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Abstract—The basic notions of the dynamics of nonholonomic systems are revisited in order to
give a general and simple method for writing the dynamical equations for linear as well as non-
linear kinematical constraints. The method is based on the representation of the constraints
by parametric equations, which are interpreted as dynamical equations, and leads to first-
order differential equations in normal form, involving the Lagrangian coordinates and auxiliary
variables (the use of Lagrangian multipliers is avoided). Various examples are illustrated.
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1. INTRODUCTION

In this article I propose a simplified and improved version of a part of my paper “A ‘user-friendly’
approach to the dynamics of nonholonomic systems”, SIGMA, 2007, vol. 3.1) The aim is to provide
a simple and effective algorithm for building up the dynamical equations of whatever nonholonomic
mechanical system, with linear as well non-linear kinematical ideal constraints, in a form that does
not involve Lagrangian multipliers or any other quantities related to the reactive forces. Examples
of application of this method have been illustrated in the cited paper, together with historical
comments and an essential list of references. Here, some further examples are proposed with the
purpose first, of showing how the distinction between linear and non-linear constraints may be very
subtle and second, of illustrating how some non-linear nonholonomic systems can be physically
realized.

Let us consider a holonomic mechanical system with configuration manifold Q of dimension n
and with generic Lagrangian coordinates q = (qi). Let us denote by (q, q̇) = (qi, q̇i) the associated
natural coordinates on the tangent bundle TQ.

As we know, by definition of holonomic system, we are actually dealing with a set of material
points (Pν ,mν), where ν is an index taking integer or continuous2) values. This is our microscopic
view-point. These points cannot occupy any arbitrary position in the three-dimensional Euclidean
space. They are one another linked by positional constraints3) in such a way that all possible
configurations they can assume in the space form a set Q endowed with a differentiable-manifold
structure. This is our macroscopic view-point.

The relation between our two view-points is realized by the position-vectors rν of each point Pν ,
expressed as functions of the Lagrangian coordinates

rν = rν(qi). (1)

*E-mail: sergio.benenti@unito.it
1)Available at the web address http://www.emis.de/journals/SIGMA/.
2)For simplicity, but without loss of generality, we shall consider below only the case of a finite number of material

points.
3)Here we assume that these constraints are time-independent. However, it is not difficult to extend what we are

going to do to time-dependent constraints.
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A motion of the system is then represented by parametrized curves qi = qi(t) on Q, where
the parameter t represents the time, and Eqs. (1) provide the motion of each single particle:
rν(t) = rν

(
qi(t)

)
. Along with the motion the instantaneous velocities are

vν(t) =
∂rν

∂qi

dqi

dt
.

As a result, any possible kinematical state of our mechanical system is represented, from the
microscopic view-point, by the set of vectors

rν = rν(qi), vν(qi, q̇i) =
∂rν

∂qi
q̇i, (2)

where (q̇i) ∈ R. This explains that, from the macroscopic view-point, the tangent bundle TQ
represents the space of the kinematical states.

2. KINEMATICAL CONSTRAINTS

When the space of the kinematical states is well defined, then we can think of additional
constraints involving the velocities. From the macroscopic view-point they are represented by a
subset C ⊂ TQ. In most cases this subset, with the exception of singular points (or singular
states), is a submanifold represented by local implicit equations

Ca(q, q̇) = 0, a = 1, . . . r, (3)

satisfying the regularity condition

rank

[
∂Ca

∂q̇i

]
= r,

at all points of C itself. Then these equations can be transformed into parametric equations

q̇i = ψi(q, z) (4)

with parameters z = (zα), α = 1, . . . ,m < n, and with the regularity condition

rank
[
ψi

α

]
= m, ψi

α(q, z) .=
∂ψi

∂zα
. (5)

It is very important, for the following discussion, to observe that (qi, zα) can be interpreted as
coordinates on C, which is then a submanifold of dimension n + m.

A nonholonomic constraint is a kinematical constraint which is not a differential consequence
of constraints on the configurations.

A nonholonomic constraint is linear if it admits a representation by implicit equations (3) linear
in the Lagrangian velocities,

Ca
i (q) q̇i = 0, a = 1, . . . r, (6)

or, equivalently, by parametric equations (4) linear in the parameters,

q̇i = ψi
α(q) zα. (7)

Remark 1. If n is the dimension of the configuration manifold and r is the number of the
independent implicit equations describing the nonholonomic constraints, then codim (C) = r and
dim(C) = 2n − r. On the other hand, dim(C) = n + m, where m is the number of parameters
necessary for a parametric representation of C. It follows that this number is given by

m = n − r. (8)
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3. THE DYNAMICAL EQUATIONS

The leading idea of our approach is to consider the parametric constraint equations (4) as
first-order dynamical equations:

dqi

dt
= ψi(q, z). (9)

Since the right hand sides depend not only on the Lagrangian coordinates, but also on the
parameters z = (zα), our aim is to complete the dynamical equations (9) by first-order equations
of the kind

dzα

dt
= Zα(q, z). (10)

So, the problem is to find the explicit expressions of the functions Zα. Of course, for reaching this
result we have to start from basic postulates.

First, for the dynamics of each material point (Pν ,mν) we believe in the Newton equation

mν aν = Aν + Rν , (11)

where: aν is the acceleration, Aν is the active force (due to external fields and internal interactions)
and Rν is the reactive force (it is a priori unknown but it has the role of making the constraints
satisfied).

Remark 2. The idea of ‘reactive force’ arises from the Newtonian philosophy, according which
any action deviating a point from the uniform rectilinear motion (in an inertial reference frame) is
a ‘force’, mathematically represented by a vector. Thus, the presence of a kinematical constraint
must be represented by a vector, called ‘reactive force’, to be summed to the ‘active force’, which
in turn represents the action of fields present in the space and independent from the constraints
(gravitational, electromagnetical, centrifugal, Coriolis, etc.).

Second, we assume that the nonholonomic constraints are ideal (or perfect). What this means
will be explained in Section 4. This notion concerns with the physical behavior of the constraints,
which is translated into precise mathematical assumptions.

Remark 3. For a holonomic mechanical systems without kinematical constraints, by a well-known
process, we pass from the microscopic level i.e., form the Newton equations, to the macroscopic
one i.e., to the Lagrange equations

d

dt

(
∂K

∂q̇i

)
− ∂K

∂qi
= Ai + Ri, (12)

where

K = 1
2 gij q̇iq̇j (13)

is the kinetic energy, by setting

gij(q)
.=

∑
ν mν ∂irν · ∂jrν , (14)

Ai(q, q̇)
.=

∑
ν

Aν ·
∂rν

∂qi
, Ri

.=
∑

ν

Rν ·
∂rν

∂qi
. (15)

Ai and Ri are the active Lagrangian forces and the reactive Lagrangian forces, respectively.
Of course, the Lagrange equations are useless without some suitable constitutive conditions on the
reactive forces Ri.

