
 



ALGEBRAIC CONSTRUCTION OF THE QUADRATIC

FIRST INTEGRALS FOR A SPECIAL CLASS

OF ORTHOGONAL SEPARABLE SYSTEMS.

SERGIO BENENTI∗

Abstract. With the notion of L-pencil, based on the notion of L-tensor, we con-
struct a new class of Stäckel systems such that the quadratic first integrals associated
with the orthogonal separation are computed by a coordinate-independent algebraic
process.
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1. Introduction.

1.1. Stäckel systems. A Stäckel system (S-system) on a Rieman-
nian manifold (Qn, g) is an orthogonal coordinate system (qi) which allows
the integration by (additive) separation of variables of the Hamilton-Jacobi
equation of the geodesic flow. More precisely, a S-system is an equivalence
class of such coordinates, being equivalent two coordinate systems related
by a rescaling (i.e., by a coordinate transformation with a diagonal Jaco-
bian matrix).

A celebrated theorem of Eisenhart, revised in [3, 4], shows that the ex-
istence of a S-system is equivalent to the (local) existence of a n-dimensional
linear space of Killing two-tensors with common normal eigenvectors; we
call such a space a Killing-Stäckel space (KS-space). This is equivalent
to the existence of a complete system of quadratic first integrals in involu-
tion of the geodesic flow. Any separable coordinate system (qi) associated
with a KS-space is such that the differentials dqi are common eigenforms.

It is also known that a KS-space is completely determined by one of
its elements, called characteristic Killing tensor (although not unique)
with normal eigenvectors and simple eigenvalues. However, if a character-
istic tensor is given, the full KS-space can be determined by integrating a
system of PDE’s.

1.2. L-systems. There exists a special class of S-systems for which
the whole KS-space can be generated by a single symmetric two-tensor L

through a pure algebraic process. Such a tensor L is a torsionless conformal
Killing tensor with simple eigenvalues and it has been called L-tensor

[2, 3]. This process is based on the following theorem (see [1] for a proof
and further details):
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Theorem 1.1. Let L be a symmetric 2-tensor. The tensors

(Ka) = (K0,K1, . . . ,Kn−1)

defined by the sequence

K0 = I,

Ka = 1
a tr (Ka−1L) I−Ka−1 L, 1 < a < n.

(1.1)

form a basis of a KS-space if and only if L is a L-tensor.
Since we are on a Riemannian manifold, any symmetric 2-tensor (co-

variant or contravariant) can be interpreted as a (1, 1)-tensor i.e., as a linear
endomorphism on the space of vector fields or on the space of one-forms.
In the recursive formula (1.1) all tensors must be interpreted in this sense.
In particular, we observe that the identity operator I is the (1, 1)-tensor
associated with the metric tensor.

We call L-sequence (or L-chain) a sequence of the kind (1.1) and
L-system a S-system having this property.

The geodesic flow of an asymmetric ellipsoid (Jacobi) as well as of
any asymmetric hyperquadrics of a Euclidean space, are examples of L-
systems. Within this framework, we can also deal with cofactor and bi-
cofactor systems (see [5] and the bibliography therein).

1.3. L-pencils. Although L-systems form a very special class of S-
systems, they can be used for defining other classes. This idea has been
recently developed by B laszak [6]. In the present note, I point out the
existence of a further class of S-systems for which the KS-spaces can be
constructed by an L-sequences. We call them LP-systems, since they are
based on the notion of L-pencil:

Definition 1.1. A L-pencil is a linear combination

Lm = M + m N(1.2)

which is a L-tensor for all values of m ∈ R.
If we compute the L-sequence (1.1) of a L-pencil (1.2), then each

Ka(m) is a polynomial at most of degree a in the parameter m. It is
clear that Ka(0) form a L-system and that all the coefficients of these
polynomials are Killing tensors. On the other hand, since the Killing ten-
sors generated by a L-sequence commute as linear operators and are in
involution as first integrals, we get

Theorem 1.2. Let Ha denote the coefficient of maximal degree in the
parameter m of Ka(m). Then: (i) all tensors Ha are Killing tensors; (ii)
they commute as linear operators, HaHb = HbHa; (iii) they commute in
the Lie-Schouten brackets, [Ha,Hb] = 0.

Item (iii) means that the quadratic functions on T ∗Q associated with
these tensors, P1 = Hij

1 pipj and P2 = Hij
2 pipj, are in involution i.e.,

{P1, P2} = 0.



Algebraic construction of the quadratic first integrals etc. 279

Definition 1.2. We call effective a L-pencil for which the tensors
Ha are linearly independent.

In this case they form a KS-space. Starting from this theorem and
this definition we can get the following two main results.

Theorem 1.3. A L-pencil Lm = M + mN is effective if and only if
M is a L-tensor and N has the form N = X⊗X♭, where X is a conformal
Killing vector field whose associated one-form X♭ is closed, dX♭ = 0.

Theorem 1.4. Let Lm = M + mX ⊗ X♭ be an effective L-pencil.
Then: (i) the CKV X is a translation or a dilatation; (ii) all tensors Ka

of the L-sequence are linear in m i.e., of the form

Ka = Ka0 + mHa;

(iii) X is an eigenvector with zero eigenvalues of all Ha, HaX = 0; (iv)
the restrictions of the tensors Ha to any leaf of the foliation orthogonal to
X form a L-system on that leaf.

We call LP-system a Stäckel system generated by a L-pencil.
Remark 1.1. A fundamental example of LP-system, that inspired the

definition of L-pencil and guided this research, is the asymmetric spherical-
conical web in R

n, where M is a symmetric constant matrix (note that
in this case M is a Killing tensor) with distinct eigenvalues, and X = r

is the radius vector, whose components at a point (x1, . . . , xn) are just
(x1, . . . , xn) [2, 3]. ♦

Remark 1.2. As shown by Theorem 1.4, LP-systems are of two types,
according to the type of the vector X: dilatational or translational. ♦

Remark 1.3. These two theorems have an intrinsic character: any
L-sequence can be computed by using any suitable coordinate systems.
However, they have a local meaning, not only because the global existence
of special objects, like conformal Killing vectors (in particular, dilatations,
etc.), is known to be impossible on certain kinds of Riemannian manifolds,
but also because of the structure itself of a KS-space. For instance, the
independence of the tensors Ha may occur in an open subset of Q, with
the exception of a closed singular set. ♦

2. Differential conditions. The torsion H(A) of a (1, 1)-tensor A

is defined by

Hk
ij(A)

.
= 2

(

Ah
[i∂|h|A

k
j] −Ak

m∂[iA
m
j]

)

.(2.1)

For the torsion the following additive rule holds

H(A + B) = H(A) + H(B) + 2 T(A,B).(2.2)

where1

T k
ij(A,B)

.
= Ah

[i∂|h|B
k
j] −Ak

m∂[iB
m
j] +Bh

[i∂|h|A
k
j] −Bk

m∂[iA
m
j] .(2.3)

1The tensor T(A,B) hab been introduced by Okubo, [12], formula 3.9.
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In the definition (2.1), as well as in (2.3), the partial derivatives ∂i =
∂/∂qi can be replaced by the covariant derivatives ∇i associated with any
symmetric linear connection (in particular, the Levi-Civita connection):

Hk
ij(A)

.
= 2

(

Ah
[i∇|h|A

k
j] −Ak

m∇[iA
m
j]

)

,

T k
ij(A,B) = Ah

[i∇|h|B
k
j] −Ak

m∇[iB
m
j] + Bh

[i∇|h|A
k
j] −Bk

m∇[iA
m
j] .

