · x)2
.

This is a submersion. ⊓⊔
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Fig. 7.9 Remark 7.15

Remark 7.15. The symplectic reduction R ⊂ T ∗Sn−1 × T ∗Rn corresponding
to this complete solution is described by Eq. (7.62) together with equation

7.5 Hamilton principal function on a space of constant negative curvature
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b = − ∂W

∂a
= − 1√

1 + (a · x)2
Pa(x) =

x · a a− x√
1 + (a · x)2

. (7.63)

Note that b · a = 0. From this formula it follows that the ray determined by
the pair of orthogonal vectors (a, b) is the hyperbola on the plane (a, b) with
center at the origin x = 0, asymptotes determined by the vectors b± a and
vertex at the point x = −b.

The vector v = (va) defined by va = Hab pa is tangent to the ray. It follows
from (7.60) and (7.62) that

v = p + x · p x =
a + a · x x√
1 + (a · x)2

. ♦

From Theorem 7.15 (see also Remark 6.19) we derive the following.

Theorem 7.16. The function

S(x,x′; a) = W (x,a)−W (x′,a)

= log
a · x +

√
1 + (a · x)2

a · x′ +
√

1 + (a · x′)2

= arcsinh(x · a)− arcsinh(x′
· a),

with a ∈ Sn−1, is a global Hamilton principal function of the eikonal equation
(7.59). It is a Morse family.

Remark 7.16. The elements of the inverse matrix
[
hab

]
of

[
Hab

]
(i.e., the

covariant components of the modified metric tensor (7.60)) are

hab = δab −
xa xb

1 + r2
, r2 = x · x =

∑
a(xa)2. (7.64)

In this new metric the scalar product of two vectors u = (ua) and v = (va)
is given by

h(u, v) = hab u
avb = u · v − x · u x · v

1 + r2
.

This metric is invariant under Euclidean rotations around the origin x = 0.
Thus, the origin is a distinguished point. ♦

Theorem 7.17. The metric h = (hab) has constant negative curvature.

Proof. Let us consider Rn ×R endowed with the canonical basis

c1 =




1
...
0

0


 , . . . cn =




0
...
1

0


 , cn+1 = t =




0
...
0

1


 ,
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and the Minkowskian metric

m(u, v) =

n∑

a=1

uava − un+1vn+1.

Let us consider the set Hn of the unit time-like vectors q, m(q, q) = − 1,
pointing to the “future”, that is, such that m(q, t) < 0. It is known that
Hn is a proper Riemannian manifold with constant negative curvature (see,
for instance, (Wolf 1984). Taking (xa) = (x1, . . . , xn) as parameters, this
hyperboloid is described by the parametric equation

q = xa ca +
√

1 +
∑

a(xa)2 t.

The corresponding tangent frame (ea) is then defined by

ea = ∂aq = ca +
xa

z
t,

being

z =
√

1 +
∑

a(xa)2 =
√

1 + r2.

It follows that the components of the induced metric tensor (the first funda-
mental form) of Hn are

m(ea, eb) = m(ca, cb)− xa xb

z2
= δab −

1

1 + r2
xaxb.

This is the metric (7.64). ⊓⊔

Fig. 7.10 Wave fronts
and rays in R2 endowed
with a metric of constant
negative curvature
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Remark 7.17. Note that q is a unit vector orthogonal to Hn and that
∂bea · q = Bba · q = −gab. For simplicity, in the following we consider the
case n = 2. All results can be easily extended to any dimension n. ♦

Remark 7.18. Let us consider for instance a = c1 (the first vector of the
canonical basis of R2). In this case (7.63) becomes

b =
x c1 − x√

1 + x2
= − y c2√

1 + x2
.

By setting b = b c2 we find

b
√

1 + x2 = − y. (7.65)

For b 6= 0 it follows that
y2

b2
− x2 = 1.

This is the equation of the system of rays associated with the Lagrangian
submanifold Λc1 generated by the function

G(x) = log
(
x+

√
1 + x2

)
.

Equation (7.65) describes a family of hyperbolas centered at the origin of
R2 and vertices the points (0,±b). For b = 0 Eq. (7.65) reduces to y = 0,
the x-axis is a ray. The corresponding wave fronts, described by equations
G = const. (i.e., y = const.), are the straight lines parallel to the y-axis (see
Fig. 7.10). ♦

Remark 7.19. Let n be a unit space-like vector in the Minkowski three-space,
m(n,n) = 1. These vectors form the one-folded rotational hyperboloid which
we denote by K2; it is diffeomorphic to a cylinder; see Sect. 10.3. Let Πn be
the 2-plane passing through the origin and orthogonal to n, described by
equation m(q,n) = 0. It can be shown that:

(i) The geodesics of H2 are the intersections of H2 with the planes Πn of
the kind illustrated in Fig. 7.11.

(ii) The geodesics project onto the hyperbolas of the two-plane (x, y) de-
scribed in the preceding remark. Hence, the metric properties of the plane
(x, y) endowed with the metric Hab can be deduced by those of H2 by means
of the Cartesian projection (x, y, z) 7→ (x, y); see Fig. 7.12 and, for instance,
(Petersen 1998). The geodesics in the plane (x, y) are the projections of the
intersections of H2 with the planes in R3 passing through the origin. We re-
call that H2 can also be reduced to the Lobachevskij disk D2 by means of the
stereographic projection from the origin to the plane z = 1; Fig. 7.13.
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Fig. 7.11 The hyperboloids H2 and K2.

(iii) The systems of rays of the kind described in Remark 7.19 are obtained
by considering the unit vectors

n(ξ,u) = cosh ξ u + sinhξ c3,

where ξ ∈ R is a parameter and u is a unit vector orthogonal to a in the plane
(x, y). The space-like unit vectors p associated with this family of geodesics
(parametrized by ξ) form a section Λu of T ∗H2. If we take u = − c2, then
with respect to the frame (7.65) the components of these covectors are

py = 0, px =
1

z
cosh ξ =

1√
1 + x2

.

Since ∫
1√

1 + x2
= log

(
x+

√
1 + x2

)
= arcsinh(x),

the set Λu is a Lagrangian submanifold generated by the function

G(x, y) = log

(
x+

√
1 + x2

)
= arcsinh(x).

Since x = x · c1, by replacing c1 by any unit vector u we get the complete so-
lution (7.61). This is an example of a complete solution of a Hamilton–Jacobi
equation obtained by means of a geometrical process and not by separation of
variables. Indeed, the Hamilton–Jacobi equation (7.59) is integrable by sep-
aration of variables in the polar coordinates (ρ, θ), with θ ignorable, because
the metric of H2 is invariant under rotations around the z-axis. Other sys-
tems of separable coordinates are known, which are associated with pairs of

7.5 Hamilton principal function on a space of constant negative curvature
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rotations around time-like vectors. However, these complete separated solu-
tions are not defined on the whole plane (for the general theory of separation
of variables in spaces with constant curvature see (Kalnins 1986); for the
separability in H2 see (Kalnins et al. 1997, 1999). In Chap. 8 it is shown that
the eikonal equation on the hyperboloid H2 admits another global principal
Hamilton function S, which does not come from a complete integral W and
is not a Morse family. ♦
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Fig. 7.12 Cartesian projection of H2 onto R2
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Chapter 8

Control of Static Systems

Abstract What we have done until now was created as part of geometrical
optics and analytical mechanics. But, surprisingly, it can be applied to other
topics of mathematical physics; for instance, the study of the behavior of
static systems, purely mechanical as well as thermodynamical.

8.1 Control relations

If a manifold Q represents the configuration space of a mechanical system,
then any tangent vector v ∈ TQ represents a virtual velocity or a virtual
displacement, and any covector f ∈ T ∗Q represents a force. The evaluation
〈v, f〉 represents the virtual power or the virtual work produced by the
force f in the virtual velocity (or displacement) v. If (qi, δqi) are the fibered
coordinates on TQ associated with coordinates (qi) on Q, then the symbols
δqi represent the components of the tangent vectors v, so that the expression
in coordinates of the virtual work is

〈v, f〉 = fi δq
i, (8.1)

with fi the components of the force f .

Definition 8.1. A control relation is a relation R : Q← Q̄ of the form

R = graph(φ) ∩ (Q× Σ) (8.2)

where Σ ⊂ Q̄ is a submanifold and φ : Q̄→ Q is a fibration. We call

• Q the control manifold,

• Q̄ the extended configuration manifold,

• φ the control fibration,

, Universitext,S. Benenti, Hamiltonian Structures and Generating Families
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154 8 Control of Static Systems

• Σ the constraint,

of the control relation. ♥
Hence, a control relation is the graph of the restriction to a constraint Σ

of a fibration φ : Q̄→ Q. Note that R may not be a smooth relation.

Definition 8.2. Two virtual displacements v ∈ TQ and v̄ ∈ TQ̄ are com-
patible with respect to the control relation R if v̄ ∈ TΣ and Tφ(v̄) = v.
♥
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Fig. 8.1 Control relation

The fibration φ represents the existence of hidden or internal variables
in the extended configuration manifold Q̄. These variables are not con-
trolled by the “little man” on Q and may assume any value belonging
to the constraint Σ. Control relations arise in control problems of
static mechanical systems, in catastrophe theory, and in thermody-
namics.

There is a useful equivalent definition of control relation:

Theorem 8.1. Equation (8.2) is equivalent to

R = Φ ◦∆Σ (8.3)

where Φ = graph(φ), and ∆Σ ⊂ Q̄× Q̄ is the diagonal of Σ ×Σ, the identity
relation on Σ.
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Proof. Equation (8.2) is equivalent to

R =
{

(q, q̄) ∈ Q× Q̄ | q = φ(q̄), q̄ ∈ Σ
}
.

Equation (8.3) is equivalent to

R = Φ ◦∆Σ =
{

(q, q̄) ∈ Q× Q̄ such that there exists q̄′ ∈ Q̄

with q = φ(q̄′) and (q̄, q̄′) ∈ ∆Σ

}

=
{

(q, q̄) ∈ Q× Q̄ such that there exists q̄′ ∈ Q̄

with q = φ(q̄′) and q̄ = q̄′ ∈ Σ
}

= {(q, q̄) ∈ Q × Q̄ with q = φ(q̄′) and q̄ = q̄′ ∈ Σ}. ⊓⊔

Definition 8.3. The canonical lift of a control relation R = Φ ◦ ∆Σ is the
composition

R̂ = Φ̂ ◦ ∆̂Σ ⊆ T ∗Q× T ∗Q̄ (8.4)

of the canonical lifts of ∆Σ and of Φ. ♥

Theorem 8.2. Equation (8.4) is equivalent to

R̂ =
{

(f, f̄) ∈ T ∗Q× T ∗Q̄ such that πQ × πQ̄(f, f̄) = (q, q̄) ∈ R,

and

〈Tφ(v̄), f〉 = 〈v̄, f̄〉, for all v̄ ∈ Tq̄Σ
}

(8.5)

Proof. By the definition of canonical lift of a smooth relation we have:

Φ̂ =
{

(f, f̄) ∈ T ∗Q× T ∗Q̄ such that (πQ × πQ̄)(f, f̄) = (q, q̄) ∈ Φ,

and 〈v, f〉 = 〈v̄, f̄〉, for all (v, v̄) ∈ T(q,q̄)Φ}

= {(f, f̄) ∈ T ∗Q× T ∗Q̄ such that πQ × πQ̄(f, f̄) = (q, q̄) ∈ Φ,

and 〈Tφ(v̄), f〉 = 〈v̄, f̄〉, for all v̄ ∈ Tq̄Σ},

and

∆̂Σ = {(f̄ , f̄ ′) ∈ T ∗Q̄× T ∗Q̄ such that πQ̄(f̄) = πQ̄(f̄ ′) = q̄ ∈ Σ,

and 〈v̄, f̄ − f̄ ′〉 = 0, for all v̄ ∈ Tq̄Σ}.

By applying the composition rule of relations we get
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Φ̂ ◦ ∆̂Σ =
{

(f, f̄) ∈ T ∗Q× T ∗Q̄ such that there exists a f̄ ′ ∈ T ∗Q̄

with (f, f̄ ′) ∈ Φ̂, (f̄ ′, f̄) ∈ ∆̂Σ

}
.

That is,

Φ̂ ◦ ∆̂Σ =
{

(f, f̄) ∈ T ∗Q× T ∗Q̄ such that there exists a f̄ ′ ∈ T ∗Q̄

with:

f ∈ T ∗
q Q, f̄

′ ∈ T ∗
q̄ Q̄, q = φ(q̄), with q̄ ∈ Σ,

〈Tφ(v̄), f〉 = 〈v̄, f̄ ′〉, for all v̄ ∈ Tq̄Q̄, with q̄ = πQ̄(f̄),

and 〈v̄, f̄ − f̄ ′〉 = 0, for all v̄ ∈ Tq̄Σ
}
.

(8.6)

From these last conditions it follows that (q, q̄) ∈ R and 〈Tφ(v̄), f〉 = 〈v̄, f̄〉
for all v̄ ∈ Tq̄Σ. This shows that Φ̂ ◦ ∆̂Σ ⊆ R̂ as defined in (8.5). Conversely,

if (f, f̄) ∈ R̂, then the last conditions (8.6) are satisfied for f̄ ′ = f̄ . Thus,

Φ̂ ◦ ∆̂Σ ⊇ R̂. ⊓⊔

Remark 8.1. Formula (8.5) shows that a pair of forces (f, f̄) belongs to the

relation R̂ if and only if these two covectors are based at a pair (q, q̄) of points
belonging to the relation R and such that

〈Tφ(v̄), f〉 = 〈v̄, f̄〉, (8.7)

for any virtual displacement v̄ tangent to the constraint Σ. This means that
〈v, f〉 = 〈v̄, f̄〉 for two compatible virtual displacements (v, v̄). ♦

We use the above-given definitions and theorems for stating the following
two axioms:

1 The system with configuration manifold Q̄ remains in static equi-
librium under forces f̄ ∈ T ∗Q̄ belonging to a Lagrangian submanifold
Ē ⊂ T ∗Q̄ generated by a function V̄ : Q̄ → R, called the extended
potential energy:

Ē = dV̄ (Q̄) (8.8)

Remark 8.2. We could consider the general case of a generating family V̄ : Q̄×
Ū → R. However, in all the examples illustrated below, the potential energy
V̄ is an ordinary generating function defined on Q̄, without supplementary
variables. ♦



8.1 Control relations 157

2 The system with configuration manifold Q̄ remains in static equi-
librium under the action of an “external device”, represented by the
control relation R, only with forces f belonging to a certain set of equi-
librium states E ⊆ T ∗Q, also called the constitutive set of the system,
defined by

E = R̂ ◦ E (8.9)

Remark 8.3. Equation (8.9) means that

f ∈ E ⇐⇒ thetere exists a f̄ ∈ Ē such that (f, f̄) ∈ R̂. (8.10)

Then (8.10) and (8.7) show that f ∈ E if and only if for all compatible virtual
displacements (v, v̄) we have

〈v, f〉 = 〈v̄, dV̄ 〉 ♦ (8.11)

We analyze the local coordinate representations of the above concepts by
using generating families.

Let φ be (locally) represented by equations qi = φi(q̄α) and Σ by indepen-
dent equations Σa(q̄α) = 0. Thus, in accordance with Eq. (8.2), the control
relation R is described by equations





qi − φi(q̄α) = 0,

Σa(q̄α) = 0.
(8.12)

Theorem 8.3. If the control relation R is locally described by equations
(8.12), then its canonical lift R̂ is locally described by the generating fam-
ily

GR(qi, q̄α; λi, µ
a) = λi

(
qi − φi(q̄α)

)
+ µaΣa(q̄α) (8.13)

with Lagrangian multipliers (λi, µ
a).

Proof. The generating families of the canonical lifts Φ̂ and ∆̂Σ are, respec-
tively, 




GΦ(qi, q̄α; λi) = λi

(
qi − φi(q̄α)

)
,

GΣ(q̄α
0 , q̄

α; µa, να) = µa Σa(q̄α) + να(q̄α
0 − q̄α).

Here, (λi, µ
a, να) are supplementary variables. By the composition rule of the

generating families we get the generating family GR of Φ̂ ◦ ∆̂Σ,

GR(qi, q̄α; q̄α
0 , λi, µ

a, να) = λi

(
qi − φi(q̄α

0 )
)

+ µa Σa(q̄α
0 ) + να(q̄α

0 − q̄α),
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with supplementary variables (q̄α
o , λi, µ

a, να). Since R̂ is then described by
equation

fi dq
i − f̄α dq̄

α = dGR, (8.14)

the vanishing of the coefficients of dνα implies q̄α
0 = q̄α. Thus, the generating

family is reducible to (8.13). ⊓⊔

Remark 8.4. Equation (8.14) with GR defined by formula (8.13) is equivalent
to the equations obtained by putting to zero the coefficients of (dqi, dq̄α, dλi, dµ

a),






fi = λi,

f̄α = λi
∂φi

∂q̄α
− µa ∂Σa

∂q̄α
,

qi = φi(q̄α),

Σa(q̄α) = 0.

By eliminating the Lagrangian multipliers λi we get equations






f̄α = fi
∂φi

∂q̄α
− µa ∂Σa

∂q̄α
,

qi = φi(q̄α),

Σa(q̄α) = 0.

These are the equations describing R̂. The last two equations are the equa-
tions of R (fibration and constraint, respectively). The first equation is in
accordance with (8.6). Indeed, if v̄ = (δq̄α) and v = (δqi), then






v̄ ∈ TΣ ⇐⇒ ∂Σa

∂q̄α
δq̄α = 0,

v = Tφ(v̄) ⇐⇒ δqi =
∂φi

∂q̄α
δq̄α. ♦

By applying the composition rule of generating families, we can prove the
following.

Theorem 8.4. The constitutive set E = R̂ ◦ Ē is the Lagrangian set in T ∗Q
(possibly a Lagrangian submanifold) generated by the composite generating
family

V = GR ⊕ V̄ (8.15)

It is described by equation

fi dq
i = d(GR + V̄ ) (8.16)
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equivalent to the four equations

fi =
∂GR

∂qi
, 0 =

∂GR

∂λi
, i.e. qi = φi(q̄α),

0 =
∂GR

∂q̄α
+
∂V̄

∂q̄α
, 0 =

∂GR

∂µa
, i.e. Σa(q̄α) = 0.

(8.17)

If the potential energy V̄ depends on supplementary variables u, then to
this system we add equation 0 = ∂V̄ /∂u.

Remark 8.5. With any smooth function F : Q → R we associate a function
δF on the tangent bundle TQ defined by

δF (v) = 〈v, dF 〉.

The coordinate representation of this function is

δF =
∂F

∂qi
δqi.

This function is linear on each fiber of TQ. Thus, from the expression (8.1)
of the virtual work it follows that the equilibrium states defined by (8.9) are
characterized by the following variational equation

fi δq
i = δ(GR + V̄ ) (8.18)

Although the two symbols d and δ have different meanings, they have the
same formal properties (linearity, Leibniz rule, etc.). Thus, Eq. (8.18) is for-
mally equivalent to (8.16). However, although (8.16) has a pure mathematical
character, (8.18) has a physical meaning: it states that a force f = (fi) is
an equilibrium force (i.e., when applied to the system it is able to maintain
the system in equilibrium) if and only if the corresponding virtual work, for
any virtual displacement v = (δqi), is given by the value of the function
δ(GR + V̄ ). ♦

Equation (8.18) represents a generalization of the classical virtual work
principle of D’Alembert–Lagrange.

We can think of more general kinds of control relations. For another gen-
eral approach to this matter see (Tulczyjew 1989). The definition of control
relation proposed here is suitable for dealing with the applications illustrated
below. For a further approach to thermostatics see (Duboisand and Dufour
1974, 1976, 1978).

There are important special cases of control relations.
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Case 1, complete control without constraint. In this case Q̄ = Σ = Q and φ
is the identity. It follows that E = Ē is the Lagrangian submanifold generated
by a potential energy V : Q→ R.

Case 2, pure constraint: Σ ⊂ Q = Q̄ and φ is the identity. In this case
we have R = ∆Σ and E = (Σ, V )̂ ⊂ T ∗Q. E is generated by the potential
energy V over the constraint Σ. We can interpret this case in another way:
Σ = Q = Q̄. It follows that E is the Lagrangian submanifold of T ∗Σ gen-
erated by the restriction V |Σ of the potential energy to the constraint. In
other words, we look at Σ as the configuration manifold of the system.

Case 3, pure fibration. We have no constraint, but there are internal degrees
of freedom (internal or hidden variables) of Q̄ that are not controlled.

Case 4. The constraint Σ is such that the restriction of the fibration (or
the surjective submersion) φ : Q̄ → Q to Σ is a fibration (or a surjective
submersion) φ : Σ → Q. In this case we can replace Q̄ with Σ and the control
relation reduces to the Case 3 of pure fibration.

Let us consider some basic examples.

Example 8.1. Let P be a point free to move in the plane R2 = (x, y) = (x)
and subjected to internal forces with potential energy V . Let us act on it by
imposing its position x. In this case Q̄ = Q = R2 (φ is the identity) and we
have no constraint. In this control, we first impose the position of P1, and
then we measure the force f we have to apply for maintaining the point in
that position. Then, according to (8.18), the equilibrium states are described
by equation

f δx+ g δy = δV,

which yields equations

f =
∂V

∂x
, g =

∂V

∂y
.

