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This is an outline of the major results contained in an extensive tutorial paper
presented at SPT-2004 ! and dedicated to a special kind of symmetric two-tensors
which appear, in the recent and in the old literature, in connection with special
kinds of mechanical systems and with the theory of the separation of variables in
the Hamilton-Jacobi equation.

1. Posing a question

A holonomic system is a mechanical system whose configurations form
a set @ endowed with a differentiable manifold structure with finite di-
mension n (the number of degrees of freedom).® This manifold is in turn
endowed with a positive-definite metric tensor g = (g;;) determined by the
expression of the kinetic energy K = %gij G'¢? w.r.to any natural coordi-
nate system (g%, ¢*) on the tangent bundle T'Q. The active forces are then
represented by a vector field F = (F*) on Q or by a one-form F, = gi; FI.b
For such a system, represented by the triple (@n,g,F), the dynamics is
completely determined by the second-order Lagrange equations
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*

This work is supported by the Dept. of Mathematics, University of Turin and by
INDAM-GNFM.

* Here we consider only the case of time-independent constraints.

b The forces are here assumed to be time-independent and velocity-independent.
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being

d29 4+ dg" E

dt2 "M odr dt

the absolute acceleration of the dynamical system and I‘ . the Christ-
offel symbols i.e., the coefficients of the Levi-Civita connect1on associated

with the metric tensor. This last second-order system is equivalent to the
first-order dynamical system

a,i

dg

— ¢ dt
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dt
on the tangent bundle 7'Q, with coordinates (g,v) = (¢, v*) = (¢*, ¢*).
If the force F is potential (or ”conservative”) i.e., it is the gradient of
a potential energy V' (a real-valued smooth function on Q),

F=-VV —> F'= — g9,V

_ il 11
= hjvv + F,

then we have a Lagrangian system. Eqgs. (1) assume the well-known form

d 6L 8L v
dtdq  dg 7
where L = %gij ¢'¢’ — V is the Lagrangian function on TQ. In

this case we can apply alternative methods of integration by passing to
the Hamiltonian function on the cotangent bundle 7%, with coordi-
nates (g,p) = (¢%,p;), H = %g"j pip; + V. This function gives rise to a
Hamiltonian system (i.e., to first-order Hamilton equations) and to a
Hamilton-Jacobi equation.

Let us pose the question: may the Lagrangian and the Hamiltonian
methods be extended to systems with non-potential forces?

2. Equivalent systems

For posing this question in a more precise way we make use of the notion of
equivalent systems introduced by Painlévé (1894) and Levi-Civita (1896).

Definition 2.1. Let (Q, g, F) and (Q, g, F) be two holonomic systems with
the same configuration manifold Q. Let

dgq* S dqi it
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be the corresponding dynamical systems of T'Q with coordinates (¢°, v* =
¢"). They are said to be equivalent or correspondent, if there exists a
function of f: TQ — R, such that, for any solution

i i i_d?’ii-i
C=¢t), v=—_-=¢0)

of the first system (3), by a change of the time-parameter of the kind
dt 1
S v alical 1)
i f(#i(t), ¢(8)) (

we get a solution of the second system,

] ) 1 d:,c'a"
T =3 - t 1 — e
¢Sl e

This means that the trajectories on the configuration manifold @ of the
two systems coincide, up to a change of the time-parameters given by (4)
(in other words, the trajectories are the same, but covered with different
velocities).©

A special but fundamental case is that with F = F = 0. It concerns
with geodesics:

Definition 2.2. Two metric tensors g and g on the same manifold Q are
said to be equivalent if they have the same unparametrized geodesics.

After this definition our question can be reformulated as follows: which
non-potential systems are equivalent to Lagrangian systems? However, as
we shall see in the next section, at the state-of-the-art we are able to an-
swer this question only by adding a further condition on the definition of
equivalence.

