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COMPUTING CURVATURE
WITHOUT CHRISTOFFEL SYMBOLS

S. BENENTI

Dipartimento di Matematica, Universita di Torino,
Via Carlo Alberto 10, 10123 Torino, Italy
E-mail: sergio.benenti@unito.it

The Riemann tensor of a given metric, of any dimension and signature, can
be computed ’by hand calculation’, avoiding the explicit calculation of the
(1/2) n2(n+1) Christoffel symbols. The algorithm presented here works with n
quadratic form Q7 in the velocity-variables coming from the Lagrange geodesic
equations, and with 2n cubic forms R(i) and R’i generated by them. An ex-
ample of this method is illustrated: it concerns the application of Geodesic
Equivalence theory to General Relativity.

Keywords: Riemannian geometry; Geodesic equivalence.

1. The six steps of the algorithm

We start by describing the algorithm; comments will be given later on.
Step 1.

o Take the covariant components g;; of the given metric tensor, and write
the “Kinetic energy” K = % gij v'v7. @ Compute the Lagrange binomials

doK 0K
YU dtovt 9gt

Step 2. e Compute the inverse matrix [¢¥/] of [g;;]. ® Rise the index of L;:

1
L= giij = % —|—sz ARILS

e Take the quadratic form in L*: Q° := T, v" v*. Do not extract the
1 n2(n + 1) Christoffel symbols! We work with the n quadratic forms Q'
only.
Step 3. ¢ Compute the total formal derivative of Q' w.r.to a ‘new time’ £,
R = LQZ by setting ﬂ =" and ﬂ =Q°

dt’ dt dt '



Step 4. e Split R into the sum R! = R} + Ri: R} is the part of R which
does not contain the terms Q°. @ In R replace all Q° by Q' = — Q'(9)
i.e., put v' — @' in Q° and change the sign. e Result: R} are 3"-degree
homogeneous polynomials in v"v*57, and R are 3"-degree homogeneous
h

polynomials in v"#%%7.

: >R
Step 5. ¢ Compute the A-symbols: A%, . = % W
"™ Ov* dv™
: OPR:
e Compute the B-symbols: B, = % W
"™ 0Vt Jv™
Step 6. ¢ Compute the Riemann tensor:

% At 7 7 7
len_AZmn_Alnm+BZmn_Ban’

2. Explanation

(1) L' have the form L* = —|— ri ook
(2) R' have the form

R' = 0,,T%, o™ vt v"+2T% Q% v™ = 9, o™ v’ o™ —2T%, T}, o' o™ o™
(3) The Riemann tensor is defined as (see Eisenhart,! p.19)
RZmn = a Fin anrzm + F}Lcm F?n - i:nl_‘];m'

If we introduce the symbols A’
then the Riemann tensor can be written

— 7 [ T k
vmn = Oml%, and BY, =T} T}

Riﬂmn = Aifmn - Aiﬁnm + Bi@mn - Biénm' (1)

4) The expression R’ = 0,,I'} 7™ vf o™ — 2 I" Ik 3¢ 9™ u™ in item 2
In In
shows that these symbols can be obtained by three partial derivatives,
as in the definitions of Step 5.

Proof After the splitting R' = 9,,,I'}, 9™ vfv" +2T%, Q% v’ = R{ + Ri,
it follows that

ORi . O R - PR |
5ol = 20,1, 0™ ", 3ol Bon = 20,1, 0™, T el B 201,
ORy i Ak R Q" i Tk gn
o =2TI%, Q" 9vtou™ = 2ka EhE = —4I,, Iy, 0™

OR} 0Q"

— L —9r! = —4T% Tk | O
00Ot dv™ km gt fem = tn



Remark 2.1. The splitting R = R} + R! is useful for shortening the “by
hand” calculations. It is not necessary when using a software. Indeed,
DR} B PR 0’R: B O’R’
ov™ Jut dvn 9™ Jvt dun’ ovm Ovtovm  Ovn Ovtou™’

3. An example
Let us apply the algorithm to a kinetic energy of the kind

K = %gaa ('Ua)z"‘ %fhocﬁ v P (2)
The coordinates are divided into two subsets: (¢°) = (¢% ¢*). The Ro-
man indices a,b,c,... assume values from 1 to ny. The Greek indices
a, 3,7, ... assume values from ny+1 to ny+ns = n. Moreover, the compo-
nents g,, and the conformal factor f depend on the Roman coordinates

only, while the components of the metric tensor h,3 depend on the Greek
coordinates only. The interest of such a metric will be explained below.