These equations give the components (f, g) of the force f to be applied for
maintaining the point at the assigned position. Thus, the set of the equilib-
rium states is the Lagrangian submanifold of T ∗R2 generated by the function
V . This is a case of complete control (Case 1). ♦

Example 8.2. A point P on the plane (x̄, ȳ) is constrained to the unit circle
S1, x̄2+ȳ2 = 1. We control only its coordinate x = x̄, by moving a bar parallel
to the y-axis along which P can slide freely. We can consider Q̄ = R2 = (x̄, ȳ),
Σ = S1, Q = R = (x), and the projection onto the x-axis as the fibration
φ : R2 → R (Fig. 8.2). Inasmuch as this fibration is defined by equation x = x̄,

the generating family of the canonical lift R̂ is, according to (8.13),

GR(x, x̄, ȳ;λ, µ) = λ (x− x̄) + µ (x̄2 + ȳ2 − 1). (8.19)

Now we apply the general variational equation (8.18) in the case of no active
force, V̄ = 0,
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f δx = δGR, (8.20)

with GR given by (8.19). We derive the equations






f = λ,

0 = − λ+ 2µ x̄,

0 = µ ȳ.





x− x̄ = 0,

x̄2 + ȳ2 − 1 = 0,

which reduce to

f = 2µx, µ ȳ = 0, x2 + ȳ2 − 1 = 0. (8.21)

We observe that µ 6= 0 implies ȳ = 0 and x = ±1. So that x 6= ±1 implies
ȳ 6= 0, µ = 0 and f = 0. Moreover, x = ±1 implies ȳ = 0, f = ±2µ and µ ∈ R.
Then the equilibrium set E is represented in the plane (x, f) = R2 = T ∗R by
Fig. 8.3.

Fig. 8.2 Example 8.2
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Fig. 8.3 The equilibrium
states of Example 8.2
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The generating family (8.19) of R̂ can be reduced in this case to a gener-
ating family of E ,

GE (x; ȳ, µ) = µ (x2 + ȳ2 − 1)

with extra variables (ȳ, µ). Indeed, the variational equation

f δx = δGE

is equivalent to Eqs. (8.21). It can be seen that this is a Morse family except
at the two points (±1, 0), in accordance with the fact that without these two
points E is a Lagrangian submanifold. ♦

Example 8.3. In the preceding example assume that a gravitational constant
force (parallel to the ȳ-axis) acts on P . The potential energy is V̄ = g ȳ,
g > 0. In this case Eq. (8.20) is replaced by

f δx = δGR + δV̄ (8.22)

and Eqs. (8.21) by

f = 2µx, 2µ ȳ + g = 0, x2 + ȳ2 − 1 = 0.

The second equation implies µȳ 6= 0, thus ȳ 6= 0, and the last equation shows
that x ± 1 are incompatible values. This means that for x = ±1 the force f
cannot assume a finite value. Indeed, because µ = − g/ȳ and ȳ = ±

√
1− x2,

we have
f = ± gx√

1− x2

and Fig. 8.3 is replaced by Fig. 8.4:
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Fig. 8.4 The equilibrium states of Example 8.3
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The sign of the force at a given point x 6= ±1 depends on the position of
the constraint of the point P , which is not controlled. ♦

Example 8.4. On the plane R2 = (x, y) = (x) we consider a point P1 = (x1)
moving on the x-axis and tied elastically to a point P2 = (x2, y2) free to move
on the plane. Thus, Q̄ = R2 × R = (x2, y2, x1) is the configuration manifold
of the holonomic system made of these two points. Let us act simultaneously
on both points by imposing their positions. We are in the case of a com-
plete control, Q = Q̄. Then the set of the equilibrium states is the regular
Lagrangian submanifold Ē generated by the potential energy

V̄ = k
2

(x1 − x2)2 = k
2

[
(x1 − x2)2 + y2

2

]

and described by equations

f1 =
∂V̄

∂x1
, f2 =

∂V̄

∂x2
, g2 =

∂V̄

∂y2
,

which provide the external forces f1 = (f1) and f2 = (f2, g2) needed for
maintaining the system in equilibrium. ♦

Example 8.5. Let us operate on the system of Example 8.4 by constraining
the point P2 to move on the circle S1 of radius 1 and centered at the origin
and by controlling only the position of the point P1 on the x-axis. This is a
particular case of the so-called Zeeman machine (Poston and Stewart 1978)
where the point P1 is free to move in the plane (see also (Dubois and Dufour
1976).
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Fig. 8.5 Example 8.5: the Zeeman machine

The control configuration manifold is now Q = R = (x), the constraint is
Σ = S1 × R, and the fibration φ is just the Cartesian projection onto the x-
axis. Thus, the control relation R is represented by equations x2

2 +y2
2−1 = 0,

x− x1 = 0, and its canonical lift R̂ is generated by the family
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GR(x, x1, x2, y2; λ, µ) = λ(x− x1) + µ(x2
2 + y2

2 − 1).

Then the set of the equilibrium states E ⊂ T ∗Q = (x, f) of the system under
this control is described by the variational equation

f δx = δ(GR + V̄ ) = δ
(
λ(x− x1) + µ(x2

2 + y2
2 − 1) + k

2

[
(x1 − x2)2 + y2

2

])

which is equivalent to equations






f = λ,

0 = −λ + k(x1 − x2),

0 = 2x2µ − k(x1 − x2),






0 = 2y2µ + ky2,

0 = x− x1,

0 = x2
2 + y2

2 − 1.

These equations are reducible to





f = k(x− x2),

(2µ+ k)x2 = kx,





(2µ+ k)y2 = 0,

x2
2 + y2

2 = 1.

For y2 = 0 we have x2 = ±1 and f = k(x±1). For y2 6= 0 we have 2µ+k = 0,
thus x = 0 and f = −kx2, with |x2| ≤ 1. The set E of the equilibrium states
is then represented by Fig. 8.6. ♦
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Fig. 8.6 The equilibrium states of the Zeeman machine

Example 8.6. For the same system of Example 8.5 we can think of another
control relation. We can consider the configuration manifold Q̄ = S1 × R =
(θ, x). If we control the positions of both points, then the equilibrium states
are represented by the regular Lagrangian submanifold Λ̄ generated by the
potential energy
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V̄ = k
2 (x1 − x2)2 =

k

2

[
(x− cos θ)2 + sin2 θ

]

and described by equations

f =
∂V̄

∂x
= k (x− cos θ), τ =

∂V̄

∂θ
= k x sin θ,

where θ is the angle between x2 and the x-axis, and τ is the torque applied
to the point P2. If we control only the point P1, leaving the point P2 free on
S1, then the control manifold is Q = R (the x-axis) and the control relation
is given by the trivial fibration φ : S1 × R → R only. The equilibrium states
of the system form the set E ⊂ T ∗Q ≃ R2 = (x, f) represented by equations
(we put τ = 0 in the equations above)

f =
∂V̄

∂x1
= k(x− cos θ), 0 =

∂V̄

∂θ
= k x sin θ.

We get the same set E as above. Because

∂2V̄

∂θ2
= k x cos θ,

∂2V̄

∂θ ∂x
= k sin θ,

the generating family V̄ (x; θ) is a Morse family except for x = 0, sin θ = 0,
that is, over the points (0,±k). In accordance with the theory, by excluding
these two points, the set E is a Lagrangian submanifold. It is made of five
branches (open segments and half-lines). The “vertical” segment is the set of
the singular points, in accordance with the fact that the caustic is represented
by equations

0 =
∂2V̄

∂θ2
= k x cos θ, 0 =

∂V̄

∂θ
= k x sin θ. ♦

Example 8.7. Two points P1 and P2 are constrained to the x-axis and the
y-axis, respectively. They are linked by a rigid rod of length a. The point
P2 is tied elastically to the origin by a spring. Let b be the length at rest
of the spring. We act only on the point P1, see Fig. 8.7. An interpretation
of this static system is the following. The extended configuration manifold is
Q̄ = R2 = (x1, y2), the constraint Σ is represented by the rod, that is, by
equation x2

1 +y2
2 = a2, the control manifold is Q = R = (x), and the fibration

φ is represented by equation x = x1; y2 is considered as an internal variable.
The internal potential energy is V̄ (x1, y2) = k/2 (b − y2)2. The generating
family of the control relation R is

GR(x, x1, y2; λ, µ) = λ(x − x1) + µ(x2
1 + y2

2 − a2),

and the set E ⊂ T ∗Q of the equilibrium states of the system under this
control is described by equation
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f δx = δ(GR + V̄ ) = δ

(
λ(x − x1) + µ(x2

1 + y2
2 − a2) + k

2 (b− y2)2
)

which yields equations






f = λ,

0 = x− x1,

0 = −λ+ 2µx1,





0 = x2

1 + y2
2 − a2,

0 = 2µ y2 − k (b− y2).

These equations reduce to

f = 2µx, x2 + y2
2 = a2, 2µ y2 = k (b− y2). (8.23)

For y2 6= 0 we find

µ =
k

2

(
b

y2
− 1

)

thus,

f = k x

(
b√

a2 − x2
− 1

)
.

For y2 = 0, the third equation (8.23) has a meaning only for b = 0 (ideal
spring). For b = 0 Eqs. (8.23) become

f = 2µx, x2 + y2
2 = a2, (2µ+ k) y2 = 0,

so that, for y2 = 0 (i.e., for x = ±a) the extra variable µ is not determined
and we find that f may assume any arbitrary value. For y2 = 0, we find
µ = −k/2, thus f = −kx. The set E is then represented by the following
picture, for all possible values of b; for b = 0 is not a submanifold. ♦
Example 8.8. Let us consider Example 8.2 modified as follows: (i) the point
P is constrained on a curve ȳ = h(x̄), and (ii) it is subjected to a force
parallel to the ȳ-axis with potential energy V (ȳ). The equilibrium set E is
then described by the variational equation

f δx = δ
[
V (ȳ) + µ (ȳ − h(x))

]
,

which yields equations

ȳ = h(x), f = − µh′(x), V ′(ȳ) + µ = 0.

It follows that E is described by equation

f(x) = F (h(x)) h′(x), F = V ′. (8.24)

If, for instance, V (ȳ) = k/2 ȳ2 (ideal spring), then

f(x) = k h(x)h′(x). (8.25)
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In this way, we can construct any kind of (smooth) force function f(x) (at
least in a neighborhood of a point x0) by taking a curve h(x) which is a
solution of the differential equation (8.24) or (8.25). For instance, if we want
a repulsive linear force

f(x) = − k x
in the neighborhood of x = 0, then (8.25) reads xdx = − h dh and leads to
solutions of the kind h2(x) = c2 − x2. The curve that realizes such a force is
then any circle centered at the origin. ♦
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Fig. 8.7 Example 8.7

Example 8.9. The static control of n-body systems. Let us consider a static
system made of four points (Pi) = (P0, P1, P2, P3) on a straight line (the x-
axis), with interacting forces with potentials Vij(rij) that are even functions
of the distances rij = xi − xj. We consider for simplicity the case of four
points, but the following discussion can be easily extended to the generic
case of n points. Assume that the point P0 is constrained at the origin, so
that x0 = 0, and that we act only on the last point P3. The total potential
energy is
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V̄ = V01(x1 − x0) + V02(x2 − x0) + V03(x3 − x0)

+ V12(x2 − x1) + V13(x3 − x1) + V23(x3 − x2).
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Fig. 8.9 Example 8.9

The generating family of the canonical lift of the control relation is

GR = λ(x− x3) + µx0.

Equation (8.22) now reads

fδx = δ(GR + V̄ ) = δλ (x− x3) + λ(δx− δx3) + µ δx0 + x0 δµ

+ f01(x1 − x0) (δx1 − δx0) + f02(x2 − x0) (δx2 − δx0)

+ f03(x3 − x0) (δx3 − δx0) + f12(x2 − x1) (δx2 − δx1)

+ f13(x3 − x1) (δx3 − δx1) + f23(x3 − x2) (δx3 − δx2),
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where fij = V ′
ij are the odd functions representing the internal interacting

forces. This is equivalent to the following equations





f = λ,

x = x3,

x0 = 0,






0 = µ− f01(x1 − x0) − f02(x2 − x0)− f03(x3 − x0),

0 = f01(x1 − x0)− f12(x2 − x1)− f13(x3 − x1),

0 = f02(x2 − x0) + f12(x2 − x1)− f23(x3 − x2),

0 = − λ+ f03(x3 − x0) + f13(x3 − x1) + f23(x3 − x2).

(8.26)

Due to the first three equations, from the last one we get the expression of
the controlling force,

f = f03(x) + f13(x − x1) + f23(x− x2), (8.27)

which depends only on the interacting forces between the point P3 and the
points (P0, P1, P2). The remaining forces are internal forces. The fourth equa-
tion (8.26) gives the expression of µ as a reaction force at the fixed point P0,

µ = f01(x1) + f02(x2) + f03(x3).

The remaining two equations (8.26) read

{
f01(x1) = f12(x2 − x1) + f13(x− x1),

f23(x− x2) = f02(x2) + f12(x2 − x1).
(8.28)

For any fixed value of x, Eqs. (8.28) define a subset Dx ⊆ R2 = (x1, x2). By
replacing this subset of values of (x1, x2) in (8.27) we get a set Fx ⊆ R of
forces f associated with the controlled value of x. The union E = ∪x∈RFx

of all these sets gives the equilibrium states of the system. In general, it is a
very complicated subset of R2 = (x, f). ♦

Remark 8.6. In the model of control of static systems we have considered, we
have not introduced and discussed the notion of stability of an equilibrium
state. Example 8.5 (the Zeeman machine) suggests the following definition.
An equilibrium state of E is stable if it corresponds to stable states on the
constraint manifold Σ. ♦
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8.2 Simple closed thermostatic systems

Let us consider a system of particles (atoms, molecules) in a closed vessel.
Let us act on it by means of an external device. The energy transfered to
the system in a “quasi-static process” c, made of slow transformations of
equilibrium states, is defined by

Ec =

∫

c

(δQ− P dV ),

where P is the pressure, V is the volume, and δQ is a one-form representing
the heat absorbed by the system. If we postulate that this one-form admits
an integrating factor,

δQ = T dS, (8.29)

where T is the absolute temperature T and S is the entropy, then the integral
Ec can be written as the integral

Ec =

∫

c

θ,

of a one-form

θ = T dS − P dV (8.30)

Let us call θ the fundamental one-form of thermodynamics.
Following (Tulczyjew 1977a), This suggests to take the four-dimensional

space

M = (S, V, P, T ) = R4

as the space of states (or state manifold). A quasi-static process c is one-
dimensional path in this space.

According to their physical meaning, the observables (S, V, P, T ) assume
only positive values. However, for the moment, it is not necessary to consider
this restriction. This simplifies our discussion.1

We call (S, V ) extensive observables and (T, P ) intensive observables.
The great advantage of considering this four-dimensional space is that the

fundamental one-form θ induces a symplectic form

ω = dθ = dT ∧ dS + dV ∧ dP (8.31)

on the space R4 = (S, V, P, T ). In this way, as a consequence of the first prin-
ciple of thermodynamics and formula (8.29), the state manifold is endowed

1 Note that the conditions S,V, P, T > 0 follow as a consequence of the axioms stated
below.
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with a canonical symplectic structure.2 The corresponding Poisson bracket is

{F,G} =
∂F

∂T

∂G

∂S
+
∂F

∂V

∂G

∂P
− ∂F

∂S

∂G

∂T
− ∂F

∂P

∂G

∂V
(8.32)

The simplest way to find this expression for the Poisson bracket is to write
(8.31) as ω = dpi ∧ dq1 + dp2 ∧ dq2, with p1 = T , p2 = V , q1 = S, q2 = P ,
and to apply formula (4.8).

Definition 8.4. The equilibrium states that are physically admissible form
a subset

E ⊆M
called the constitutive set. We say that the system is simple if E is an exact
Lagrangian submanifold ; that is, the restriction of the one-form θ to the
vectors tangent to E (which is closed, inasmuch as E is Lagrangian) is an
exact form:

θ|E = dW,

where W : E → R is a smooth function we call the intrinsic potential energy
of the system. ♥
Remark 8.7. The definition of simple thermostatic system is equivalent to
assuming that E is a two-dimensional submanifold and that the integral Ec

is zero for all quasi-static cycles over E . This definition is in accordance with
that of (Carathéodory 1909). The notion of ’‘intrinsic potential energy” does
not appear in the texts on thermodynamics. However, as we show below,
its mathematical importance is due to the fact that we can derive the four
fundamental thermostatic potentials from its expression. ♦

Remark 8.8. Being a Lagrangian submanifold of a four-dimensional symplec-
tic manifold, the constitutive set E is represented (we assume globally) by
two independent equations of state or constitutive equations,

E1(S, V, P, T ) = 0, E2(S, V, P, T ) = 0 (8.33)

with functions (E1, E2) in involution on E :

{E1, E2}|E = 0 (8.34)

♦
2 The common geometrical setting of thermodynamics is odd-dimensional, in terms of
contact manifolds; see, for instance, (Hermann 1973) and (Mruga la, 1995). However,
the even-dimensional framework, in terms of symplectic manifolds and Lagrangian
submanifolds, seems to be more symmetric and elegant. A remarkable example of
this structural symmetry is the general setting of the Legendre transform and the
definition of thermodynamic potentials illustrated in Sect. 7.5.
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We can summarize the above discussion as follows.

We consider (S, V, P, T ) (including the entropy S) as independent vari-
ables (i.e., as coordinates of R4). The first principle of thermodynamics
endows this space with an exact symplectic structure, and the space
of the smooth functions f(S, V, P, T ) with a Poisson structure. The
equilibrium states form a subset E of this space. The first principle
of thermodynamics implies a special structure for this subset: it is in
general a Lagrangian set, but it may be a Lagrangian submanifold, as
in the case of a simple thermostatic system. As a consequence, E is
described by two equations of state in involution (and not only one,
as in the common approach to thermodynamics).

Then,

Our expectation is to find a certain number of generating families for
E . When these generating families reduce to ordinary functions, then
they coincide with ordinary thermodynamic potentials. We show that
these generating families are of four types. The first is internal energy.

8.3 The internal energy

Let us consider the extensive variables (S, V ) as global coordinates of a config-
uration manifold Q1 = R2. Let (S, V, pS, pV ) be the corresponding canonical
coordinates on the cotangent bundle T ∗Q1. The Liouville form in this space
is

θQ1 = pS dS + pV dV.

If we compare this one-form with fundamental one-form (8.30) θ = T dS −
P dV , then we observe that the injective map α1 : M → T ∗Q1 defined by

pS = T, pV = − P, (8.35)

is a symplectomorphism onto T ∗Q1, and the following diagram is commuta-
tive,
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.... ..........................................................................
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Fig. 8.10 The space of states projected onto
the entropy-volume space

It follows that the image E1 = α1(E ) is a Lagrangian submanifold of the
cotangent bundle T ∗Q1. Hence, we are led to look for global or local gener-
ating families U(S, V ; λ) of E1, which are functions of (S, V ) and auxiliary
parameters λ, and to introduce the following.

Definition 8.5. A generating function U(S, V ;λ) of E1 is called internal en-
ergy. ♥

So, within a general framework, we have to consider two cases:

1. E1 ⊂ T ∗Q1 is a section of the cotangent fibration π1 : T ∗Q1 → Q1.
2. E1 ⊂ T ∗Q1 is not a section of π1 and/or it has singular points.

Case 1 is in fact the case fitting with the two fundamental examples,
the ideal gas and the Van der Waals gas, examined below. It relies on the
following general theorem (whose proof is given in Sect. 9.2):

Theorem 8.5. Let α1 : M → T ∗Q1 be a symplectomorphism. If a Lagrangian
submanifold E ⊂ M is the image of a section of π1 = πQ1 ◦ α1 : M → Q1,
then it admits a global generating function U : Q1 → R if and only if it admits
a global function W : E → R such that dW = θ1|E , where θ1 = α∗

1θQ1 . The
link between these two functions is W = π∗

1U = U ◦ π1.

Due to this theorem we can affirm the following.

Theorem 8.6. A closed simple thermostatic system admits an internal en-
ergy U(S, V ) if and only if the constitutive set E is a section of π1.

This means that E1 is completely described by equation pS dS + pV dV =
dU(S, V ) so that, due to (8.35), E is described by equation
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T dS − P dV = dU(S, V ) (8.36)

which is equivalent to equations

T =
∂U

∂S
, P = − ∂U

∂V
(8.37)

Remark 8.9. If the constitutive set E is defined by the equations of state
E1(S, V, P, T ) = 0 and E2(S, V, P, T ) = 0, then it is a section of π1 if and
only if

det




∂E1

∂T

∂E1

∂P

∂E2

∂T

∂E2

∂P


 6= 0 (8.38)

at the points of E . ♦

8.4 The ideal gas

Let us apply the general considerations of the preceding sections to the ideal
gas. The basic and well-known constitutive equation, or equation of state, of
an ideal gas is

E1(P, V, T )
.
= P V − nRT = 0 (8.39)

where n > 0 is the mole number and R > 0 is a physical constant. This
equation summarizes the Boyle, Gay–Lussac, and Avogadro’s laws. In accor-
dance with the assumption that the constitutive set E is a two-dimensional
manifold, this equation is not sufficient to describe the behavior of the gas;
we need a second independent constitutive equation E2 = 0, in involution
with E1 = 0.