3. The equivalence theorem of Levi-Civita

Levi-Civita was able to prove 2 (p. 272)

Theorem 3.1. Two systems (g, F) and (g,F) are equivalent if and only
if there exist functions p and ¢;;, depending on the coordinates only, such

¢ In the definition of Levi-Civita the function f is considered depending also on t. How-
ever, he proves that in fact this function is independent of time, under the assumption
that the forces depend only on the coordinates ? (p. 269).
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that the following equations are satisfied

W R —
v" (vf 8; log pu + cij FPv?) + (TF — Th + Fhei;) v =0,
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Remark 3.1. In the special case ¢;; = 0 conditions (5) reduce to
i = h
PFt = B, Ffj =13— % (6P p; + 5;?pi).
This last equation shows that the two metrics are equivalent and suggests
the notion of geodesically equivalent dynamical systems: they are

equivalent holonomic systems whose underlying Riemannian metrics are
also equivalent.

4. Main theorems

Theorem 4.1. A dynamical system (Q, g, F) is geodesically equivalent to
a Lagrangian system i.e., to a system (Q,g,F) where g is an equivalent

metric and F = — VYV, if and only if the fundamental metric g admits a
non-singular special conformal Killing tensor J such that
F=-A"'VV, A =cofl. (6)

Definition 4.1. A special conformal Killing tensor (SCKT) is a sym-
metric two-tensor J;; satisfying the equation

Moy = % (04 gjn + &5 Gin)s (7)

where a; are the components of a suitable one-form.9 We denote by a
boldface letter the corresponding (1,1)-tensor, J = (J}), Ji = ¢**Jn;.

Such a tensor is strictly connected with other special symmetric two-
tensors, here denoted by A, B and L and called for simplicity A-tensor,
B-tensor and L-tensor (then a SCKT will be also called J-tensor). The first
two-tensors are defined by the differential equations

ViAij = pn Aij — & (125 Ani + i Anj),

8
ViBij = — % (1 Bni + pi Brj), ®

4 This kind of tensor has been introduced and studied by Crampin and Sarlet (2000-
2003).
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where p; are the components of a suitable one-form. The definition of
L-tensor will be given in §5 below.

All these tensors are related by several equations, used for proving The-
orem 4.1 and other theorems. For instance,

A—cotd =l I=pA",
B=J1=1A cfB=A"1, (9)
m
w=detJ.
Hence, to look for a J-tensor with g # 0 is the same as to look for a
non-singular A-tensor or B-tensor.

It is rather surprising that systems satisfying the condition (6) of Theo-
rem 4.1 have been recently introduce in the literature: they have been called
cofactor systems.® Hence, we can restate Theorem 4.1 as follows: A4 dy-
namical system (Q, g, F) is geodesically equivalent to a Lagrangian system
i.e., if and only if it is a cofactor system.

As a consequence of Theorem 4.1 it is clear that when we have a co-
factor system then we can apply to the equivalent Lagrangian system the
Hamiltonian methods, including the integration (possibly by separation of
variables) of the Hamilton-Jacobi equation. Then we describe the motions
of the original system simply by changing the time-parameter according to
the formula

Z=h (10)
which follows from (4) and (5). The components of the new metric tensor
g, with which we can write the Lagrangian and Hamiltonian function of
the equivalent system,

- L g = a5 . dg’
L=35;0% -V, H=3g"pp;+V, s (11)

are given by
Gij = iBi;‘- gv =pJ. (12)
Note that the operation of raising and lowering indices is always performed
by the basic metric g.
Note that the equivalent metric (12) may not be positive-definite. So,
we are led to consider pseudo-Riemannian manifolds also in connection with

problems of classical mechanics.
A test for finding a cofactor-system-structure is given by the following

¢ Rauch-Wojciechowski, Marciniak, Lundmark, 1999, et al.
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Theorem 4.2. A dynamical system (Q,g,F) is a cofactor system if and
only if g admits a non-singular A-tensor A = (A;;) such that

d(Ai; F? dg') = 0. (13)

This theorem has a local character. For a global meaning, the vector
field AF = (A} F7) must be a gradient. Hence, Eq. (13) must be replaced
by

AF = —VV. (14)

This formula has the advantage of giving the potential V of the equivalent
system.

A remarkable fact concerning the cofactor systems (or the bi-cofactor
systems, see below) is that, under certain condition on the eigenvalues of
the special tensors involved, the Hamilton system defined by H (11) is an
orthogonal separable system of special kind, called L-system.! To see this
we need the notion of L-tensor.

