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The theory of the separation of variables for the null Hamilton—Jacobi equation
H=0 is systematically revisited and based on Levi—Civita separability conditions
with Lagrangian multipliers. The separation of the null equation is shown to be
equivalent to the ordinary separation of the image of the original Hamiltonian under
a generalized Jacobi—Maupertuis transformation. The general results are applied to
the special but fundamental case of the orthogonal separation of a natural Hamil-
tonian with a fixed value of the energy. The separation is then related to conditions
which extend those of Stackel and Kalnins and Millfar the null geodesic cage

and it is characterized by the existence of conformal Killing two-tensors of special
kind. © 2005 American Institute of PhysicDOI: 10.1063/1.1862325

I. INTRODUCTION

The aim of this paper is to propose a general approach to the theory of variable separation for
the null Hamilton—Jacobi equatiofHJE)

H(g,p)=0, q=(), p=(m), p= %V
This approach is based on a suitable definition of separé8en. 1), whose geometrical content
(Sec. 1) is related to special integrable Lagrangian distributions on the cotangent biigylef
coordinategq, p). By the Hadamard lemma, the integrability conditions of these special distribu-
tions lead in Sec. IV ta.evi—Civita separability conditions with Lagrangian multipligiBheorem
4.1), which are a natural extension of the classical Levi-Civita conditféasd from which we
derive two characterizations of the separation of the null HJE. The firs(ldrenrem 4.2 asserts
that the separation occurs in a given coordinate system if and only if the ordinary Levi-Civita
equations are satisfied on the surfa¢e0; the second onéTheorem 4.3 asserts that the sepa-
ration occurs if and only if there exists a functidriq, p) # 0 such that the ordinary Levi—Civita
equations are satisfied by thenformal Hamiltoniar#{/A. The passage from a Hamiltoniafto
a conformal Hamiltoniar#{/A is an extension of the so-calleldcobi(or Maupertuig transfor-
mationfor natural Hamiltoniang;*®**?8313%ecalled and discussed in Sec. VI.

We apply these general results to the analysis of particular cases of Hamiltonians. In Sec. V
we consider the so-calldtbmogeneous formalisim time-dependent mechanics and get a rigorous
proof of a known property of the separation in the time-dependent'PliESec. VI we consider
a natural Hamiltonian in orthogonal coordinatbls,%g"p%V(g) and the corresponding HJE with
a fixed valueE of the energy,

H(g,p) = 39"p7 + V(@) ~E=0.

From a general theorefTheorem 6.1 concerned with the separation of this equation, we derive
three theoremgTheorems 6.3, 6.4, and 6.6haracterizing the separation for the following three
special cases,
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V=0, E#0, non-nullgeodesics,
V=0, E=0, nullgeodesics,

V-E#0, dynamical trajectories with total energy

The case of null geodesics occurs, of course, for indefinite metric tensors. In Sec. VIl we analyze
the intrinsic framework of the theorems stated in Sec. VI, by considering special kinds of confor-
mal Killing tensors and by introducing the notion of conformal involution. The first integrals and
the separated equations are examined in Sec. VIII. In Sec. IX we consider the two-dimensional
case. We renounce here to deal with the nonorthogonal separation for natural Hamiltonians, which
is currently under investigation within the general framework presented in this paper. All this work
is also made in the perspective of application to the theory of the ordinary multiplicative separa-
tion and of theR-separation for the second-order differential equations of mathematical physics
(Laplace, Helmholtz, Poisson, Schrédinger equatl(’)%zAs possible applications of the present
theory we mention(i) The integration of the equations of the null geodesics in general relativity
theory,11 (i) The integration of dynamical systems which are Hamiltonian only on single hyper-
surfaces of the phase space.

II. DEFINITION OF SEPARATED COMPLETE SOLUTION OF THE NULL HJE

Let Q be a reah-dimensional differentiable manifold arid be a smooth real-valued function
on the cotangent bundl@ Q. Let g:(q‘) be local coordinates on an open subseL Q and
(q,E):(qi,pi) the corresponding standard canonical coordinate¥ @n In the following, 3, and
# will denote the partial derivative with respectdband p;, respectively.

We restrict our analysis to the open BCT'UCT'Q, wheredH #0 for all i=1,...,n,
assuming that it is not empty. In this open set we hake#D, so that any equation of the kind
H(g,p)=h, hER, defines a sef, that, if not empty, is a submanifold of codimension 1. In
particular, we focus on the submanifafg described by equatiof=0.

We consider the HJE fdn=0,

W
H a7y =0, (2.1

and two definitions of complete solution.
Definition 2.1:An internal complete solutioof the HJE(2.1) is a solutionV\l‘(g,ca) depend-
ing onn-1 parametersc,) such that the following completeness condition is satisfied:

k{ o ]
ran i =n-1. (2.2
aq ac,

An extended complete solutiosf the HJE(2.1) is a functionWF(q,c) depending om real
parameterg=(c;) satisfying the completeness condition

de\{ aZIWE ] £0 2.3

for all admissible values ofg,c), and satisfying Eq(2.1) for all ¢ belonging to a suitable
n-1-dimensional submanifold di" (see Remark 2.1 belover (up to a transformation of) for
c,=0.