For composing the dynamical equations we have to carry out the following items:

1. Choose Lagrangian coordinates (qi) and write the r constraint equations Ca(q, q̇) = 0.
Transform them into parametric equations q̇i = ψi(q, z) by choosing m parameters z = (zα),
and compute the matrix [ψi

α].
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286 BENENTI

2. Compute the kinetic energy K and write the Lagrange equations with active forces Ai only.
They assume the form

gij q̈j + Γhki(q) q̇h q̇k = Ai(q, q̇).

3. Put at the left hand side the terms containing the q̈i only,

gij q̈j = Ai(q, q̇) − Γhki(q) q̇h q̇k. (16)

4. Take the parametric constraint equations (4) and replace all q̇i = ψi(q, z) in the right hand
side of Eq. (16). We get functions depending on (q, z) only, say

Z̄i(q, z) .= Ai(q, ψ) − Γhki(q)ψhψk. (17)

5. Compute the quantities

Zα(q, z) .= Z̄i ψi
α, ψi

α
.=

∂ψi

∂zα
. (18)

6. Compute the r × r-matrix [Gαβ ] whose elements are the functions

Gαβ(q, z) .= gij ψi
α ψi

β . (19)

7. Compute the inverse matrix

[Gαβ ] = [Gαβ ]−1. (20)

8. Rise the index of Zα by means of Gαβ :

Zα(q, z) = Gαβ Zβ. (21)

9. Find the Lagrangian components Ai of the active forces by computing their power W = Ai q̇i

or by computing their potential energy V :

Ai = − ∂V

∂qi
. (22)

Now, we are ready to write the dynamical equations:
Theorem 1. Let Q be the configuration manifold of a mechanical system with n degrees of freedom
and Lagrangian coordinates qi. Let us impose nonholonomic constraints represented by parametric
equations

q̇i = ψi(q, z),

with r parameters z = (zα). Assume that the constraints are ideal. Then the motions are given by
the integral curves of the dynamical system⎧⎪⎪⎨

⎪⎪⎩

dqi

dt
= ψi(q, z),

dzα

dt
= Zα(q, z),

(23)

where the functions Zα(q, z) are computed following the nine steps listed above.
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Any integral curve of this system is a set of functions qi(t) and zα(t) depending on initial
conditions, but we are interested on qi(t) only — these functions gives the actual motions of the
system, compatible with the constraints. The zα(t) play the role of auxiliary functions.

4. IDEAL CONSTRAINTS
At any fixed kinematical state, the acceleration aν of the point Pν can be obtained by a formal

derivative with respect to t of the expression of vν in (2):

aν =
∂2rν

∂qi∂qj
q̇iq̇j +

∂rν

∂qi

dq̇i

dt
.

Consequently, the velocities and the accelerations compatible with the constraints can be obtained
through the parametric equations (4),

vν(q, z) =
∂rν

∂qi
ψi,

aν(q, z, ż) =
∂2rν

∂qi∂qj
ψiψj + ∂rν

∂qi

(
∂ψi

∂qj ψj + ∂ψi

∂zα
żα

)
,

by introducing new parameters żα.
For a simpler writing it is convenient to introduce the following symbols:

∂i =
∂

∂qi
, ψi

j =
∂ψi

∂qj
, ψi

α =
∂ψi

∂zα
.

Thus, the acceleration aν can be written

aν(q, z, ż) = ∂ijrν ψiψj + ∂irν (ψi
j ψj + ψi

α żα). (24)

Let us decompose this vector into the sum

aν = a0ν + aαν żα (25)

by introducing the vectors

a0ν(q, z) = ∂ijrν ψiψj + ∂irν ψi
j ψj , aαν(q, z) = ∂irν ψi

α. (26)

Definition 1. The vectors

wν(q, z, ż) .= aαν żα = ∂irν ψi
α żα, (27)

which are linear in the parameters żα, assuming all values in R, are the virtual displacements
at the state determined by the values of (q, z).

The introduction of these vectors is motivated by the following items:

• It is customary to associate the intuitive idea of “virtual displacement” with that of “virtual
velocity”, as a limit of a “small” displacement between two configurations of the system.
Instead, within the present context, a “virtual displacement” is a “small” displacement
between kinematical states (configurations plus velocities), so it is associated with the
intuitive idea of “virtual acceleration”. This viewpoint turns out to be coherent with the
philosophy of the Gauss principle, which deals with accelerations (see Section 5).

• With this definition the Gauss principle becomes a consequence of the Newton dynamical
equations (Theorem 4).

• The reactive forces of ideal constraints are not dissipative (Theorem 3).

Definition 2. Nonholonomic constraints are said to be ideal (or perfect) if∑
ν Rν · wν = 0 (28)

for all virtual displacements wν.
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Remark 4. We consider Eq. (28) as a constitutive condition for the constraints: it says which
kind of reactive forces the constraints are able to supply in order to be satisfied along any motion.
It is straightforward to check that for linear nonholonomic constraints, as well as for holonomic
constraints (which do not involve velocities) Eq. (28) reduces to the classical virtual work
principle.

Theorem 2. Let

Ri
.=

∑
ν

Rν ·
∂rν

∂qi
, (29)

be the Lagrangian reactive forces. Then the definition (28) of ideal constraint is equivalent to the
following equations,

Ri ψi
α = 0. (30)

Proof. Write Eq. (28) taking into account Eqs. (27) and (29)

0 =
∑

ν Rν · aαν żα =
∑

ν Rν · ∂irν ψi
α żα = Ri ψi

α żα.

This must hold for any choice of the numbers żα. �
Note: Eq. (30) means that Ri q̇

i = 0, for all q̇i compatible with the constraints. This shows that

Theorem 3. The ideal constraints do not dissipate energy.

5. THE GAUSS PRINCIPLE

At the microscopic level we introduce the quantity

G
.= 1

2

∑
ν mν

(
aν − Aν

mν

)2

. (31)

The active forces Aν are known functions of the state (q, q̇). Thus, due to the parametric equations
of the constraints, G becomes a function of (q, z). Moreover, even for active forces depending on
the velocities, Aν does not depend on ż,

∂Aν

∂żα
= 0.