5. L-tensors, L-sequences, L-systems

Definition 5.1. A L-tensor L on a Riemannian (or pseudo-Riemannian)
manifold is a torsionless conformal Killing two-tensor with pointwise simple
and real eigenvalues.

The following theorem shows the interest of this definition.

Theorem 5.1. Let L = (L!) be a symmetric two-tensor. Then the tensors
(K.) = (Ko, K1,...,K,_1) defined by the L-sequence

Ko=1 K,=21ltr(Ko1L)I-K, L, a>1 (15)

are n independent Killing tensors with common normal & eigenvectors if
and only if L is a L-tensor.

Indeed, n independent Killing tensors with common normal eigenvectors
define a Killing-Stéckel space K, containing the metric tensor and whose
elements commute in the Schouten brackets of symmetric tensors; in other
words, they give rise to a n-space of geodesic quadratic first integrals in
involution. The geodesic flow is then completely integrable. Furthermore,

I Orthogonal separable systems are also called Stdckel systemns.
£ This means that each eigenvector field is orthogonal to a family of surfaces (a foliation)
of submanifolds of codimension 1. All these foliations form an orthogonal web.
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the orthogonal web determined by the common eigenvectors is a separa-
ble web, in the sense that any orthogonal coordinate system qa = (¢%)
adapted to this web is separable (it separates, additively, the geodesic
Hamilton-Jacobi equation): these coordinates are such that the web is lo-
cally represented by equations ¢* = constant or equivalently, the vector
fields 9; = §/8q* are common eigenvectors (the one-forms dg* are common
eigenforms). Let us call L-system any Stickel system of this kind.

It is remarkable the fact that for a L-system all the Killing tensors
underlying the separation, and forming the Killing-Stickel space C, are all
constructed in an algebraic way by means of the L-sequence (15).

The general theory of the orthogonal separable systems shows that a
potential V' is separable w.r.to a Killing-Stéckel space X if and only if for
any arbitrary element K € K with simple eigenvalues ? the one-form K dV
is closed (may be exact),

d(KdV) =0, KdV =dU.

If this condition is satisfied, then by taking a basis (K,) of X and the
functions V, such that K, dV = dV,.! then the functions

= %ngpipj +V,

form a system of independent first integrals in involution.

All the results above applied to a L-system, show that, for instance, K;
in the L-sequence is a characteristic Killing tensor, so that a potential V is
separable in a L-system if and only if J

d((trL)dV — LdV) = 0. (16)

6. Cofactor and bi-cofactor systems are L-systems

The sentence which is taken as a title of this last section is true under
certain conditions.

Theorem 6.1. Let (Q,g,F) be a cofactor system, whose J-tensor J has
pointunse simple eigenvalues. Then the geodesically equivalent Hamiltonian
system is a L-system generated by the L-tensor B, the B-tensor associated

b Tt can be proved that such a tensor, called characteristic tensor, always exists.

I Indeed, it can be proved that if KdV is closed or exact, the same happens for all
elements of K.

J For @ = R™ and in Cartesian coordinates, this is known as the Bertrand-Darbouz
equation.
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with J, if and only if F = — VW (i.e., the cofactor system is itself a
Lagrangian system).

Definition 6.1. A bi-cofactor system (or cofactor-pair system) is a
holonomic system (@, g, F') which is a cofactor-system in two distinct ways:

F=—-A"1VV=—_A"1VV, (17)

where A = cofJ and A = cof J, being J = (J7) and J= (:}rﬂf’) two non-
singular (and non-trivial) J-tensors w.r.to the metric g.

Theorem 6.2. If a bi-cofactor system is such that the tensor J = 0
has pointwise real and simple eigenvalues, then the equivalent Hamiltonian
system (Q, g, H), where g is the equivalent metric determined by J, is a
L-system generated by the L-tensor J.

References

1. S. Benenti, Special Symmetric two tensors, Equivalent Dynamical Systems,
Cofactor and Bi-cofactor systems, Tutorial Papers SPT-2004, Acta Appli-
candae Mathematicae, to appear.

2. Levi-Civita, Sulle trasformazioni delle equazioni dinamiche, Ann. di Matem.
24 (1896).