By applying the additive rule (2.2) to equation H(M + mN) = 0 we
get

Theorem 2.1. The tensor Lm = M + mN is a L-pencil if and only
if (i) M is a L-tensor, (ii) N is a torsionless CKT and (iii)

T(M,N) = 0.(2.4)

3. Algebraic conditions. Let us compute the first elements of the
L-chain (1.1) for a L-pencil L = M + mN. The first step of the L-chain
(1.1) gives

K1 = trLm I− Lm = (tr M + m trN) I −M −mN

= (µ +mν) I−M −mN,

where

µ
.
= tr M, ν

.
= trN.

Hence,

K1 = K10 +mK11

{

K10
.
= µ I− M,

K11
.
= ν I −N,

(3.1)

and

H1 = K11 = ν I− N(3.2)

The second step gives

K2 = K20 +mK21 +m2 K22,(3.3)

with

K20
.
= 1

2 (µ2 − tr M2) I− µM + M2,

K21
.
= (µν − tr MN) I − νM− µN + MN + NM,

K22
.
= 1

2 (ν2 − tr N2) I− νN + N2.
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Remark 3.1. These equations shows that we have to deal with two
types of L-systems,

Type-1 : K22
.
= 1

2 (ν2 − trN2) I − νN + N2 = 0,(3.4)

Type-2 : K22
.
= 1

2 (ν2 − trN2) I − νN + N2 6= 0.(3.5)

These are algebraic conditions involving the tensor N only. For a type-1
L-pencil we have

H2 = K21 = (µν − trMN) I − νM− µN + MN + NM,(3.6)

and for a type-2 L-pencil,

H2 = K22 = 1
2 (ν2 − trN2) I− νN + N2

= 1
2 tr (H1 N) I −H1 N.

This last expression compared with (3.2) shows that H1 and H2 are the
first two elements of the L-chain generated by the torsionless tensor N.
Going back to Eq. (3.3) we observe that the coefficient of m3 of

K3 = 1
3 tr (K2Lm) I −K2Lm

is the tensor

K33 = 1
3 tr (K22 N) I −K22 N = 1

3 tr (H2 N) I − H2 N.

This is sufficient to show that a type-2 L-pencil Lm = M +mN generates
the L-chain of N. This means that if N has distinct eigenvalues (i.e., it
is a L-tensor) the L-pencil Lm generates nothing new. In the case of non-
distinct eigenvalues the N-chain generates a space of dimension < n of
Killing tensors (see Appendix 12.2 for an example). Hence, in both cases,
the type-2 L-pencils have no interest, and hereafter we consider type-1 L-
pencils only. ♦

4. The eigenvalues of N. Eq. (3.4) written in the form

N2 − νN = 1
2 (tr N2 − ν2) I,(4.1)

shows that

trN2 − ν2 = n
2 (tr N2 − ν2),

i.e., for n > 2, trN2 = ν2 = (trN)2. Thus, from (4.1), N2 = νN. Let νi

be the eigenvalues of N. Then the diagonalization of this equation2 yields
equation ν2

i = ν νi, which is equivalent to

νi

∑

k 6=i νk = 0, ∀ i.

2We are in a pure algebraic context. If N
j
i are the components of N with respect to

any basis, the tensor Nik = gjk N
j
i is symmetric. Hence, Nij and gij can be simultane-

ously diagonalized in a canonical basis.
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Let us consider the simplest case n = 3. Then we have

ν1(ν2 + ν3) = 0, ν2(ν3 + ν1) = 0, ν3(ν1 + ν2) = 0.

Assume ν2 6= 0 and ν3 6= 0. Then,

ν1(ν2 + ν3) = 0, ν3 = − ν1, ν2 = − ν1.

If we replace the last two equations into the first one, we get ν1 = 0. Hence,
ν2 = ν3 = 0: absurd.

For n = 4,

ν1(ν2 + ν3 + ν4) = 0,

ν2(ν3 + ν4 + ν1) = 0,

ν3(ν4 + ν1 + ν2) = 0,

ν4(ν1 + ν2 + ν3) = 0.

Assume ν3, ν4 6= 0:

ν1(ν2 + ν3 + ν4) = 0,

ν2(ν3 + ν4 + ν1) = 0,

ν4 = − ν1 − ν2,

ν3 = − ν1 − ν2.

Replace the last two equations into the first two:

ν1(ν2 + 2ν1) = 0,

ν2(2ν2 + ν1) = 0,

ν4 = − ν1 − ν2,

ν3 = − ν1 − ν2.

Take the difference of the first two equations:

ν1(ν2 + 2ν1) − (ν2(2ν2 + ν1)) = 2(ν2
1 + ν2

2) = 0.

This implies ν1 = ν2 = 0, and consequently ν3 = ν4 = 0: absurd. The
above calculations can be extended to any dimension n. The result is

Proposition 4.1. In a L-pencil the tensor N cannot have two eigen-
values different from zero.

Since the case N = 0 is excluded, we have proved

Proposition 4.2. In a L-pencil the tensor N has only one eigenvalue
different from zero.
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It follows that if U is a unit eigenvector corresponding to the non-zero
eigenvalue ν1, then N = ν1U⊗U♭, i.e., N j

i = ν1 UiU
j. It is not restrictive

to assume hereafter

ν1 > 0.

This corresponds to replace N by −N, or m by −m, in the L-pencil. Hence,
if we introduce the vector field

X
.
=

√
ν1 U,

then it is proved that
Theorem 4.1. In a L-pencil Lm = M + mN, the tensor N has the

form

N = X⊗ X♭, N j
i = XiX

j ,

and

ν
.
= tr N = ν1 = X ·X.

5. The differential properties of the vector X. The aim of this
section is to prove

Theorem 5.1. The vector field X is a dilatation or a translation.
Let us recall that a conformal Killing vector (CKV) is a vector

field X on a Riemannian manifold characterized by equation

{P (X), P (G)} = ψP (G),(5.1)

where P (X)
.
= Xipi, P (G) = gij pipj, and f a scalar field on the manifold

Q. If ψ = 0, X is a Killing vector. If ψ = constant 6= 0, X is a dilatation.
If ψ = 0 and X ·X = constant, X is a translation.3

To prove Theorem 5.1 we need preliminary statements.
Theorem 5.2. The vector field X is a conformal Killing vector.
Proof. A conformal Killing tensor (CKT) N is characterized by equa-

tion

{P (N), P (G)} = − 2P (C)P (G)

where C is a vector field and P (C) = Cipi. Being N = X ⊗ X♭ a CKT,
and P (N) = (Xipi)

2 = P 2(X), equation

{P 2(X), P (G)} = − 2P (C)P (G)(5.2)

3An infinitesimal translation is a Killing vector with constant length or, equivalently,
a vector field whose integral curves are geodesics [9], §72.
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holds. However,

{P 2(X), P (G)} = 2P (X) {P (X), P (G)}

so that Eq. (5.2) becomes

P (X) {P (X), P (G)} = − P (C)P (G).