The geometrical meaning of these two definitions is the following. An internal complete
solution W' defines a Lagrangian foliatiod' of the submanifoldS,, Fig. 1(a), via equationsp,
=gW'. Each Lagrangian submanifolqca)e/:' is parametrized by the value of tme-1 param-
eters(c,).
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Lagrangian submanifolds
1
— H=h#0
submanifold £ — H=0
(a) - Internal complete solution of the equation % = 0.
Lagrangian submanifolds
— H=h#0
submanifold & — H=0
(b) - Extended complete solution of the equation H = 0.
Lagrangian submanifolds
T o Hehgo
submanifold & H=0

(c) - Ordinary complete solution of the equation # = h.

FIG. 1. The geometry of the three definitions of complete solution.

An extended complete solutioWf defines a Lagrangian foliatiod® on an open neighbor-
hood of T"'Q via equationg;=dWE. Each Lagrangian submanifolqci)EEE is parametrized by
the value of then parameterg=(c;). This foliation is compatible with the submanifof§, in the
sense that it is reducible to a foliation &§, Fig. 1(b).

Remark 2.1The quotient se€ of the foliation £F is locally an-dimensional manifold with
coordinategc;). The restrictionZ' of £F to & is a submanifoldS C C of dimensionn—1. ThenS
is locally defined by an equatidi(c;) =0 with dh|S # 0. Up to a transformatiofc;) < (c/) we can
find coordinates adapted &such that equatioh(c;) =0 is replaced by, =0. This means that for
a suitable choice of the parameters appearing Wfaequation(2.1) is satisfied forc,=0.

Remark 2.2in general, the foliation generated by may be not reducible to the submani-
folds &, with h# 0. When it is reducible to eac},, then we have aordinary complete solutign
Fig. 1(c), of the HIE

H(g,%v) =h. (2.9

The following proposition shows that the two definitions of internal and extended complete solu-
tions are, in a sense, equivalent.

Proposition 2.1: Equation(2.1) admits an internal complete solution'W and only if it
admits an extended complete solutiofi. W

Proof: Let W' be an internal complete solution. By the completeness cond@i@h we know
that there exism—1 linearly independent columns in the matd®W/Jdq dc,. Thus, we can
assume without loss of generality that

FPW
de #0, «pB=1,...,n-1.
agP dc,

Then, the function
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WE(g,0) =W(g,c,) + ¢, €= (c)) =(CpiCp) (2.5

is an extended complete solution: the completeness condRiGhis satisfied. Conversely, iV
is an extended complete solution, then the funcﬂMtVVEICn:o is an internal complete solution.
|
Now we adapt the above-given definitions to a particular class of complete solutions:
Definition 2.2:An internal separated solutioaf the HJE(2.1) is an internal complete solution
W(q,c,) of the form

W(g,c,) = > Wi(d',c,). (2.6)
i=1

An extended separated solutiofithe HJE(2.1) is an extended complete solutiWF(g,g) of the
form

WE(g,0) = 2 WG, 0). 2.7)
i=1

It is obvious that the additive separation is preserved in the passage WémaW. However,
it is remarkable that it is also preserved in the inverse passage, fidita a WE, due to the
particular form of formula2.5). Hence, from Proposition 2.1 it follows that
Proposition 2.2: Equation(2.1) admits an internal separated solution' W a coordinate
systeng=(q’) if and only if it admits an extended separated solutiohiWthe same coordinates.
The equivalence proved in Proposition 2.2 leads to the following definition of separability for
H=0:
Definition 2.3: The null HJE (2.1) is separablein the coordinates=(q) if it admits an
internal separated solution or, equivalently, if it admits an extended separated solution.
Remark 2.3:The definition ofinternal separated solutiogiven here, i.e., depending an
-1 constant parameters satisfying the completeness cond®i2 is that commonly adopted in
the literature. See, e.g., Ref. 17, p. 107. However, the use of a second, although equivalent,
definition of separatioriProposition 2.2 is essential for a complete development of the present
theory. Indeed, as will be shown in Sec. IV, the definitioresfended separated soluti@tiows
the characterization of the separability for the null H2EL) by means of Lagrangian multipliers.

Ill. SPECIAL DISTRIBUTIONS RELATED TO THE SEPARATION

In order to give necessary and sufficient conditions for the existence of separated solutions it
is convenient to give a geometrical interpretation of the separation in terms of complete integra-
bility of a special kind of first-order differential systems. This interpretation is related to the
concept of separated connection on a cotangent bdndle.

