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1. Introduction.

Let L and G be two contravariant symmetric 2-tensors on a manifold @,. Let us
consider the characteristic equation

(1) det(L — uG) = det [LY — uGY] = 0.

We call the n roots of this algebraic equation the eigenvalues of L w.r. to G. In the
following we shall examine the case in which:

(a) G is a metric tensor (of any signature) i.e., det G # 0.
(b) L has simple and real eigenvalues (uf) w.r. to G.

(c¢) L is a conformal Killing tensor w.r. to G.

(d) L is torsionless w.r. to G.

Let us call L-system a pair (L, G) of this kind, and L-tensor a tensor L satisfying the
above conditions. The interest of considering such a system is due to the following

Theorem 1. The symmetric 2-tensors K,, a =0,1,... ,n—1, defined by the sequence
(2) Ky =G, K, = %tr(Ka_lL) G-K, 1L, a#0,

are independent Killing tensors in involution if and only if L is a L-tensor.

Since all these tensors have common eigenvectors, they define a Stéckel system [KM,
1980] [B, 1993].

This means that: (i) the eigenvectors are normal i.e., orthogonally integrable or surface-
forming: each one admits an orthogonal foliation of hypersurfaces (submanifolds of
codimension 1). The set of these n foliations forms an orthogonal web which we call, in
this case, separable orthogonal web or Stickel web. (ii) Any local parametrization
of this web i.e., any coordinate system (q*) such that each foliation is locally described
by equation ¢° = constant, is a separable orthogonal coordinate system: these
coordinates separate the geodesic HJE.
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This theorem summarizes results established in [B, 1992, 1993] in the case of positive-
definite metrics. However, under the assumption that the eigenvalues of L are real, these
results can be extended to indefinite metrics. This matter has been recently revisited
in [B, 2004].

L-systems are only a special class of Stéckel (orthogonal separable) systems. However,
they have the following nice property: all the Killing tensors i.e., all the quadratic first
integrals of the geodesic flow, which are related to the separation, can be constructed in
a pure algebraic way by the sequence (2) starting from the tensor L. It is remarkable
the fact that this algebraic procedure does not require the knowledge of the eigenvalues
of L. Hence, in this case, L plays the role of a generator of the involutive algebra of
first integrals associated with the separation. Furthermore, for finding the separable
coordinates we have only to examine the tensor L, which contains all information: the
web orthogonal to its eigenvectors is indeed a Stéckel web.

Note that we do not require the functional independence of the eigenvalues u* of L; some
of them may be constant. The essential requirement is that they must be pointwise
distinct, u® # u/. However,

Theorem 2. If the eigenvalues (u?) are independent functions, then they are separable
coordinates.

The functional independence of (u?) is examined in [B, 2004]. It can be shown that,

Theorem 3. The eigenvalues (u') of L are independent if and only if L is not invariant
w.r. to a Killing vector of G.

In [B, 1992] it was shown that the definition (2) can be replaced by other equivalent
definitions, which however, require the knowledge of the eigenvalues. Among them we
recall the following one:

a

(3) K, =Y (-1)*o, L.

k=0

Here, 0,(u) denotes the elementary symmetric polynomial of order p in the variables
u = (u?).

In fact, sequences of the kind (2)-(3) appeared in the literature many years before
within a completely different realm. In the Ricci calculus of Schouten [Sc, 1954] they
are recalled from Souriau [So, 1950] and Fettis [F, 1950]: they are used for computing
in a fast way the eigenvectors of a matrix L (knowing the eigenvalues). In the book it
is also remarked that, in our notation and terminology, the tensor

(4) Q(z) =cof(L—zG)

is a polynomial of degree n — 1, whose coefficients are the tensors K, defined in (3).

However, if we go further in the past, we find in a paper of the young Levi-Civita [LC,
1896] the construction of geodesic first integrals by a formula similar to (4), in connec-
tion with the problem of finding the most general metric tensor admitting a geodesic
correspondent. Indeed, if two (positive-definite) metric tensors G and G are such that
the eigenvalues of G w.r. to G are simple, then they have the same unparametrized
geodesics if and only if G admits a L-tensor. This matter have been recently investi-
gated by Bolsinov & Matveev [BM, 2003 and Crampin [C, 2003a, b]. Hence, L-metric
may stand for Levi-Civita-metric: it is a metric admitting a L-tensor.
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The aim of this lecture is to show how the scheme of L-systems fits with recent very
interesting results of Rauch-Wojciechowski, Waksjo, Lundmark, Blaszak, Ibort, Magri,
Marmo, Bolsinov, Matveev and Topalov. What illustrated here finds a more general set-
ting based on the notion of special conformal Killing tensor introduced by Crampin,
Sarlet and Thompson (see the references at the end of this paper). An extensive paper
on this matter, entitled Special tensors, equivalent dynamical systems and separation of
variables, is in preparation.