Thus, due to Eqs. (25) and (26), along any motion satisfying the constraints we have

∂G

∂żα
=

∑
ν mν

(
aν − Aν

mν

)
·
∂aν

∂żα
=

∑
ν mν

(
aν − Aν

mν

)
· aαν . (32)

Furthermore,

∂2G

∂żα∂żβ
=

∑
ν mν

∂aν

∂żβ
· aαν =

∑
ν mν aβν · aαν

=
∑

ν mν ψi
α ψj

β ∂irν · ∂jrν = gij ψi
α ψj

β .

Then, if we introduce the functions

Gαβ
.= gij ψi

α ψj
β , (33)

we get

∂2G

∂żα∂żβ
= Gαβ . (34)

Since the matrix [ψi
α] has maximal rank, the symmetric matrix [Gαβ ] is regular and positive-definite

as well as [gij ].
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Theorem 4. Assume the Newton equations mν aν = Aν + Rν for each point Pν. Then, at any
state of any actual motion the quantity G takes a minimal value (Gauss principle) if and only if
the constraints are ideal.

Proof. Write the Newton equations in the form

mν

(
aν − Aν

mν

)
= Rν .

Then, due to Eqs. (25), (26) and (29),

∂G

∂żα
=

∑
ν Rν ·

∂aν

∂żα
=

∑
ν Rν · aαν = Ri ψ

i
α. (35)

This shows that for ideal constraints, see Eq. (30), the Newton equations imply

∂G

∂żα
= 0, (36)

at any state along any actual motion. Due to Eq. (34), being [Gαβ ] positive, at the stationary states
for which Eq. (36) holds, the function G has a strong minimum. (ii) Conversely, assume that the
Gauss principle holds true. Then Eq. (36) is satisfied, so that from (35) we get Ri ψ

i
α = 0. This

means that the constraints are ideal (Theorem 2). �

Remark 5. The vector Aν/mν is the acceleration of the point Pν in a free motion, free from
the constraints. Let us denote it by af

ν . As a consequence, the function G can be also defined as

G
.= 1

2

∑
ν

mν

(
aν − af

ν

)2
, (37)

and Theorem 4 can be reformulated as follows:

Theorem 5. Let rν(t) and rf
ν (t) two motions of the system Pν such that for t = t0 the correspond-

ing states coincide i.e.,

rν(t0) = rf
ν(t0), vν(t0) = vf

ν (t0).

Assume that rf
ν(t) is a free motion. Then, at this state, and for any motion compatible with ideal

constraints, the actual accelerations aν(t0), are such that G takes a minimal value.

6. THE GIBBS–APPELL EQUATIONS
Let us go back to the definition (31) of the function G. If we introduce the functions

S
.= 1

2

∑
ν mν a2

ν , S1
.= 1

2

∑
ν

1
mν

A2
ν , S2

.=
∑

ν Aν · aν , (38)

then we have the decomposition
G = S + S1 − S2.

The function S is called the energy of the accelerations. We observe that
∂S1

∂żα
= 0

and that, due to Eq. (24) and the definition (15) of active Lagrangian force,

∂S2

∂żα
=

∑
ν

Aν · ∂irν ψi
α = Ai ψi

α.

Thus,
∂G

∂żα
=

∂S

∂żα
− Ai ψi

α.

Due to the Gauss principle (Theorem 4), this proves

REGULAR AND CHAOTIC DYNAMICS Vol. 13 No. 4 2008
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Theorem 6. The Gauss principle is equivalent to equations
∂S

∂żα
= Aα, (39)

where the function

S(q, z, ż) .= 1
2

∑
ν

mν a2
ν (40)

is determined by the expression (24) of the accelerations, and

Aα
.= Aiψ

i
α. (41)

Eqs. (39) are the celebrated Gibbs–Appell equations.

Remark 6. The quantities Aα can be computed by writing the virtual power of the active forces:

W
.=

∑
ν Aν · wν =

∑
ν Aν · ∂irν ψi

α żα = Ai ψ
i
α żα = Aα żα. (42)

7. THE NORMAL FORM OF THE GIBBS–APPELL EQUATIONS

Both sides of the Gibbs–Appell equations (39) are functions of (q, z, ż). Let us solve them w.r.to
the variables żα. To this end, it is crucial to observe that by using Eqs. (24) we get for the function S
(40) the expression

S = 1
2 gij ψi

αψj
β żαżβ +

∑
ν mν ∂ijrν · ∂krν ψiψjψk

α żα + S0,

where S0 is a function dependent on (q, z) only. Then, this function is not involved by the Gibbs–
Appell equations and S can be replaced by

S∗ = 1
2 gij ψi

αψj
β żαżβ +

∑
ν mν ∂ijrν · ∂krν ψiψjψk

α żα. (43)

This new function S∗ assumes a very interesting expression. Let us introduce the functions

ξijk(q)
.=

∑
ν mν ∂ijrν · ∂krν .

Since
ξijk =

∑
ν mν ∂i(∂jrν · ∂krν) −

∑
ν mν (∂jrν · ∂ikrν) = ∂igjk − ξikj,

by a cyclic permutation of the indices we get
ξijk + ξikj = ∂igjk, ξjki + ξjik = ∂jgki, ξkij + ξkji = ∂kgij .

By summing the first two equations and subtracting the third one, since ξijk is symmetric in the
first two indices, we get ξijk = Γijk, where

Γijk
.= 1

2 (∂igjk + ∂jgki − ∂kgij)

are the Christoffel symbols of the metric tensor gij (the coefficients of the Levi-Civita connection).
As a consequence, if we recall the definition (33) of Gαβ, the function S∗ (43) can be written as

S∗ = 1
2 Gαβ żαżβ + Γijk ψiψjψk

α żα,

and the Gibbs–Appell equations (39) assume the form

Gαβ żβ + Γijk ψiψjψk
α = Aα. (44)

Then we can prove

Theorem 7. The Gibbs–Appell equations (39) are equivalent to equations

żα = Gαβ (Aβ − Γijk ψiψjψk
β), (45)

where [Gαβ ] the inverse matrix of [Gαβ ].
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Proof. Indeed, as we remarked in Section 5, the matrix [Gαβ ] is regular. If we apply the inverse
matrix [Gαβ ] to Eqs. (44), then we get Eqs. (45). �

We can call equations (45) the normal form of the Gibbs–Appell equations (39). At this point
we have proved our main theorem, Theorem 1.

8. EXAMPLES

This section is devoted to the application of the general method proposed by Theorem 1 for
writing the dynamical equations of a nonholonomic system.