With a coordinate systerg=(q‘) on Q we associate differential operators on functions on
T'Q of the kind

D=4 +Ri(q,p)d, (3.1

whereR; are assigned functions di Q. The vector fieldD; on T'Q are pointwise independent
and transversal to the fibers. Thus, they span a regular distribNtioRi T'U of rankn transversal
to the fibers: this means that at each pok& T'U they span ann-dimensional subspace
A, C T,(T'U) which is transversal to the vertical vectorsToF U. We say that the vector fields;
are the generators df.

With the same function®, entering(3.1) we associate the first-order normal differential
system
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ap; = &;Ri(a,p) (3.2
and we remark as follows,

(i) Any integral manifoldL of A, i.e., a submanifold. C T'U such thafT,L=A, for all xEL,
is locally described by equations

P =i(9), (3.3

where the functions; are solutions of systern(8.2). Indeed, since\ is transversal to the
fibers, any integral manifold. of A is an n-dimensional submanifold transversal to the
fibers, thus locally described by equations of the ki8d3). Moreover, by definition of
integral manifold, the generatoBy are tangent td., so that equationB;(p;—¢;(q))=0 are
satisfied onL. This implies 0=D;(pi—¢i()=(3,+Rd)(pi~¢i(q) ==, +R;&;. This
shows that the function@.3) satisfy the differential syster{8.2).

(i)  Any integral manifoldL is a Lagrangian submanifold, since the distributibispanned by
D, is Lagrangian with respect to the canonical symplectic fesmdp,Cdg*. Indeed, we
have

(D;,D;) = (dp, 0dg)(D;,D;) = (D;,dp(D;,dg) = (D;, dp)(D;, dafy = R, - Rjsf = 0.

This shows that\ is an isotropic distribution. Being of rank it is a Lagrangian distribu-
tion.

(iii) Any Lagrangian submanifold transversal to the fibers af Q admits local generating
functions, i.e., functiondM(g) such thatlL is described by equationg=gW. If L is an
integral manifold of the distribution\, thenp;=dW must be a solution of systef3.2). It
follows that fori # j, ¢,9,W=0, i.e.,

n

W(g) = > Wi(g). (3.9

i=1

(iv)  The Lie brackets of the generatdps are vertical vectors, i.e., vectors tangent to the fibers
of T'Q. Indeed,

[Di,Dj1=[d +Rd 3+ Rid]
=39+ dR I + Rigd + R 9+ RIR I + RR I = 9,0, — R = Rajd = Rida,
-R#RI -RRII = (IR +RIR)I - (R +RIR)J.
It follows that
[Di,D;1=DiRé - D;R 4, (3.5
being
4R +RJIR =DR,. (3.6)

Hence,A is completely integrable if and only if the generators commilg,D;]=0, i.e.,
if and only if

So far we have no links with the HJE=0. Now we introduce the functiof.
(v)  The distributionA, when restricted to the points 6§, gives rise to a distributiog on &,
if and only if the generators are tangent&g and this happens if and only if

DiHe,= (dH +RdH)|¢, = 0. (3.9

In this case we say that is reducible to€, and a well-known property of the Lie bracket
tells us that
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[Dil€0,Djl€0] = [D;, Dj1|Eo. (3.9

It follows that the reduced distributioy, is integrable if and only if

DiR|&=0, i#]. (3.10

Theorem 3.1: The HJE(2.1) admits an extended separated solution in the coordinate system
g if and only if there exist n functions;(§, p) satisfying one of the following equivalent condi-
tions: (a) The distributionA spanned by the generato(3.1) is completely integrable and reduc-
ible to a distributionA, on &,. (b) Conditions(3.7) and(3.8) are satisfied

R +RIR=0, i#], (AH+RIH)=0. (3.11)

Proof: Conditions (a) and (b) are clearly equivalent because of the remarks above. Let
V\IE(q ¢) be an extended separated solution. The completeness cor@iBbmeans thatg,c) are
local noncanonical coordinates Q. Thus, the function® = ﬁZV\IE(q c) are well defined on an
open subset of "Q. Then we consider the separable connectiowith generators

Di:3i+(9i2VVE(9i.

The integral manifolds of\ are locally described by equatioms=dWE(q,c) and, due to the
completeness conditiof.3), we get the complete integrability @f. Moreover, since foc,=0,
WE is a solution of(2.1), the generators are tangentdg Conversely, assume that functioRs
exist satisfying(3.11). Then the distribution\ is completely integrable and the integral manifolds
are generated by a separated solutf(q,c) parametrized by parameters=(c;). Since the
integral manifolds form a foliation, there is only one integral manifgl&ontaining a given point.
This means that equatioms=4,WF must be solvable with respect to This is equivalent to the
completeness conditiof2.3). [ |

Theorem 3.2: The HJE(2.1) admits an internal separated solution in the coordinate system
q if and only if there exist functions;®,p) such that(a) the distributionA spanned by the
generators(3.1) is reducible to a distributio\ on & and this reduced distribution is completely
integrable, i.e., such thab) conditions(3.8) and(3.10 are satisfied