2. Notation and basic definitions.

If L = (L) is a contravariant symmetric tensor on a manifold @Q,,, then we denote by
Py, the polynomial function on T*(Q defined by

PL = sz pl . .pj'
Thus, we can define the symmetric tensor product ® between these tensors by setting
PL@K = PL PK

By means of the Poisson bracket, defined by

OF 0G  0G OF

6= Op; 0¢°  dp; Oqi’

we define a Lie-bracket by setting
Prx) = {Fu, Pk}

Two tensors are said to be in involution in [L,K] = 0. If G is a metric tensor, then
L is a conformal Killing tensor (CKT) if

IL,G] = CoG.

If C=0ie., [L,G] =0, then L is a Killing tensor.
If K, L, ... are symmetric contravariant 2-tensors and if a metric tensor G = (G%) is
present, then we define their algebraic product LK by setting

(KL)Y = K*h ki gy, .

where [g;;] = [G*]~! are the covariant components of the metric. We say that K and
L commute when KL — LK = (0. This gives the meaning of some formula of §1.

The torsion H of a (1,1) tensor T = (T7) is the (1,2)-tensor defined by

k . h k k h

This definition does not depend on the choice of the coordinates and the partial deriva-
tives 0; = 0/0q" may be replaced by the covariant derivatives V; w.r. to any symmetric
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connection. When H(T) = 0, T is said to be torsionless. The torsion has been intro-
duced by Nijenhuis and Haantjes [N, 1951] [H, 1955] [FN, 1956], in order to establish
criteria for the normality of the eigenvectors of a (1, 1) tensor. If we start from a (sym-
metric) contravariant 2-tensor L, then we can define the torsion w.r. to a metric
tensor [g;;] = [G*]~! by considering the associated (1,1)-tensor L? = L gp;.

By the results of [N, 1951] [H, 1955] one can prove that,

Theorem 1. If a symmetric tensor L has simple and real eigenvalues w.r. to a metric
G, then H(L) = 0 if and only if

(i) there are local coordinates (q*) in which both L and G are diagonalized,

(i) G;u? = 0 for i # j, being u® the eigenvalue corresponding to the eigenvector 0;.

3. Elliptic-parabolic tensors on R".

We shall work on the manifold @,, = R", referred to the Cartesian coordinates z = (z¢)
centered at the origin O = (0,...,0). We denote by r = OP the position vector of the
generic point P: its Cartesian components coincides with the coordinates of P.

We shall study contravariant symmetric 2-tensors of the form
(1) E=C+mr®r+wor,

where C = (C%P) is a constant symmetric contravariant 2-tensor, w is a constant
vector and m € R. Here, ® denotes the symmetric tensor product (of vectors): a®b =
% (a®b+b®a). In the papers of S. Rauch and coworkers they are called elliptic
matrices and denoted by G (o =m, = %w) Here we prefer to use the symbol G for
a generic metric although, as we shall see, we shall interpreted a tensor E as a metric.
Tensors of this kind were introduced in [B, 1992] as planar inertia tensors of a system
of points with (positive or negative) masses, and related to the separable webs of R"
endowed with the standard Euclidean metric. The scalar m is the total mass (it may be
zero). It is remarkable the fact that a tensor E is a torsionless CKT w.r. to the standard
Euclidean metric, so that, if it has simple eigenvalues, it is a L-tensor and it generates
a L-system. In [B, 1992] it is shown that the case m # 0 corresponds to the elliptic-
hyperbolic web (i.e., to the separation in confocal elliptic-hyperbolic coordinates) as
well as the case m = 0 and w # 0 corresponds to the parabolic web (i.e., to the
separation in parabolic coordinates). In these two cases we call E elliptic tensor or
parabolic tensor, respectively. The trivial case m = 0 and w = 0 corresponds to the
separation in Cartesian coordinates.