We are going to analyze four paradigmatic examples, all dealing with two mass-points (P1,m1)
and (P2,m2) in the Euclidean plane R

2 = (x, y) endowed with the natural metric.4) Their Cartesian
coordinates and their velocities will be denoted by (x1, y1), (x2, y2), and by v1, v2, respectively.

Example 8.1: two free points P1 and P2 with velocities v1 and v2 constrained to be orthogonal
to the line P1P2.

Example 8.2: two points P1 and P2 connected by a rigid and massless segment; the velocities
v1 and v2 are constrained to be orthogonal to the segment P1P2.

Example 8.3: two free points P1 and P2 with velocities v1 and v2 constrained to be parallel.
Example 8.4: two points P1 and P2 connected by a rigid and massless segment; the velocities

v1 and v2 are constrained to be parallel.

Fig. 1. Examples.

Since a great interest is due to distinction between linear and non-linear constraints, by means
of these examples we will observe that a non-linear constraint may be:

1. True non-linear,
2. Apparently non-linear, but in fact linear,
3. Alternatively, linear nonholonomic and integrable (i.e., holonomic).

4)Such a class of examples has been proposed by D. Zekovich in the papers “Examples of Non-linear Nonholonomic
Constraints in Classical Mechanics”, Moscow Univ. Math. Bull., 1991, Vol. 46, No. 1, pp. 44–47, and “On the
motion of an integrable system with non-linear nonholonomic coupling. The resonant case”, Moscow Univ. Math.
Bull., 1993, Vol. 48, No. 1, pp. 37–41.
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8.1. Two Mass-points with Velocities Orthogonal to the Joining Straight Line

This mechanical system has been proposed by Zekovich (1991) as an example of non-linear
nonholonomic system. In fact, the constraints are linear. The misleading argument is that the
condition ’v1 is parallel to v2’ is of course expressed by equation v1 × v2 = 0, i.e., by the quadratic
equation ẋ1 ẏ2 − ẋ2 ẏ1 = 0, but in this case it may be considered as a consequence of two independent
linear conditions namely, ’v1 is orthogonal to P1P2’ and ’v2 is orthogonal to P1P2’, which are
expressed by two linear equations:⎧⎪⎨

⎪⎩
ẋ1 (x2 − x1) + ẏ1 (y2 − y1) = 0,

ẋ2 (x2 − x1) + ẏ2 (y2 − y1) = 0.

Fig. 2. Example 8.1 in polar coordinates.

For the study of these constraints it seems to be convenient to use the Lagrangian coordinates

(q1, q2, q3, q4) = (x, y, θ, ρ),

where (x, y) = (x1, y1) and (ρ, θ) are the polar coordinates of P2 w.r.to the center P1 (see Fig. 2).
It follows that ⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

x1 = x,

y1 = y,

x2 = x + ρ cos θ,

y2 = y + ρ sin θ,

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ẋ1 = ẋ,

ẏ1 = ẏ,

ẋ2 = ẋ + ρ̇ cos θ − ρ sin θ θ̇,

ẏ2 = ẏ + ρ̇ sin θ + ρ cos θ θ̇,

P1P2 =

⎡
⎣ ρ cos θ

ρ sin θ

⎤
⎦ ,

P1P2 · v1 = ρ (ẋ cos θ + ẏ sin θ),

P1P2 · v2 = ρ (ẋ cos θ + ẏ sin θ)

+ ρ (ρ̇ cos θ − ρ sin θ θ̇) cos θ

+ ρ (ρ̇ sin θ + ρ cos θ θ̇) sin θ

= ρ (ẋ cos θ + ẏ sin θ + ρ̇).
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Hence, the constraint equations are
ρ (ẋ cos θ + ẏ sin θ) = 0, ρ (ẋ cos θ + ẏ sin θ + ρ̇) = 0,

and they become equivalent to the system of equations⎧⎨
⎩

ρ (ẋ cos θ + ẏ sin θ) = 0,

ρ ρ̇ = 0.

If we consider the second equation as a dynamical equation,

ρ
dρ

dt
= 0,

then we find that ρ = constant during any motion. This means that, once the initial positions of
the two points are fixed, then the system looses a degree of freedom and its dynamics becomes
equivalent to that of two points joined by a massless rigid segment of length ρ, with Lagrangian
coordinates

(q1, q2, q3) = (x, y, θ),
and submitted to the linear constraint

ẋ cos θ + ẏ sin θ = 0,

representing the fact that the velocity v1 of the point P1 is orthogonal to the segment.5) Actually,
this is one of the most common pedagogical example. Anyway, let us try to apply our method to it.
Going back to Remark 1 and formula (8), we see that in this case we need m = n − r = 3 − 1 = 2
parameters (z1, z2) for a parametric representation of the constraints. We can consider for instance
the equations ⎧⎪⎪⎪⎨

⎪⎪⎪⎩

ẋ = v sin θ,

ẏ = − v cos θ,

θ̇ = ω,

with parameters z1 = v, the scalar velocity of P1, and z2 = ω, the scalar angular velocity. Then,
according to the notation introduced in Sections 2 and 3, we have⎧⎪⎪⎪⎨

⎪⎪⎪⎩

ψ1 = ẋ = v sin θ,

ψ2 = ẏ = − v cos θ,

ψ3 = θ̇ = ω,

(46)

and

[ψi
α] =

⎡
⎣ sin θ − cos θ 0

0 0 1

⎤
⎦ (α index of line). (47)

Since ⎧⎨
⎩

ẋ1 = ẋ,

ẏ1 = ẏ,

⎧⎨
⎩

ẋ2 = ẋ − ρ sin θ θ̇,

ẏ2 = ẏ + ρ cos θ θ̇,

the kinetic energy is

K = 1
2 m1 (ẋ2 + ẏ2) + 1

2 m2 (ẋ2 + ẏ2 − 2ρ sin θ ẋ θ̇ + 2ρ cos θ ẏ θ̇ + ρ2 θ̇2)

= 1
2 m (ẋ2 + ẏ2) + 1

2 m2 ρ (ρ θ̇2 − 2 sin θ ẋ θ̇ + 2cos θ ẏ θ̇),
(48)