3.1. The computation of the quadratic forms Q°
From (2) we get:

0K “ oK
%—gaav- aa fhocﬁv
iaiK — dLa + 8 b, .a
dt gpe ~ Jaa gy T Jaa VU 5
d 0K v’ , (3)
ﬁava_f aB — dt + [ Oyhap VP 07 + 00 f hagvP v
0K o 0K
6(]0‘ = % aa,gbb (U ) + % 8af ha,@ v Uﬁ« % = % f aahﬁ’y ’06 V7
The Lagrangian binomials are
d a
La = Gaa —5— d + 8bgaa U ’U 8(19171) (,Ub)Q _ % aaf haﬁ ’Ua ’Uﬁ,

dv®
a=fhaﬁﬁ+f37hagv'8v7+8afhagvﬁv“—%f&ahmvﬁv”’.

Then, the quadratic forms Q? are given by
Q¢ = g* (8bgaa vb v — % Oagvp (Ub)2 - % Ouf haﬂ v 'Uﬁ) s
Q= h (Dyhpp — 5 Ophy) V707 +v* O, log | f| v

Since, for the moment, we do not specify the expressions of gqq, f and hag,
we can continue our calculation by observing that the Q? assume the form

Q" =Th v =5 [ hagvv® Q% =T§, 070" + 00" F,,  (5)

(4)



where fb“c and f%v are the Christoffel symbols of the metric gq, and hqg,
respectively, and f¢ := g Oy f = g** 0o f, F,:= 0,log|f|.

3.2. The computation of the cubic forms R*
According to Step 3, from (5) we get

d a
R* = (?t = 0.I¢ ¥ v° 0 — 2 0 f* hap v 0P 8¢ — f* O hag v 0P 07
+ 208 v Q° — f9 hopv® QP
Rafanfafa B 07 0P 4 0o Fy v™ v 0¢ + 2T 0P Q7
fﬁfpﬂ,yvvv+eavvv+ 3,07 Q

Fu (Q7 v + 07 Q).
According to Step 4 we have
RO—(’?Fbcv v° 3 0cf hagv® VP 0° — [ O hagv™ 0P 07
R§ = @,ng VP VY TP 4 O Fy v® 0® 5,
and
Rf = 2T5,0" Q" — f* hag v Q7
f =205, 07 Q" + Fu(Q*v* +0° Q%),
where, according to (5), we have to substitute
Q¥ = —T% 080 + 1 f*hy, 0" 0", Q* = —T%, 70" — F.7° 0°
Then,
Ry =T§ b (fChMT;A@/‘ - 2f§ead@e) + [Ohapv® (ffufﬂw + Fe@eﬁﬁ)
Ry = — 2T 07 (IN“:{MT;’\E“ + Fe@efﬂ)
— F, [(ff\‘u Aot + F, 17617’1) v® 4+ ¢ (fd pdpe — 1 f“ hap U“>i| .
(7)

3.3. The computation of the A-symbols

According to Step 5, we have to compute the partial derivatives of R}
with respect to the variables v* and #'. In doing this 6-symbols will arise
systematically, since (9v*/dv?) = (90" /9v7) = §%. However, the calculation



can be shortened if we consider that

DouXadf =Xy, Y Yad) =Yo

me =0, when one of the two indices (¢, m) is Greek.

f?m =0, hgm =0 when one of the two indices (¢, m) is Roman. (8)
f*=0, F,=0.

I't., f* F, depend on the Roman coordinates only.

Fg,y, hap depend on the Greek coordinates only.

Then, from (6) we derive

gRi = 0L 0" 0 = 5 0 f* hap v 07 = [ Db v,
g?ﬁ = 0%, 0P 07 + 9, Fy 0™ 0.

afj% =20, 080" = 8 [ har v™ — 2 @ Dphae v®,
8(35% =2 &nfge v + 85 Om Fo v + O Fyv®.
% = 20T, — Onf™ hen — 2 £ Ombin,
avna;% = 20,15, + 0F O Fry + 63 O .

Hence, according to Step 5, the A-symbols are

Aa@mn = amign - %amfa hen — fa amhfna <9)
A = 0D, + 5 (07 0 Fry + 0% 0 Fy).

3.4. The computation of the B-symbols

We have to compute the partial derivatives of RY. By a calculation similar
to that done for the A-symbols, and still taking into account the rules (8),
we get

PR o - =
S = 2T f iy — AT, T, +2 [ s T,
+F€fahmn+anah€ma
0° RS ~ o ~
— = —4AT% T —2I'® F,—2T% F,
9v" 9t dum my " dn T 2T mn T AT b

— (215, — Fro3 + Fudg) Fou— 0 Fa (208, = f*hun ) -



Hence, according to Step 5, the B-symbols are

Ba@mn = f%c fin - %fgncfchfn - %fahmﬁfgn - iFéfahmn
- iFn fahfma
~ o~ ~ ~ 10
Bafmn = F%%’y an + %F?nan + %F?an ( )

+ 3 (205, = 03 + Fud ) oo + 205 Fa (20, = [%hen ) -

3.5. The Ricci tensor

Following Eisenhart! (see p.21), the Ricci tensor is defined by Ry, = RY,,.;-
Hence, according to (1),