This polynomial equation shows that P (X) = − ψ P (C), where ψ is a
function on Q, and consequently that Eq. (5.1) holds.

Theorem 5.3. The one-form X♭ = (Xi) is closed, ∂iXj = ∂jXi.
Proof. This property is due to the torsionless condition H(N) =

H(X ⊗X♭) = 0. Indeed, by the definition of torsion (2.1), the tensor

Sk
ij(N)

.
= Nh

i ∇hN
k
j −Nk

m∇iN
m
j

must be symmetric in the lower indices. For N j
i = XiX

j we have

Sk
ij = XhXi∇h(XjX

k) −XmX
k∇i(XjX

m)

= XiX
kXh ∇hXj + XiXjX

h ∇hX
k −XmX

mXk ∇iXj

−XkXjXm ∇iX
m

= Xk [XiX
h ∇hXj − ν1 ∇iXj −XjX

m ∇iXm] + . . .

where . . . denote terms symmetric in the indices i, j. Now we recall that
a CKV is also characterized by equation

∇iXj + ∇jXi = ψ gij.(5.3)

Thus,

Sk
ij(N) = Xk [XiX

h ∇hXj − ν1 ∇iXj +XjX
m (∇mXi − ψ gim] + . . .

= − ν1X
k ∇iXj .

This shows that the torsionless condition is equivalent to ∇iXj −∇jXi =
∂iXj − ∂jXi = 0.

By summing this last equation to Eq. (5.3) we get (κ
.
= ψ/2)

∇iXj = κ gij.(5.4)

Moreover, There exist local functions ρ such that

X = ∇ρ, Xi = ∂iρ.(5.5)

As a consequence, we have proved that
Lemma 5.1. The vector field X is normal.
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Recall that a vector field X is called normal if it is orthogonal to a
local web of submanifolds of codimension 1.4 In this case the leaves of the
web (which we call X-web) are defined by equation ρ = constant. As a
consequence of this fact, there exist local coordinates (qi) = (q1, qa) such
that q1 = ρ and g1a = 0. We call them X-coordinates. From Eq. (5.5) it
follows that in these coordinates

X1 = 1, Xa = 0.(5.6)

Hence,

X1 = g1i Xi = g11, Xa = 0, g1a = 0,

ν1 = XiXi = X1, X = ν1 ∂1.
(5.7)

Now we prove Theorem 5.1.
Proof. In any coordinate system Eq. (5.1) reads

{Xi pi, g
hk phpk} = ψ ghk phpk.(5.8)

In X-coordinates,

{X1 p1, g
11 p2

1 + gab papb} = ψ (g11 p2
1 + gab papb),

=⇒
X1 (∂1g

11 p2
1 + ∂1g

ab papb) − ∂iX
1p1∂

i(g11p2
1 + gab papb)

= ψ (g11p2
1 + gabpapb),

=⇒
X1 (∂1g

11 p2
1 + ∂1g

ab papb) − 2 p2
1∂1X

1 g11 − 2 p1 ∂aX
1 gab pb

= ψ (g11 p2
1 + gab papb).

This polynomial equation in the momenta is equivalent to equations

X1 ∂1g
11 − 2 g11∂1X

1 = ψ g11,

∂aX
1 = 0,

X1 ∂1g
ab = ψ gab.

(5.9)

Recall that X1 = g11 = ν1. The first equation shows that

ψ = − ∂1ν1,(5.10)

and the second one that ν1 depends on the coordinate q1 = ρ only.

ν1 = ν1(q1).

Eq. (5.10) shows that X is a KV i.e., ψ = 0 if and only if ν1 = constant.
Since ν1 = X ·X, if X is a KV, then it is a translation. In the case of

4It it also called surface-forming of orthogonally integrable.
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a non-constant ν1, it is convenient to replace the coordinate q1 by a new
coordinate r such that X = r ∂r and ∂r ·∂r = 1. These two conditions
imply X ·X = ν1 = r2. Hence, the coordinate transformation can be
defined by

r =
√

ν1(q1).

Since

X = r ∂r = ν1∂1,(5.11)

we get equation

r ∂rν1 = ν1∂1ν1.(5.12)

It follows that ψ = − ∂1ν1 = − r ∂r log ν1 = − r ∂r log r2 = − 2. This
proves that X is a dilatation.

Remark 5.1. Note that the third equation (5.9) is a further property
of the vector field X not considered in Theorem 5.1. Due to (5.10) it can
be written

∂1g
ab = − ∂1 log ν1 g

ab.

It represents a law of evolution of the metric components gab along the flow
of X = ν1∂1. It can be written

∂1g
ab = φ1 g

ab(5.13)

where φ1
.
= − ∂1 log ν1 is a function of q1 only. Eq. (5.13) is equivalent to

∂1gab = ∂1 log ν1 gab,(5.14)

and, for gab 6= 0, to

∂1 log gab = φ1(q1).(5.15)

Note that the right hand side does not depend on the indices a, b. ♦
Remark 5.2. If ν1 = constant, X is a translation, Eq. (5.13) reduces

to ∂1g
ab = 0. If X is a dilatation, then from Eq. (5.12) we get

∂1 log ν1 =
r

ν1
∂r log ν1 =

r

r2
∂r log r2 =

2

r2
.

Moreover, due to Eq. (5.11), ν1∂1r = r, so that

∂1g
ab = ∂1r ∂rg

ab =
r

ν1
∂rg

ab =
1

r
∂rg

ab,

and Eq. (5.13) becomes

∂rg
ab = − 2

r
gab. ♦
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6. CKV in orthogonal coordinates. In orthogonal coordinates the
characteristic equation (5.1) of a CKV reads

(Xi ∂ig
hh − ψ ghh) p2

h − 2 ∂kX
h gkk phpk = 0.(6.1)

The diagonal part of this equation gives

Xi ∂ig
hh − ψ ghh − 2 ∂hX

h ghh = 0, Xi ∂i log ghh − ψ − 2 ∂hX
h = 0.

Hence,

ψ =
∑

i X
i ∂i log ghh − 2 ∂hX

h.(6.2)

Note that this last equation holds for any choice of the index h, which is
not summed. The non-diagonal part of Eq. (6.1) gives

gii∂iX
j + gjj∂jX

i = 0, j 6= i.(6.3)

Proposition 6.1. If ∂iXj = ∂jXi, then Eq. (6.3) is equivalent to

2 ∂iXj +Xj∂i log gjj +Xi∂j log gii = 0.(6.4)

Proof. Let us translate Eq. (6.3) in covariant components of X,

gjj∂i(g
jjXj) + gii∂j(giiXi) = 0.

It follows that

Xj∂i log gjj + ∂jXi +Xi∂j log gii + ∂iXj = 0.