(GH + Rif7iH)|50 =0, (R+ RiaiRj)|80: 0, i#]j (3.12

Proof: The equivalence between conditiof@ and (b) follows from the above remarks. Let
W be an internal separated solution. Then, by Proposition 2.2, we can construct an extended
separated solutiok\F in the same coordinates. Hence, by Theorem 3.1, there exist fun®jons
satisfying(3.11). It is clear that these functiorR satisfy (3.12. Conversely, we consider func-
tions R; satisfying (3.12 which are associated with a distributian reducible to a completely
integrable distributior\y on &,. The integral manifolds od, are generated by a separated solution
V\I‘(g,ca) parametrized byi—1 parametergc,). Since they form a foliatiorC' C &, there is only
one integral manifold containing a given poipE &, This means that equations=4W are
solvable with respect tg, so that the completeness conditith?2) holds. |

Remark 3.1\We know from Proposition 2.2 that the existence of a separated soMfids
equivalent to the existence of a separated solutdn However, this does not mean that the
functionsR; entering Theorem 3.1 and Theorem 3.2 are the same functions. Indeed, it is obvious
that functionsR; satisfying(3.11) also satisfy(3.12); but functionsR; satisfying(3.12 may not
satisfy (3.11).

IV. THE LEVI-CIVITA SEPARABILITY CONDITIONS WITH LAGRANGIAN MULTIPLIERS

The ordinary separation of the HJE=h (2.4) is characterized by the Levi—Civita
equationg?
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GHIHIIH + IHIHGH =~ FHIHIGH = FHIHIIH=0, |+ ]. (4.1

We want to write similar differential equations characterizing the separation of the null-HJE
=0 (2.1). For this reason, we look for differential systems equivalent to the condit®a$ and
(3.12, respectively. Since these conditions are differential conditions restricted to a submanifold,
we base our approach on the Hadamard lenohaRef. 1, for the one-dimensional case

Lemma 4.1: Let (k,y) be a smooth(C*) function on an open subset &f R™* such that
f(x,0)=0. Then there exists a smooth functin(x,y) such that £x,y)=y\(X,y).

Proof: The function\(x,y) is defined by

NX )—flﬁ—f(xt )dt 4.2
Xy an_'y : :

Indeed we have

yfla—f(x ty)dt = fla—f(x ty)y dt= fya—f(x u)du = f(x,y) = f(x,0) = f(x,y)
0y 0 9y 0y - - -
The function defined by4.2) is smooth. |
We use Hadamard’s lemma in the following form.
Lemma 4.2: A smooth function F ori@ which vanishes on the submanifdlg defined by
equationH =0 is of the form

F="HA\, 4.3

where\ is a suitable function on Q.

Proof: Since &, is a submanifold of codimension 1, and{d 0, we can consider local
coordinategx,y) on T'Q, such that, is locally defined by equatiop=7=0. Then, by applying
Lemma 4.1 to the functiofR =F(x,y), there exists a smooth functiorx,y) such that-=y\, i.e.,

a smooth functior\(q, p) such that(4.3) holds. [ |

Due to Lemma 4.2, and recalling our assumptii # 0, we can reformulate Theorems 3.1
and 3.2 as follows.

Proposition 4.1: The HJE2.1) admits an extended separated solution in the coordingtes
=(q') if and only if there exist n functions (g, p) such that equations a

AR +RIR =0, i#], (4.4)

are satisfied for

LR iy
Ri= IH (4.9

Proof: It is sufficient to examine the second equatill). Due to Lemma 4.2, this is
equivalent to the existence of functionson T°Q such that

GH+RIH=NH. (4.6

Then we get folR; the expressiort4.5). [ |
Proposition 4.2: The HJE2.1) admits an internal separated solution in the coordinates
=(q") if and only if there exist functions;(q, p) and w;;(g,p) such that equations

GR+RIR =M, i#], (4.7)
are satisfied for Rgiven by(4.5),

N aiH_)\iH
IH
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Proof: By recalling the proof of Proposition 4.1, the first equat{Bil2 means thaR; must
have the form(4.5). Moreover, due to Lemma 4.2, the second equatibh?) is equivalent to the
existence of functiongy; on T'Q such that(4.7) holds

|

We remark that the additional functions and w;; play the role of Lagrangian multipliers.
Now we are able to state three effective criteria for the separalfiligfinition 2.3 of the null
HJE.

Theorem 4.1: The HJE(=0 (2.1) is separable in the coordinatep= (q") if and only if there
exist n functions\=(\,) on T'Q such that equations

Lij(H;N) = Ly (H) + HIN(IHI G H = 7HI IH) + N(FHGIH = F IHAH)
+NN(HAPH ~ FHIH) = NI HIH + IN(GHIH -~ \HIH)]=0  (4.8)

are satisfied for # j, where

Lij(H) = aHIHIIH + IHIHIGH ~ GHIHI G H ~ IHIHIIH. (4.9

We call equationg4.8), L;j(*,\)=0, theLevi-Civita conditions with Lagrangian multipliers.