Our aim is to show that
Theorem 1. If E and E are two tensors of the kind (1) such that det(E) # 0 and E
has pointwise real simple eigenvalues w.r. to B, then the tensor

(2) L = det(E)E

s a torsionless conformal Killing tensor w.r. to the metric tensor

(3) G = det(E) E.

In other words, the pair (L, G) is a L-system on the manifold R™. For brevity we shall
prove this theorem only in the case of an elliptic tensor E (m # 0).
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Going back to the definition (1), we observe that E has an affine character (it does not
depend on a metric). Collecting results of [B, 1992] we can affirm that

Theorem 2. (i) If m # 0, then there exists a unique point O’ such that E assume the
form

(4) E=C'+mr'er, r'=0P, C=C-_-wQw.

(ii) If m = 0, then there exists a unique point O" such that Eo/(w) = 0 and w is an
eigenvector of E at all points P of the straight line parallel to w passing through O'.

In item (ii) we refer to the standard Euclidean metric of R".
Proof. (i) If O" # O is any other fixed point, then r = v + r/, with v = OO’. Since

{r@rzr’@r’—l—?r’@V—i—V@V,

wWOr=wor +wov,
it follows that

C'=C+v0e (mv+w),

w =w 4+ 2mv.

E=C+mr'er+wor, {

For m # 0, by choosing

we get w' =0 and (2). (ii) For m = 0 see [B, 1992]. =
As a consequence of this theorem we can always find a point O, in general different from
the point 0 € R", such that a tensor E has the form

(5) {E:C+mr®r, for m # 0,

E=C+wor, C(w)=0, for m =0.

Moreover, we can choose orthogonal Cartesian coordinates (z®) with origin at O such
that

(©) EB = ¢ 5§98 4 m g 2P, for m # 0,
EoP = > 5P 4 % (2> 518 4 2P 1), =0, w=uwl, for m = 0.

4. Commutation relations.

A first remarkable property of the elliptic-parabolic tensors is the commutation formula

(1) E,E]=2(A'0E-AGE)

A=2mr+w,
A’ =2m'r +w'.

As we shall see below, the interest of this formula is that the Lie-commutator of E and
E’ is a sum of two terms which factorize in E and E’ themselves. Note that the vectors
A, more precisely the vectors N = % A have been already introduced in [RW, 2003].
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To prove this formula we observe that, in Cartesian coordinates,
Pg = C*’ papg + m (2%pa)® + w*z papp,

where C?% and w® are constant. Then we can easily prove the following commutation

relations:
{PC>PI‘} :2PC;

{Pc, (P;)?} = 4 Pc P,
{Pc, PwPr} = 2 Pc Py,
{PW7 Pr} = Pw,

{PrPy, (Pr)?} =2 Py (P:)*.

Since {Pc, Pc'} = 0, {Pc, Py} = 0 and { Py, Ps } = 0, we have

{Pe, Per} =

={Pc +m P2+ Py P., Por +m' P2 + Py P.}

= {Pc,m' P2 + Po P} +{mP?, Pc/ + Py P}
+{PwP:, Pcr +m/ P? + Py P} — ... (similar terms with / interchanged)

= 2m/ P{Pc, Pe} + Pw{Pc, Pe} + 2mPe{ P, Pcr } + mP{ P2, Py} + Poy{Pe, Pcr}
+m/ Po{ Py, P2} + { Py Py, Par } Pe + {Py Pe, P} Py — . ..

= 2(2m' Py + Py )Pc — 4mP.Pc/ — 2mP2 Py — 2Py Por + 2m/ P2 Py, — ...

= 2(2m/ P, + Py )Pc — 2(2mP; 4 Py,)Pcr + 2P%(m/ Py — mPyyr) — ... .

{Pg, P} =2|(2m'P; + Py/)Pc — (2mP: + Py)Por + P2(m' Py — mPyyr)

It is a surprising fact that, by introducing the vectors A we get

PAIPE — PAPE/ = (2m'Pr + Pw/) (PC + m(Pr)2 + Per) e
= (2m'P. 4 Py) Pc +m P? Py + 2m' P2 Py, —
— (2mP; + Py) Pcr — m/ P2 Py, — 2mP2P,,/,

so that

{Pg,Pg'} =2 (PaPg — PaPg)

which is equivalent to (1).