Since ∂iXj = ∂jXi, we get Eq. (6.4).
Proposition 6.2. Eq. (6.2)is equivalent to

ψ =
∑

i X
i ∂i log ghh − 2Xh ∂h log ghh − 2 ghh ∂hXh

=
∑

i 6=h X
i ∂i log ghh −Xh ∂h log ghh − 2 ghh ∂hXh.

(6.5)

Proof. Let us use to Eq. (6.2),

ψ =
∑

i X
i ∂i log ghh − 2 ∂hX

h

=
∑

i X
i ∂i log ghh − 2 ∂h(ghh Xh)

=
∑

i X
i ∂i log ghh − 2Xh ∂hg

hh − 2 ghh ∂hXh

= etc.
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7. The condition T(M,N) = 0. In this section we prove the remark-
able (and rather surprising) fact: the differential condition T(M,N) = 0
is identically satisfied. For this we shall use another special kind of coor-
dinates associated with a L-pencil. Since M is a L-tensor, after the results
of [5], there exist local coordinate systems, which we call M-coordinates

in the following, such that

gij = M ij = 0, i 6= j,

M ii = µi gii,

M j
i = µi δj

i = µj δj
i ,

(7.1)

∂iµ
j = 0, i 6= j,

∂iµ
i = (µj − µi)∂i log gjj,

(7.2)

where the eigenvalues µi of M are all distinct. Note that the M-coordinates
are orthogonal and separable.

Due to the second equation (7.2), in M-coordinates Eq. (6.4) reads

2 ∂iXj = −Xj ∂i log gjj −Xi ∂j log gii = −Xj
∂iµ

i

µj − µi
−Xi

∂jµ
j

µi − µj
.

Hence,

2 ∂iXj =
Xj ∂iµ

i −Xi ∂jµ
j

µi − µj
.(7.3)

Now we prove the following general statement.
Theorem 7.1. If M is a L-tensor and X is a CKV such that X♭ is

closed, then T(M,X⊗ X♭) = 0.
Lemma 7.1. In M-coordinates condition T(M,N) = 0 is equivalent

to equations

(µi − µk) ∂iN
k
j = (µj − µk) ∂jN

k
i , i, j, k 6=,(7.4)

(µj − µi) ∂jN
i
i +N i

j∂iµ
i = 0, i 6= j.(7.5)

Proof. Due to the definition (2.3) this condition is equivalent to equa-
tion (of course with i 6= j)

Mh
i ∂hN

k
j −Mk

m∂iN
m
j +Nh

i ∂hM
k
j −Nk

m∂iM
m
j

= Mh
j ∂hN

k
i −Mk

m∂jN
m
i + Nh

j ∂hM
k
i −Nk

m∂jM
m
i ,

(7.6)

sum over h and m, in any coordinate systems. In M-coordinates, due to
the third line of (7.1), this equation becomes

M i
i∂iN

k
j −Mk

k ∂iN
k
j + Nh

i ∂hM
k
j −Nk

j ∂iM
j
j

= M j
j ∂jN

k
i −Mk

k ∂jN
k
i + Nh

j ∂hM
k
i −Nk

i ∂jM
i
i ,

i 6= j,
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and consequently

µi∂iN
k
j − µk∂iN

k
j +Nh

i ∂hM
k
j −Nk

j ∂iµ
j

= µj∂jN
k
i − µk∂jN

k
i +Nh

j ∂hM
k
i −Nk

i ∂jµ
i,

i 6= j.

We get a further simplification by the first line of (7.2):

(µi − µk) ∂iN
k
j + Nh

i ∂hM
k
j = (µj − µk) ∂jN

k
i +Nh

j ∂hM
k
i ,

for i 6= j. For i, j, k 6=, taking into account (7.1) we get Eq. (7.4). For
k = i 6= j,

0 = (µj − µi) ∂jN
i
i +Nh

j ∂hM
i
i ,

and also Eq. (7.5) is proved.
Let us apply this result to the case N j

i = XiX
j .

Lemma 7.2. The compatibility condition T(M,X⊗X♭) = 0 is equiv-
alent to the cyclic equation

Xk (Xj ∂iµ
i −Xi ∂jµ

j) +Xi (Xk ∂jµ
j −Xj ∂kµ

k)

+Xj (Xi ∂kµ
k −Xk ∂iµ

i) = 0, i, j, k 6= .
(7.7)

Proof. For N j
i = XiX

j , Eqs. (7.4) and (7.5) read

(µi − µk) ∂i(XjX
k) − (µj − µk) ∂j(XiX

k) = 0,(7.8)

(µj − µi) ∂j(XiX
i) +XiXj ∂iµ

i = 0,(7.9)

respectively, for all distinct indices i, j, k. (i) Since

∂j(XiX
i) = Xi ∂jX

i +Xi∂jXi = Xi ∂j(giiXi) +Xi∂jXi

= (Xi)
2 ∂jg

ii +Xig
ii∂jXi + Xi∂jXi

= Xi (Xi ∂j log gii + 2 ∂jXi),

Eq. (7.9) becomes

(µj − µi) (Xi ∂j log gii + 2 ∂jXi) +Xj ∂iµ
i = 0.

This implies

(µj − µi) (Xi
∂jµ

j

µi − µj
+ 2 ∂jXi) +Xj ∂iµ

i = 0,

i.e.,

2 (µj − µi) ∂jXi −Xi∂jµ
j + Xj ∂iµ

i = 0.
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This equation is identically satisfied, due to (7.3). (ii) Eq. (7.8) can be
written

(µi − µk) [Xk ∂iXj +Xj ∂iX
k] − (µj − µk) [Xk ∂jXi + Xi ∂jX

k] = 0.

Since ∂iXj = ∂jXi, we get

(µi − µj) Xk ∂iXj + (µk − µj) Xi ∂jX
k + (µi − µk)Xj ∂iX

k = 0.

However,

∂iX
k = ∂i(g

kkXk) = gkk ∂iXk + Xk ∂ig
kk

= gkk ∂iXk +Xk ∂i log gkk

= gkk ∂iXk +Xk ∂iµ
i

µk−µi ,

and we get equation

(µi − µj) Xk ∂iXj + (µk − µj)Xi

(

gkk ∂jXk + Xk ∂jµj

µk−µj

)

+ (µi − µk)Xj

(

gkk ∂iXk + Xk ∂iµ
i

µk−µi

)

= 0,

which can be put in the form

gkk
(

(µi − µj) Xk ∂iXj + (µk − µj)Xi ∂jXk + (µi − µk)Xj ∂iXk

)

+Xk (Xi ∂jµ
j −Xj ∂iµ

i) = 0,

Due to (7.3),

2 ∂iXj =
Xj ∂iµ

i −Xi ∂jµ
j

µi − µj
,

we get

gkk[(µi − µj) Xk ∂iXj + (µk − µj)Xi ∂jXk + (µi − µk)Xj ∂iXk]

+ 2Xk (µj − µi) ∂iXj = 0,

and finally

(µj − µi) Xk ∂iXj + (µk − µj)Xi ∂jXk + (µi − µk)Xj ∂iXk = 0.