Proof: By Proposition 4.1, the HIR.1) is separable if and only if there exist functioxnson
T'Q such that equation&.4) and (4.5 hold. Due to the expression & given by (4.5, the
left-hand sideD;R; of (4.4) becomes

1
DiRj:—WLij(H,M, (4.10)
so that equation&4.4) are equivalent to equatior4.8). [ |

Remark 4.1For all \;=0, the expressiof.5) reduces to

__an 4.1
R I (4.17)
and (4.8) become the usual Levi—Civita conditio®.1). Conditions(4.8) are more general than
(4.1). Indeed, equationgt.1) are satisfied if and only if foR; given by (4.11) we haveD;R;=0,
i.e., if and only if the associated distributidnis completely integrable on an open subseTd@®
and reducible to every,, that is if and only if there exists an ordinary complete solution of
equationH=h (2.4).

Remark 4.2:Equations(4.8) can be written in the forni;;(%)=P;(q,p)H. This is just a
special casgcorresponding to a first order PDE(q,p)=0] of a general equation written by
Kalnins and Miller in their theory of the variable separation for partial differential equafiegs
(1.29 of Ref. 26, or Eq.(1.17 of Ref. 21. In fact, equationL;;(%)=HPj; is considered as a
definition of a so-called regular separation of equati=0. Instead, in our approach it is a
consequence of the definitions of separation given in Sec. Il and rigorously proved by means of
the Hadamard lemma, as shown by the following.

Theorem 4.2: The HIEH =0 (2.1) is separable in the coordinater_;;:(q‘) if and only if the
Levi-Civita conditions |,()=0 are satisfied for/=0, that is on the submanifoldy,

Lij(H)|50:0. (412)

Proof: The Levi-Civita conditions with Lagrangian multiplier&t.8) obviously imply
L”-(H):O for H=0. Conversely, assume th&t.12 holds. Then, by Lemma 4.2, there exist
functionsy;; such thatl;;(H)=wv;H. If we set
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1

Mij =~ WVU,

and \;=0, then due to(4.10 we get that equation§4.5 and (4.7) are satisfied, and due to
Proposition 4.2 the HJE admits an internal separated solution. |
We remark that conditiong}.12) do not involve Lagrangian multipliers.
Remark 4.3When the function® are given by(4.5), the generator®; become

GH—-NH .
Di:ai_T&I' (4.13

Then, the Levi—Civita conditions with Lagrangian multipli€/8) can be written in the form
Lij(H; M) = Lij(H) + HIN(IHI G H = G HI IH) + N (dHAIH = d IHIH) + NN (HIIH
- dHIH) - DN HIH] = 0. (4.14

It is a remarkable fact that the Levi—Civita separability conditions with Lagrangian multipliers
are equivalent to differential conditions involving a single undetermined functiam T°Q and
that these new conditions are the ordinary Levi—Civita separability conditions, but with respect to
a modified HamiltonianJ=H/A.

Theorem 4.3: The HIEH =0 (2.1) is separable in the coordinates=(q') if and only if there
exists a nowhere vanishing functidn=A(q, p) such that for any i,

Proof: The Levi—Civita equations with Lagrangian multiplidds14) are not symmetric in the
indices(i, ), due to the last term. By taking their skew-symmetric part, we obtain equations

FHIHD)N; = FHIHDN;, (4.16

which are necessary conditions for the solvability4fl4. SinceD; andD; commute, it follows
that (4.16 are locally equivalent to the existence of a functky, p) such that

\; =DjF. (4.17)

Indeed, the commutation conditi¢®;,D;]=0 is equivalent to the existence of local coordinates
(X',y)) such thatD;=4d/dy'. Hence, equat|0n(s4 16 become equivalent téx;/dyl = o\ /é'yI By
considering the coordlnatéx') as independent parameters, this is locally equwalent to the exis-
tence of a functiorF(x,y) such that\;= dFlay', and we get(4.17). However, it turns out to be
more convenient to replace the functiénin (4.17) with F=In|A|, where A(q,p) is a nowhere
vanishing function, so that o

= 1D/A. (4.18
Then, by inserting4.18 in (4.5), we obtain
aH 1 H
iy A '
iz A IH

and, by(4.13),
R= ﬁ+—((9A+R(9'A)—
T O9H A '

By solving this equation with respect &, we find
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_ A(?,H - H0|A (4 19)
Ri= AIH-HIN’ '
that is
_ G(HIA) .20
T J(HIA) ‘

Hence, for the function&t.20) the complete integrability conditior{g.4) become the Levi—Civita
conditions(4.15 for the new Hamiltonian7=H/A. [ |
Remark 4.4The explicit expression of the Lagrangian multipliers\; in terms ofA is

_ {H, A} 4.21)
YUAIH-HIN' '
where{H ,A};=dHsA-J Ad/H. Indeed, by(4.20, the generator®; become
y G(HIN)
T dHIN T
In particular, using4.19, the Lagrangian multiplier¢4.18 become
- FHIGN - FAGH
'TOAIH-HIA
that is(4.21).
We call the function
g=2 (4.22
=X .

the conformal Hamiltonianassociated td< and the functionA the conformal factor. The link
between the two Hamiltonian vector fieldks, and X ; generated by the Hamiltoniari$¢ and 7,
respectively, is given by the following.