Rfm = Ai@mi - Ai@im + Bifmi - Bi@im' (11)

In our example the Ricci tensor components are the sum of A-terms and
B-terms, Ry, = aRem + BRem, with
ARy = Za (Aaima - AaEam) + Za (Aozma - AOZam)’

(12)
BR@TTL = Za(BaEma - BaEam) + Za(BaEma - B(;am)'

Starting from (9) we get
AREm = amf?a - aaf?m + amf?a - 8af?m
- %amfahfa + %aafahfm _faamhfa+faaah5m+ %ncamFK
BRum = f;lne f?a o fge me + fgw fZa B fg'y me
— Ing FyFp 4 Y (ng = 2) Fy £ hom + 3T £ hpm — 306 Fu TG, .

Then we consider the three essential cases (b,c¢), (A, u), (A,b) of the pair
(¢,m), and the result is the following

Rye = Ry — 1N (Fb F.+ 2§ch) ) Ry, =0,
~ - (13)
R)\M:R)\u'i‘i((nG_Q)Fafa+2Vafa) h)\;u

being ﬁbc and }~2>\,L the Ricci tensors associated with the metrics g,, and
hag, respectively.



4. How to use this example
Assume n =4, np = ng = 2:

g11 0 O 0
0 g2 O 0

14
0 0 fhas fha (14)
0 0 fhas fhaa
Since ng = 2, the components (13) become
Rbczﬁbc_% (Fch“F?@ch)v (15)

Ry, = E,\u + 3 Vaf® Py, Ry, = 0.
Now we assume that g,, and f have the form
oo = €a (c—u")(W? —u'),  f=(c—u)(c—u?), (16)

where u® is a function of ¢® only, ¢ is a constant and e, = +1, according
to the signature.

As shown in my Tutorial Paper? for SPT-2004 (Appendix A, Theorem
A.4.1), a metric of this kind admits an equivalent metric. Two metrics g
and g on a manifold @,, are said to be equivalent if they have the same
unparametrized geodesics. A metric g admits an equivalent metric g iff it
admits a (non-singular) J-tensor J. A J-tensor is a torsionless trace-type
conformal Killing tensor. If there exists a J-tensor J with eigenvalues (u;),
then there exist standard coordinates (¢‘) such that the components of
g and J assume a certain standard form and such that u;(q"). This form
depends on the multiplicity of the eigenvalues. The metric (14)-(16) is just
one of the four possible cases, for n = 4, corresponding to the case in which
two eigenvalues are simple and one is double. The equivalent metric g;; can
be computed by means of J, following the rule (described in Ref.2):

By =g Ag wimdell) (4]] = o 3]
where cof[—] is the cofactor-matrix operator.

A crucial property of the geodesic equivalence is that the affine param-
eters t and ¢ of two corresponding geodesics are related by the equation
dt/dt = p.

Hence, a spontaneous question arises: can Metric Equivalence Theory
find any application in General Relativity? In other words, can an empty
(i.e., Ricci-flat) space-time admit an equivalent metric?



We can give a first partial answer to this question by considering the
metric (14)-(16) and by imposing the condition R;; = 0: this metric is
Ricci-flat if and only if

Ry =1 (F,, F,+ ﬁch) . R+ iVafthy, =0 (17)

It can be shown that for an orthogonal metric of the kind (16), Ry =0 for
b # c. Then the first equation (17) is equivalent to

VoFy=-1F,F,  a#b. (18)
The second equation (17) has the form
EAN = %mhw, K= —%afa,

where ]TBM and h), are functions of the Greek coordinates, while x is a
function of the Roman coordinates. It follows that x is a constant and the
two-dimensional manifolds ¢* = constant are Einstein manifolds. It can be
shown that, while Eq. (18) is identically satisfied, the second equation (17)
is satisfied iff (i) u® = constant and (ii) x = 0. This means that, (i) gaq
and f are constant and, (ii) the Ricci tensor is zero and the submanifolds
q® = constant are flat (since they have dimension 2). Hence: the metric
(14)-(16) is Ricci-flat and admits an equivalent metric if and only if it
is flat. This shows that geodesic equivalence does not occur in General
Relativity, at least in the case considered here — one of the four possible
cases. But it can be conjectured that this happens also for the remaining
three cases. A complete discussion of this matter, with detailed calculation,
will be available on my personal web-site.

Credits. Bibliographical references and more recent results about the
Geodesic Equivalence Theory can be found in Ref.2 . T wish to thank L.
Fatibene, of my Department, for testing this method of computing the cur-
vature tensors by a software. In spite of several simplification routines of the
output sheet, the final formulae were really cumbersome. On the contrary,
the “by-hand” calculation has shown the advantage of several step-by-step
significant simplifications, associated with a better understanding of the
meaning of the written formulae.
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