This is an equivalent form of the cyclic equation (7.7).
Proof of Theorem 7.1.
Proof. If we apply Eq. (7.3), 2 (µi − µj) ∂iXj = Xj ∂iµ

i −Xi ∂jµ
j, to

the cyclic equation (7.7), we see that it is identically satisfied.
Let us examine equation T(M,X⊗ X♭) = 0 in X-coordinates.
Theorem 7.2. In X-coordinates equation T(M,X⊗X♭) = 0 is equiv-

alent to the following equations,

∂iM
1
j = ∂jM

1
i , i, j 6= 1,(7.10)
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∂1M
k
j = 0, j, k 6= 1,(7.11)

M1
j ∂1ν1 = ν1∂jM

1
1 , j 6= 1.(7.12)

Proof. In any coordinate system, equation T(M,X⊗X♭) = 0 is equiv-
alent to Eq. (7.6), with N j

i = XiX
j :

Mh
i ∂h(XjX

k) −Mk
m∂i(XjX

m)

+XhXi∂hM
k
j −XmX

k∂iM
m
j

−Mh
j ∂h(XiX

k) +Mk
m∂j(XiX

m)

−XhXj∂hM
k
i + XmX

k∂jM
m
i = 0.

(7.13)

In X-coordinates X1 = ν1 and X1 = 1 are the only non-vanishing compo-
nents of X, and they depend on the coordinate q1 only. Thus, Eq. (7.13)
becomes

Mh
i ∂h(XjX

k) −Mk
1 ∂i(XjX

1)

+ X1Xi∂1M
k
j −X1X

k∂iM
1
j

−Mh
j ∂h(XiX

k) +Mk
1 ∂j(XiX

1)

−X1Xj∂1M
k
i + X1X

k∂jM
1
i = 0.

(7.14)

For i, j 6= 1, Eq. (7.14) reduces to

−X1X
k∂iM

1
j +X1X

k∂jM
1
i = 0.

This proves Eq. (7.10). For i = 1 Eq. (7.14) reduces to

Mh
1 ∂h(XjX

k) −Mk
1 ∂1(XjX

1) + X1X1∂1M
k
j −X1X

k∂1M
1
j

−Mh
j ∂h(X1X

k) +Mk
1 ∂j(X1X

1) −X1Xj∂1M
k
1 +X1X

k∂jM
1
1 = 0.

For j = 1 this equation is of course identically satisfied. For j 6= 1 it reads

X1X1∂1M
k
j −X1X

k∂1M
1
j −Mh

j ∂h(X1X
k) +Mk

1 ∂j(X1X
1)

+X1X
k∂jM

1
1 = 0,

Now we recall that ν1(q1) = X1X
1 > 0:

ν1∂1M
k
j −X1X

k∂1M
1
j −Mh

j ∂h(X1X
k) + X1X

k∂jM
1
1 = 0.

For k 6= 1 and k = 1 we find Eqs. (7.11) and (7.12), respectively.
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8. Further algebraic properties. Let us return to the explicit cal-
culation of the first elements of a L-pencil. Of course, K1 is of first degree,
Eq. (3.1),

K1 = µ I− M + m (ν I −N),

as well as K2, as shown in Section 3,

K2 = K20 +mK21,

with

K20
.
= 1

2
(µ2 − tr M2) I− µM + M2,

K21
.
= (µν − tr MN) I − νM− µN + MN + NM.

Let us introduce the vector field

Y
.
= MX.

Then Eqs. (3.6) become

H1 = ν1 I− X⊗ X♭,

H2 = (µν1 − Y ·X) I− ν1M − µX⊗ X♭ + MN + NM.

In any coordinate system,

(MN)j
i = M j

kN
k
i = M j

kX
kXi = Y jXi,

(NM)j
i = N j

kM
k
i = XjXkM

k
i = XjYi.

Hence,

MN = Y ⊗X♭, NM = X ⊗Y♭, tr (MN) = X ·Y.

This shows that
Proposition 8.1. In a L-pencil the two tensors H1 and H2 have the

following expressions:

H1 = ν1 I− X⊗X♭,

H2 = (µν1 − Y ·X) I− ν1M− µX⊗ X♭ + Y ⊗X♭ + X ⊗Y♭.
(8.1)

As a consequence,
Proposition 8.2. The vector field X is an eigenvector of both H1

and H2, with zero eigenvalue.
Proof. Since X ·X = ν1, we have H1X = ν1 X − Xν1 = 0, and

H2X = (µν1 −Y ·X) X − ν1Y − µ ν1X + ν1 Y + Y ·X X = 0.
Remark 8.1. In any coordinate system Eqs. (8.1) read

(H1)j
i = ν1 δ

j
i −XiX

j ,

(H2)j
i = (µν1 − η) δj

i − ν1M
j
i − µXiX

j +XiY
j + YiX

j ,
(8.2)
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where η
.
= Y ·X = XiYi. Recall that in X-coordinates Eqs. (5.6) and (5.7)

hold. so that

Y 1 = g11Y1 = M1
i X

i = M1
1 X

1 = ν1M
1
1 ,

η = XiY
i = X1Y

1 = ν1M
1
1 = Y 1,

Y a = Ma
i X

i = ν1M
a
1 ,

Ya = Mai X
i = ν1Ma1 = g11Ma1 = M1

a .

Hence, from Eqs. (8.2) it follows that (a, b = 2, . . . , n)

(H1)11 = ν1 −X1X
1 = 0,

(H2)11 = (µν1 − η) − ν1M
1
1 − µX1X

1 + X1Y
1 + Y1X

1 ,

= (µν1 − Y 1) − ν1M
1
1 − µ ν1 + Y 1 + Y1g

11 = 0.

(H1)a
1 = 0,

(H1)1a = 0,

(H1)b
a = ν1 δ

b
a.

(H2)a
1 = − ν1M

a
1 + ν1M

a
1 = 0,

(H2)1a = − ν1M
1
a + ν1 Ya = 0,

(H2)a
a = ν1 (µ −M1

1 −Ma
a ),

(H2)b
a = − ν1M

b
a, a 6= b.

In matrix form,

H1 = ν1

[

0 0

0 Ī

]

, H2 = ν1

[

0 0

0 H̄1

]

,(8.3)

where

Ī = In−1, H̄1
.
= µ̄ Ī− M̄,

M̄
.
= [M b

a], µ̄
.
= tr M̄ = µ−M1

1 . ♦
(8.4)

The matrix forms (8.3) of H1 and H2 show once more the property
expressed by Proposition 8.2: H1X = H2X = 0. For proving this we
observe that

Proposition 8.3. If HaX = 0, then all Ka are of first degree in m,

Ka = Ka0 + mKa.
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Proof. Recall the recursive formula (1.1) of a L-chain,

Ka+1 = 1
a+1 tr (KaLm) I− Ka Lm

Assume that Ka is first-degree, Ka = Ka0 + mHa. Let us denote by a
prime ′ the derivative w.r.tom. For instance, L′

m = N. Note that K′
a = Ha

is of zero-degree. Then,

(KaLm)′ = K′
aLm + KaN = Ha(M + mN) + (Ka0 +mHa)N

= HaM + Ka0N + 2mHaN = HaM + Ka0N.