5)Notice that from the rigid body kinemtaics we know that also the velocity v2 has, consequently, the same property.
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where m = m1 + m2, and the Lagrange equations with active forces (Ai) = (Ax, Ay, Aθ) are
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

d

dt
(m ẋ − m2 ρ sin θ θ̇) = Ax,

d

dt
(m ẏ + m2 ρ cos θ θ̇) = Ay,

m2ρ

(
d

dt
(ρ θ̇ − sin θ ẋ + cos θ ẏ) + cos θ ẋ θ̇ + sin θ ẏ θ̇

)
= Aθ,

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

m ẍ − m2ρ (cos θ θ̇2 + sin θ θ̈) = Ax,

m ÿ + m2ρ (− sin θ θ̇2 + cos θ θ̈) = Ay,

m2 ρ
(
ρ θ̈ − cos θ ẋ θ̇ − sin θ ẍ − sin θ ẏ θ̇ + cos θ ÿ + cos θ ẋ θ̇ + sin θ ẏ θ̇

)
= Aθ,

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

m ẍ − m2 ρ (cos θ θ̇2 + sin θ θ̈) = Ax,

m ÿ + m2 ρ (− sin θ θ̇2 + cos θ θ̈) = Ay,

m2 ρ
(
ρ θ̈ − sin θ ẍ + cos θ ÿ

)
= Aθ,

The Lagrange equations in the form (16) are⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

m ẍ − m2 ρ sin θ θ̈ = m2 ρ cos θ θ̇2 + Ax,

m ÿ + m2 ρ cos θ θ̈ = m2 ρ sin θ θ̇2 + Ay,

m2 ρ
(
ρ θ̈ − sin θ ẍ + cos θ ÿ

)
= Aθ.

According to item 4 of our method i.e., formula (17) of Section 3, we substitute Eqs. (46)
into the right hand sides of these equations in order to compute the components Z̄i(q, z) .=
Ai(q, ψ) − Γhki(q)ψhψk. We obtain⎧⎪⎪⎪⎨

⎪⎪⎪⎩

Z̄1 = m2 ρ cos θ ω2 + Ax,

Z̄2 = m2 ρ sin θ ω2 + Ay,

Z̄3 = Aθ.

Recall that ω = z2 is the second parameter. Item 5: computation of the components Zα = Z̄i ψi
α.

In the present case, due to (47), we get
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Z1 = sin θ (m2ρ cos θ ω2 + Ax) − cos θ (m2ρ sin θ ω2 + Ay)

= sin θ Ax − cos θ Ay,

Z2 = Aθ,

Item 6: compute the matrix [Gαβ = gij ψi
α ψi

β ]. From the expression (48) of the kinetic energy we
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get

[gij ] =

⎡
⎢⎢⎢⎣

m 0 −m2 ρ sin θ

0 m m2 ρ cos θ

−m2 ρ sin θ m2 ρ cos θ m2 ρ2

⎤
⎥⎥⎥⎦

= m2 ρ

⎡
⎢⎢⎢⎣

µ 0 − sin θ

0 µ cos θ

− sin θ cos θ ρ

⎤
⎥⎥⎥⎦ ,

where

µ
.=

m

m2 ρ
=

m1 + m2

m2 ρ
.

Hence,

Gαβ = ρm2

(
ψ1

αψ1
β g11 + ψ2

αψ2
β g22 + ψ3

αψ3
β g33

+ 2ψ1
αψ2

β g12 + 2ψ1
αψ3

β g13 + 2ψ2
αψ3

β g23

)

= ρm2

(
ψ1

αψ1
β µ + ψ2

αψ2
β µ + ψ3

αψ3
β ρ − 2ψ1

αψ3
β sin θ + 2ψ2

αψ3
β cos θ

)
.

G11 = ρm2 µ = m.

G12 = − ρm2

(
2 sin2 θ + 2 cos2 θ

)
= − 2 ρm2.

G22 = ρ2 m2.

[Gαβ ] =

⎡
⎣ m −2 ρm2

−2 ρm2 ρ2 m2

⎤
⎦ = ρm2

⎡
⎣ µ −2

−2 ρ

⎤
⎦ .

Item 7: the inverse matrix [Gαβ ] = [Gαβ ]−1 is

[Gαβ ] =
1

ρm2 (µ ρ − 4)

⎡
⎣ ρ 2

2 µ

⎤
⎦ .

Item 8: compute Zα = GαβZβ,

Zα = Gα1Z1 + Gα2Z2 = Gα1(sin θ Ax − cos θ Ay) + Gα2Aθ,

Z1 =
ρ (sin θ Ax − cos θ Ay) + 2Aθ

ρm2 (µ ρ − 4)
,

Z2 =
2 (sin θ Ax − cos θ Ay) + µ Aθ

ρm2 (µ ρ − 4)
.

In conclusion, taking into account the constraint equations (46), the resulting dynamical equa-
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tions (23) are the following:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx

dt
= v sin θ,

dy

dt
= − v cos θ,

dθ

dt
= ω,

dv

dt
= ρ (sin θ Ax−cos θ Ay)+2 Aθ

ρ m2 (µ ρ−4) ,

dω

dt
= 2 (sin θ Ax−cos θ Ay)+µ Aθ

ρ m2 (µ ρ−4) .

(49)

8.2. Two Mass-points with Velocities Orthogonal to the Joining Massless Rigid Segment

This example of nonholonomic system does dot differ from the preceding one. Indeed, as we
have seen, even if the two points are free to run along their joining line, they preserve their distance
along any motion. So, the holonomic constraint of having a constant distance does not play any
work.

Remark 7. The dynamical behavior of two coaxial rolling discs (Fig. 3) is quite similar to
those of the preceding two examples: even if the centers P1 and P2 are free to run along the axis,
when the initial configuration is fixed, their distance remains constant. If the discs are thin blades
and two masses are concentrated in the centers P1 and P2, then we obtain a physical realization of
the above examples.

Fig. 3. Coaxial rolling discs.

8.3. Two Free Points with Parallel Velocities

Two points P1 = (x1, y1) and P2 = (x2, y2) are constrained to have parallel velocities v1 and v2.
This constraint is expressed by the vectorial equation v1 × v2 = 0 which is equivalent to the single
scalar equation

ẋ1 ẏ2 − ẋ2 ẏ1 = 0. (50)

This is clearly a non-linear constraint. The configuration manifold of this system is Q = R
4, with

ordered global Lagrangian coordinates

(q1, q2, q3, q4) = (x1, y1, x2, y2).
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In order to apply our method we have to represent the implicit constraint equations (50) in a
parametric form. We need three parameters (z1, z2, z3). Let us choose the following equations:⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ẋ1 = v1 cos θ,

ẏ1 = v1 sin θ,

ẋ2 = v2 cos θ,

ẏ2 = v2 sin θ,

(51)

with parameters

(zα) = (z1, z2, z3) = (v1, v2, θ).