Proposition 4.3: On the submanifolt} the vector fields<,, and X ; are parallel and differ by
the factorA,

(AXDle, = Xale, (4.23
so that the corresponding affine parameters t arate related by equation
di=A dt. (4.24
Proof: Let w be the symplectic form off Q. Then,
ix 0==dJ= 5HdA - dH, iy 0=-dH. (4.25
By eliminating d4 in these two equations we get the single equam;a]w—d In|A|H=iXHw,

which is equivalent to

) H
|(XH_ij)w— XdA (426)

By (4.26, for H=0 the Hamiltonian vector fiel@X;,—AX ;) vanishes and we gé4.23. If t and

t are the affine parameters ¥f, andX , respectively, then by4.23, we find that(4.24) holds on

& |
Theorem 4.4:1f we know a complete solution of the HJEh for the conformal Hamiltonian
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(4.22), then for =0 we get the orbits oif, of the Hamiltonian vector fiel&X,.

Proof: According to Proposition 4.3, ofy, the integral curves of the vector fields, andX ;
coincide, up to the reparametrization given ([@y24). Since =0 means7=0, by inserting the
conditionh=0 in a complete solution of the HJEZ=h, we get the orbits of the fielX,, on the
hypersurfaceg=0. |

Remark 4.5We recall that a first integral of a Hamiltonidt is a functionF on T°Q which
is constant on the integral curves Xf, and that this is equivalent to the conditid,F=0 or
{H,F}=0. We call isoenergetic first integral of a functidhany functionF which is constant on
all the integral curves contained in a submanifétc=h for some values oh&RR. Due to the
Hadamard lemma, this is equivalent to the existence of a funegisnch tha{H,F}=¢(H-h).
Of course, any ordinary first integral is a special kind of isoenergetic first integitat: 0fwe call
F anull first integral of H: it is characterized by equation

{H,F}=¢H. (4.27

By (4.23), it follows that any first integraF of X ;is a null first integral ofX,,. In Sec. VIl we
shall use this definition.

Remark 4.61 et the Hamiltoniarf{ be of the formH=H+A. In this case we can consider a
particular conformal Hamiltoniad=H/A. We call the Hamiltonian] the generalized Jacobi
transformof . According to Theorem 4.4, we get that the orbitstofon the hypersurfacé{
=0 coincide with the orbits of on J=1. Moreover, by(4.24), the generalized Jacobi transform
can be cglsideréﬁas a transformation on the cotangent buridi® of the extended configuration
manifold Q=R X Q which is a canonical transformation only on the hypersurfageH =0.

V. A FIRST APPLICATION: THE SEPARATION FOR TIME-DEPENDENT
HAMILTONIANS

Let H_(t,g) be a time-dependent Hamiltonian, that is a function on (tivel)-dimensional
manifold Q=R X Q (the extended configuration manifpldhe well-known HJE associated with a
time-dependent system is

=0. (5.2

In_the so-called homogeneous formalism, this is equivalent to consider on the cotangent bundle
T'Q, with coordinatego®, pa) =(q°,q', po. ;). the function

H(oA,pa) = po+ H(GA p), (5.2

whose corresponding equatidt=0 is (5.1) (with g°=t). We have the separation of variables of
(5.1 on the hypersurfacg{=0 if and only if the Levi—Civita conditiond ,g(H)=0(A+ B
=0,...,n) are satisfied o, that is for

Po=—H(a"p). (5.9
The Levi—Civita equation& ,g(7)=0 for the Hamiltonian(5.2) become
Lij(H) =Lij(H), Lig(H) =dHadoH = dHdIH  (i,j=1,...,n). (5.4)
It is remarkable the fact that, due ¢6.3) and since equation&.4) do not containp,, we have
Lag(H)[€0=0 = Lag(H)=0.

Thus, in this case we have the perfect equivalence between the separation of thie=HJIi the
kind (2.4) and the separation of variables for the single equakier0 of the kind(2.1). Then, in
order to have the separability for the H®E1) we need that the following conditions be satisfied:

Lj(H)=0, dHadeH - aHIHpH=0 (in.s). (5.5)
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Remark 5.1Equations(5.5) implies that theT Q-Poisson bracket of the functiohsand dyH
vanishes,

{H,d0H}q = ?HadoH — dHI JoH = 0.