(KaLm)′′ = 2 HaN = 2 HaX ·X = 0.

It follows that Ka+1 is first-degree.

9. The induced L-systems. What we are going to do now is sug-
gested by the remarkable formulas (8.4). Indeed, the (n − 1) × (n − 1)
matrix

H̄1 = µ̄ Ī− M̄, µ̄ = trM̄,

has the same form of the first step of a L-sequence. To interpret this
analogy in a right way, let us consider any leaf of the X-web i.e., any n−1-
dimensional submanifold S orthogonal to X. Such a submanifold is defined
by an equation q1 = constant (in X-coordinates). Then the bar-tensors like
Ī, M̄, H̄1, etc., can be interpreted as (1, 1)-tensors on any S.

Theorem 9.1. On each leaf S the tensor M̄ = [M b
a] is torsionless.

Proof. The tosionless condition of M is equivalent to the symmetry of

Sk
ij(M)

.
= Mh

i ∂hM
k
j −Mk

m∂iM
m
j .

A special case is

0 = Sc
ab(M) = Mh

a ∂hM
c
b −M c

m∂aM
m
b

= Md
a∂dM

c
b −M c

d∂aM
d
b + M1

a∂1M
c
b −M c

1∂aM
1
b

= Sc
ab(M̄) + M1

a∂1M
c
b −M c

1∂aM
1
b .

Due to Eq. (7.11), ∂1M
c
b = 0. Due to Eq. (7.10), ∂aM

1
b = ∂bM

1
a . This

shows that Sc
ab(M̄) is symmetric.

Theorem 9.2. On each leaf S the tensor M̄ is a trace-type CKT.
Proof. Since Mab = gbiMa

i = gbcMa
c , the contravariant components of

M′ are just the contravariant components Mab (with a, b > 1) of M. The
tensor M is a trace-type CKT i.e., the polynomial equation

{M ij pipj, g
hk phpk} = − 2Cipi g

hk phpk

holds with

Ci .= gij ∂iµ.
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In X-coordinates, we get

{M11 p2
1 + 2M1a p1pa +Mab papb, g

11 p2
1 + gab papb}

= − 2 (C1p1 +Capa)(g11 p2
1 + gab papb).

(9.1)

The left hand side is

L
.
= {M11 p2

1 + 2M1a p1pa + Mab papb, g
11 p2

1 + gab papb} =

= 2 (M11 p1 +M1a pa)(∂1g
11 p2

1 + ∂1g
bc pbpc)

+ 2 (M1a p1 + Mab pb)(∂ag
11 p2

1 + ∂ag
bc pbpc)

− 2 (∂1M
11 p2

1 + 2∂1M
1a p1pa + ∂1M

ab papb) g11 p1

− 2 (∂aM
11 p2

1 + 2∂aM
1b p1pb + ∂aM

bc pbpc) gab pb.

This is a homogeneous third-degree polynomial, which can be written in
the following form:

1
2
L = p3

1 [M11∂1g
11 + M1a ∂ag

11 − g11 ∂1M
11]

+ p2
1pa [M1a ∂1g

11 + Mab ∂bg
11 − gab∂bM

11 − 2 g11 ∂1M
1a]

+ p1papb [M11 ∂1g
ab +M1c ∂cg

ab − g11 ∂1M
ab − 2 gac∂cM

1b]

+ papbpc [M1a ∂1g
bc + Mda ∂dg

bc − gda ∂dM
bc].

A further evolution of this expression is due to equations g11 = ν1 and
∂ag

11 = ∂aν1 = 0,

1
2 L = p3

1 [M11∂1ν1 − ν1 ∂1M
11]

+ p2
1pa [M1a ∂1ν1 − gab∂bM

11 − 2 ν1 ∂1M
1a]

+ p1papb [M11 ∂1g
ab + M1c ∂cg

ab − ν1 ∂1M
ab − 2 gac∂cM

1b]

+ papbpc [M1a ∂1g
bc +Mda ∂dg

bc − gda ∂dM
bc].

For the right hand side R we have

− 1
2
R = (C1p1 + Capa) (g11 p2

1 + gab papb)

= p3
1 C

1 g11 + p2
1pa C

a g11 + p1papb C
1 gab + papbpc C

agbc

= p3
1 C

1 ν1 + p2
1pa C

a ν1 + p1papb C
1 gab

+ papbpc C
agbc.

Hence, Eq. (9.1) is equivalent to the following equations:

(I) M11∂1ν1 − ν1 ∂1M
11 +C1ν1 = 0,

(II) M1a ∂1ν1 − gab∂bM
11 − 2 ν1 ∂1M

1a +Caν1 = 0,

(III) papb [M11 ∂1g
ab +M1c ∂cg

ab

− ν1 ∂1M
ab − 2 gac∂cM

1b − C1 gab] = 0,

(IV) papbpc [M1a ∂1g
bc +Mda ∂dg

bc − gda ∂dM
bc

+Ca gbc] = 0.

(9.2)
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Let us develop these equations taking into account that in X-coordinates

M11 = g1i M1
i = g11M1

1 = ν1M
1
1 ,

M1a = gaiM1
i = gab M1

b ,

M1a = g1iMa
i = g11Ma

1 = ν1M
a
1 ,

C1 = g11C1 = ν1 ∂1µ = ν1 ∂1(µ̄ +M1
1 ),

Ca = gab ∂bµ = gab ∂b(µ̄+ M1
1 ).

In fact, for proving the theorem it is sufficient to develop Eq. (IV), which
reads

papbpc [M1a ∂1g
bc + Mda ∂dg

bc − gda ∂dM
bc + gad ∂d(µ̄+ M1

1 ) gbc] = 0.

It implies

papbpc [Mda ∂dg
bc − gda ∂dM

bc + gad ∂dµ̄ g
bc]

+ papbpc [M1a ∂1g
bc + gad ∂dM

1
1 g

bc] = 0,

i.e.,

1
2 {P (M̄), P (Ḡ}S + P (∇µ̄)P (Ḡ)

+ papbpc [M1a ∂1g
bc + gad ∂dM

1
1 g

bc] = 0.

Hence, M̄ is a trace-type CKT on S if and only if

papbpc [M1a ∂1g
bc + gad ∂dM

1
1 g

bc] = 0,

i.e.,

papbpc g
ad [M1

d ∂1g
bc + ∂dM

1
1 g

bc] = 0.

Due to (5.13) it follows that

papbpc g
ad gbc [M1

d φ1 + ∂dM
1
1 ] = 0,

where φ1(q1)
.
= −∂1 log ν1. But Eq. (7.12) shows thatM1

b ∂1ν1−ν1∂bM
1
1 = 0

i.e., M1
b φ1 + ∂bM

1
1 = 0.