The second constitutive equation must involve the entropy. Let us assume
that it has the form

S = f(V, P, T ) (8.40)

that is, the entropy can be expressed as a function of the remaining observ-
ables. Then E is Lagrangian if and only if the function

F (S, V, P, T )
.
= S − f(V, P, T ) = 0

is in involution with E: {F, E1} = 0.
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As shown in the proof of the next theorem, the involution condition
{F, E1} = 0 is translated into a Hamilton–Jacobi equation which is inte-
grable by separation of variables on the domain where V 6= 0 and P 6= 0, so
that the expression of the entropy S = f(V, P, T ) is determined by a pure an-
alytical method, and the physical meaningful conditions V, P, T > 0 appear
as an analytical consequence of the first equation of state E1 = 0.

Theorem 8.7. For the ideal gas the second equation of state of the kind
(8.40) is

S = A + (R + C) logV +C logP (8.41)

where A and C are functions of T . This equation is equivalent to

E2
.
= P V γ −K exp

S

C
= 0 (8.42)

with

γ
.
= 1 +

nR

C
, K

.
= exp

(
−A
C

)
(8.43)

Proof. Let us compute the Poisson bracket (8.32) for G = E1 and F =
S − f(P, V, T ):

{F, E1} =
∂F

∂T

∂E1

∂S
+
∂F

∂V

∂E1

∂P
− ∂F

∂S

∂E1

∂T
− ∂F

∂P

∂E1

∂V

= − ∂f

∂V

∂E1

∂P
− ∂E1

∂T
+
∂f

∂P

∂E1

∂V
,

bevause E1 does not depend on S. Hence {F, E1} = 0 is equivalent to

V
∂f

∂V
− P ∂f

∂P
= nR (8.44)

This is a Hamilton–Jacobi equation in the cotangent bundle of the configura-
tion manifold of variables (P, V ). The variable T is not involved, therefore we
can try to solve (8.44) by separation of variables, by considering a solution
of the kind

f(V, P ) = g(V ) + h(P )

up to an additive constant. We get the equation

V
dg

dV
− P dh

dP
= nR

which splits into two equations,

V
dg

dV
= C + nR, P

dh

dP
= C, C = constant.
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It follows that a solution is

f = A+ (nR +C) log |V | +C log |P |,

where (A,C) are constant parameters. This is a solution defined only for
V, P 6= 0, as we said above. So, it is the time to take into account, from now
on, the physical meaningful restrictions

V > 0, P > 0, T > 0 (8.45)

where T > 0 is a consequence of the first two because of (8.39), and write
this last equation as

f = A+ (nR +C) log V + C logP, (8.46)

This is a complete solution with respect to the nonadditive constant C, be-
cause the matrix [

∂2f

∂V ∂C

∣∣∣∣
∂2f

∂P∂C

]
=

[
1

V

∣∣∣∣
1

P

]

has maximal rank everywhere. However, in (8.44) the temperature T is not
involved, thus we can consider A and C as functions of T . So, with the
“natural” choice of (8.46) among all the solutions of (8.44), we find the second
constitutive equation (8.41) of an ideal gas. We can write this equation in
the form

S

C
=
A

C
+

(
nR

C
+ 1

)
logV + logP, (8.47)

and by introducing the quantities (8.43) we get (8.42). ⊓⊔

Equation (8.42) is the standard form of the second constitutive equation of
an ideal gas, involving the entropy, as it appears in books of thermodynamics
with

C = n cV , k = K nγ (8.48)

It remains to prove that the constitutive set E of the ideal gas is a section
of π1 so that, according to Theorem 8.6, it admits the internal energy as an
ordinary generating function.

Theorem 8.8. If E is described by the two constitutive equations (8.39) and
(8.42), with V > 0 and P > 0,3 then (up to an additive constant) the internal
energy is given by

U(S, V ) =
K

γ − 1
V 1−γ exp

S

C
(8.49)

3 In the following this formal assumption is understood.
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Proof. This follows from the integration of the closed one-form (8.36) θ1 =
T dS −P dV . By solving Eqs. (8.39) and (8.42) with respect to P and T , we
get these observables as functions of (V, S):

P = K V −γ exp
S

C
, T =

K

nR
V 1−γ exp

S

C
.

Hence,

θ1 = K exp
S

C
V −γ

(
1

nR
V dS − dV

)

Let us integrate this one-form on the plane (S, V ) following the path (0, ε)→
(0, V )→ (S, V ), with a small ε > 0, see Fig. 8.11.
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Fig. 8.11 Path of integration in the proof of Theorem 8.8

We obtain:

∫ (S,V )

(0,ε)

θ1 = −K
∫ V

ε

V −γ dV + K

∫ S

0

exp
S

C
V −γ

(
1

nR
V dS

)

=
K

γ − 1

(
V 1−γ − ε1−γ

)
+

K

nR
V 1−γ

∫ S

0

exp
S

C
dS

=
K

γ − 1
V 1−γ +

K

nR
V 1−γ C

(
exp

S

C
− 1

)
+ constant

By recalling (8.43), γ − 1 = nR/C , Eq. (8.49) is found. ⊓⊔

8.5 The Van der Waals gas

A similar analysis can be done for the Van der Waals gas. The basic equation
of state is assumed to be
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E1
.
= (V − n b)

(
P + a

n2

V 2

)
− nRT = 0 (8.50)

with a and b non-negative constants.

Theorem 8.9. For a Van der Waals gas the second equation of state of the
kind (8.40) is

S = A + (nR+ C) log(V − nb) +C log

(
P +

an2

V 2

)
(8.51)

where A and C are functions of T , and

V > n b (8.52)

This equation is equivalent to

E2
.
=

(
P +

an2

V 2

)
(V − nb)γ −K exp

S

C
= 0 (8.53)

with

γ
.
= 1 +

nR

C
, K

.
= exp

(
−A
C

)
.

Proof. As in the proof concerning the ideal gas we consider the Poisson
bracket

{F, E1} = − ∂f

∂V

∂E1

∂P
− ∂E1

∂T
+
∂f

∂P

∂E1

∂V
,

for F = S − f(P, V, T ). Since in the present case we have

∂E1

∂T
= − nR,

∂E1

∂P
= V − nb,

∂E1

∂V
= P + a

n2

V 2
− 2a (V − n b) n2

V 3
= P − a n2

V 2
+ 2ab

n3

V 3
,

we find

{F, E1} = −(V − nb) ∂f
∂V

+ nR+

(
P − a n2

V 2
+ 2ab

n3

V 3

)
∂f

∂P
,

and we get the Hamilton–Jacobi equation

(V − nb) ∂f
∂V
− nR−

(
P − an2

V 2
+

2abn3

V 3

)
∂f

∂P
= 0 (8.54)
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Note that the temperature T is not involved. In order to integrate this equa-
tion we take inspiration from the special case of the ideal case. Let us compare
the two basic equations of state,

E1 = PV − nRT = 0, ideal gas,

E1
.
= (V − n b)

(
P + a

n2

V 2

)
− nRT = 0, VdW,

and the two corresponding Hamilton–Jacobi equations,

V
∂f

∂V
− P ∂f

∂P
− nR = 0, ideal gas,

(V − nb) ∂f
∂V
−

(
P − an2

V 2
+

2abn3

V 3

)
∂f

∂P
− nR = 0, VdW.

The first equation was solved by considering the kind of solution (8.46)

f = A +B logV +C logP,

then, by analogy, for the second equation we can try to find a solution of the
form

f = A+B log(V − nb) +C log

(
P +

an2

V 2

)
, (8.55)

where A, B, and C are constant, or functions of T . Since

∂f

∂V
=

B

V − nb −
2an2C(

P +
an2

V 2

)
V 3

=
B

V − nb −
2an2C

V (PV 2 + an2)
,

∂f

∂P
=

C

P +
an2

V 2

=
CV 2

PV 2 + an2
,

the Hamilton–Jacobi equation reads

(V − nb)
(

B

V − nb −
2an2C

V (PV 2 + an2)

)
− nR

−
(
P − an2

V 2
+

2abn3

V 3

)
CV 2

PV 2 + an2
= 0.

A straightforward calculation shows that it can be reduced to the simple form

(B − nR−C)(P V 2 + a n2) = 0.

This equation is satisfied by setting B = nR + C . Going back to (8.55) we
conclude that
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f = A+ (nR+ C) log(V − nb) + C log

(
P +

an2

V 2

)

is a complete solution of our Hamilton–Jacobi equation (8.54). This proves
(8.51). Moreover, since

S

C
− A

C
=

(
1 +

nR

C

)
log(V − nb) + log

(
P +

an2

V 2

)
,

we find

exp

(
S

C
− A

C

)
=

(
P +

an2

V 2

)
(V − nb)γ ,

with γ
.
= 1 + nR/C. This equation can be put in the form (8.53). ⊓⊔

Remark 8.10. In order to verify the correctness of Theorem 8.9 from a phys-
ical viewpoint, we can refer to the expression of the entropy, as a function of
T and V , written in [Fermi, 1936], Chap. 4, Formula [16.7], for n = 1:

S = cV logT +R log(V − b) + constant.

From the first state equation (8.50), E1 = 0, we get

logT = log(V − b) + log
(
P +

a

V 2

)
− logR,

so that

S = cV log(V − b) + cV log
(
P +

a

V 2

)
+R log(V − b) + constant

= (cV +R) log(V − b) + cV log
(
P +

a

V 2

)
+ constant.

With S and V extensive observables, for a number n of moles we find

S = n (cV +R) log(V − nb) + n cV log

(
P +

an2

V 2

)
+ constant.

This result is in perfect accordance with Eq. (8.51),

S = A + (nR + C) log(V − nb) + C log

(
P +

an2

V 2

)

if we put C = n cV , according to (8.48), and A = constant. ♦
It remains to prove that also for the Van der Waals gas the constitutive set

E is a section of π1 so that it admits the internal energy as a global ordinary
generating function.

Theorem 8.10. If E is described by the two constitutive equations (8.50) and
(8.53), then (up to an additive constant) the internal energy is given by
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U (S, V ) =
K

γ − 1
(V − nb)1−γ exp

S

C
− a n2

V
(8.56)

Proof. The proof is analogous to that of Theorem 8.8. Equations (8.50) and
(8.53) can be rewritten as

(
P +

an2

V 2

)
=

nRT

(V − n b) ,
(
P +

an2

V 2

)
= K (V − nb)−γ exp

S

C
,

respectively. The two right-hand sides are equal,

nRT

(V − n b) = K (V − nb)−γ exp
S

C
.

Hence, from the first equation of state above, we derive

P = K (V − nb)−γ exp
S

C
− an2

V 2
.

As a consequence, the one-form θ1 = T dS − P dV becomes

θ1 =
K

nR
(V − nb)1−γ exp

S

C
dS −

(
K (V − nb)−γ exp

S

C
− an2

V 2

)
dV.

We integrate this one-form following the path (0, ε)→ (0, V )→ (S, V ), with
a small ε > 0:, as in the proof of Theorem 8.8:

∫ (S,V )

(0,ε)

θ1 = −
∫ V

ε

(
K (V − nb)−γ − an2

V 2

)
dV

+
K

nR
(V − nb)1−γ

∫ S

0

exp
S

C
dS

=
K

γ − 1
(V − nb)1−γ − an2

V
+ constant

+
KC

nR
(V − nb)1−γ

(
exp

S

C
− 1

)
.

Since γ − 1 = nR/C , we get Eq. (8.56). ⊓⊔
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8.6 Control modes

Definition 8.6. Let (M,ω) be a symplectic manifold. A control mode on M
is a surjective submersion πc : M → Qc onto a manifold Qc, called control
manifold, associated with a symplectomorphism αc : M → T ∗Qc such that
the diagram

αc
................................................................................................................................... .................M T ∗Qc

Qc

...........................................................................................................
........
..
.......
........
..

.................................................................................................................................................................................................
........
.................

πc πQc

is commutative; that is, πc = πQc
◦ αc. The one-form on M

θc = α∗
c θQc

(8.57)

is called the control form. ♥
Remark 8.11. It follows from this definition that

dθc = ω.

This means that (M,ω) is an exact symplectic manifold: the symplectic form
ω is exact. ♦
Definition 8.7. Let E ⊂ M be a Lagrangian submanifold. Since αc is a
symplectomorphism, the set

Ec = αc(E )

is a Lagrangian submanifold of T ∗Qc. A generating function Gc of Ec is called
a generating function of E with respect to the control mode αc. ♥
Remark 8.12. In the applications to the control theory of static systems, M
represents the space of the states and E the equilibrium states. The generating
function Gc is the potential energy with respect to the control mode αc.
Functions on M are called observables. ♦
Remark 8.13. The fibers of πc are Lagrangian submanifolds, so observables
that are constant on the fibers are in involution. Conversely, if F i are n
independent global observables in involution, then they define a control mode.
Indeed, equations F i = qi (constant) define a Lagrangian foliation and the
set of all the admissible constant values (qi) ∈ Rn forms a control manifold
Qc ⊆ Rn. It can be seen that if we choose a section of the corresponding
projection πc, then we can define a symplectomorphism into T ∗Qc. ♦
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Remark 8.14. From Remark 8.13 we derive the following control rule:

We cannot “control” simultaneously and independently n observables
of a static system if they are not in involution.

Here, “to control” means “to force the observables to assume any value we
like”, at least in a suitable domain. For example, for a point P in the plane,
as in Example 8.1, we cannot control simultaneously the position x and the
force f along the x-axis: these two observables are not in involution.4 ♦

8.7 The Legendre transform

The case of the simultaneous existence of two control modes on M , α1 and α2

is interesting. Then the transition from the generating functions G1 to G2 of
Lagrangian submanifolds of M is called the Legendre transform (Tulczyjew
1977). A symplectic diffeomorphism from a symplectic manifold to a cotan-
gent bundle has been called a “special symplectic structure” ( Lawruk et al.
1975). If X is a vector space, then the direct sum X ⊕X∗ is endowed with a
canonical symplectic form. A symplectic isomorphism from a symplectic vec-
tor space (A, α) to a direct sum X ⊕X∗ has been called a “frame”; see, for
instance, (Leray 1981). A special important case of the Legendre transform is
that connecting the Hamiltonian description and the Lagrangian description
of dynamics. Other important special cases are related to the control of ther-
mostatic systems. For another general approach to the catastrophe theory in
thermodynamics see (Dubois and Dufour 1978).

The general setting of the Legendre transform is the following.

1 – Assume that a symplectic manifold (M,ω) is symplectomorphic to
two distinct cotangent bundles,

T ∗Q2
α2←−M α1−→ T ∗Q1.

Then,
α∗

2dθQ2 = ω = α∗
1dθQ1 ,

or
d(α∗

2θQ2 ) = ω = d(α∗
1θQ1).

If we introduce on M the one-forms

θ2 = α∗
2θQ2 , θ1 = α∗

1θQ1 ,

4 This seems to be an argument of quantum physics.
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then we can write
dθ2 = ω = dθ1,

and consequently
d(θ2 − θ1) = 0.

2 – The graph of the symplectomorphism α2 ◦ α−1
1 : T ∗Q1 → T ∗Q2 is a

symplectic relation
R21 ⊂ T ∗Q2 × T ∗Q1.

Assume that it admits a global generating family L21 over the product Q2×
Q1.

3 – Let E be a Lagrangian submanifold of (M,ω). Then E originates two
Lagrangian submanifolds,

E2 = α−1
2 (E ), E2 = α−1

2 (E )

of T ∗Q2 and T ∗Q1, respectively, such that

E2 = R21 ◦ E1,

4 – Assume that E1 admits a generating family G1 over Q1. Then we
obtain a generating family G2 of E2 by means of the composition rule of
generating families:

G2 = L21 ⊕G1.

For a better understanding of the Legendre transform let us look at the
following commutative diagram.

M

T ∗Q1T ∗Q2

Q1Q2

.........................................................................................................................................................................................

.......
..
.......
.......
..

.........................................................................................................................................................................................

.......
..
.......
.......
..

..................................................................................................................................................................................................................

.........................................................................................................................................................................................................................

R21

I21

πQ1πQ2

..........
...........
..........
..........
...........
..........
..........
...........
..........
..........
.........................
................

................................................................................................................................ .........
.......

..........
...........

..........
..........

...........
..........

..........
...........

..........
..........

.........................................

.........................................................................................................................
.......
................

α1α2

π1π2

In this diagram we have introduced the surjective submersions

πi = πQi
◦ αi, i = 1, 2,

and the set
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I21 = (πQ2 × πQ1)(R21) ⊆ Q2 ×Q1

as a relation from Q1 to Q2. It is convenient to introduce the maps

α21 : M → T ∗Q2 × T ∗Q1, π21 : M → Q2 ×Q1,

defined by

α21(x) = (α2(x), α1(x)) , π21(x) = (π2(x), π1(x)) , x ∈M.

M

T ∗Q2 × T ∗Q1

Q2 ×Q1

.........................................................................................................................................................................................

.......
..
.......
.......
..

πQ2 × πQ1

...........
...........
..........
..........
...........
..........
...........
...........
..........
..........
.......................
................

...................................................................................................................................
.

.........
.......

α21

π21

Then we have
R21 = α21(M), I21 = π21(M).

We observe that α21 is a one-to-one map: from

(α2(x), α1(x)) = (α2(x′), α1(x′))

it follows that αi(x) = αi(x
′), i = 1, 2. Thus x = x′, because the αi are

one-to-one.

Remark 8.15. Since d(θ2 − θ1) = ω − ω = 0, the one-form θ2 − θ1 on M is
closed. Thus, there exist local functions W21 : M → R such that

θ2 − θ1 = dW21 (8.58)

In the most interesting examples of the Legendre transform the set I21 is a
submanifold of Q2 ×Q1 and the function W21 is globally defined on M . ♦

This is the case illustrated by the following.

Theorem 8.11. Assume that:

1. M is connected and I21 = π21(M) is a submanifold.
2. The map π = π21|M : M → I21 is a surjective submersion.
3. There exists a global function W21 : M → R satisfying (8.58).
4. There exists a function E21 : I21 → R such that W21 = E21 ◦ π = π∗E21.
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Then,

R21 = ̂(I21, E21) (8.59)

that is, the symplectic relation R21 is generated by the function E21 on the
relation I21.

This theorem recalls, although in a different form, the results of (Tulczyjew
1977).5 It is a corollary of a general theorem (Theorem 9.7) about the exact
Lagrangian submanifolds over constraints. In order to apply this theorem
we observe that if M is connected, then the Lagrangian submanifold R21 is
connected and maximal, inasmuch as it is the graph of a symplectomorphism,
α2 ◦ α−1

1 .

8.8 Thermostatic potentials

For a simple and closed thermostatic system we have four fundamental con-
trol modes. They correspond to the four possible pairs of the fundamental
observables (S, V, P, T ) that are in involution: Q1 = (S, V ), Q2 = (V, T ),
Q3 = (T, P ), and Q4 = (P, S). Let us call thermostatic potentials the cor-
responding generating families of the Lagrangian set E of the equilibrium
states.6 The corresponding control one-forms θi, for which dθi = ω, are

θ1 = T dS − P dV,

θ2 = − P dV − S dT,

θ3 = V dP − S dT,

θ4 = T dS + V dP
(8.60)

According to these definitions, the thermostatic potentials are generating
families. They can be, in particular, Morse families or ordinary generating
functions. This depends on the state equations of E .

5 For further comments on the Legendre transform see (Tulczyjew and Urbanski
1999).
6 It is customary to call them thermodynamic potentials.
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G(T, P ) Gibbs function

H(P,S)
enthalpy

Fig. 8.12 The four control modes of thermostatics
and the corresponding potentials

The internal energy is the first (and fundamental) thermostatic potential
that we examined in Sect. 8.3. We have seen how to compute it for the ideal
gas. That method of computation has been extended to the Van der Waals
gas in Sect. 8.5. We found that for these gases, the internal energy exists as
a global ordinary generating function. This existence is in fact equivalent to
one of the following three items.

• The constitutive set E of the Van der Waals gas (in particular, of the ideal
gas) is a section of π1 Theorem 8.6.

• E has no singular points with respect to the projection π1.
• Condition (8.38) holds at the points of E , Remark 8.9.

What we have done for the internal energy can be repeated for the other
three potentials, by applying mutatis mutandis Theorem 8.6 and Remark 8.6.
This work can be synthesized as follows.

Theorem 8.12. The set E of the equilibrium states of a closed simple ther-
mostatic system, defined by two equations of state E1(S, V, P, T ) = 0 and
E2(S, V, P, T ) = 0, admits a thermostatic potential TPi as a global gener-
ating function, if and only if E has no singular points with respect to the
projection πi, that is, if and only if det M i 6= 0 at all points of E , according
to Table 8.1.

Let us apply this theorem to the ideal gas.
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• State equations: E1 = 0, E2 = 0.

E1
.
= PV − nRT,






∂E1

∂S
= 0,

∂E1

∂V
= P,

∂E1

∂T
= −nR,

∂E1

∂P
= V.

E2
.
= P V γ−K exp

S

C
,






∂E2

∂S
= −K

C
exp

S

C
,

∂E2

∂V
= γP V γ−1

∂E2

∂T
= P V γ logV

dγ

dT
+

(
K

C2

dC

dT
− dK

dT

)
exp

S

C
,

∂E2

∂P
= V γ .

• Free energy.

M2 =




∂E1

∂S

∂E1

∂P
∂E2

∂S

∂E2

∂P


 =




0 V

−K
C

exp
S

C
V γ


 ,

det M2 =
K

C
V exp

S

C
> 0.

• Gibbs function.