5. Elliptic metric tensors.

Let us consider an elliptic tensor E, m # 0. As we have seen, §1, (2), we can always
find orthogonal Cartesian coordinates (z®) such that

(1) EB = §%B ™ 4 m g™ 2P
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Note that the constants c* are the eigenvalues of C i.e., of E at r = 0, w.r. to the
standard Euclidean metric. Let us consider a contravariant symmetric tensor of the
kind

ap = Oap € — %P 2% 2P,

We have
EVﬁea[; = (Wﬁ ' +max” xﬁ) (6ag e* — §£°‘€ﬁ x¢ xﬁ)
=00 e +maTa®e® — £ (7 aV e a + maT e a* Y 4P (2P)?)

=00 Ve + a7 x%e® [m —E(7¢ +m Y 4zef (aP)?)].
Equation E"Pe,5 = 0] is satisfied if and only if
e =1, E(e7 +m Y 5P (2P)?) = m.

This shows that

Theorem 1. The tensor E (with m # 0) is a metric tensor if and only if all c* # 0.
The covariant metric eqg 18

1 —1
@ |ep=—etdip-geratet, = (L4T,P@0P) L =k

The metric is not defined on the hyperquadric
(3) L+m Y5l (2P)? =0.
Besides ¢ it is convenient to consider the quantity
RS IS
so that

(4) £

m

= — Z:
14+mY’

1 1 _ ¢
The tensor e,z has a remarkable geometrical interpretation, which will be of help in the
following. In R = R™ x R = (2, "), with the canonical basis (cq,t), we consider

the surface H,, described by the vector-parametric equation

1
(© A=t [ L e et 22
m

with domain D, C R™ where [£ > 0| Since 0,2z = 271 e z* the natural basis of the
tangent spaces of H,, is

) _ 1
€0 =0aq =Co+ 27 1e¥ 2%t = cof? e¥ 2 t.
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If in R™! we introduce the metric tensor

(7) g(u,v) = e*u*v™ —y oyt

then

(8) { g(cavcﬂ) = 5045 g%, { g(t,t) = -1,
g(caat) - 07 g(q7 q) = - 1/m

It follows that the metric tensor g induces on Hl,, the metric tensor
1
cap = 8(€a€p) = dape” — — e’ 2%’
z

This metric tensor, reduced to R", is exactly that defined in (2). The conclusion is that
we can work on the covariant metric tensor E by interpreting it as the metric tensor
induced on H,, by the pseudo-Fuclidean metric (7)

Theorem 2. Let (p,q) be the number of the positive and negative constants c*, respec-
tively. Then, for m > 0 the signature of E is (p,q) and for m < 0 the signature is
(p—1,g+1).

Proof. The vector q is orthogonal to H,,,

g(q7 ea) =0.

The signature of g is (p,q+ 1). From (8) we see that if m > 0, q is timelike. Since it is
orthogonal to H,,, it follows that the signature of the metric induced on H,, hence, the
signature of E is (p,q). If m < 0, q is spacelike, so that the signatureis (p—1,¢+1). m

Theorem 3. The metric E has constant negative curvature.

PmW3@wa=5a@#§tzﬁu<§%ﬁ—f;@ﬂ>t=‘§(%ﬁ—§%;ﬁ>t

1
(9) aﬁea = ; €ap t.

We consider the unit vector orthogonal to H,,, u = |m|% q, for computing the second
fundamental form of H,,,

Bug = g(0aep, ) = — [m|% eap.

The eigenvalues of B,z w.r. to the metric e,g are all equal to —|m|%. This shows
that H,, has a constant intrinsic curvature. The sign of this curvature is a matter of
convention. We note that the eigenvalues do not depend on the sign of the ¢®. In the
case where they are all positive, the metric g is a Minkowski metric, and H,, is the
hyperboloid of the unit timelike vectors oriented in the future. Its constant curvature
is known to be, by convention, negative (as well as for a unit sphere the curvature is
assumed to be positive). m

Theorem 4. The Christoffel symbols of the metric eog are
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Proof. By definition, I'ng,, = E(Orep,€,) = g(0a€ps,€,). Because of (9) and (6),