Remark 9.1. Equations (I), (II), (III) in (9.2) have not been used.
They provide further necessary conditions on M, whose analysis is here
omitted. ♦

According to the two theorems above, M̄ is a torsionless CKT on each
submanifold S orthogonal to X. Its eigenvalues are distinct (see Remark
9.3 below) with the exception of a closed subset (may be empty) of S.
Thus, M̄ is a L-tensor on any S and the recursive formula

H̄a = 1
a

tr (H̄a−1M̄) Ī− H̄a−1



Algebraic construction of the quadratic first integrals etc. 297

for a = 1, 2, . . . , n−2 and H̄0 = Ī, form a L-system on S (whose dimension
is n− 1).

Now we return to the whole space Qn and consider the n− 1 tensors

Ha = ν1

[

0 0

0 H̄a−1

]

(9.3)

with a = 1, . . . , n− 1. Note that for a = 1 and a = 2 we get the matrices
(8.3). The n − 1 (1,1)-tensors Ha are linearly independent, commute and
have common eigenvectors tangent to S, since the same properties hold for
H̄a. But they have also X as common eigenvector, with zero eigenvalue.

In order to get a basis for a KS-space we have to add to them the
identity

H0 = I =

[

1 0

0 Ī

]

and to prove that
Theorem 9.3. The tensors Ha are Killing tensors.
Proof. The X-components of H∗ are H11 = 0, H1a = 0, Hbc =

ν1 g
bd H̄c

d. Hence, P (H∗) = ν1 H̄
bc pbpc. We have to show that

{P (H∗), gijpipj} = 0.

In X-coordinates g11 = ν1 is a function of q1 only, so that

{P (H∗) , gijpipj} = {ν1 H̄
bc pbpc , g

11p2
1 + gab papb}

= 2 ν1 H̄
bc pc ∂bg

ad papd − 2p1ν1 ∂1(ν1 H̄
bc pbpc)

− 2gabpb ∂a(ν1 H̄
bc pbpc)

= 2 ν1 H̄
bc pc ∂bg

ad papd − 2 ν1 g
abpb ∂a(H̄bc pbpc)

− 2p1ν1 ∂1(ν1 H̄
bc pbpc)

= ν1 {P (H̄∗), P (Ḡ)} − 2p1ν1 ∂1(ν1 H̄
bc pbpc)

= − 2p1ν1 ∂1(ν1 H̄
bc pbpc) = . . .

Since H̄bc = gbaH̄c
a, we have ∂1H̄

bc = ∂1g
baH̄c

a + gba ∂1H̄
c
a. However,

∂1H̄
c
a = 0, since H̄c

a is constructed by an algebraic process from M b
a and

∂1M
b
a = 0, Eq. (7.11). Hence, due to Eqs. (5.13) and (5.14),

∂1H̄
bc = ∂1g

baH̄c
a = φ1 g

baH̄c
a = φ1 H̄

bc.

It follows that

∂1(ν1H̄
bc) = ∂1ν1 H̄

bc + ν1φ1 H̄
bc = 0.

Thus, . . . = 0.
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Remark 9.2. This theorem proves that H0 = I and the n− 1 Killing
tensors Ha defined in (9.3) form a basis of a KS-space onQ. Since HaX = 0
(a > 0), due to Proposition 8.3, the tensors Ka are of first degree in m. ♦

Remark 9.3. Let us consider in R
n a diagonal matrix

M = diag [µ1, µ2, . . . , µn]

with all distinct µi 6= 0, and a vector X = [X1, X2, . . . , Xn]. The matrix

M̄
.
= M − αM(X) ⊗X♭,

with α−1 .
= 〈X,X♭〉 = XiXi, satisfies equation M̄(X) = 0. Its components

are (we consider for simplicity n = 4)
For a vector X with only a non-zero component, say X1 6= 0, we get

the diagonal form

M̄ = diag [0, µ2, . . . , µn]

which shows that the eigenvalues are distinct. Then, in an open cone
around X this property is preserved. We have n open cones generated in
this way. On the other hand it is known (after Sylvester) that the condition
that M̄ has non-simple eigenvalues is expressed by an algebraic equation
of order 2n+ 2 in the variables Xi. This equation defines a surface (or the
union of surfaces) in the space (Xi), or the empty set. ♦

10. Conclusion. The necessity of the conditions listed in Theorems
1.3 and 1.4 are proved:

• M is a L-tensor: Theorem 2.1.
• N = X⊗ X♭: Theorem 4.1.
• X is a conformal vector field: Theorem 5.2.
• X is a translation or a dilatation: Theorem 5.1.
• All tensors Ka of the L-sequence are linear in m: Remark 9.2.
• HaX = 0: Eq. (9.3).
• The restrictions of Ha to any leaf of the foliation orthogonal to X

form a L-system on that leaf: Section 9.
It remains to prove the sufficiency in Theorem 1.3: If M is a L-tensor and
X is a CKV such that dX♭ = 0, then Lm = M +mX ⊗X♭ is an effective
L-pencil.

Proof. Since X is a CKV, N = X ⊗ X♭ is a CKT. Since dX♭ = 0, N

is torsionless: see the proof of Theorem 5.3. Then apply Theorems 7.1 and
2.1.

11. Final comments. About the existence of L-pencils, we recall the
following properties (to be applied to the L-tensor M of a L-pencil).

• If a Stäckel web has a foliation orthogonal to a proper CKV, then
it is not a L-web (Theorem 9.4 in [5]).

• If a Stäckel web has m < n foliations orthogonal to translations,
then it is not a L-web (Theorem 9.6 in [5]).
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As a consequence,
• All translational Stäckel webs in a Euclidean n-space, different

from the Cartesian web (for which m = n) are not L-webs (Re-
mark 9.2 in [5]).

Moreover, let us recall that ([9], p. 249):
• If a Killing vector is normal then the lines of curvature of the

orthogonal submanifolds are indeterminate.
• The orbits of a translation form a flat submanifold.
• If a translation is normal, then the orthogonal submanifolds are

totally geodesic.
In [9] – formula (69.5) – it is proved that for a CKV X equation

∆2ψ =
2

n − 1
(Xm∇iR

mi + ∇iXm Rmi)

holds. Thus, for a Killing vector (ψ = 0) and for a dilatation (ψ =
constant),

Xm∇iR
mi + ∇iXm Rmi = 0.

For a manifold of constant curvature K0 6= 0 this equation reduces to

∇i∇jψ +K0 gij ψ = 0.

For a Killing vector this is identically satisfied, but for a dilatation it gives
K0 = 0: absurd. Thus,

Theorem 11.1. A manifold with non-zero constant curvature does
not admit dilatations.

But it can also be shown that a manifold with non-zero constant cur-
vature does not admit translations. So, for instance, the sphere Sn and the
pseudosphere Hn, does not have L-pencils.

All statements listed above represent strong obstructions for the exis-
tence of translations and dilatations, hence, for the existence of L-pencils.
This list is certainly incomplete, since further results should be present in
the ancient–may be also recent–literature.

As said in Remark 1.1, the basic example of L-pencil is the spherical-
conical (asymmetric) web in rn, and, according to the above remarks, it is
the only L-pencil existing in R

n. In spite to this rather restrictive result,
futher arguments of research arise:

• To find examples of L-pencils form Riemannian manifolds with
non-constant curvature.