M3 =




∂E1

∂S

∂E1

∂V
∂E2

∂S

∂E2

∂V


 =




0 P

−K
C

exp
S

C
γ PV γ−1


 ,

det M 3 =
K

C
P exp

S

C
> 0.
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Table 8.1 Existence of thermostatic potentials

TPi πi det M i 6= 0

U(S, V )
internal energy

π1 : (S, V, P, T )→ (S, V ) M1 =




∂E1

∂T

∂E1

∂P
∂E2

∂T

∂E2

∂P




F (V, T )
free energy

π2 : (S, V, P, T )→ (V, T ) M2 =




∂E1

∂S

∂E1

∂P
∂E2

∂S

∂E2

∂P




G(T, P )
Gibbs function

π3 : (S, V, P, T )→ (T, P ) M3 =




∂E1

∂S

∂E1

∂V
∂E2

∂S

∂E2

∂V




H(P, S)
enthalpy

π4 : (S, V, P, T )→ (P, S) M4 =





∂E1

∂T

∂E1

∂V
∂E2

∂T

∂E2

∂V





• Enthalpy. It is convenient to replace the second state equation E2 = 0 with

E∗
2
.
= A + (R+ C) logV + C logP − S = 0;

see (8.41). According to Remark 8.10, A = constant, thus we have

∂E∗
2

∂T
=
dC

dT
log(PV ),

M∗
4 =




∂E1

∂T

∂E1

∂V
∂E∗

2

∂T

∂E∗
2

∂V


 =




−nR P

dC

dT
log(PV )

R +C

V


 ,

det M∗
4 =

P

T
det




−V T

dC

dT
log(PV )

R+ C

V


 = −P

T

(
T
dC

dT
log(PV ) + R+C

)
.
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On E we have PV = nRT , thus the condition det M∗
4 = 0 is equivalent to

the differential equation in C(T ),

T
dC

dT
log(nRT ) +R+ C = 0,

integrable by separation of variables. Its integral is

C(T ) = n cV (T ) =
constant

| log(nRT )| −R.

However, this result is not in accordance with any experimental data of cV (T ).
Hence, det M

∗
4 6= 0. The inconsistency of this solution is also due to the

condition of existence nRT 6= 1, which depends on the mole number n.
All the above determinants are 6= 0, therefore we conclude that the La-

grangian submanifold E is not singular with respect to all projections πi,
hence, the following.

Theorem 8.13. The ideal gas admits all the thermostatic potentials as or-
dinary generating functions.

8.9 From internal energy to free energy

Let us look for the construction of a thermostatic potential by means of a
Legendre transform, starting from the internal energy. For the sake of brevity,
we consider only one case, namely the Legendre transform from α1 to α2,
and we apply the results to the Van der Waals gas (the free energy for the
ideal gas can be obtained by setting a = b = 0). Since

θ2 − θ1 = − S dT − T dS = − d(ST ),

we have, according to the notation of Theorem 8.11,





W21(S, V, P, T ) = − ST,
Q1 = (S, V1), Q2 = (V2, T ),

π21(S, V, P, T ) = ((V, T ), (S, V )) ,

I21 = (π2 × π1)(∆M ) = {((V2, T ), (S, V1)) such that V2 = V1},
E21 ((V2, T ), (S, V1)) = − TS.

Then, all requirements of Theorem 8.11 are fulfilled. Because I21 is a subman-
ifold defined by equation V2 − V1 = 0, it follows that the generating family
of R21 is

L21(V2, T, S, V1; λ) = − TS + λ(V2 − V1)
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with supplementary variable λ ∈ R. Thus, if G1 = U(S, V ) is the generating
function of E1 = α1(E ), then the generating family G2 of E2 = α2(E ) is

G2(V2, T ;S, V1, λ) = L21 + U(S, V1) = −TS + λ(V2 − V1) + U(S, V1)

with supplementary variables (S, V1, λ). However, because one of the associ-
ated equations is V2 − V1 = 0, this generating family is reducible to

F (V, T ;S) = U(S, V )− TS (8.61)

Hence, we have proved the following.

Theorem 8.14. If a simple, closed, thermostatic system admits a global in-
ternal energy U (S, V ), then the free energy is the generating family (8.61)
with supplementary variable S.

θ2 = − P dV − S dT , therefore it follows that E2 is described by the
variational equation

− P δV − S δT = δ(U(S, V )− TS)

equivalent to equations

P = − ∂U

∂V
, 0 =

∂U

∂S
− T. (8.62)

However, the generating family F (V, T ;S) may be reducible to an ordinary
global generating function F (V, T ).

Theorem 8.15. If we can solve the second equation (8.62) with respect to S
(i.e., if we can express S as a function of (V, T )) then the generating family
(8.61) is reducible to a generating function F (V, T ) given by

F (V, T ) = U (S(V, T ), V )− T S(V, T ) (8.63)

Proof. If the second equation (8.62) is solvable with respect to S, so that
we can express S as a function S = S(V, T ), then we can eliminate the
supplementary variable S in F (V, T ;S). ⊓⊔

This means that the Lagrangian submanifold E of equilibrium states ad-
mits the free energy F (V, T ) as an ordinary generating function. definition
(8.63) of F (V, T ) can be written in the form

F (V, T ) = statS (U(S, V )− TS) (8.64)

where statS(⋆) means compute ⋆ at its stationary points with respect to S,
just in accordance with the second equation (8.62).
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Example 8.10. The free energy of a Van der Waals gas. From the state equa-
tion (8.50)

(V − n b)
(
P + a

n2

V 2

)
− nRT = 0,

we get

log(V − n b) + log

(
P + a

n2

V 2

)
= log(nRT ),

and the expression of the entropy (8.51) becomes

S(V, T ) = A+ nR log(V − nb) + C log(nRT ) (8.65)

The assumption of Theorem 8.15 is fulfilled. We have

exp
S

C
= exp

A

C
· (V − nb)γ−1 nRT ),

because nR/C = γ − 1, and

K (V − nb)1−γ exp
S

C
= nRT,

because K = exp(−A/C). Hence, from the expression (8.56) of the internal
energy

U (S, V ) =
K

γ − 1
(V − nb)1−γ exp

S

C
− a n2

V

we obtain

U(S(V, T ), V ) =
nRT

γ − 1
− a n2

V
.

Now we apply Eq. (8.63):

F (V, T ) =
nRT

γ − 1
− a n2

V
− T S(V, T )

=
nR

γ − 1
T +

a n2

V
− T

(
A+ log(V − nb)nR + C log(nRT )

)

= C T − a n2

V
− T (A + nR log(V − nb) +C log(nR) +C logT )

= −a n
2

V
− T (A + nR log(V − nb) +C log(nR) +C logT − C) .

Hence, if we put

D = C (1− log(nR))− A (8.66)

we finally obtain
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F (V, T ) = T [D− nR log(V − nb)− C logT ] − a n2

V
(8.67)

Let us check the correctness of this result. Being θ2 = −P dV − S dT we
must have

P = −∂F
∂V

, S = −∂F
∂T

.

Because
∂F

∂V
= − nRT

V − nb +
an2

V 2
,

∂F

∂T
= D− nR log(V − nb)− C logT − C,

we find

P =
nRT

V − nb −
an2

V 2
,

which is just the first equation of state, and

S(V, T ) = nR log(V − nb) + C (logT + 1)−D

= nR log(V − nb) + C (logT + 1)− C (1− log(nR)) +A

= nR log(V − nb) + C log(nRT ) + A,

in accordance with Eq. (8.65) above. ♦

8.10 Simple open thermostatic systems

If we act on a thermostatic system also by adding or subtracting particles,
then we say that the system is open. In this case the energy transferred to
the system by the external device in a “quasi-static process” c is given by the
integral

Ec =

∫

c

θ,

of the one-form
θ = T dS − P dV + µ dn.

The quantity µ represents the chemical potential, and the molar number n is
assumed to have continuous values. If we set

V = n v, S = n s,

then v and s are the molar volume and the molar entropy, respectively. The
states of the system are represented in the manifold
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M = (s, v, P, T, n, µ) = R6,

endowed with the symplectic form

ω = dθ = dT ∧ dS + dV ∧ dP + dµ ∧ dn

= n (dT ∧ ds+ dv ∧ dP ) + (dµ− vdP + sdT ) ∧ dn.

We say that the system is simple if the set of the equilibrium states E ⊂ M
is an exact Lagrangian submanifold: there exists a function W : E → R such
that θ|E = dW .

For an open system we have eight fundamental control modes, correspond-
ing to the triples of the fundamental observables that are in involution (now
we include the observables (n, µ)).

1 – Let us consider the control mode associated with the control manifold

Q1 = (s, v, n)

and the control form θ1 = θ. For a simple system we introduce the molar
internal energy u(s, v), so that the total internal energy is

U (S, V, n) = nu(s, v),

and the constitutive set E is described by the variational equation

T δS − P δV + µ δn = δU,

equivalent to equations7

T = us(s, v), P = − uv(s, v), µ = u(s, v) + P − T s. (8.68)

Note that the observables T and P do not depend on n, in accordance with
their character of “intensive observables”.

Example 8.11. For an ideal gas (see Sect. 8.4)

u(s, v) =
K

γ − 1
v1−γ exp

s

c
, (8.69)

and for a Van der Waals gas

u(s, v) =
K

γ − 1
(v − b)1−γ exp

s

c
− a

v
. ♦ (8.70)

2 – Let us consider the control mode associated with the control manifold

7 In the following us stands for ∂u/∂s, and so on.
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Q2 = (v, T, n)

and the control form

θ2 = − P dV − S dT + µ dn = (µ − Pv) dn− nP dv − ns dT.

The constitutive set E is then described by the variational equation

(µ− Pv) δn− nP δv − S δT = δF, (8.71)

where F is the free energy,

F (V, T, n) = n f(v, T ) (8.72)

and f(v, T ) is the molar free energy. Equation (8.71) yields equations

P = − fv(v, T ), s = − fT (v, T ), µ = f(v, T ) + Pv. (8.73)

The two descriptions (8.68) and (8.73) of E are equivalent if and only if the
molar free energy is related to the molar internal energy by the Legendre
transform.

In order to perform the Legendre transform according to Theorem 8.11 we
list the following ingredients.

θ2 − θ1 = − P dV − S dT + µ dn− (T dS − P dV + µ dn) = − d(ST ),

W21(s, v, P, T, n, µ) = − ST = − nsT, Q1 = (s, v1, n1), Q2 = (v2, T, n2),

π21(s, v, P, T, n, µ) = ((v, T, n), (s, v, n)) ,

I21 = {((v2, T, n2), (s, v1, n1)) such that v2 = v2, n2 = n1},
E21 ((v2, T, n2), (s, v1, n1)) = − n1 s T (or equivalently, = −n2 s T ).

Then,

L21 ((v2, T, n2), (s, v1, n1); λ1, λ2) = − n1sT + λ1(v2 − v1) + λ2(n2 − n1),

and

G2(v2, T, n2; s, v1, n1, λ1, λ2) = n1 u(s, v1)−n1sT +λ1(v2−v1)+λ2(n2−n1).

This last generating family, with supplementary variables s, v1, n1, λ1, λ2, is
reducible to

G2(v, T, n; s) = n
(
u(s, v)− s T

)
, (8.74)

with the supplementary variable s only. This means that E2 is described by
the variational equation

(µ − Pv) δn− nP δv − ns δT = δG2,



196 8 Control of Static Systems

and the vanishing of the coefficient of δs yields equation

T = us(s, v).

If this equation is solvable with respect to s, we can remove s from G2 defined
in Eq. (8.74) and get an ordinary generating function of the kind (8.72).

8.11 Composite thermostatic systems

Let us consider the following mathematical model.

1. There are two symplectic manifolds, M and M̄ , representing the states of
two physical systems.

2. There are two control modes αc : M → T ∗Qc and ᾱc : M̄ → T ∗Q̄c.
3. There is a control relation Rc ⊆ Qc×Q̄c, where Qc plays the role of control

manifold.
4. There is a Lagrangian submanifold Ē ⊂ M̄ representing the equilibrium

states of the system M̄ ; this is assumed to be a Lagrangian submanifold
generated by a function V̄ : Q̄c → R with respect to the control mode ᾱc,
so that ᾱc(Ē ) = dV̄ (Q̄c).

We consider the set of equilibrium states (the constitutive set) Ec ⊂ M
of the system M̄ under the control relation Rc. By considering the principle
expressed by formula (8.8) and the notion of control mode described in Sect.
8.6, we assume that this set is defined by

Ec = α−1
c

(
R̂c ◦ ᾱc(Ē )

)
⊂M (8.75)

This model is illustrated by the following diagram,

Qc Q̄c

T ∗Qc T ∗Q̄c

M M̄

...........................................................................................................................................

...........................................................................................................................................

........................................................................

.......
..
.......
.......
..

........................................................................

.......
..
.......
.......
..

........................................................................

........
.
.......
........
.

........................................................................

........
.
.......
........
.

αc ᾱc

Rc

R̂c

Ec →֒ ←֓ Ē

←֓ dV̄ (Q̄c)

Let us apply this mathematical model to a closed thermostatic system of
n moles composed of N open subsystems in equilibrium.
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Open
subsystems

...............................................................................................................................
.....

................

...................................................................................................................................................................................
.......
..
..........
......

. . . . . . . .. . . . . . .. . . . . . . .. . . . . . .. . . . . . . .. . . . . . .. . . . . . . .. . . . . . .. . . . . . . .

. . . . . . .. . . . . . .. . . . . . .. . . . . . .. . . . . . .. . . . . . .. . . . . . .. . . . . . .. . . . . . .. . . . . . .. . . . . . .

. . . . . . .. . . . . . . .. . . . . . .. . . . . . . .. . . . . . .. . . . . . . .. . . . . . .

. . . . . . .. . . . . . . .. . . . . . .. . . . . . . .. . . . . . .. . . . . . . .. . . . . . .. . . . . . . .. . . . . . .. . . . . . . .. . . . . . .. . . . . . . .. . . . . . .. . . . . . . .. . . . . . .. . . . . . . .

. . . . . . .. . . . . . .. . . . . . .. . . . . . .. . . . . . .. . . . . . .. . . . . . .. . . . . . .

. . . . . . . .. . . . . . .. . . . . . . .. . . . . . .. . . . . . . .. . . . . . .. . . . . . . .. . . . . . .. . . . . . . .. . . . . . .. . . . . . . .. . . . . . .

........................................................................................................................................................................................................
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
..........................................................................................................................................................................................................

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

..........................................................................................................................................................................................................
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
..

................................................................................................................................................................................................
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.................................................................................................................................................................................................

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.................................................................................................................................................................................................
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.

···············································································································································································································································
····
····
···
····
····
····
····
·

································································································································································································································································································································································································································································································································································································
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
····
·

⊙

Fig. 8.13 Closed thermostatic system of n moles
composed of N open subsystems

The state manifold of this composite system is

M̄ = ×N
i=1Mi = ×N

i=1(si, vi, Ti, Pi, ni, µi).

We control this system by acting only on macroscopic observables of the space

M = (S, V, P, T ).

The subsystems are assumed to be open; this means that transfer of particles
between the subsystems is allowed.

8.11.1 Control volume and temperature

The control manifolds are

Q2 = (V, T ), Q̄2 = ×N
i=1(vi, Ti, ni).

The control relation R2 ⊆ Q2 × Q̄2 is defined by the fibration φ : Q̄2 → Q2

described by equations

V =
∑

i nivi, T = T1,

and by the constraint Σ2 ⊂ Q̄2 described by equations

∑
i ni = n, Ti = Tj .



198 8 Control of Static Systems

This means that all the subsystems have the same temperature T (we can
control the temperature by putting the system in a heat bath at the temper-
ature T ) and that we do not add or subtract matter to the whole system (the
pot containing the whole system is closed and has a controlled volume V ).
We assume that the system is homogeneous: this means that the constitutive
set

Ē ⊂ M̄
of the complete control of the N subsystems is generated by the function
(free energy)

F =
∑

i ni f(vi, Ti) (8.76)

where the function f is the same for all subsystems. From the virtual work
principle stated by formula (8.75) it follows that

Theorem 8.16. The constitutive set E2 is described by equations






∑
i ni = n,

S = −∑
i ni fT (vi, T ),

V =
∑

i nivi,





− P = fv(v1, T ) = . . . = fv(vN , T ),

P vi + f(vi, T ) = Pvj + f(vj , T ).
(8.77)

This means that (S, V, P, T ) ∈ E2 if and only if these equations are satisfied
for some values of (vi, ni).

Proof. The generating family of the control relation is

GR2 = λ1(T − T1) + λ2(V −
∑

i

nivi) + λ3 (
∑

i

ni − n) +
∑

i 6=j

λij (Ti − Tj).

The control form is
θ2 = − S dT − P dV.

From the principle (8.75), written for c = 2, and from the composition rule of
generating families, it follows that E2 is described by the variational equation

− S δT − P δV = δGR2 + δF (8.78)

thus by equation

−S δT − P δV = δ
[
λ1(T − T1) + λ2(V −∑

i nivi) + λ3 (
∑

i ni − n)

+
∑

i6=j λij(Ti − Tj)
]

+ δ (
∑

i ni f(vi, Ti)) .
(8.79)

The vanishing of the coefficients of δλ1 and δλij of this last equation yields
equations T = T1 and Ti = Tj , respectively. Note that the temperatures Ti
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play the role of supplementary variables in the generating family GR ⊕ F .
Hence, Eq. (8.79) is reducible to

−S δT − P δV = δ [λ2 (V −∑
i nivi) + λ3 (

∑
i ni − n)] + δ [

∑
i ni f(vi, T )] .

The coefficients of (δT, δV, δλ2 , δλ3, δni, δvi) yield, respectively, the following
equations






S = −∑
i ni fT (vi, T ),

P = − λ2,

0 = V −∑
i nivi,






0 =
∑

i ni − n,
0 = − λ2 vi + λ3 + f(vi, T ),

0 = λ2 ni + ni fv(vi, T ).

(8.80)

By eliminating the Lagrangian multipliers we obtain Eqs. (8.77). ⊓⊔
Remark 8.16. The control relation considered above fits with Case 4 of Sect.
8.1. Indeed, the fibration φ reduces to a fibration over the constraint Σ. This
means that we can replace Q̄2 by Σ2 = (×i(vi, ni), T◦) ≃ R2N

+ × R+, with
all subsystems at the same temperature T = T◦. The control relation is now
described by equations

R2 : Q2 ← Q̄2





V =

∑
i nivi, T = T◦ (fibration),

n =
∑

i ni (constraint),

and (8.79) is replaced by equation

−S δT − P δV = δ
[
λ1(T − T◦) + λ2(V −∑

i nivi) + λ3 (
∑

i ni − n)
]
,

+ δ
[ ∑

i ni f(vi, T◦)
]
,

which reduces to

−S δT − P δV = δ
[
λ2 (V −∑

i nivi) + λ3 (
∑

i ni − n)
]

+ δ
[ ∑

i ni f(vi, T )
]
.

Then we find again Eqs. (8.77). ♦
Let us study Eqs. (8.77) of E2.

Theorem 8.17. Let (S, V, P, T ) ∈ E2. For each pair (a, b) of values of the
molar volumes vi satisfying equations (8.77), we have8

∫ b

a

(
P + fv(v, T )

)
dv = 0. (8.81)

8 (Janeczko 1983a, b).
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Proof. For constant values of P and T , a primitive of the function P+fv(v, T )
is Pv+f(v, T ). Because of the last equation (8.77), this primitive takes equal
values at the endpoints of the interval of integration. ⊓⊔

Theorem 8.18. For each equilibrium state described by equations (8.77), the
molar volumes (vi) are determined by the points (v, y) ∈ R2 of the graph of
the function y = f(v, T ) 9 having a common tangent line.

Proof. For vi 6= vj , from the last equation (8.77) it follows that

P (vi − vj) = f(vj , T )− f(vi, T ),

thus,

P = −f(vi, T )− f(vj , T )

vi − vj
.

Because of Eqs. (8.77)4,

f(vi, T )− f(vj , T )

vi − vj
= fv(vk , T ),

for all vk. ⊓⊔

Remark 8.17. The number of molar volumes (vi) resulting from this theorem
is the number of phases that may coexist in an equilibrium state. Note that
the last equation (8.77) and the last equation (8.73) show that the subsystems
have a common value of the chemical potential, µi = µj . ♦

The two theorems stated above give an explanation of the
so-called Maxwell convention, or Maxwell rule, of the “equal
areas” (see the discussion in (Poincaré 1892), (Fermi 1936)
and (Huang 1987) and of the phenomenon of the coexistence
of phases. A first “symplectic” approach to this matter can
be found in (Janeczko 1983a, b). In the present approach, the
Maxwell rule is a theorem following from the general varia-
tional principle expressed by formula 8.75)

Remark 8.18. If for all values of T the function f(v, T ) is a convex function
of v, then any tangent line to its graph is tangent at a single point. This
means that for each equilibrium state described by Eqs. (8.77) all vi assume
the same value depending on T : vi = v(T ). It follows that E2 is a Lagrangian
submanifold, generated by the function

F (V, T ) = n f

(
V

n
, T

)
.

9 Introduced in (8.76).
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Indeed, according to the expression of the control form θ2 in (8.50), Eqs.
(8.77) reduce to equations

P = − FV = − fv

(
V

n
, T

)
, S = − FT = − n fT

(
V

n
, T

)
.