Remark 5.21f conditions (5.5 hold, then the Levi—Civita conditions with+1 Lagrangian
multipliers Lag(H;Ac)=0 are satisfied fohc=0(C=0,...,n) or, equivalently, condition$4.15
hold for A=1.

Remark 5.3:Equations (5.5 are the Levi—Civita separability conditions for the time-
dependent case proposed by ForBatlowever, the proof given by Forbat is unsatisfactory.
Indeed, it is based on the fact that, assuming that the equ&itnadmits a complete solution of
the formW=W,(t,c)+=;W.(q',c), by differentiating(5.1) with respect to a coordinat, we get
equations

JHap+aH=0 (5.6)

(no summation on the indey. By solving (5.6) with respect tad,p;, we obtain the system

aH
9ipi = ojR;, Ri:_&:_H, (5.7

whose integrability conditions ax&.5). However, equations.6) are derivable also from equation
‘H=h, whereh is any constant, not only from equatiéf=0. In other words, in considering the
integrability conditions of systertb.7) one is actually considering the separation of all equations
‘H=h=const, which is not in general equivalent to the separation of the single eq@&tion as

we have seen in the preceding sections.

VI. THE ORTHOGONAL SEPARATION FOR NATURAL HAMILTONIANS
Let us apply the general theory so far developed to the special but fundamental case of a
natural HamiltoniartH=G+V in orthogonal coordinates,
H(@.p) = 39"p} + V().

With an orthogonal metri& =(g') we associate differential operatdsg(A) on functionsA(q),

) ) 1 . 1
Sj(A) = ;A= In|g"|dA = 5, In|gl|9;A = 4,9,A - aajg”aiA— Jaig”a,-A,

which we call Stackel operatorsThe indices(i,j) are assumed to be distinct and not summed
(n.s). In the following the conditioni“# j n.s.” referred to an operat&; will be understood. We
know (see, e.g., Ref.)3hatg ¥ is a Stéckel metric if and only if

(g =0, (6.2)

and that a potential is separable in these coordinates if and onl§;ifV) =0. Indeed, for a natural
Hamiltonian in orthogonal coordinates the Levi—Civita equations become

Lij(H) = g"gpip; (35 (6905 + S (V) =0, 6.2
and they are satisfied if and onlyiﬁj(gkk)p% Sj(V)=0. For the operator§; the following rules
hold:

Sj(c)=0, c€eR,

Sj(A+B)=S;(A) +S;(B),
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Sj(A™) = 2A%3A5A - A2, (A). (6.3

The Stéckel operatoi§; corresponding to a conformal orthogonal me@ic=(1/0)g' obey rules
(6.3) and

él(A) = SJ (A) - 0'_3((?i0'(9jA+ 5iAajU),

B kk
S04 =750 - 075, (=L 8,09 25,0 64

[oa

Remark 6.1From the second equatidf.4), by settinga:g“”, ...,g™, we derive the follow-
ing theorem due to Kalnins and Miller, Ref. 20, Lemmalfl(g") is a Stéckel metric then all
metrics(g"/ g}l) ,--,(g"/g"") are Stackel metricaNe recall also Lemma 2 of Ref. 28n orthogo-
nal metric(g") is conformal to a Stackel metric if and only if fgy”, for any fixed value of the
index j is a Stackel metridndeed, this follows from Lemma 1 and the fact that for any conformal
metricg" we haveg"/g'=g"/g". Note that equatiori6.1) are equivalent to equations

ﬁﬁ In|gii| = 4 Inlgdd; Inlgi| + 4 In|g;;|d; In|gid + 4; In[gii| 4 In|gid = O.
With the substitutiory;; :e,Hiz, e =z1, they coincide with the equations given by EisenliRef.
14, Appendix 13.
Let us apply the results of Sec. IV to the function
— 12
H=30"pf+V-E, E€ER.
Theorem 6.1: The HIE

2g'pP+V-E=0, (6.5

is separable in the orthogonal coordinatés), for a fixed value EER, if and only if equations

1 1 V-E
ﬁSj(ghh) = @Sj(gkk), Si(V) = WSj(ghh), (6.6

are satisfied for all indices tk and i#j.

Proof: Due to Theorem 4.2, a necessary and sufficient condition for the separafton @is
that the Levi—Civita conditions be satisfied when restricted to the submaudifplihat is for H
=0. By (6.5, equation{=0 is equivalent to

n
2
pi=-3 b+ HE- V). 6.7
Thus, by(6.2) and(6.7), we get

. 10 1 N kk All
Lj (H)le, = g”g”pipj(gk% Sj(@pk+ S(V) - Esj(g“)k% g—npﬁ + E%(E— v)) .