The meaning of the parameters (v1, v2) is

v2
1 = ẋ2

1 + ẏ2
1, v2

2 = ẋ2
2 + ẏ2

2,

while θ is the angle of the two vector velocities w.r.to the x-axis (oriented anticlockwise). However,
even if v1 and v2 represents the intensity of the two velocities v1 and v2, we accept the fact that
they may assume negative values. Notice that the kinematical state v1 = v2 = 0 i.e., v1 = v2 = 0
is a singular state.

According to our notation, Eqs. (51) show that⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ψ1 = v1 cos θ,

ψ2 = v1 sin θ,

ψ3 = v2 cos θ,

ψ4 = v2 sin θ.

Then we find:

[ψi
α] =

⎡
⎢⎢⎢⎣

cos θ sin θ 0 0

0 0 cos θ sin θ

− v1 sin θ v1 cos θ − v2 sin θ v2 cos θ

⎤
⎥⎥⎥⎦ (α index of line).

Let m1 and m2 be the masses of the points P1 and P2. Then the kinetic energy is

K = 1
2 m1 (ẋ2

1 + ẏ2
1) + 1

2 m2 (ẋ2
2 + ẏ2

2),

and

[gij ] =

⎡
⎢⎢⎢⎢⎢⎢⎣

m1 0 0 0

0 m1 0 0

0 0 m2 0

0 0 0 m2

⎤
⎥⎥⎥⎥⎥⎥⎦

,

[Gαβ = gij ψi
αψj

β ] =

⎡
⎢⎢⎢⎣

m1 0 0

0 m2 0

0 0 m1v
2
1 + m2v

2
2

⎤
⎥⎥⎥⎦ ,
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[Gαβ ] =

⎡
⎢⎢⎢⎢⎢⎣

1
m1

0 0

0
1

m2
0

0 0
1

m1v2
1 + m2v2

2

⎤
⎥⎥⎥⎥⎥⎦

.

The Lagrange equations in the form (16) are

m1 ẍ1 = A1, m1 ÿ1 = A2, m2 ẍ2 = A3, m2 ÿ2 = A4.

They shows that Z̄i = Ai. Hence,

[Zα = Z̄i ψ
i
α] =

⎡
⎢⎢⎢⎢⎢⎣

A1 cos θ + A2 sin θ

A3 cos θ + A4 sin θ

v1 (A2 cos θ − A1 sin θ) + v2 (A4 cos θ − A3 sin θ)

⎤
⎥⎥⎥⎥⎥⎦

,

[Zα = Gαβ Zβ ] =

⎡
⎢⎢⎢⎢⎢⎢⎣

A1 cos θ + A2 sin θ

m1

A3 cos θ + A4 sin θ

m2

v1 (A2 cos θ − A1 sin θ) + v2 (A4 cos θ − A3 sin θ)
m1v2

1 + m2v2
2

⎤
⎥⎥⎥⎥⎥⎥⎦

,

and the resulting dynamical equations are
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx1

dt
= v1 cos θ,

dy1

dt
= v1 sin θ,

dx2

dt
= v2 cos θ,

dy2

dt
= v2 sin θ,

dv1

dt
=

A1 cos θ + A2 sin θ

m1
,

dv2

dt
=

A3 cos θ + A4 sin θ

m2
,

dθ

dt
=

v1 (A2 cos θ − A1 sin θ) + v2 (A4 cos θ − A3 sin θ)
m1v2

1 + m2v2
2

,

(52)

where the Lagrangian active forces (A1, A2, A3, A4) are in general known functions of (x1, y1, x2, y2)
and (v1, v2, θ). Let us recall, for a better understanding of the above equations, that A1 = Ax1 i.e.,
that A1 is the component w.r.to the x-axis of the active force A1 acting on the point P1, and so
on:

A1 = Ax1 , A2 = Ay1 , A3 = Ax2, A4 = Ay2.

Notice that, as we remarked above, v1 = v2 = 0 is a singular state for the constraint; this fact
is also revealed by the last of the dynamical equations (52).

Now we consider Eqs. (52) for two special cases of active forces.
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8.3.1. The Inclined Plane

The points are on an inclined plane and submitted to the gravity. We consider the x-axis oriented
downward and the y-axis horizontal. In this case A1 = m1 g, A3 = m2 g, A2 = A4 = 0, where g is
the reduced gravitational constant. Then Eqs. (52) become⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx1

dt
= v1 cos θ,

dy1

dt
= v1 sin θ,

dx2

dt
= v2 cos θ,

dy2

dt
= v2 sin θ,

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

dv1

dt
= g cos θ,

dv2

dt
= g cos θ,

dθ

dt
= − g sin θ

m1 v1 + m2 v2

m1v2
1 + m2v2

2

.

(53)

For equal masses m1 = m2, we have a further simplification:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx1

dt
= v1 cos θ,

dy1

dt
= v1 sin θ,

dx2

dt
= v2 cos θ,

dy2

dt
= v2 sin θ,

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

dv1

dt
= g cos θ,

dv2

dt
= g cos θ,

dθ

dt
= − g sin θ

v1 + v2

v2
1 + v2

2

.

(54)

Fig. 4. v1 = v2, m2 = m1.

8.3.2. Horizontal Plane, the two Points are Linked by an Ideal Spring

The potential energy of an elastic active force is

V = 1
2 k |P1P2|2 = 1

2 k
(
(x1 − x2)2 + (y1 − y2)2

)
,
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Fig. 5. v1 = v2, m2 = 10 m1.

Fig. 6. v1 = 2
3
v2, m2 = 2m1.

Fig. 7. v2 = −v1, m1 = m2.
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Fig. 8. v2 = −v1, m2 = 3 m2.

where k > 0 is a constant. It follows that

A1 = − ∂V

∂x1
= k (x2 − x1),

A2 = − ∂V

∂y1
= k (y2 − y1),

A3 = − ∂V

∂x2
= k (x1 − x2),

A4 = − ∂V

∂y2
= k (y1 − y2).

Then the dynamical equations (52) become
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx1

dt
= v1 cos θ,

dy1

dt
= v1 sin θ,

dx2

dt
= v2 cos θ,

dy2

dt
= v2 sin θ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dv1

dt
= k

(x2 − x1) cos θ + (y2 − y1) sin θ

m1
,

dv2

dt
= k

(x1 − x2) cos θ + (y1 − y2) sin θ

m2
,

dθ

dt
= k

v1 [(y2 − y1) cos θ − (x2 − x1) sin θ]
m1v

2
1 + m2v

2
2

+ k
v2 [(y1 − y2) cos θ − (x1 − x2) sin θ]

m1v
2
1 + m2v

2
2

.