In this case the thermostatic system (S, V, P, T ) behaves as a simple closed
system. In all other cases E2 may not be a submanifold, and we have coex-
istence of phases; that is, there are states corresponding to different values
of the molar volumes vi. Fig. 8.14 illustrates the case in which for a certain
value of T the graph of y = f(v, T ) has two distinct points v1 6= v2 with a
common tangent.
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Fig. 8.14 The case of two points with a common tangent

Then the graph of the corresponding isotherm in the (V, P )-plane

P = − fv

(
V

n
, T

)

is of the Van der Waals kind for T < Tc. If V1 = nv1 and V2 = nv2, then

∫ V2

V1

(P − P1) dV =

∫ V2

V1

(
fv(V

n
, T )− P1

)
dV

= n

∫ v2

v1

(fv(v, T )− P1) dv = 0.

because of formula (8.81), Theorem 8.17. This is the Maxwell rule: all points
on the horizontal segment defined by P = P1 = − fv(v1, T ) = − fv(v2, T )
correspond to further equilibrium states.
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V1 = n v1 V2 = n v2

P = − fv( V
n

, T )

V

P

V = nv0 = n1v1 + n2v2

↑

P0 = −fv(v0, T )

P1 = −fv(v1, T ) = −fv(v2, T )

T

Fig. 8.15 An isotherm of a Van der Waals gas

The geometrical construction of this rule, illustrated in Fig. 8.15, is known
as Maxwell construction ; see for instance (Huang 1987). Fig. 8.16. ♦

Remark 8.19. Assume that for each value of T any tangent to the graph of
y = f(v, T ) admits at most two tangent points. This is the case of a Van
der Waals gas: for T < Tc, the critical temperature, we are in the situation
considered in Remark 8.18. Then E2 is the union of two sets,

E2 = E
(1)

2 ∪ E
(2)

2 .

The first set E
(1)

2 corresponds to the case of a single phase: vi = v = V/n. It
is the Lagrangian submanifold described by Eqs. (8.80). The second set E

(2)

2

represents the equilibrium states with the coexistence of two phases v1 < v2.
For these equilibrium states the values of the volume V belong to the open
interval V1 < V < V2, with Vi = n vi. Indeed, for V ≤ V1 or V ≥ V2 we
necessarily have a single phase and the corresponding states belong to E

(1)

2 .
According to Eqs. (8.77) the states of E

(2)

2 are then described by equations

P = − fv(v1, T ), S = − n1 fT (v1, T )− n2 fT (v2, T ).

The first equation shows that P has a unique value determined by T , when v1
is expressed as a function of T itself. About the second equation we observe
that the value of S depends on the mole numbers (n1, n2) of the two phases.
However, these two numbers are determined by the value of V . Indeed, by
solving the linear equations

n1 v1 + n2 v2 = V, n1 + n2 = n,

we find
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n1 =
n v2 − V
v2 − v1

=
V2 − V
v2 − v1

, n2 =
V − n v1
v2 − v1

=
V − V1

v2 − v1
.

Thus,

S =
1

v1 − v2
[
(V2 − V ) fT (v1, T ) + (V − V1) fT (v2, T )

]
. ♦

1.2
1.1
1.0
0.9

Tr

Tr =
T

Tc

, Tc =
8 a

27 bR
,

Pr =
P

Pc

, Pc =
a

27 b2
,

Vr =
V

Vc

, Vc = 3 b

Pr =
8 Tr

3 Vr − 1
−

3

V 2
r
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Fig. 8.16 Isotherms of Van der Waals in reduced coordinates

For a complete description of the set E
(2)

2 it remains to express v1 and v2
as functions of T .

Remark 8.20. Starting from the expression of the molar internal energy, Eq.
(8.70), and by performing the suitable Legendre transform, it can be shown
that for a Van der Waals gas the Helmholtz molar function is

f(v, T ) = cV T log
eK

RT
− RT log(v − b)− a

v
.

By studying the graph of y = f(v, T ), it can be shown that all vi assume the
same values for T ≥ Tc or two distinct values for T < Tc, where Tc is the
critical temperature. ♦
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8.11.2 Control entropy and volume

The control manifolds are

Q1 = (S, V ), Q̄1 = ×N
i=1(si, vi, ni).

The control relation is defined by equations

R1 : Q1 ← Q̄1





S =

∑
i nisi, V =

∑
i nivi (fibration),

n =
∑

i ni (constraint).

The control form is
θ1 = T dS − P dV.

The generating function of Ē is the total internal energy

U =
∑

i

ni u(si, vi).

Theorem 8.19. The constitutive set

E1 = α−1
1

(
R̂1 ◦ ᾱ1(Ē )

)
⊂M

is described by equations






∑
i ni = n,

S =
∑

i ni si,

V =
∑

i ni vi,






− P = uv(s1 , v1) = . . . = uv(sN , vN),

T = us(s1 , v1) = . . . = us(sN , vN ),

u(si, vi) + Pvi − Tsi = u(sj, vj) + Pvj − Tsj .

(8.82)

This means that (S, V, P, T ) ∈ E1 if and only if these equations are satisfied
for some values of (si, vi, ni). The proof of this theorem is similar to that of
Theorem 8.16. Equation (8.78) is replaced by

T δS − P δV = δ(GR2 + U).

We can state a theorem similar to Theorem 8.18.

Theorem 8.20. For each equilibrium state described by equations (8.82),
the molar volumes (vi) and the molar entropy are determined by the points
(s, v, y) ∈ R3 of the graph of the function y = u(s, v)10 having a common
tangent plane.

Proof. Let us consider two pairs (s1 , v1) and (s2 , v2) satisfying Eqs. (8.82).
Due to the last equation,

10 This graph is called Gibbs surface.
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u(s1, v1)− u(s2, v2) = T (s1 − s2)− P (v1 − v2),

and by applying Eqs. (8.82)4,5 we get

u(s1, v1)− u(s2, v2) = (s1 − s2)us(s1, v1) + (v1 − v2)uv(s1, v1)

= (s1 − s2)us(s2, v2) + (v1 − v2)uv(s2, v2).

On the other hand, the equation of the tangent plane to the Gibbs surface
at a point P1 = (s1, v1, u(s1, v1)) is

(s− s1)us(s1, v1) + (v − v1)uv(s1, v1) = y − u(s1, v1).

By setting (s, v) = (s2, v2) we get the equation above. ⊓⊔

Remark 8.21. The comparison of (8.77) and (8.82) shows that E1 = E2 (i.e.,
that the equilibrium states under the two control relations coincide). Indeed,
(8.77)2 and (8.82)2 are equivalent because of (8.79)3,

si = − fT (vi, T ).

The remaining equations are, respectively,

{
− P = fv(vi, T ) = fv(vj , T ),

P vi + f(vi, T ) = Pvj + f(vj , T ),
(8.83)





− P = uv(si, vi) = uv(uj, vj),

T = us(si, vi) = us(sj , vj),

u(si, vi) + Pvi − Tsi = u(sj , vj) + Pvj − Tsj .

(8.84)

The Legendre transform (8.64) can be written

f(v, T ) = (u(s, v)− sT )

∣∣∣∣
s=s(v,T )

, (8.85)

where the function s = s(v, T ) is the inverse of T = us(s, v). It follows that
for any fixed value of T ,

fv(v, T ) =

[
uv(s, v) + us(s, v)

∂s

∂v
− T ∂s

∂v

]

s=s(v,T )

·
[
us(s, v)

]

s=s(v,T )
.

This shows that (8.83)1 is equivalent to (8.84)1 and (8.84)2. Finally, (8.83)2
and (8.84)3 are equivalent because of (8.85). ♦





Chapter 9

Supplementary Topics

Abstract This is a chapter of appendices, which develops some topics pre-
viously mentioned.

9.1 Regular distributions and Frobenius theorem

A regular distribution on a manifold Q is a subbundle ∆ of the tangent
bundle TQ, that is, a submanifold of TQ such that for each point q ∈ Q,

∆q = ∆ ∩ TqQ,

is a subspace of constant dimension r, called the rank of the distribution.
Hence, a distribution is a map that assigns at each point q ∈ Q a subspace
∆q ⊂ TqQ of constant dimension r, in such a way that the union ∆ of all ∆q

is a submanifold.
A vector field X on Q is said to be compatible with the distribution ∆ if

its image is contained in ∆:

X(q) ∈ ∆q, for all q ∈ Q.

A one-form θ on Q is a characteristic form of ∆ if it annihilates all vectors
of ∆,

〈θ, v〉 = 0, for all v ∈ ∆.
A regular distribution ∆ of rank r can be locally described in three equiv-

alent ways:

, Universitext,S. Benenti, Hamiltonian Structures and Generating Families
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(i) By equations, that is, by m = n − r independent homogeneous linear
equations

θa
i (q) q̇i = 0, a = r + 1, . . . , n. (9.1)

(ii) By a basis of characteristic forms, that is, by n− r pointwise indepen-
dent one-forms θa annihilating the vectors of ∆ (a = r + 1, . . . , n). Such a
basis is formed by the one-forms

θa = θa
i dq

i

where the components θa
i are given by Eqs. (9.1).

(iii) By a basis of generators, that is, by r pointwise independent vector
fields Xα (α = 1, . . . , r) spanning at each point where they are defined, the
subspaces ∆q. We have

〈θa, Xα〉 = 0.

The set of all vector fields compatible with ∆ forms a subspace X∆ of
the space X (Q). We say that the distribution is involutive if X∆ is a Lie
subalgebra that is, if it is closed in the Lie bracket,

X, Y ∈X∆ =⇒ [X, Y ] ∈X∆.

It follows that if (Xα) is a basis of generators, then the distribution ∆ is
involutive if and only if

[Xα, Xβ] = F γ
αβXγ , (9.2)

where F γ
αβ are functions on the domain of definition of the local generators.

If (θa) is a basis of local characteristic forms, then the distribution ∆ is
involutive if and only if

dθa ∧ θr+1 ∧ · · · ∧ θn = 0. (9.3)

Let us prove the equivalence of conditions (9.2) and (9.3) for a distribution
of rank r = n − 1 (the proof for the general case is similar). In this case we
have a single characteristic form θ and condition (9.3) becomes

dθ ∧ θ = 0.

If (X, Y, Z) are three vector fields, then the following identity can be proved
by using the fundamental properties of the derivations iX and dX (Sect. 1.16).

iXiY iZ(dθ ∧ θ) = iXθ(dY iZθ − dZiY θ − i[Y,Z]θ) + c.p.

(c.p. = cyclic permutations of the vector fields). For each X, Y,∈ X∆ and
Z /∈ X∆ we get

iX iY iZ(dθ ∧ θ) = − iZθi[X,Y ]θ.

This shows that dθ ∧ θ = 0 if and only if i[X,Y ]θ = 0 (i.e., [X, Y ] ∈X∆).
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An integral manifold of a regular distribution ∆ is a submanifold S ⊆ Q
such that TqS = ∆q. A maximal integral manifold is a connected integral
manifold that is not properly contained in another connected integral mani-
fold. A maximal integral manifold may be an immersed submanifold. A dis-
tribution is completely integrable if for all q ∈ Q there exists an integral
manifold containing q.

Theorem 9.1. (i) A regular distribution is completely integrable if and only
if it is involutive. (ii) If a regular distribution is completely integrable, then
for each point q ∈ Q there is a unique maximal integral manifold containing
q.

This is known as Frobenius theorem.
An integral function of a distribution ∆ is a smooth function F : Q → R

such that
〈v, dF 〉 = 0, for all v ∈ ∆.

Locally, the integral functions are the solutions of the linear homogeneous
partial differential equations

〈Xα, dF 〉 = Xi
α ∂iF = 0. (9.4)

Theorem 9.2. A regular distribution is completely integrable if and only if
in a neighborhood of any point q ∈ Q there exists a basis of n − r integral
functions (ua).

This means that the differentials (dua) are pointwise independent and
any other integral function is functionally dependent on (ua). Note that a
completely integrable distribution may have no global integral function.

Proof. If ∆ is completely integrable, then the foliation of its integral man-
ifolds can be locally parametrized by coordinates (ui) = (uα, ua) such that
the differentials dua form a basis of local characteristic forms or, in other
words, such that the integral manifolds are locally described by equations
ua = constant. As a consequence, the derivations ∂/∂uα form a basis of local
generators. coordinates of this kind are said to be adapted to the distribution.
In adapted coordinates Eqs. (9.4) read

∂F

∂uα
= 0.

The most general solution of these equations is a function depending only
on the coordinates (ua). Conversely, if (ua) is a basis of integral functions,
then locally we can find other functions (uα) in such a way that (ua, uα) is
a coordinate system. Since ∂ua/∂uα = 0, the r derivations (Xα = ∂/∂uα)
form a basis of generators that are tangent to the r-dimensional submanifolds
ua = const. ⊓⊔
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There is a remarkable symplectic interpretation of all these concepts, which
leads to a simple proof of Frobenius theorem.

Let ∆◦ ⊂ T ∗Q be the subbundle of the covectors annihilating the vectors
of ∆,

∆◦ = {p ∈ T ∗Q such that 〈v, p〉 = 0, for all v ∈ ∆q, q = πQ(p)}. (9.5)

Lemma 9.1. The distribution∆ is involutive if and only if∆◦ is a coisotropic
submanifold.

Proof. It follows from (9.5) that a vector field X is compatible with ∆ if and
only if

PX |∆◦ = 0. (9.6)

Hence, ∆◦ is described by equations PX = 0 for X variable in the space X∆.
It follows that ∆◦ is coisotropic if and only if

{PX , PY }|∆◦ = 0 (9.7)

for all X, Y ∈X∆. Due to the third equation (4.10), this equation is equiva-
lent to

P[X,Y ]|∆◦ = 0.

This shows that (9.7) holds if and only if [X, Y ] ∈X∆. ⊓⊔

Lemma 9.2. If ∆◦ is coisotropic then the canonical lift X̂ of a vector field
X ∈X∆ is a characteristic vector field of ∆◦.

Proof. The Hamiltonian of X̂ is PX . If X ∈X∆ then (9.6) holds. This shows

that the Hamiltonian of X̂ is constant on ∆◦. Hence, X̂ is characteristic,
Theorem 3.11. ⊓⊔

Lemma 9.3. If ∆◦ is coisotropic then (i) the corresponding rays are r-
dimensional submanifolds of Q tangent to ∆ that is, integral manifolds of
∆, and (ii) they coincide with the characteristics lying on the zero-section of
T ∗Q.

Proof. Let (Xα) be a local basis of generators of ∆. Due to Lemma 9.2,

the canonical lifts X̂α are pointwise independent and span the characteristic
distribution of ∆◦. Since they project onto the r independent vectors Xα,
the characteristics projects onto r-dimensional submanifolds tangent to these
vectors. Hence, the rays are the integral manifolds of ∆. This proves item (i).
Item (ii) follows from the fact that on the zero-section, identified with Q, we

have X̂α|Q = Xα. ⊓⊔

Proof. Proof of Frobenius theorem. If we assume that ∆ is involu-
tive, then ∆◦ is coisotropic (Lemma 9.1) and the corresponding rays are
r-dimensional integral manifolds of ∆ (Lemma 9.3). Thus, ∆ is completely
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integrable. Conversely, if ∆ is completely integrable, then any basis of gen-
erators is tangent to the integral manifolds, so that also their Lie brackets
are tangent, and (9.2) holds. This proves item (i) of Theorem 9.1. Item (ii)
follows from item (ii) of Lemma 9.3, because two distinct maximal charac-
teristics of a coisotropic submanifold have an empty intersection. ⊓⊔

Remark 9.1. An involutive (completely integrable) distribution provides an
example of the Hamilton–Jacobi equation (i.e., of a coisotropic submanifold
C = ∆◦) of codimension r ≥ 1. The complete solution W (q, u) is a solution
of a system of r independent linear homogeneous equations,

Xi
α ∂iW = 0,

depending on n − r parameters u = (ua), which is in fact a parametrized
family of integral functions of the distribution. Assume that the set U of the
maximal integral manifolds of ∆ has a differentiable structure such that the
canonical projection π : Q → U is a submersion. Then the following can be
proved. ♦

Theorem 9.3. The reduced symplectic manifold M = T ∗Q/∆◦ is symplec-
tomorphic to the cotangent bundle T ∗U and the symplectic reduction R∆◦ is
isomorphic to the canonical lift of the graph of π.

9.2 Exact Lagrangian submanifolds

Let Λ ⊂ T ∗Q be a Lagrangian submanifold. Since Λ is isotropic, the pullback
of the canonical symplectic form dθQ to Λ is the zero-two-form: (dθQ)|Λ = 0.
Since the differential operator commutes with the pullback, the pullback of
the Liouville form θQ to Λ is a closed one-form,

d(θQ|Λ) = 0.

Hence, for each p ∈ Λ there is an open neighborhood Up ⊆ Λ and a function
Wp : Up → R such that θQ|Up = dWp. We call these functions the local
potentials of Λ. We say that a Lagrangian submanifold Λ ⊂ T ∗Q is exact if
it admits a global potential, that is, i.e., if there exists a function W : Λ→ R

such that
θQ|Λ = dW.

If ι : Λ→ T ∗Q is the immersion of Λ, then this equation can be written

ι∗θQ = dW.

Let π : Λ→ Q be the restriction of the cotangent fibration πQ : T ∗Q→ Q to
Λ. Then,
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π = πQ ◦ ι.
We observe that π is a differentiable function, because it is the composition
of two differentiable functions, and that TπQ(v) = Tπ(v) for all v ∈ TΛ.

Theorem 9.4. If Λ is generated by a function G : Q → R, then it is exact
and W = G ◦ π = π∗G is a global potential.

Proof. If v ∈ TpΛ, then 〈v, θQ〉 = 〈TπQ(v), p〉 = 〈Tπ(v), dG〉 = 〈v, π∗dG〉 =
〈v, dW 〉. ⊓⊔

Note that this theorem follows directly from formula (5.5), with S = Q:
θQ|Λ = dπ∗G. Conversely, we have the following.

Theorem 9.5. Let Λ ⊂ T ∗Q be an exact Lagrangian submanifold, with global
potential W , such that: (i) π : Λ → Q is a surjective submersion; (ii) there
exists a function G : Q → R such that W = π∗G = G ◦ π. Then Λ is the
Lagrangian submanifold generated by the function G, Λ = dG(Q).

Proof. Let p ∈ Λ, q = π(p), v ∈ TpΛ, and u = Tπ(v). Then,

〈v, θQ〉 = 〈Tπ(v), p〉 = 〈u, p〉

and
〈v, dW 〉 = 〈v, dπ∗G〉 = 〈v, π∗dG〉 = 〈Tπ(v), dG〉 = 〈u, dG〉.

Bicause 〈v, θQ〉 = 〈v, dW 〉 for all v ∈ TΛ, it follows that

〈u, p〉 = 〈u, dG〉 (9.8)

for all u ∈ Tπ(TpΛ). Inasmuch as π is a submersion, Tπ(TpΛ) = TqQ. Thus,
p = dqG. ⊓⊔

Remark 9.2. For simplicity we consider only a C∞ Lagrangian submanifold,
so that a global potential is a C∞ function. However, there are cases in which
this theorem holds with a generating function G that is not C∞. An example
is the Lagrangian submanifold q = p3 of T ∗R, Example 4.1. Its parametric
equations are p = λ, q = λ3. The global potential is W (λ) = 3

4
λ4, and the

projection π is represented by equation q = λ3. It is a one-to-one map, but it
is not a diffeomorphism. The generating function is G(q) = 3

4 q
4/3, and this

function does not admit the second derivative for q = 0. ♦

Remark 9.3. Assumption (i) in Theorem 9.5 does not imply (ii). An example
is the curve Λ ⊂ T ∗S1 ∼ S1 × R defined by parametric equations u =
(cosλ, sinλ) ∈ S1 and λ ∈ R. ♦

Remark 9.4. Let us replace assumptions (i) and (ii) by: π is a diffeomorphism.
Then the function G = (π−1)∗W = W ◦ π−1 is a C∞ generating function of
Λ. Indeed, Tpπ : TpΛ→ TqQ is an isomorphism for each p ∈ λ and moreover,
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〈u, dG〉 = 〈u, (π−1)∗dW 〉 = 〈Tπ−1(u), dW 〉= 〈v, dW 〉 = 〈v, θQ〉 = 〈u, p〉.

♦

Remark 9.5. We can replace assumption (i) by: π is surjective and Λ is con-
nected. In this case condition (9.8) still holds for all u ∈ Tπ(TpΛ). This shows
that if p is a regular point (i.e., Tπ(TpΛ) = TqQ) then p = dqG. This means,
in particular, that Λ cannot have two distinct regular points p over a same
point q ∈ Q (i.e., on a same fiber of T ∗Q). Let us consider the caustic Γ ⊂ Q
of Λ and a point q ∈ Γ .

(i) Assume that q is an isolated point of Γ : there exists an open and
connected neighborhood Nq of q not containing caustic points except q. Then
Λ is generated by G over Nq −{q}. Λ is connected, therefore the exceptional
point q is included by continuity.

(ii) Assume that in any open neighborhood N of q there are points which
do not belong to the caustic. Then, in these points we have that Λ is the
image of dG and, by an argument similar to that of (i), we conclude it is the
image of dG in a neighborhood of q.

(iii) The case in which there exists an open neighborhood N of q all con-
tained in Γ is not possible. Indeed, a caustic cannot contain open subsets.1

To see this, let us consider a Morse family F (qi, uα), at least of class C2,
generating Λ in the neighborhood of a singular point. The caustic is the pro-
jection into Q of the intersection of the critical set Ξ, described by equations
∂αF = 0, with the set described by equation det[∂α∂βF ] = 0. Hence, it is
contained in the projection of Ξ. Since F is a Morse family, Ξ is (locally)
a submanifold of dimension equal to the dimension of Q. It projects locally
onto open subsets of Q if and only if it is locally a section of the trivial fibra-
tion Q×U → Q. But this is the case in which it is completely reducible to an
ordinary generating function of class C2, and this is against our assumption
that it generates a neighborhood of Λ containing a singular point. Note that
in the last part of this proof we need the existence of a Morse family of class
C2. This is certainly satisfied if Λ is of class C2. ♦

Let us consider the case of a Lagrangian submanifold over a submanifold
S ⊂ Q.