1 1
Faﬁ,li = — €ap g(e'u,t) = —€ug (_ g% et x#) —_ gg,u M Cap-
z z
g =E" Tagu = — (€707 + ma’ o) (€ 2" eap)
= —&eap (€727 +ma? 2p5”($“)2) = —m e (L +ZN£“(33”)2). n

For any contravariant 2-tensor 7%,
(10)  VoTPY = 0,77 + T8, T7 +T7 TP = 0,177 — m(aP T, + 27 T%).
For any (1, 1) tensor 757,
VaTg = (%Tg + FZPTE —TosT) = 8aTg —m (x'y Top —2°T) ealg), eapTg = Tup-
We consider the case
70 = P = C°F 4 i 2P + L (0% 2P + 0P 2®),

where C*? and @* are constant. From (10),

VTP = (6527 + 61 a%) + L (07 6 + @7 65) — m(2” TY + 27 TX).
We observe that

eap L = 0ape® ™ — {6“5[390[3 (xo‘)2 = sﬁxﬁ(l — {E) = % &P 2P,

Thus,

VoIl =V, T e,
= €0 (M (65 27 + 62 2P) + L (0P 62 + @7 65) — m (2P T + 27 TF))
=m (5§ %EUZBU —i—ewxﬁ) + % (WP eqo + Wy 0°) —maP Tpy — % 2° TP.

This proves the useful formula

(11) |VoEP =28 (ffL Cao — M E’M) + %5" x° (ﬁz 55 — mﬁg) + % (0 eqo + Wy 55)

g

6. The torsion of E w.r. to E.

Let E be an elliptic-parabolic tensor. Assume that E is an elliptic metric tensor (m # 0).
We apply to it all the results of the preceding section. We recall the last formula (by

interchanging E with E)

(1) VoE} =12 (mésp — M Esp) + % &7 2P (mdY —mEY) + 1 (W Ep +wsdl).
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Hence,
o Y
EqVoE; =
= EJ |27 (meyp —m Eopg) + ééﬁxﬂ (méY —mE)) + 3 (W ésp +wg 6))
m
=z (mEag — T%Eiﬁ) + é%ﬁxﬂ (mEg — T?L(EQ);;) + % (w” Eaﬁ + wp Eg)
m

This proves that

(2) EU%Egz%gﬁxﬂmm—m(E2>g>+§wﬁE;+...

... = terms symmetric in («, 3). On the other hand, we can write (1) in the form

~ £ B
VoEl =228 (méP —mEP) + Lwgé? +...,
B mgx(mo‘ ma)+2wﬁ ot
so that _
Eﬂ%QE%:r%eﬁmﬁOnEg—ﬁﬂE%l%+%ngg+.”.

The comparison with (2) shows that

H(E) =0

Theorem 1. The elliptic-parabolic tensor E is torsionless w.r. to the elliptic metric E.

7. Elliptic-parabolic tensors as conformal Killing tensors.

It can be shown [B,1992] that for E*F = c¢* §*F + mz® zP,

(1) E = det[E) = o) +m 3 0% (0)(2%)?.

It follows that

(2) OuFE =2mop ;2% EPO,E =2mao® | x%(c* 6 + ma®2P) =2m E 1.
Let us recall the commutation relation

[E,E|=2(A0E—-AGE), A=2mr+w, A=2mr+w.

For any function f on R"™ we have

[fE, fE] = f*[E,E] + f[E,f] 0E + f[f,E] O E
—2f2(AGE-AGE)+f[E,floE+ f[f,E|OE
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Thus, an equation of the kind [ fE, f E} =V O E is fulfilled iff

2f A+ [f,E] =0, ie, [E, f]=2@2mr+w)}f.

For m # 0 we can consider w = 0 without loss of generality: [E, fl=4mfr.
This equation is equivalent to

E*Po,f = 2mf 2P.

Due to (2), this equation is solved by f = det(E) = det(E*?). Thus,

Theorem 1. If the tensor G = det(E)E is a metric tensor, then L = det(E)E is a
conformal Killing tensor.

Theorem 2. The tensor L is torsionless w.r. to the metric G.

Proof. E is torsionless w.r. to E. The eigenvalues and the eigenvectors of E w.r. to E
are the same of L w.r. to G. If the eigenvalues of E are simple and real, then also
L is torsionless. m

This proves Theorem 1 of §3.
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