(55)

Let us look at the numerical solutions of these equations for various initial conditions. We have of
course a very large number of cases. A first classification of them is the following (see Fig. 9):

• Case A — Opposite initial velocities perpendicular to the segment P1P2:

• Case B — Equioriented initial velocities perpendicular to the segment P1P2:

• Case C — Opposite initial velocities inclined w.r.to the segment P1P2:

• Case D — Equioriented initial velocities inclined w.r.to the segment P1P2:

Each one of these cases has actually three sub-cases determined by the values of the scalar
velocities: (1) v1 = v2 (as in the above pictures), (2) v1 �= v2 both different from zero, and (3)
v1 = 0. Furthermore, each sub-case should be considered with equal masses as well as different
masses. So, they are too many. Here, only a few significant cases are illustrated with graphics and
comments.
• Case A. For opposite velocities with equal intensity, we observe the difference between the two
sub-cases of equal masses (Fig. 10) and different masses (Fig. 11).
• Case A. For opposite velocities with different intensities we observe a strange phenomenon. For
equal masses, nothing of special (Fig. 12). But for different masses (say, m2 = 2m2) we observe
a very strong qualitative dependence on the initial distance between the two points: see Fig. 13,
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Fig. 9. Cases of in initial conditions.

Fig. 10. Case A. v1 = −v2, ⊥ P1P2, m1 = m2.

Fig. 11. Case A. v1 = −v2, ⊥ P1P2, m2 = 2 m1.
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Fig. 14 and Fig. 16. On the other hand, we observe a significant change in the orbits if we modify
the ratio between the masses. For instance, if we maintain the same initial conditions of Fig. 14
but we put m2 = 3m1 we get the orbits of Fig. 15, which are of a different kind.

Fig. 12. Case A. v2 = −2v1, ⊥ P1P2, m2 = m1.

Fig. 13. Case A. v2 = −2v1, ⊥ P1P2, m2 = 2 m1.

• Case B. For equal initial velocities v1 = v2, perpendicular to the segment P1P2, we observe a
strange fact: the trajectories are parallel straight lines, Fig. 17. But do not forget the constraints:
even if the two points are attracted by a spring, they cannot converge since they must have parallel
velocities. Further experiments show that this behavior does not depend on the values of the masses.
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Fig. 14. Case A. v2 = −2v1, ⊥ P1P2, m2 = 2 m1. A larger initial distance |P1P2|.

Fig. 15. Case A. The same initial conditions as in Fig. 14 but with m2 = 3 m1. The x-axis is expanded.

• Case B. For parallel and equioriented initial velocities, but with different intensities v1 �= v2, we
observe a rather different behavior w.r.to the previous case: see Fig. 18. Further experiments show
that this qualitative behavior does not depend on the values of the masses.
• Case C. Recall that this case concerns with opposite initial velocities v1 and v2 which are inclined
w.r.to the segment P1P2. For velocities of equal intensity, Fig. 19 shows the qualitative behavior
for equal masses. For different masses we have a different result as shown by Fig. 20.
• Case C. For opposite initial velocities of different intensity, say v2 = − 2v1, we observe very
different kinds of orbits, depending on the initial distance |P1P2| between the two points. For equal
masses m1 = m2 these orbits are illustrated in Fig. 21, 22 and 23. For different masses m1 �= m2
we have a similar phenomenon: see Fig. 24 and Fig. 25.
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Fig. 16. Case A. v2 = −2v1, ⊥ P1P2, m2 = 2 m1. A much larger initial distance |P1P2|.

Fig. 17. Case B. v1 = v2, ⊥ P1P2, m2 = m1 or m2 = α m1.

Fig. 18. Case B. v2 = 2v1, ⊥ P1P2, m2 = m1 or m2 = α m1.

REGULAR AND CHAOTIC DYNAMICS Vol. 13 No. 4 2008



306 BENENTI

Fig. 19. Case C. v1 = − v2, m2 = m1.

Fig. 20. Case C. v1 = − v2, m2 = 2 m1.

• Case D. Recall that this case concerns with equioriented initial velocities inclined w.r.to the
segment P1P2. In Fig. 26 and 27 we have v1 = v2, for equal and different masses, respectively. In
Fig. 28 and 29 we have v2 = 2v2, for equal and different masses, respectively, and with the same
locations of the initial positions P1 and P2.

In Figs. 29 and 31 we observe a strange behavior of the initial motion of the point P1: it seems to
move in an opposite direction of the initial velocity v1. But if we use a zoom over its neighborhood,
then we understand what happens (Fig. 32).

8.4. Two Mass-points with Constant Distance and Parallel Velocities

Two mass-points (P1,m1) e (P2,m2) running on a plane are linked by a rigid segment of negligible
mass and of length 	. The configuration manifold of this mechanical system is Q3 = R

2 × S1. Let
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Fig. 21. Case C. v2 = − 2v1, m2 = m1.

Fig. 22. Case C. The same as in Fig. 21, but with a larger distance |P1P2|.

us use the Lagrangian coordinates

(q1, q2, q3) = (x, y, φ),

where (x, y) are the Cartesian coordinates of P1 and φ is the angle of the segment P1P2 w.r.to the
x-axis (oriented anticlockwise). Hence, we can write

OP1 =

⎡
⎣ x

y

⎤
⎦ , OP2 =

⎡
⎣ x + 	 cos φ

y + 	 sin φ

⎤
⎦ ,
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Fig. 23. Case C. The same as in Fig. 22, but with a larger distance |P1P2|.

Fig. 24. Case C. Different masses: m2 = 2 m1.

Fig. 25. Case C. Different masses m2 = 2 m1. A larger initial distance |P1P2|.
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Fig. 26. Case D. v1 = v2, m1 = m2, P1 = (0, 0), P2 = (10, 0).

Fig. 27. Case D. The same as in Fig. 26 but with m2 = 4 m1.

and in a generic kinematical state the velocities of the two points are

v1 =

⎡
⎣ ẋ

ẏ

⎤
⎦ , v2 =

⎡
⎣ ẋ − 	 sin φ φ̇

ẏ + 	 cos φ φ̇

⎤
⎦ . (56)

The segment P1P2 behaves, from a kinematical viewpoint, as any flat rigid body on the plane.
A first consequence is that, at any kinematical state, the velocity vP of all points P of the line
containing the segment, including the endpoints, have the same projection onto the line itself. This
projection is given by

τ
.= ẋ cos φ + ẏ sin φ. (57)
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Fig. 28. Case D. v2 = 2v1, m1 = m2, P1 = (0, 0), P2 = (10, 0).