• To extend the notion of L-pencil to pseudo-Euclidean spaces. In-
deed, we know the general form of a L-tensor in these spaces (Ap-
pendix B in [5], see also [8]).

• To introduce and study the notion of multipencil. A 2-pencil is
for instance

Lm1,m2
= M + m1 X1 ⊗X♭

1 + m2 X2 ⊗ X♭
2, m1 6= m2.
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Since the spherical-conical webs play an important role in the di-
agrammatic classification of Stäckel systems due to Kalnins and
Miller [11, 10], the notion of multipencil should be useful for this
classification.

• To extend the notions of L-tensor and of L-pencil by dropping out
the requirement of ’simple eigenvalues’, and including the cases of
S-webs invariant w.r.to Killing tensors.

12. Appendices.

12.1. Induced L-systems. It is known that a S-system induces a
S-system on each leaf of its web [3, 7].

In Section 9 we have seen that a LP-system induces a L-system on
each leaf of its web. A similar property holds for L-systems:

Theorem 12.1. A L-system induces a L-system on each leaf of its
web.

Proof. Let (ui) be the eigenvalues of a L-tensor L. Let us order the
indices in such a way that

u1 < u2 < . . . < un,

and set

∆i
.
=

i−1
∏

k=1

(ui − uk)

n
∏

k=i+1

(uk − ui).

Then ∆i > 0 for each index i, and the metric tensor components in L-
coordinates can be written

gii =
φi(q

i)

∆i

with φi(q
i) > 0. As a consequence, up to a rescaling of the coordinates, we

get

gii =
1

∆i
, gii = ∆i.

These components are all positive. For the special case n = 3:

∆1 = (u2 − u1)(u3 − u1),

∆2 = (u2 − u1)(u3 − u2),

∆3 = (u3 − u1)(u3 − u2).

(12.1)

For n = 4:

∆1 = (u2 − u1)(u3 − u1)(u4 − u1),

∆2 = (u2 − u1)(u3 − u2)(u4 − u2),

∆3 = (u3 − u1)(u3 − u2)(u4 − u3),

∆4 = (u4 − u1)(u4 − u2)(u4 − u3).

(12.2)
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Let us consider for simplicity the case n = 4 and the leaf S defined by
u4 = 1. The components g11, g22, g33 restricted to S become

∆1 = (u2 − u1)(u3 − u1)(1 − u1),

∆2 = (u2 − u1)(u3 − u2)(1 − u2),

∆3 = (u3 − u1)(u3 − u2)(1 − u3).

They can be written in the form

∆1 = (u2 − u1)(u3 − u1)φ1(q1),

∆2 = (u2 − u1)(u3 − u2)φ2(q2),

∆3 = (u3 − u1)(u3 − u2)φ3(q3),

with φi(q
i) > 0. Then the coordinates can be normalized in order to get

∆1 = (u2 − u1)(u3 − u1),

∆2 = (u2 − u1)(u3 − u2),

∆3 = (u3 − u1)(u3 − u2).

This is a form of the kind (12.1).
Remark 12.1. For n = 4 we get

∆1 = (u2 − u1)(u3 − u1)(u4 − u1)

= (u2 − u1)(u3u4 − u3u1 − u1u4 + (u1)2)

= u2u3u4 − u2u3u1 − u2u1u4 + u2(u1)2

− u1u3u4 + u3(u1)2 + (u1)2u4 − (u1)3)

= σ1
3 − u1 σ1

2 + (u1)2 σ1
1 − (u1)3.

Thus, in this special case,

g11 = σ1
3 − u1 σ1

2 + (u1)2 σ1
1 − (u1)3.

We get the general formula

gii = σi
3 − ui σi

2 + (ui)2 σi
1 − (ui)3.

Similar formulas can be obtained for any dimension n. ♦
12.2. An example of type-2 L-pencil. In R

3 the parabolic web is
determined by the L-tensor [2]

Lm = M + mu ⊙ r, u2 = 1,

where u is a constant unit vector. Let us look at this tensor as a L-pencil
with

N = u⊙ r = 1
2
(u⊗ r + r ⊗ u).
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Since tr Lm = µ +mu · r, ν = u ·r, we get

K22 = 1
2 (ν2 − trN2) I − νN + N2.

Moreover,

N2 = 1
4 (u ⊗ r + r ⊗ u)(u ⊗ r + r ⊗ u)

= 1
4

(r ·uu⊗ r + r2 u ⊗ u + r ⊗ r + u ·r r⊗ u)

= 1
4 (2 r ·uu ⊙ r + r2 u ⊗ u + r ⊗ r),

and

tr N2 = 1
4 [2(r ·u)2 + 2r2] = 1

2 [(r ·u)2 + r2],

so that

1
2

(ν2 − trN2) = 1
2

[(u ·r)2 − 1
2

((r ·u)2 + r2)] = 1
2

[ 1
2

((r ·u)2 + r2)],

and

N2 − νN = 1
4

(2 r ·uu⊙ r + r2 u ⊗ u + r ⊗ r) − (u ·r)(u ⊙ r)

= 1
4 (r2 u ⊗ u− 2 r ·uu⊙ r + r ⊗ r).

We observe that

(r ⊗ u − u⊗ r)(r ⊗ u − u⊗ r)

= u ·r r⊗ u − r ⊗ r− r2 u ⊗ u + r ·uu⊗ r

= 2u ·r r⊙ u− r ⊗ r − r2 u ⊗ u,

and we get the final expression

N2 − νN = − 1
4 (r ⊗ u − u⊗ r)2,

which allows the computation of K22:

K22 = 1
2 (ν2 − trN2) I − νN + N2

= 1
2 [ 1

2 ((r ·u)2 + r2)] I− 1
4 (r ⊗ u − u ⊗ r)2 6= 0.

This shows that Lm is a L-pencil of type 2.
Let us check the validity of Remark 3.1. The first element of the

L-sequence generated by Lm is

K1 = (µ+ mu ·r) I− M−mu ⊙ r.

Thus, H1 = u · r I−u⊙ r. For computing K2 we need to compute K1Lm,

K1Lm = [(µ+ mu ·r) I− M−mu ⊙ r] [M +mu ⊙ r].
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After a straightforward calculation we get

K1Lm = µM −M2 + m (u ·r M − u⊙ Mr − r ⊙ Mu + µu ⊙ r

− 1
4
r2 u⊗ u − 1

4
r ⊗ r) + 1

2
m2 u ·r u ⊙ r.

The coefficient of m2 is 1
2 u ·r u ⊙ r. Since

K2 = 1
2

tr (K1Lm) I −K1Lm,

we find

H2 = 1
4 (u ·r)2 I − 1

2 u ·r u ⊙ r = 1
4 (u · r) (u ·r I− 2 u ⊙ r).

For n = 3, the tensors

H0 = I, H1 = u ·r I− u ⊙ r, H2 = 1
4 (u ·r) (u · r I− 2 u ⊙ r).

are linearly dependent: H2 = 1
4 (u ·r) (2 H1 − u · r H0).
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