Theorem 9.6. The Lagrangian submanifold Λ = (̂S,G) generated by a func-
tion G : S → R on a submanifold S ⊂ Q is exact with global potential
W = π∗G, where π : Λ→ S is the restriction of πQ to Λ.

Proof. As we have seen in Sect. 3.6, θQ|Λ = dπ∗G. ⊓⊔

Conversely, we have the following.

Theorem 9.7. Let Λ ⊂ T ∗Q be an exact Lagrangian submanifold, with global
potential W , which projects onto a submanifold S = πQ(Λ) ⊆ Q. Assume

1 A caustic is a closed subset (Abraham and Robbins 1967).
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that: (i) the restriction π : Λ → S of πQ to Λ is a submersion, (ii) there
exists a function G : S → R such that π∗G = W , and (iii) Λ is connected and
maximal (i.e., it is not properly contained in a larger Lagrangian submanifold
satisfying properties (i) and (ii)). Then Λ is generated by G on the constraint

S: Λ = (̂S,G).

Proof. Since it projects onto S, Λ is made of covectors based on points of
the submanifold S. Hence, it is contained in the coisotropic submanifold C =
T ∗

SQ. By the absorption principle it follows that it is made of characteristics
of C . Because of (i), it is the union of maximal characteristics. Then its image
by the reduction RC , Λ0 = RC ◦ Λ ⊂ T ∗S, is a Lagrangian submanifold. Let
ρ : C → T ∗S be the surjective submersion underlying RC . Since RC is a
canonical lift, ρ∗θS = θQ|C and for each v ∈ TΛ we have

〈Tρ(v), θS 〉 = 〈v, ρ∗θS〉 = 〈v, θQ|C〉 = 〈v, dW 〉. (9.9)

If v is tangent to a characteristic, then Tρ(v) = 0 and 〈v, dW 〉 = 0. This
shows that the function W is constant on the characteristics (contained in Λ)
so that it is reducible to a function W0 on Λ0. Let us consider the restriction
of ρ to Λ, ρ|Λ : Λ→ Λ0. It is a surjective submersion such that

W = (ρ|Λ)∗W0. (9.10)

It follows that

〈v, dW 〉 = 〈v, (ρ|Λ)∗dW0〉 = 〈T (ρ|Λ)(v), dW0〉.

Thus, because of (9.9), for each vector u ∈ TΛ0 we have 〈u, θS〉 = 〈u, dW0〉.
This shows that dW0 = θS |Λ0: Λ0 is exact with potential function W0. The
projection π = πQ|Λ : Λ→ S is the composition of ρ|Λ with πS|Λ0 : Λ0 → S,

π = πS|Λ0 ◦ ρ|Λ. (9.11)

The map π is a surjective submersion (by assumption) as well as ρ|Λ, thus
the map πS|Λ0 is also a surjective submersion. From W = π∗G and (9.10),
(9.11) it follows that

(ρ|Λ)∗W0 = W = π∗G = (ρ|Λ)∗(πS|Λ0)∗G.

This shows that W0 = (πS|Λ0)∗G. Hence, to the Lagrangian submanifold
Λ0 ⊂ S we can apply Theorem 9.5, so that Λ0 = dG(S). Due to (5.25), we

have Λ = R⊤
C ◦ Λ0 = R⊤

C ◦ dG(S) = (̂S,G). ⊓⊔

Remark 9.6. If in Theorem 9.7 the last assumption (iii) is not fulfilled, then

we can conclude only that Λ is an open subset of (̂S,G). ♦
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9.3 Dual pairings

Let A and B be (real, finite-dimensional) vector spaces. A dual pairing be-
tween A and B is a bilinear map

〈 | 〉 : A ×B → R : (a, b) 7→ 〈a|b〉,

satisfying the following regularity conditions





〈a|b〉 = 0, for all a ∈ A implies b = 0,

〈a|b〉 = 0, for all b ∈ B implies a = 0.

With each subspace (or subset) K ⊆ A we associate a subspace K¶ ⊆ B,
which we call the polar of K in the dual pairing 〈 | 〉, defined by

K¶ = {b ∈ B | 〈a|b〉= 0, for all a ∈ K}.

By the same symbol H¶ we denote the polar of a subspace H ⊆ B.
A first example of dual pairing is the evaluation 〈 , 〉 between vectors of a

space A and the covectors of the dual space B = A∗. We denote by K◦ ⊂ A∗

the polar of K ⊂ A in this canonical dual pairing

K◦ = {b ∈ A∗ | 〈a, b〉= 0, for all a ∈ K}. (9.12)

All dual pairings are isomorphic to this one, as shown by the following
theorem.

Theorem 9.8. Let 〈 | 〉 : A × B → R be a dual pairing. The linear map
ψ : B → A∗ defined by

〈a, ψ(b)〉 = 〈a, b〉 (9.13)

is an isomorphism, and for each subspace K ⊆ A,

ψ(K¶) = K◦. (9.14)

Proof. Assume that ψ(b) = 0. From (9.13) it follows that 〈a|b〉 = 0, for all
a ∈ A, and this implies b = 0, because of the regularity condition. Hence,
the kernel of ψ is the zero vector only, and the map is injective. It follows in
particular that dimB ≤ dimA∗ = dimA. We can define in a similar way a
linear map ψ′ : A→ B∗, and by the regularity condition (which operates on
both sides of the dual pairing) we conclude that it is injective, thus dimA ≤
dimB∗ = dimB. It follows that dimA = dimB, and ψ is an isomorphism.
Formula (9.14) is a direct consequence of (9.12) and (9.13). ⊓⊔

From this theorem and its proof we get the following.

Theorem 9.9. In a dual pairing 〈 | 〉 : A × B → R the spaces A and B have
the same dimension.
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Due to Theorem 9.8 and formula (9.14), the polar operator ¶ has formal
properties similar to those of ◦ (here 0A and 0B denote the zero-vectors of
A and B, respectively),






A¶ = 0B, B¶ = 0A, 0¶B = A, 0¶
A = B,

dimK + dimK¶ = dimA = dimB,

K¶ ⊆ L¶ ⇐⇒ L ⊆ K,

(K + L)¶ = K¶ ∩ L¶,

K¶ + L¶ = (K ∩ L)¶,

K¶¶ = K.

(9.15)

A second remarkable example of dual pairing is

〈 | 〉 : A× A→ R : (a, a′) 7→ α(a′, a),

where (A, α) is a symplectic vector space. We have denoted by K§ the polar
of K ⊆ A in this dual pairing (Sect. 3.1.1). The isomorphism ♭ : A → A∗ is
the isomorphism ψ of Theorem 9.8.

The notion of dual pairing turns out to be useful in various applications,
for instance, in the proof of the basic functorial rule (3.4). We use three
lemmas.

Lemma 9.4. Let R ⊆ B ⊕ A be a linear relation. A linear relation R• ⊆
B∗ ⊕ A∗ is defined by

R• = {(g, f) ∈ B∗ ⊕ A∗ such that 〈a, f〉 = 〈b, g〉 for all (b, a) ∈ R}. (9.16)

The subspace R• is the polar of R in the dual pairing

〈 | 〉 : (B ⊕ A)× (B∗ ⊕A∗)→ R : ((b, a), (g, f)) 7→ 〈b, g〉 − 〈a, f〉. (9.17)

The proof is straightforward.

Lemma 9.5. Let (A, α) and (B, β) be symplectic vector spaces and let R ⊆
B ⊕ A be a linear relation. If ♭A : A → A∗ and ♭B : B → B∗ are the natural
isomorphisms defined by the symplectic forms α and β, respectively (see 3.1),
then

R• = (♭B × ♭A)(R§), (9.18)

where R• ⊆ B∗ ⊕A∗ is defined by (9.16) and R§ ⊆ B ⊕A is defined in (3.3).

Proof. Due to Eq. (3.1), we can rewrite Eq. (9.16) as follows (here, we denote
by the same symbol ♯ the inverse maps of ♭A and ♭B),
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R• = {(g, f) ∈ B∗ ⊕A∗ such that α(f♯, a′)− β(g♯, b′) = 0

for all (b′, a′) ∈ R}.

This is equivalent to

R• = {(b♭, a♭) ∈ B∗ ⊕A∗ such that α(a, a′)− β(b, b′) = 0

for all (b′, a′) ∈ R}.

Because of the definition (3.3) of R§, this equation is equivalent to (9.18). ⊓⊔

The reason why we consider R• is explained by the following lemma.

Lemma 9.6. If R ⊆ B ⊕ A and S ⊆ C ⊕B are linear relations, then

(S ◦R)• = S• ◦R•. (9.19)

Proof. Because of (9.16), we have






R• = {(g, f) ∈ B∗ ⊕ A∗ such that 〈a, f〉 = 〈b, g〉,
for all (b, a) ∈ R},

S• = {(h, g) ∈ C∗ ⊕B∗ such that 〈b, g〉 = 〈c, h〉,
for all (c, b) ∈ S},

(9.20)

(S ◦R)• = {(h, f) ∈ C∗ ⊕ A∗ such that 〈c, h〉 = 〈a, f〉,
for all (c, a) ∈ S ◦R},

(9.21)

and

S• ◦R• = {(h, f) ∈ C∗ ⊕A∗ such that there exists g ∈ B∗

with (h, g) ∈ S• and (g, f) ∈ R•

= {(h, f) ∈ C∗ ⊕A∗ such that there exists g ∈ B∗

with 〈c, h〉 = 〈b, g〉 and 〈b′, g〉 = 〈a, f〉,

for all (c, b) ∈ S and (b′, a) ∈ R}.

(9.22)

(i) Let (h, f) ∈ S• ◦R•. For any arbitrary element (c, a) ∈ S ◦R there exists
b ∈ B such that (c, b) ∈ S and (b, a) ∈ R. It follows from (9.22), with b = b′,
that 〈c, h〉 = 〈a, f〉. Because of (9.21), (h, f) ∈ (S ◦ R)•. This proves the
inclusion S• ◦R• ⊆ (S ◦ R)•. (ii) To prove the inverse inclusion we consider
the following dual pairing

(C ⊕B ⊕ B ⊕ A)× (C∗ ⊕B∗ ⊕ B∗ ⊕A∗)→ R :

((c, b, b′, a), (h, g, g′, f)) 7→ 〈c, h〉 − 〈b, g〉+ 〈b′, g′〉 − 〈a, f〉.
(9.23)
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We denote by ¶ the corresponding dual operator. For this dual pairing we
have

(S ⊕ R)¶ = S• ⊕R•. (9.24)

Indeed, due to (9.23),

(S ⊕R)¶ = {(h, g, g′, f) such that 〈c, h〉 − 〈b, g〉+ 〈b′, g′〉 − 〈a, f〉 = 0,

for all (c, b) ∈ S and (b′, a) ∈ R}

and, due to (9.20),

S• ⊕R• = {(h, g, g′, f) such that 〈c, h〉 = 〈b, g〉, 〈b′, g′〉 = 〈a, f〉,

for all (c, b) ∈ S and (b′, a) ∈ R}.

This second expression shows that S• ⊕R• ⊆ (S ⊕R)¶. On the other hand,
by the dimensional property of the dual polar operators, we have

dim(S• ⊕ R•) = dimS• + dimR• = codimS + codimR

= dimC + 2 dimB + dimA− dimS − dimR,

and

dim(S ⊕ R)¶ = codim (S ⊕R)¶

= dimC + 2 dimB + dimA − dimS − dimR.

Then dim(S• ⊕R•) = dim(S⊕R)¶ and (9.24) is proved. Let us consider the
following two subspaces of C ⊕B ⊕ B ⊕A,

L = {(c, b, b, a)}, K = (S ⊕ R) ∩ L.

We remark that

K = {(c, b, b, a) such that (c, b) ∈ S, (b, a) ∈ R} (9.25)

so that
(c, b, b, a) ∈ K ⇒ (c, a) ∈ S ◦R. (9.26)

The polar L¶ is made of elements of the kind (0, g, g, 0) with g ∈ B∗. Indeed,

L¶ = {(h, g, g′, f) such that 〈c, h〉 − 〈b, g〉+ 〈b′, g′〉 − 〈a, f〉 = 0,

for all (c, b, a) ∈ C ×B ×A}

= {(h, g, g′, f) such that h = 0, f = 0, g = g′}.

Furthermore, from one of the rules (9.15) and from (9.24) we derive
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K¶ = S• ⊕R• + L¶. (9.27)

If (h, f) ∈ (S◦R)• and g ∈ B∗, then (h, g, g, f) ∈ K¶. Indeed, (h, f) ∈ (S◦R)•

means
〈c, h〉 = 〈a, f〉, for all (c, a) ∈ S ◦R,

and because of (9.25) and (9.26), for any (c, b, b, a) ∈ K we have, in the dual
pairing (9.23),

〈(c, b, b, a) | (h, g, g, f)〉= 〈c, h〉 − 〈b, g〉+ 〈b, g〉 − 〈a, f〉 = 0.

It follows from (9.27) that there exist elements ḡ ∈ B∗ and (h′, g′, g′′, f ′) ∈
S• ⊕R• such that

(h, g, g, f) = (h′, g′, g′′, f ′) + (0, ḡ, ḡ, 0).

From this equality we see that g′ = g′′, h′ = h and f ′ = f . Since (h′, g′) ∈ S•

and (g′′, f ′) ∈ R•, we conclude that if (h, f) ∈ (S ◦ R)• then there exists a
g′ ∈ B∗ such that (h, g′) ∈ S• and (g′, f) ∈ R•; that is, (h, f) ∈ S• ◦R•. This
proves (S ◦R)• ⊆ S• ◦R•. ⊓⊔

Now we can prove Theorem 3.1.

Proof. Let (A, α), (B, β), and (C, γ) be symplectic vector spaces and let
R ⊆ B ⊕ A and S ⊆ C ⊕B be linear relations. Then we have

(♭C × ♭B)(S) ◦(♭B × ♭A)(R)

= {(f, g) ∈ C∗ ⊕A∗ such that there exists h ∈ B∗

with (f, h) ∈ (♭C × ♭B)(S) and (h, g) ∈ (♭B × ♭A)(R)}

= {(f, g) ∈ C∗ ⊕A∗ such that there exists b ∈ B

with (f♯, b) ∈ S and (b, g♯) ∈ R}

= {(f, g) ∈ C∗ ⊕A∗ such that (f♯ , g♯) ∈ S ◦R}

= (♭C × ♭A)(S ◦R).

This proves the identity

(♭C × ♭B)(S) ◦ (♭B × ♭A)(R) = (♭C × ♭A)(S ◦R),

which holds for any two relations R and S. We can write it for R§ and S§,

(♭C × ♭B)(S§) ◦ (♭B × ♭A)(R§) = (♭C × ♭A)(S§ ◦R§).

Because of (9.18) and (9.19), it follows that

(♭C × ♭A)(S§ ◦R§) = S• ◦R• = (S ◦R)• = (♭C × ♭A)(S ◦R)§.
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The map ♭C × ♭A is an isomorphism, thus the functorial rule (3.4) is proved.
⊓⊔

9.4 Lagrangian splittings and canonical bases

A Lagrangian splitting of a symplectic vector space (A, α) is an ordered pair
(L,M) of Lagrangian subspaces such that

L ∩M = 0.

This condition is equivalent to

L+M = A.

Indeed, from A§ = 0, L§ = L, and M § = M it follows that

(L ∩M)§ = L§ +M § = L+ M.

Hence, a Lagrangian splitting is a decomposition of A as a direct sum of two
Lagrangian subspaces,

A = L⊕M.

Theorem 9.10. Let (L,M) be a Lagrangian splitting of (A, α). The map

〈 | 〉 : L×M → R : (l, m) 7→ α(m, l)

is a dual pairing.

Proof. Equation 〈l|m〉 = 0 (i.e., α(l, m) = 0) for each l ∈ L, means that
m ∈ L§, that is m ∈ L. Since L ∩M = 0, it follows that m = 0. ⊓⊔

Let ψ : M → L∗ be the isomorphism associated with this dual pairing. It
is defined by

〈l, ψ(m)〉 = α(m, l). (9.28)

Let (ei) be an ordered basis of the subspace L and let (εi) be its dual basis
in the dual space L∗: 〈ei, ε

j〉 = δj
i . It follows from (9.28) that the vectors

fj = ψ−1(εj) form a basis of M such that (ei, f
j) is a canonical basis of

(A, α); that is,

α(ei, ej) = 0, α(f i, fj) = 0, α(ei, f
j) = δj

i . (9.29)

Conversely, let (ei, f
j) be a canonical basis and let I be a subset of the set

In = {1, 2, . . . , n}, n = 1
2

dimA. Let us denote by LI the subspace of L

spanned by the vectors (ei, f ī) with i ∈ I and ī ∈ Ī , the complementary set
of I in In. Then, we have the following theorem.
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Theorem 9.11. For each Lagrangian subspace L there exists a subset I ⊂ In
such that (L, LI) is a Lagrangian splitting.

For the proof we use the following lemma.

Lemma 9.7. If E is a n-dimensional vector space with a basis (ei) and S ⊂
E is a subspace, then there exists a subset I ⊂ In such that

E = S ⊕ SI





SI ∩ S = 0,

S + SI = E,

where SI = span(ei, i ∈ I).

Proof. Assume that S is defined by the m = n− r independent linear equa-
tions

Sαix
i = 0.

Up to an inessential reordering of the basis we assume that the submatrix
[Sαβ] (α, β = 1, . . . , m) is regular with inverse matrix [Sαβ], SαβSβγ = δα

γ .
From

Sαβ x
β + Sαβ̄ x

β̄ = 0 (ᾱ, β̄ = m+ 1, . . . , n)

it follows that the vectors x ∈ S are characterized by equations

xβ = − Sβα Sαβ̄ x
β̄.

Let us consider the subspace S′ = span(eα) made of vectors y = yαeα. Let
v = vαeα + vᾱeᾱ be any vector of E. Let us set






xβ = − Sβα Sαβ̄ v
β̄ ,

xβ̄ = vβ̄ ,

yβ = vβ + Sβα Sαβ̄ v
β̄ .

Then, x = xβeβ +xβ̄eβ̄ ∈ S and y = yβeβ ∈ S′ and moreover, x+y = v. This

shows that S+S′ = E. Let y = yαeα = x ∈ S. Then from yαeα = xβeβ +xβ̄eβ̄
it follows that xβ̄ = 0 hence, xβ = 0. This shows that S ∩ S′ = 0. Note that
S′ = SI with I = {1, . . . , m}. ⊓⊔

Proof. The subspace E = LIn
= span(ei) is Lagrangian (it is isotropic due

to (9.29)1 and of dimension n). The subspace S = L∩E is isotropic (it is the
intersection of two isotropic subspaces). There exists at least a subset I ⊂ In
such that SI ∩ S = 0 and SI + S = E, where SI = span(ei; i ∈ I) (Lemma
1). Note that SI ⊆ LI is isotropic. As a consequence,
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S ⊆ L and SI ⊆ LI =⇒ L ⊂ S§ and LI ⊆ S§
I

=⇒ L ∩ LI ⊆ S§ ∩ S§
I = (S + SI)§ = E§ = E

=⇒ L ∩ LI = E ∩ L ∩ LI = (E ∩ L) ∩ (E ∩ LI) = S ∩ SI = 0. ⊓⊔

Now we observe that (LĪ , LI) is also a Lagrangian splitting, having a com-
mon element with (L, LI). As a consequence, if we consider the two projec-
tions with respect to the complementary subspaces (LI , LĪ), then L projects
isomorphically onto LĪ .
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Fig. 9.1 Lagrangian splitting

Hence, we can prove the following theorem.2

Theorem 9.12. Let

L =

[
Q

P

]
=

[
Qi

k

Pjk

]
(9.30)

be a 2n× n matrix with maximal rank n such that

Qi
k Pih − Pik Q

i
h = 0. (9.31)

Then there exists a subset I ⊆ In such that the n× n submatrix

SI =



Q
Ī

P I



 =

[
QĪ

k

PIk

]
, I ⊆ {1, 2, . . . , n}.

is regular.

Proof. Let (A, α) be a 2n-dimensional symplectic vector space and let (ei, f
j)

be a canonical basis. For each v ∈ A we have the representation v = viei +

2 See also (Arnold 1967) and (Mishchenko et al. 1978).
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vjf
j . Let L ⊂ A be the subspace described by parametric equations

vi = Qi
k λ

k, vj = Pjk λ
k, (λk) ∈ Rn, (9.32)

with the matrix (9.30) of maximal rank. It follows that L is a subspace of
dimension n. Condition (9.31) is equivalent to the isotropy of this subspace:

α(u, v) = α(uiei + ujf
j , viei + vjf

j) = uivi − uiv
i

= (Qi
k Pjk − PikQ

i
h)λk

u λ
h
v .