Fig. 29. Case D. The same as in Fig. 28 but with m2 = 3 m1 and P2 = (15, 0).

Fig. 30. Case D. v2 = 2v1, m2 = 3 m1, P1 = (0, 0), P2 = (50, 0).
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Fig. 31. Case D. The same initial conditions of Fig. 30 but with the y-axis expanded.

Fig. 32. Zoom over P1 in Fig. 29 and Fig. 31.

Indeed, if we introduce the unit vector from P1 to P2,

d =

⎡
⎣ cos φ

sin φ

⎤
⎦ ,

then from(56) we obtain

v1 · d = v2 · d = ẋ cos φ + ẏ sin φ. (58)

A second consequence is that we have two kinds of kinematical states (see Fig. 33):

1. Translational state: all points P of the segment (including the endpoints) have the same
velocity: vP = v1 = v2.
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Fig. 33. Kinematical states of a rigid segment.

2. Rotational state: there exists a point C on the plane such that, for each P of the segment
(including P1 and P2) we have

vP (t) = φ̇(t) k × CP, (59)

where k is a unit vector orthogonal to the plane and oriented according to the orientation
of φ. The point C is the instantaneous center of motion and the vector φ̇ k is the
instantaneous angular velocity.

In Example 8.2 we have considered the case in which the velocities v1 and v2 are constrained to
be orthogonal to the segment. Now, let us consider the case in which the two points P1 and P2 are
constrained to have parallel velocities. This nonholonomic constraint is expressed by the condition
v1 × v2 = 0 which, due to (56), is equivalent to equation∣∣∣∣∣∣

ẋ ẏ

ẋ − 	 sin φ φ̇ ẏ + 	 cos φ φ̇

∣∣∣∣∣∣ = 0,

i.e., to the quadratic equation

τ φ̇ = (ẋ cos φ + ẏ sinφ) φ̇ = 0. (60)

This is a constraint of a special kind: it is a quadratic constraint reducible to two linear constraints,

τ = ẋ cos φ + ẏ sinφ = 0, (61)

and

φ̇ = 0. (62)

They must be alternatively or simultaneously satisfied. As a consequence, the dynamics of our
system splits into two types:6)

• Dynamics of type I: the dynamics obeys to the linear nonholonomic constraint τ = 0. In
this case, the kinematical states compatible with the constraint are such that v1 and v2 are both
orthogonal to the segment, as illustrated in Fig. 34, to which we should add the cases where one of
the two velocities, or both, are zero.

• Dynamics of type II: the dynamics obeys to the linear constraint φ̇ = 0. This is an integrable
constraint, since it is equivalent to

φ = φ0 = constant.

In this case the mechanical system behaves as a holonomic system with 2 degrees of freedom (x, y).
All motions are then translational. There are transitional states at which a change of the dynamical
behavior may occur. A detailed analysis of this nonholonomic system will be developed in another
paper.

6)This interesting fact has been already remarked by Zekovich (1991).
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Fig. 34. Possible states in the dydamics of type I: τ = 0.

9. A TENTATIVE PROJECT OF A DEVICE

I propose a possible concrete realization of a non-linear nonholonomic system considered above:
two mass-points moving on the plane with parallel velocities. The problem is twofold: (1) how to
realize a mass-point and, (2) how to realize a parallel transport in the plane. We can solve these
two problems by two devices, denoted by Device A and Device B. Device A is illustrated in Fig. 35
and 36.

Fig. 35. Device A, vertical section SS.

The “mass-point” consists of a small cylinder M filled with mercury. This heavy liquid metal has
the property of non-adherence to the walls, if the walls are made of a suitable material. In this way
we avoid any rotational effects: the particles of mercury will have only instantaneous translational
motions i.e., at each instant they velocities are equal. On the other hand, the heaviness of mercury
will make negligible all the masses of the components of both the devices, which however should
be made of very light, but strong rigid material.7)

To the cylinder we attach, in diametrical opposition, two vertical wheels with sharp edges W ,
which lean on the plane of motion. The plane may be iced or a plane of billiard. In both cases,
the wheels can roll only in the direction perpendicular to their own axes. The cylinder M is rigidly
connected to its vertical axis A. Upon the cylinder we attach to A, in the order, a ball bearing B,

7)There are in fact other ways of realizing material points, by using heavy rigid materials instead of mercury. Notice
moreover that, instead of a cylinder, is some cases it is better to use a sphere filled with mercury.
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Fig. 36. Device A, from above.

Fig. 37. Device B.

a pulley D and another ball bearing B. Actually, they belong to the Device B, together with the
thread T and the rods R.

Device B has the role of realizing the parallel transport in the plane (Fig. 37). It is made of four
rods R of equal length which can pivot at their end points, so that they compose a rhombus. The
pivoting is without, thanks to the ball bearings B. Four discs D are hinged on these end points.
Actually, the discs are pulleys connecting a closed tight thread T . It is remarkable the fact that,
whatever configuration assumes the rhombus, the length of the thread does not change. In this way,
in any configuration, the four discs rotate of a same angle. In other words, if we draw four parallel
ticks on them, these ticks remain one another parallel at each instant of any motion of the device.

These two devices are combined together as follows. If we fix two devices A under two discs D
(it is of course convenient to choose two opposite discs) with the four wheels W in a parallel
position, then we get a device with two mass points which can move only with parallel velocities.
Of course this device has two limits: the two mass points cannot have (1) the same location and, (2)
a distance greater than the double of the length of the rods. However, it possible to invent special
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initial conditions as well as some modification of the device, for which these circumstances do not
occur.

Notes. (1) This device does not work very well when both velocities of the mass points are zero;
this in agreement with the fact that such a state is a singular state for the theoretical constraint, as
remarked above. (2) The devices A and B can be used for realizing a nonholonomic system made
of a single point on a plane submitted to a kinematical constraint of the kind

f(x, ẋ) ẋ = g(x, ẋ) ẏ,

where x = (x, y), and f , g are (almost) arbitrary smooth functions of (x, ẋ). The axis A of one of
the discs is fixed at a point on the plane and submitted to the action of a (fine) stepping motor.
The opposite disc is a nonholonomic mass point (Device A). What we need is an electronic device
capable of detecting the position and the velocity of this point, of elaborating these data according
to the given functions f and g, and of transmitting the result to the stepping motor. Note that the
stepping motor does not spend energy in controlling the direction of the wheels of the nonholonomic
point.
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