Hence, L is a Lagrangian subspace and Eqs. (9.31) describe an isomorphism
Rn → L. On the other hand, due to Theorem 9.11, there is an isomorphism
Rn → LĪ . Because v ∈ LĪ if and only if v =

∑
a∈Ī v

aea +
∑

α∈I vαf
α, this

last isomorphism is described by equations

va = Qa
k λ

k, vα = Pαk λ
k,

it follows that

det

[
Qa

k

Pαk

]
6= 0. ⊓⊔

9.5 The Maslov–Hörmander theorem

Theorem 9.13. Maslov–Hörmander theorem. If Λ ⊂ T ∗Q is a Lagrangian
submanifold, then for each p ∈ Λ there exists a Morse family generating Λ in
a neighborhood of p.

Proof.3 Let us consider a Lagrangian immersion, Eqs. (4.14),

qi = qi(uk), pi = pi(u
k), (9.33)

and the 2n× n matrix with maximal rank




Qi

k

Pjk



 =





∂qi

∂uk

∂pj

∂uk



 . (9.34)

The immersion is Lagrangian, thus Eqs. (4.16) hold (i.e.,Qi
kPij−Qi

jPik = 0).
Then we are in the condition of applying Theorem 9.12 and, up to a reordering
of the coordinates (qi), the matrix (9.34) admits a regular n× n submatrix
of the kind

3 See also (Libermann and Marle 1987) and (Weinstein 1977). The proof given here
is taken from (Benenti 1988).
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[
Qa

k

Pαk

]
=




∂qa

∂uk

∂pα

∂uk


 , a = 1, . . . , m, α = m+ 1, . . . , n,

so that the subsystem of (9.33),

qa = qa(uk), pα = pα(uk),

can be solved (locally) with respect to (uk): uk = uk(qa, pα). This means that
we can take (qa, pα) as parameters of the immersion, so that a Lagrangian
submanifold Λ can always be represented by local immersions of the kind4

qα = qα(qb, pβ), pa = pa(qb, pβ). (9.35)

The one-form
θ = pa dq

a − qα dpα

is such that dθ = ω = dpi ∧ dqi (the canonical symplectic form). Its pullback
to Λ is closed (because Λ is Lagrangian), thus locally exact. It follows that
there exists a function F (qa, pα) such that (9.35) are equivalent to

pa =
∂F

∂qa
, qα = − ∂F

∂pα
. (9.36)

Let us consider the function

G(qi; pα) = F (qa, pα) + pα q
α.

This is a Morse family on (qi) with supplementary variables (pα). Indeed, in
the matrix [

∂2G

∂pα∂pβ

∣∣∣∣
∂2G

∂pα∂qi

]

we find the regular square matrix

[
∂2F

∂pα∂qβ

]
= [δα

β ].

The equations of the Lagrangian set generated by this Morse family are

4 The parameters (qa, pα) are local coordinates on the Lagrangian submanifold Λ.
They are called canonical coordinates of Λ. For more information about the existence
and the use of a canonical atlas of a Lagrangian submanifold see (Mishchenko et al.
1978).
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



pi =
∂G

∂qi
→






pa =
∂G

∂qa
=
∂F

∂qa
,

pα =
∂G

∂qα
= pα.

0 =
∂G

∂pα
= qα +

∂F

∂pα
.

These equations coincide with Eqs. (9.36) of Λ. ⊓⊔





Chapter 10

Global Hamilton Principal Functions

on S2 and H2

Abstract As a final argument of this book I propose a theme, simple in
its formulation, but not so simple in its design: to see which are the princi-
pal Hamilton functions for the geodesics of two basic Riemannian manifolds
of constant curvature. In drafting this chapter, I was pleasantly helped by
Franco Cardin, University of Padua.

10.1 Vector calculus in the real three-space

In R3 = (x, y, z) endowed with the natural Euclidean structure we consider
the unit sphere S2, x2 + y2 + z2 − 1 = 0. In R3 endowed with a Minkowski
metric, with z a time-like coordinate, we consider the hyperboloid H2 of
equation z =

√
1 + x2 + y2 made of all unit time-like vectors oriented to the

future.
Both are two-dimensional Riemannian manifolds with constant curvature

(positive and negative, respectively). We show that their eikonal equations
admit global Hamilton principal functions, which are not Morse families. To
this end, we need to recall some basic definitions and formulae of vector
calculus in R3.

10.1.1 The metric tensor and the scalar product

In R3 we consider the ordered canonical basis ci,

c1 =




1
0
0



 , c2 =




0
1
0



 , c3 = t =




0
0
1





, Universitext,S. Benenti, Hamiltonian Structures and Generating Families

DOI 10.1007/978-1-4614-1499-5_10, © Springer Science+Business Media, LLC 2011

2 72



228 10 Global Hamilton Principal Functions on S2 and H2

and the metric tensors gε, with ε = ±1, such that






gε(ci, cj) = 0, i 6= j,

gε(c1, c1) = gε(c2, c2) = 1,

gε(c3, c3) = ε = ±1.

We denote by
u · v = gε(u, v)

the scalar product of two vectors, and use the notation

u2 = u · u, |u| =
√
|u2|.

Two vectors are orthogonal if u · v = 0. In this case we use the notation
u ⊥ v. If

gij = ci · cj,

then

[
gij

]
=




1 0 0

0 1 0

0 0 ε


 .

For ε = 1 the metric is positive-definite (Euclidean). For ε = − 1 the metric
is hyperbolic (Minkowskian) and the vector c3 = t is time-like.

Let (ea) be any basis. Its dual basis (ea) is defined by

ea · eb = δb
a.

If
gab = ea · eb, gab = ea

· eb,

then the two symmetric matrices
[
gab

]
and

[
gab

]
are inverses of each other

(i.e. gabgbc = δa
c ) and we get the well-known rules of raising and lowering the

indices: if v = vaea = vaea, then

va = gabv
b, va = gabvb,

and
va = v · ea, va = v · ea.

For the canonical basis,

c1 = c1, c2 = c2, c3 = ε c3,

v1 = v1, v2 = v2, v3 = ε v3.
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10.1.2 The volume form

We define a volume three-form V (u, v,w) by setting

V (c1, c2, c3) = ε.

As a consequence,
V (ch, ci, cj) = ε εhij

where εhij is the Levi-Civita symbol, and

V (u, v,w) = ε εhij u
hviwj = ε

∣∣∣∣∣∣∣∣

u1 u2 u3

v1 v2 v3

w1 w2 w3

∣∣∣∣∣∣∣∣
.

For any arbitrary basis (ea) we have

V (u, v,w) = Vabc u
avbwc = V abc uavbwc

where

Vabc = V (ea, eb, ec), V abc = V (ea, eb, ec) = gadgbegcf Vdef .

If the basis (ea) is oriented as (ci), that is, if

ea = Ai
a ci, det A > 0, A = [Ai

a],

then

Vabc = ε
√
|g| εabc, V abc =

1√
|g|

εabc, g = det[gab], (10.1)

where εabc and εabc are Levi-Civita symbols. It follows that

V abc Vabc = 3! ε, V abc Vdbc = 2 ε δa
d , V abc Vdec = ε δab

de = ε (δa
dδ

b
e − δa

e δ
b
d).

To prove (10.1) we observe that from gab = Ai
aA

j
b gij it follows that

g = det[gab] = (det A)2 det[gij] = (det A)2 ε.

Thus, g has the same sign of ε and we can write g = ε |g|. Moreover, since A

has a positive determinant,

det A =
√
|g|.

Hence,
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Vabc = Ai
aA

j
bA

k
c Vijk = ε εijk A

i
aA

j
bA

k
c = ε εabc det A = ε

√
|g| εabc,

V abc = Vdef g
adgbegcf = ε

√
|g| εdef g

adgbegcf

= ε
√
|g| εabc det[gab] = ε

√
|g| εabc 1

g = 1√
|g|
εabc.

10.1.3 The cross-product

By means of the volume form we define the cross-product u×v of two vectors
by setting

u× v · w = V (u, v,w).

With respect to any basis (ea) we have

ea × eb · ec = Vabc, (u× v)c = u× v · ec = Vabc u
a vb,

and
u× v = Vabc u

a vb ec = V abc ua vb ec.

For the canonical basis, ci × cj = ε εijk ck; thus,






c1 × c2 = c3 = t,

c2 × c3 = εc1,

c3 × c1 = εc2.

The cross product satisfies the following rules,






u× v = − v × u,

u× v · w = w× u · v = v ×w · u,

u× v · w = u · v ×w,

whatever ε. For the double cross product we have

(u× v)×w = ε (u · w v − v · w u).

Indeed,

(u× v)×w = Vabc u
a vb ec ×w = Vabc u

a vb V cde wd ec

= Vabc V
dec ua vb wd eeε δ

de
ab u

a vb wd ee

= ε (ua wa v
b eb − vb wb u

a ea.

As a consequence,
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(n× a) · (n× b) = (n× a)× n · b = ε
(
n2 a · b− n · a n · b

)

and
(n× a)2 = ε

(
n2 a2 − (n · a)2

)
.

10.1.4 Rotations

With a vector n such that
γ = n2 = ±1

we associate the linear operators R : R3 → R3 of the kind

R(v) = v + αn× v + β(n · v n− γv), α, β ∈ R.

It follows that R(n) = n, and

v · R(v) = (1− βγ) v2 + β(n · v)2. (10.2)

Hence,

(R(v))2 = v2 + α2 (n× v)2 + β2
(
γ(n · v)2 + γ2 (v)2 − 2γ (n · v)2

)

+ 2β
(
(n · v)2 − γv2

)

= v2 + α2ε
(
γv2 − (n · v)2

)
+ β2

(
γ2v2 − γ(n · v)2

)

+ 2β
(
(n · v)2 − γ v2

)

=
(
1 + γ(εα2 + γβ2 − 2β)

)
v2 +

(
2β − εα2 − γβ2

)
(n · v)2,

and (R(v))2 = v2 is equivalent to

(
γ(εα2 + γβ2 − 2β)

)
v2 +

(
2β − εα2 − γβ2

)
(n · v)2 = 0. (10.3)

Let us consider the case γ = n2 = 1 and (R(v))
2

= v2. Then, for each
vector v ⊥ n, v2 6= 0, from (10.2) and (10.3) we obtain

v · R(v)

v2
= 1− β (10.4)

and
εα2 + β2 − 2β = 0. (10.5)

In the Euclidean metric (i.e., for ε = 1) Eq. (10.5) implies α2 ≤ 1, and
|1 − β| ≤ 1. Let us set 1 − β = cos θ, β = 1 − cos θ. Then (10.5) implies
α2 = sin2 θ. If we choose α = sin θ, then we obtain the Rodrigues formula for
the rotations in the Euclidean three-space,
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R(n,θ)(v) = v + sin θn× v + (1− cos θ)(n · v n− v) (10.6)

The choice α = sin θ (instead of α = − sin θ) is in accordance with the
conditions

R(n,π/2)(v) = n× v, v ⊥ n.

It follows that for all v 6= 0 orthogonal to n,

sin θ =
v ×R(v)

v2
· n, cos θ =

v · R(v)

v2
(10.7)

Note that θ is the angle of rotation (i.e., the angle between v and R(v)) for
all v ⊥ n. The unit vector n is the axis of rotation.

In the Minkowski metric (i.e., for ε = −1) Eq. (10.5) shows that |1−β| ≥ 1
and, because of Eq. (10.4), we put 1− β = cosh χ; that is, β = 1 − cosh χ.
This choice corresponds to the assumption that any time-like vector v ⊥ n is
time-equioriented with its image R(v); that is, v · R(v) < 0. In particular,
χ = 0 corresponds to R(v) = v. Equation (10.5) implies α2 = sinh2 χ. If we
choose α = sinhχ then we obtain the Rodrigues formula for rotations in the
Minkowski three-space with a space-like axis n,

R(n,χ)(v) = v + sinhχn× v + (1− cosh χ)(n · v n− v).

It follows that for all nonlight-like v orthogonal to n,

sinhχ = − v ×R(v)

v2
· n, coshχ =

v · R(v)

v2
.

The choice α = sinhχ (instead of α = − sinhχ) is in accordance with the
condition

R(c1,χ)(c2) = coshχ c2 + sinhχ c3.
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Fig. 10.1 Minkowski metric in the plane (c2, c3)
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10.1.5 Symplectic structure of an orientable surface

Let us consider a surface M ⊂ R3 described by a parametric equation

x = x(u1, u2) = x(uα).

The tangent vectors
eα = ∂αx

are assumed to be pointwise independent, so that they form a tangent frame.
With this frame we associate the coefficients of the first fundamental form

Aαβ = eα · eβ.

The dual frame is defined by

eα = Aαβ eβ , eα
· eβ = δα

β .

The covariant components of a tangent vector p are

pα = p · eα.

The Christoffel symbols and the coefficient of the second fundamental vector-
valued form are defined by:

∂αeβ = Γ γ
αβ eγ + Bαβ, Bαβ · eγ = 0.

A regular surface M ⊂ R3 is orientable if it admits a global orthogonal vector
field n 6= 0. We assume that n is a unit vector. Then n · n = ±1, according
to the signature of the metric in R3.

Let us consider the two-form σ on tangent vectors defined by

σ(u, v) = n · u× v, u, v ∈ TM.

This is the area two-form. Its integral over a compact subset U ⊆ M gives,
by definition, the area of U . By setting

σαβ = σ(eα, eβ) = n · eα × eβ, (10.8)

we get

σ(u, v) = n · eα × eβ u
α vβ = σαβ u

αvβ = σ12(u1v2 − u2v1).

Since vα = 〈v, duα〉 = v · eα, it follows that

σ = 1
2 σαβ du

α ∧ duβ = σ12 du
1 ∧ du2.
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The area two-form is nondegenerate, thus it is a symplectic form (a two-form
on a two-dimensional surface is obviously closed).

The Hamiltonian vector field Xf associated with a function f(uα) on the
surface is defined by equation

Xα
f σαβ = −∂βf.

We observe that

Xα
f σαβ = −∂βf ⇐⇒ Xα

f n · eα × eβ = −∂βf

⇐⇒ n · Xf × eβ = −∂βf

⇐⇒ Xf · eβ × n = −∂βf

⇐⇒ Xf · n× eβ = ∂βf

⇐⇒ Xf · n× eβ A
βα = Aβα ∂βf

⇐⇒ Xf × n · eα = (∇f)α

⇐⇒ Xf × n = ∇f,

where ∇ is the gradient operator on the surface. This shows that Xf is
defined by the implicit equation Xf × n = ∇f . Since Xf is tangent to the
surface, Xf · n = 0. Then we have

∇f × n = (Xf × n)× n = ε (Xf · n n− n · n Xf ) = − εn · n Xf .

It follows that

Xf = ε ν n×∇f, ν
.
= n · n = ±1 (10.9)

This gives the explicit definition of Xf . The Poisson bracket is defined by

{f, g}σ = σ(Xf ,Xg) = n · Xf ×Xg = n · (n×∇f) × (n×∇g).

Thus,

{f, g}σ = ε ν n · (∇f ×∇g) (10.10)

Let f(x) be the restriction to x ∈ M of a function F (x) on R3. The
gradient ∇f of a function f on a submanifold M of a Riemannian manifold
R3 is simply the orthogonal projection to the tangent space of M of the
gradient ∇F of any (local) extension F of f; therefore we have

∇F (x) = ∇f + h(x) n.

It follows that the equation
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n · (∇f ×∇g) = n · (∇F ×∇G )

holds on the surface. Then from (10.10) we get

{f, g}σ = εn2 n · (∇F ×∇G ) (10.11)

This formula gives the Poisson bracket of functions f(x) on the surface in
terms of local extensions F (x).

10.1.6 The Poisson bracket of functions of a special

kind

With any (smooth) function F (x) on R3 we associate a function F (q,p) on
T ∗R3 defined by

F (q, p) = F (x), x = q × p. (10.12)

Let us compute the Poisson bracket of functions of this kind. In the canonical
basis, we have q = qici, p = pici, and xi = V ijk qj pk. Hence,






∂xi

∂ql
= V ijk gjl pk,

∂xi

∂pl
= V ijl qj,






∂G

∂ql
=
∂G

∂xi

∂xi

∂ql
=
∂G

∂xi
V ijk gjl pk,

∂F

∂pl
=
∂F

∂xi

∂xi

∂pl
=
∂F

∂xi
V ijl qj,

∂F

∂pl

∂G

∂ql
=
∂F

∂xi
V ijl qj

∂G

∂xr
V rsk gsl pk

∂F

∂xi

∂G

∂xr
gih Vhjs V

krs qj pk

= ε
∂F

∂xi

∂G

∂xr
gih (δk

hδ
r
j − δk

j δ
r
h) qj pk

= ε (p · ∇F q · ∇G − q · p ∇F · ∇G ) ,

and

{F,G} =
∂F

∂pl

∂G

∂ql
− ∂G

∂pl

∂F

∂ql
= ε (p · ∇F q · ∇G − q · ∇F p · ∇G ) .

Since

(q × p) · (∇F ×∇G ) = q · p× (∇F ×∇G )

= ε q · (∇G · p ∇F −∇F · p ∇G )

= ε (∇G · p ∇F · q −∇F · p ∇G · q),

we find the formula
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{F,G} = − (q × p) · (∇F ×∇G ) (10.13)

that gives the Poisson bracket of functions F (q, p) on T ∗R3 of the type
(10.12).

10.2 The Hamilton principal function on S2

The basic objects are: (i) the space R3 endowed with the Euclidean metric;
(ii) the configuration manifold Q = S2 = (q) ⊂ R3, defined by q2 = 1; (iii)
the cotangent bundle T ∗Q = T ∗S2: it consists of pairs (q, p), where p is
interpreted as a vector tangent to S2 at the point q, by setting 〈v,p〉 = v · p

for each vector v tangent to S2 at q; and (iv) the eikonal equation (coisotropic
submanifold) C ⊂ T ∗Q defined by equation p2 = 1.

The oriented geodesics on S2 are in one-to-one correspondence with the
unit vectors n. The geodesic corresponding to n is the intersection of Q = S2

with the plane Πn orthogonal to n and passing through the origin. The
orientation of this maximal circle is determined by the formula p = n × q,
equivalent to n = q×p, where q ∈ Q and p is the unit vector tangent to the
oriented circle. But the oriented geodesics are in one-to-one correspondence
with the characteristics of C, thus we have the following.

Theorem 10.1. The set M of the characteristics of C is a manifold dif-
feomorphic to the unit sphere S2. The one-to-one correspondence between
characteristics γ(n) of C and the unit vectors n ∈ S2 is given by

(q, p) ∈ γ(n) ⇐⇒






q2 = 1 (q ∈ Q = S2),

p2 = 1 (p ∈ C),

q · p = 0 (p ∈ T ∗Q),

n = q × p.

(10.14)

It follows that two pairs (q0, p0) and (q1,p1) of T ∗Q belong to the same
characteristic γ(n) if and only if the above equations are satisfied with n =
q0×p0 = q1×p1 or equivalently, if and only if p0 = n×q0 and p1 = n×q1.
Since q0 and q1 are both orthogonal to n, we can consider the rotation with
axis n that maps q0 to q1. The axis n is determined (even in the case q0 = q1)
by setting n = q0 × p0 (or n = q1 × p1). This proves the following.

Theorem 10.2. A pair ((q0, p0), (q1, p1)) belongs to the characteristic rela-
tion DC if and only if q0 ∈ S2 and there exists a pair (n, θ) ∈ S2 × R such
that
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



q1 = R(n,θ)(q0),

p1 = R(n,θ)(p0),

q0 · n = q1 · n = 0,

p1 = n× q1,

(10.15)

where R(n,θ) is the rotation of axis n and angle θ,

R(n,θ)(v) = v + sin θn× v + (1− cos θ)(n · v n− v).

Then we can prove the following.

Theorem 10.3. The characteristic relation DC is generated by the family

S : (S2 × S2; R×R × S2 × R3) −→ R,

defined by

S(q1, q0;λ, θ,n, v) = θ + λ
(
(q0 · n)2 + (q1 · n)2 + (v − n× q1)2

)

+ v ·

(
q1 −R(n,θ)(q0)

)
.

(10.16)
The critical set Ξ of S is described by equations

q0 · n = q1 · n = 0, v = n× q1, q1 = R(q0). (10.17)

This generating family is not a Morse family.

Proof. The equations generated by S are






0 =
∂S

∂λ
,

0 =
∂S

∂v
,






0 =
∂S

∂θ
,

0 =
∂S

∂n
,






p0 = − ∂S

∂q0

,

p1 =
∂S

∂q1

.

(10.18)

The first four equations describe the critical set Ξ. For all n ∈ S2 we have

∂S

∂n
= ∇xS

∣∣
x=n

(I − n⊗ n) = Pn(∇xS
∣∣
x=n

),

where
Pn = I −n⊗ n.

Similar equations hold for q0 and q1. The first two equations (10.18) of the
critical set read

0 =
∂S

∂λ
= (q0 · n)2 + (q1 · n)2 + (v − n× q1)2

and
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0 =
∂S

∂v
= 2λ(v − n× q1) + q1 −R(q0).

These are equivalent to Eqs. (10.17). We show below that the remaining Eqs.
(10.18) of Ξ are identically satisfied. Due to Eqs. (10.17), on the critical set
we have

p0 = − ∂S

∂q0

=
∂

∂q0

(v · R(q0)) =
∂

∂q0

(
q0 · R⊤(v)

)

= R⊤(v)(I − q0 ⊗ q0) = R⊤(v)−R⊤(v) · q0 q0

= R⊤(v)− v · R(q0) = R⊤(v)− v · q1

= R⊤(v)−n× q1 · q1 = R⊤(v),

and

p1 = − ∂S

∂q1

= v (I − q1 ⊗ q1) = v.

Thus, because R⊤ = R−1,

p0 = R
−1(p1).

All Eqs. (10.15) have been found. We show that the last two equations (10.18)
of the critical set are identically satisfied. On the critical set the vector q0×v

is parallel to n,

q0 × v = q0 × (n× q1) = q0 · q1 n− q0 · n q1 = q0 · q1 n. (10.19)

so that

∂S

∂n
=

∂

∂n
(v · R(q0))

= sin θ
∂

∂n
(n · q0 × v) + (1− cos θ)

∂

∂n
(n · q0 n · v)

= sin θ Pn(q0 × v) = 0.

Finally, because on the critical set n · v = 0, we have

∂S

∂θ
= 1− v · (cos θ n× q0 + sin θ (n · q0 n− q0))

= 1− cos θ v · n× q0 + sin θ v · q0,

(10.20)

and, because of the second equation (10.7),
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v · n× q0 = (n×R(q0)) · (n× q0)

= R(q0) · q0 = q2
0 cos θ

= cos θ,

(10.21)

Moreover, because of the first equation (10.7),

v · q0 = n×R(q0) · q0 = n · R(q0)× q0 = − q2
0 sin θ = − sin θ.

Thus,
∂S

∂θ
= 1− cos2 θ − sin2 θ = 0.

Because

Sλ =
∂S

∂λ
= (q0 · n)2 + (q1 · n)2 + (v − n× q1)2,

on the critical set we have dSλ = 0. This shows that S is not a Morse family.
⊓⊔

Theorem 10.4. An equivalent reduced generating family of DC is the func-
tion

S′ : (S2 × S2; R× R× S2) −→ R

defined by

S′(q1, q0;λ, θ,n) = θ+ λ
(

(q0 · n)2 + (q1 · n)2
)
− n× q1 · R(n,θ)(q0).

Proof. By means of equations v = n× q1 of the critical set we can remove
the extra variable v of S. Thus, we get the reduced generating family S′. ⊓⊔

Remark 10.1. On the critical set the generating family is reducible to S =
θ. This function is obviously symmetric in (q0, q1), in accordance with the
symmetry of the characteristic relation. Also the reduced generating family
S′ is not a Morse family. ♦

Remark 10.2. We consider the inclusion relation

R ⊂ S2 ×R3 = {(q,x) such that q = x}.

The canonical lift R̂ ⊂ T ∗S2 × T ∗R3 is a symplectic reduction whose inverse
image R̂⊤ ◦ (T ∗S2) is the coisotropic submanifold T ∗

S2
R3 of the covectors

p ∈ R3 based at points of S2. The fibers of this reduction are the equivalence
classes of the equivalence relation

p ∼ p′ ⇐⇒ p,p′ based at the same point q ∈ S2, p− p′ ⊥ S2,

that is,
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p ∼ p′ ⇐⇒





p,p′ based at the same point q ∈ S2

and

(p − p′)× q = 0.

(10.22)

A second symplectic reduction we have to consider is the characteristic re-
duction associated with the coisotropic submanifold C,

RC : M ← T ∗Q.

This is the graph of the surjective submersion which maps a point of C to
the characteristic that contains this point. This reduction defines a reduced
symplectic form ω on the space M of the characteristics. ♦

Theorem 10.5. The reduced symplectic form ω is the opposite of the stan-
dard symplectic form σ on S2 defined by

σ(u, v) = n · u× v, (10.23)

where n ∈ S2 and (u, v) are vectors tangent to S2 at the point n.

Proof. (I) With any arbitrary (smooth) function F (x) on R3 we associate a
function F (q,p) on T ∗R3,

F (q, p) = F (q × p), (10.24)

and a function f(n) on M = S2,

f(n) = F (n) (10.25)

(this is simply the restriction of F to the sphere).
(II) The functions F on T ∗R3 are constant on the fibers of the first reduc-

tion R̂, because on a fiber we have q × p = q × p′ and q ∈ S2; see (10.22).
Hence, these functions are reducible to functions on T ∗S2 by taking q2 = 1
and p · q = 0.

(III) When restricted to the submanifold C, by taking p2 = 1, a function
F (q,p) of the kind (10.24) is constant on each characteristic γ(n) because of
(10.14), so that it is reducible to a function f(n) = F (n), with n = q × p

(note that n2 = 1, because q and p are orthogonal unit vectors).
(IV) Let us consider the standard symplectic form (10.23) on the sphere

M = S2. By formula (10.10) we get the Poisson bracket

{f, g}σ = n · (∇f ×∇g).

(V) We recall that, according to the general theory of the symplectic re-
ductions, the Poisson bracket of two functions f(n) on the reduced symplectic
manifold (M,ω) is defined by
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{f, g}ω(n) = {F,G}(q, p), (10.26)

where (q,p) ∈ γ(n) ⊂ C ⊂ T ∗S2 and where F and G are any two functions
on T ∗R3 constant on the characteristics γ of C. Because of (III) the functions
F and f defined by (10.24) and (10.25) by means of any function F fit with
this scheme. Hence, (q,p) ∈ γ(n) means in particular that n = q × p; see
(10.14). Then, by applying formulae (10.13) and (10.11) for ε = 1, which now
reads {f, g}σ = n · ∇F ×∇G , we get

{f, g}ω(n) = {F,G}(q,p) = − q × p · (∇F ×∇G )

= −n · ∇F ×∇G = −{f, g}σ(n).
(10.27)

This holds for all functions F (x). We remark that any function f(n) on the
sphere M admits an extension F (x) to R3, such that F (n) = f(n). We can,
for instance, extend the function f by constant values along the half-lines
issued from the origin of R3 (the origin must be excluded, but this exclusion
is irrelevant). Thus, the equality

{f, g}σ(n) = − {f, g}ω(n)

holds for all f and g on M . This shows that ω = −σ. ⊓⊔

Remark 10.3. In Eq. (10.23) defining σ the normal vector n is oriented outside
the sphere. If we choose it pointing to the center, then we get σ = ω. ♦

10.3 The Hamilton principal function on H2

The basic objects are: (i) the space R3 endowed with the Minkowskian metric,
with z time-like; (ii) the configuration manifold Q = H2 = (q) ⊂ R3, defined
by 




q2 = − 1,

q · c3 < 0,
⇐⇒





x2 + y2 − z2 + 1 = 0,

z > 0.

The Minkowskian metric induces on H2 a positive-definite metric and q ∈
H2 implies q ⊥ H2. Indeed, for any curve q(t) ∈ H2 we have q̇ · q = 0
thus, q̇ (tangent to H2) is space-like (every nonzero-vector orthogonal to a
time-like vector is space-like). (iii) The cotangent bundle T ∗Q = T ∗H2 =
(q,p), where p is a vector tangent to H2 at q. (iv) The eikonal equation
(coisotropic submanifold) C ⊂ T ∗Q defined by equation p2 = 1. Note that
the covectors (q,p) ∈ T ∗H2 can be interpreted as vectors p tangent to H2 by
setting 〈v, p〉 = v · p for each vector v tangent to H2 at the point q. (v) The
hyperboloid K2 of the unit space-like vectors n, n2 = 1. The metric induced
on K2 is Lorentzian.
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Fig. 10.2 The hyperboloids H2 and K2 in the Minkowski three-space

Theorem 10.6. The set M of the characteristics of C is a manifold diffeo-
morphic to K2. The one-to-one correspondence between characteristics γ(n)
of C and the unit vectors n ∈M is given by

(q,p) ∈ γ(n) ⇐⇒





q2 = 1 (q ∈ Q = H2),

p2 = 1 (p ∈ C),

q · p = 0 (p ∈ T ∗Q),

n = q × p.

(10.28)

Proof. The geodesics of Q are the orbits of spontaneous motions (no active
force). These motions admit the first integral

n = q × q̇. (10.29)

Indeed,
ṅ = q × q̇ = q ×R,

where R is the reaction force orthogonal to H2. Since also q(t) is orthogonal
to H2, it follows that ṅ = 0. From (10.29) it follows that: (i) q̇ ⊥ n, so
for any fixed n, the corresponding geodesic has velocity q̇ orthogonal to n;
(ii) n is space-like because it is orthogonal to the time-like vector q (n 6= 0,
inasmuch as q̇ cannot be parallel to q unless q̇ = 0. We can consider only
geodesic motions with unit velocity, q̇2 = 1. Due to (10.29), this is equivalent
to assuming n2 = 1; that is, n ∈ K2. The characteristics are in one-to-one
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correspondence with the oriented geodesics, thus the set M is identified with
K2 and equations (10.28) follow by replacing q̇ with p. ⊓⊔

As a corollary of Theorem 10.6 we have the following.

Theorem 10.7. A pair ((q0, p0), (q1, p1)) belongs to the characteristic rela-
tion DC if and only if q0 ∈ H2 and there exists a pair (n, χ) ∈ K2 × R such
that 




q1 = R(n,χ)(q0),

q0 · n = q1 · n = 0,





p1 = R(n,χ)(p0),

p1 = n× q1,

where R(n,χ) is the rotation of axis n and pseudo-angle χ,

R(n,χ)(v) = v + sinhχn× v + (1− cosh χ)(n · v n− v).

Then we can prove the following.

Theorem 10.8. The characteristic relation DC is generated by the family

S : (H2 ×H2 ; R× R× K2 ×R3) −→ R,

defined by

S(q0, q1; λ, χ,n, v) = χ+ λ
(
(q0 · n)2 + (q1 · n)2 + (v − n× q1)2

)

+ v ·

(
q1 −R(n,χ)(q0)

)

(10.30)
The critical set is described by equations

q0 · n = q1 · n = 0, v = n× q1, q1 = R(q0).

This generating family is not a Morse family.

Note that in (10.30) the by the symbol (u)2+ we mean the scalar product
u · u in the Euclidean metric.

Proof. The proof follows the same pattern of that concerning S2, with the
following variants. (i) In (10.19) we used the double cross-product formula,
thus the second and the last terms should be multiplied by ε; in fact, this has
no consequence and we again get ∂S/∂n = 0; (ii) formula (10.20) is replaced
by a similar formula with coshχ and − sinhχ instead of cos θ and sin θ,

∂S

∂χ
= 1− cosh χ v · n× q0 − sinhχ v · q0;

(iii) formula (10.21) involves the scalar product of two cross products, so that
the second equality is multiplied by ε = −1; we get

v · n× q0 = −R(q0) · q0 = − q2
0 cosh χ = cosh χ,
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with v = n× q1 = n×R(q0). In the present case

v · q0 = n · R(q0)× q0 = q2
0 sinhχ = − sinhχ.

As a consequence,

∂S

∂χ
= 1− cosh2 χ+ sinh2 χ = 0.

⊓⊔
We have theorems similar to Theorems 10.4 and 10.5 for the sphere.

Theorem 10.9. An equivalent reduced generating family is

S′ : (H2 × H2 ; R×R ×K2) −→ R,

defined by

S′(q0, q1;λ, χ,n) =

= χ+ λ
[
(q0 · n)2 + (q1 · n)2

]
−n× q1 · R(n,χ)(q0).

(10.31)

The proof is similar to that of S2.

Theorem 10.10. The reduced symplectic manifold is (K2, ω), where the re-
duced symplectic form ω coincides with the standard symplectic form σ of K2

defined by
σ(u, v) = n · u× v.

Proof. The proof is similar, mutatis mutandis, to that of S2 till Eq. (10.27),
which now gives

{f, g}ω(n) = {F,G}(q, p) = − q × p · (∇F ×∇G )

= −n · ∇F ×∇G {f, g}σ(n),

being, for ε = −1, {f, g}σ = − n · ∇F ×∇G . ⊓⊔

Note that in the case of the eikonal equation of H2 the reduced symplectic
form coincides with the standard area two-form on K2 associated with the
normal vector n. Moreover, the symplectic manifold (K2 , σ) is now symplec-
tomorphic to a cotangent bundle, as shown by the following.

Theorem 10.11. Let D2 be the cylinder in the Minkowski space R3, with
axis z and intersecting the (x, y)-plane in the unit circle S1, x

2 + y2 = 1.
Then the map φ : K2 → D2 defined by

φ(n) =
n + n · c3 c3√

1 + (n · c3)2
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is a symplectomorphism from (K2, σ) to the cotangent bundle T ∗S1 ∼ S1×R.

Remark 10.4. The map φ is the radial orthogonal projection, with respect to
the z-axis, from K2 to D2. Note that the vector n + n · c3 c3 is the (x, y)-
component of n, being orthogonal to c3, and that its square is

(n + n · c3 c3)2 = n2 − (n · c3)2 + 2 (n · c3)2 = 1 + (n · c3)2. ♦
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Fig. 10.3 The hyperboloid K2 and the cylinder D2

in the Minkowski three-space

Proof. Let D2 ∼ S1 ×R be described by the parametric equation

r = u(θ) + z t = cos θ c1 + sin θ c2 + z c3, (u1, u2) = (z, θ).

The associated tangent frame is

e1 = t, e2 = ∂θu = s.

We choose the orthogonal unit vector n = u. Then, according to (10.8),

σ12 = n · e1 × e2 = u · t× s

In the Minkowskian metric (i.e., for ε = −1)

u · t× s = c1 · c3 × c2 = 1.

Thus, σ12 = 1 and the standard symplectic form on D2 is
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σD2 = σ12 du
1 ∧ du2 = dz ∧ dθ.

If we consider T ∗S1 ∼ S1 × R with canonical coordinates (θ, z), then the
Liouville form is θS1 = z dθ and the symplectic form dθS1 = dz ∧ dθ coincides
with the area two-form. Let K2 ∼ S1 × R be described by the parametric
equation

r = cosh ξ u(θ) + sinh ξ t, (u1, u2) = (ξ, θ).

The associated frame is

e1 = sinh ξ u + cosh ξ t, e2 = cosh ξ∂θ u = cosh ξ s.

We choose the orthogonal unit vector n = r. It follows that

σ12 = n · e1 × e2 = r · (sinh ξ u + cosh ξ t)× (cosh ξ s)

= (cosh ξ u + sinh ξ t) · (sinh ξ u + cosh ξ t)× (cosh ξ s)

= cosh ξ (cosh2 ξ u · t× s + sinh2 ξ t · u× s)

= cosh ξ u · t × s = cosh ξ.

Then, in accordance with the above choices, the standard symplectic form is

σK2 = σ12 du
1 ∧ du2 = cosh ξ dξ ∧ dθ = d sinhχ ∧ dθ.

We look for a diffeomorphism φ : K2 → D2 described by the single equation
z = z(ξ) such that

φ∗σK2 = σD2 .

This last condition is equivalent to equation dz(ξ)∧ dθ = d sinh ξ ∧ dθ. Then
we can choose z(ξ) = sinh ξ. The diffeomorphism φ so defined is the radial
orthogonal projection with respect to the z-axis restricted to K2. ⊓⊔

10 Global Hamilton Principal Functions on S2 and H2
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Frölicher A., Nijenhuis A.: Theory of vector-valued differential forms. Nederl.
Akad. Wetensch. Proc. 59, 338–359 (1956).

Guillemin V., Sternberg S.: Geometric Asymptotics. A.M.S. Math. Surveys
14 (1977).

Guillemin V., Sternberg S., Symplectic Techniques in Physics. Cambridge
Univ. Press (1984).

Hamilton W. R.: Theory of systems of rays. Trans. R. Irish Acad. 15, 69–174
(1828).

Hermann R.: Geometry, Physics and Systems. Dekker, New York (1973).
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gas, 173–176, 187, 190, 194
lens, 115

concave, 142
convex, 142

spring, 166
Identity relation, 28
Image of a relation, 28
Immersed Lagrangian submanifold, 40
Immersion, 4
Implicit equations of a

Lagrangian submanifold, 66
Impulse, 58
Incoming waves, 128
Independent

equations, 10, 11
function, 10

Initial conditions, 54
Injection-relation, 87
Integral

curve, 15
function

of a distribution, 209
of a vector field, 17

manifold
of a distribution, 42, 209

Intensive observables, 170
Interior product, 23
Internal energy, 172, 173, 176, 180, 187,

189–191
of a Van der Waals gas, 180
of an ideal gas, 176

Internal variables, 154
Intrinsic potential energy, 171
Invariant form, 25
Inverse image of a relation, 28
Inverse relation, 28
Involution of functions, 37
Involutive distribution, 208
Isomorphic reductions, 55, 102
Isomorphism of reductions, 55
Isotropic

relation, 34
submanifold, 38
subspace, 33

Jacobi theorem, 102

Kepler motions, 53

Lagrangian
bracket, 40, 65
coordinates, 3
immersion, 40
multipliers, 79
relation, 34
set, 68

definition, 48
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examples, 96, 106, 108, 110, 111,
113, 119, 122, 137, 139, 143, 158,
172, 186, 224

singularity, 63
splitting, 220
submanifold, 38

generated by a function on a
constraint, 79

implicit equations, 66
parametric equations of a, 64

subspace, 33
Legendre transform, 183
Leibniz rule, 1
Lemma of Poincaré–Volterra, 23
Lens-relation, 115
Lie

bracket, 17
derivative, 24

Linear
differential form, 19, 62
relation, 29
symplectic reduction, 35

Liouville one-form, 59
Local

flows, 16
potentials, 211

Locality of a derivation, 22

Malus theorem, 119
Maslov–Hörmander theorem, 69, 223
Maximal

integral curve, 15
Maxwell

construction, 202
convention, 200
rule, 200, 201

Mirror-relation, 109
Molar

entropy, 193
free energy, 195
internal energy, 194
number, 193
volume, 193

Mole number n, 174
Morse families

equivalence of, 71
Morse family, 68
Motion of a mechanical system, 3

Natural canonical coordinates, 60

Observables, 182
basic, 62
extensive, 170

intensive, 170
One-form, 18, 62
One-parameter group of transformations,

15
Open

submanifold, 8
thermostatic system, 193

Outgoing waves, 128

Pairing, 32
Parallelizable

manifold, 5
Parametric equations

of a curve, 2
of a Lagrangian submanifold, 64

Phase space, 58
Phases, 200
Poincaré–Volterra lemma, 23
Poisson

bracket, 36
manifold, 37

Polar
subspace, 32, 215

Potential
energy, 182
form, 23

Principal function of Hamilton, 97
Principle of D’Alembert–Lagrange, 159
Pullback of a form, 21

Rank
of a distribution, 207
of a map at a point, 4
of a point, 64
theorem, 6

Ray, 130
Rays, 93
Reactive forces, 77
Reduced

generating family, 72
Poisson bracket, 50
set, 30
symplectic form, 48
symplectic manifold, 49

Reduction, 29
of a submanifold, 46
fiber of a, 29

Reductions
isomorphic, 102

Refraction index, 91, 117
Regular

distribution, 41, 207
Hamilton–Jacobi equations, 93
point, 63
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Relation, 27
transpose of a, 28
canonical, 34, 43
codomain of a, 27
coisotropic, 34
diagonal, 28, 82, 87
domain of a, 27
identity, 28
image of a, 28
inverse image of a, 28
inverse of a, 28
isotropic, 34
Lagrangian, 34
linear, 29
smooth, 29
symmetric, 28
symplectic, 34, 43
symplectic dual, 34

Relations
composition rule, 27

Restriction of a form to a submanifold,
21

Rodrigues formula, 231

Section of a fibration, 5
Simple

static system, 171
thermostatic system, 194

Singleton, 28
Singular point, 63
Smooth

constraint, 77
function, 1
relation, 29

Source of a system of rays, 106
Space of states, 170
State manifold, 170
Subimmersion, 4
Submanifold

coisotropic, 38
isotropic, 38
Lagrangian, 38
open, 8

Submersion, 4
Subspace

coisotropic, 33
isotropic, 33
Lagrangian, 33

Supplementary
manifold, 69
variables, 69

Surjective submersion, 29
Symmetric relation, 28
Symplectic

dual relation, 34
dual space, 32
form, 35
functorial rule, 34
manifold, 35
polar operator, 33
polar subspace, 33
reduction, 45

associated with a coisotropic
submanifold, 49

linear, 35
relation, 34, 43

generated by a family, 74
generated by a function

on a relation, 80
vector space, 31

Symplectomorphism, 44
System of rays, 94

generated by a hypersurface, 136
generated by a point, 137
incident, 108
reflected, 108

Tangent
covector, 57
fibration, 1
frame, 233
functor, 4
lift of a curve, 2
map, 3
prolongation

of a curve, 2
of a submanifold, 8

relation, 29
space, 1
vectors, 1

Theorem of
Frobenius, 209
Jacobi, 102
Malus, 119
Maslov–Hörmander, 69, 223
the stationary phase, 129

Thermostatic potentials, 186
Transformations

one parameter group of, 15
Transpose relation, 28
Transversal to the fibers, 63
Transverse intersection, 13, 68
Trivial fibration, 5

Van der Waals gas, 173, 177, 180, 187,
194, 201–203

free energy, 192
Variables
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hidden, 154
internal, 154

Variational equation, 159
Vector

field, 14
tangent to a submanifold, 8

Vector field
characteristic of a distribution, 41
compatible with a distribution, 207
complete, 15
integral curve of a, 15
tangent to a submanifold, 18

Vertical
submanifold, 88
vector, 58, 63, 68

Virtual
compatible displacement, 154

displacement, 3, 153
power, 58, 153
velocity, 3, 58, 153
work, 58, 153
work principle, 159

Wave
equation, 128
fronts, 95

geodesically parallel, 95
incoming, 128
outgoing, 128

Zeeman machine, 163
Zero–section, 78
Zero-form, 19
Zero-relation, 80, 86
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