(6.9

Functions(6.8) vanish if and only if
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1 n kk (L1
52 | 816" - T80 -5 E-v) - 20 E-v) =0 6.9
k=2

Since conditiong6.9) must be satisfied for all values @5, ...,p,, they are equivalent to

Kk E-V
sj(gkﬁ—g—u 920, SE-V)-= 50" =0,

hence t0(6.6). [ |
The first equation$6.6) mean that the function&l/g"™S;(g"" do not depend on the choice
of the indexh. This is a necessary condition for the separability of equao®, which has the
following equivalent formulation.
Theorem 6.2: The necessary condition for the separability of the HBE)

1 1
wsj(ghh) = y(sj(g"k) for all indices h k and i# j, (6.10

is equivalent to the existence of a functiom: 0 such that the conformal metrig'=g'/o is a
Stackel metric

Sj(@kk)zo- (6.11

Proof: (i) If such a functiono exists, then by the second equati¢d.4) we derive
(1/g™S;(g*)=(1/0)S;(0). Hence,(6.10 follows. (i) Conversely, assume thé.10 holds. If
we chooser=g!! then from the second equati6.4) we getS;(g<)=0. [ |

Remark 6.2From this proof it follows that conditio6.10 is verified if and only if(6.12) is
satisfied witha=gll for any arbitrary choice of the indejx

This theorem suggests the following.

Definition 6.1: We call conformal separable coordinatesthogonal coordinateg=(q') for
which conditions(6.10 or (6.11) hold. B

Remark 6.3A special class of orthogonal conformal separable coordinates is that for which
g'=co(q), ¢ €R. In this case the components of the orthogonal conformal metric'ag / o
=constant; hence, they are obviously of the Stackel type. Up to a rescaling of the coordinates we
can reduce to the cagp= + o, according to the signature of the metric. Note that in this case the
original metric(g") is conformally flat. Orthogonal coordinates for whigh=gl are called iso-
thermal.

Now we apply Theorem 6.1 to the following three special cases:

V=0, E#O0, non-null geodesics,
V=0, E=0, null geodesics,
V-E#0, dynamical trajectories with total energy

The results for the null geodesics case date back to Stidkek also Ref. 20

Theorem 6.3: The HJI_f:%g"piZ:E with a fixed value E 0, is separable in orthogonal coor-
dinates(q') if and only if(g") is a Stackel metric, i.e., if and only if it is separable in the ordinary
sense for all values of E

Proof: For V=0 the second equatidi6.6) gives S;(g)=0. [ |

Theorem 6.4: The HIE of the null geodesics

g'p’=0 (6.12
is separable in the orthogonal coordinatég) if and only if these coordinates are conformal
separable

Proof: ForV=0 andE=0 the second equatioi(8.6) are trivially satisfied, so that only the first
equations characterize the separation. [ |
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Theorem 6.5: The HIE

2g'p?+V-E=0 (V-E#0), (6.13

is separable if and only if the conformal metric

y 1 .
il = ii 14
g'="0 (6.14)

is a Stackel metric, or equivalently, if and only if for all indiceskhand i+ j,

1 1
@SJ(QW) = \TS;(V)- (6.15

E
This means that the coordinates are conformal separable, according to Definition 6.1, but the
conformal factoro must be equal to the functiovi-E.
Proof: For V-E # 0 system(6.6) is equivalent to(6.15. Moreover, let us consider the con-
formal metric(6.14) and the associated Stackel opera§ysFrom the second formul.4) with
o=E-V, we get

1 kk

So(akky — T o kky _ 9
S(@9= 22,5199 E-V?
Thus,S;(@%=0 is equivalent td6.15. [
Remark 6.4The metricg' =(E-V) 'g' is called theJacobi metricor action metrigsee, e.g.,
Ref. 33 and the references cited thefjaifithe natural Hamiltonia=G+V for the fixed valueE
of the total energy. Then, Theorem 6.5 can be reformulated as follows
Theorem 6.6: The HIE(6.13 is separable if and only if the corresponding Jacobi metric is
a Stackel metric.
We adapt to the Jacobi metric the considerations about the conformal Hamiltonians stated in
Proposition 4.3 and Theorem 4.4.
With a natural HamiltoniarH:G+V:%g” pip;+V and a fixed value of the energye R we
associate two Hamiltonians,

Si{(E-V).

He= %g” pipj+V-E, J= %Eq—”T/pipJ"

The passage from the natural HamiltoniBli=G+V to the geodesic Hamiltoniadg is called
Jacobi transformatidfi?®*°or Maupertuis transformatioh>>

Let X, be the Hamiltonian vector field generated Hy(it coincides with that generated by
Hg) andX; the Hamiltonian vector field generated By Adapting to these cases Proposition 4.3,
Theorem 4.4, and Remark 4.5, we get the following.

Theorem 6.7:Assume that equationd=0 (i.e., J=1) defines a regular hypersurface ofQ.
Then(i) on this hypersurface the Hamiltonian vector fiels and X ; are parallel,

(E_V)XJ:XH, (616)

and outside this surface the differend®-V)X;—Xy is a vertical vector field(ii) On Hz=0 the
integral curves of the vector field§, and X coincide, up to a reparametrization, and the affine
parameters fandt of X, and X, respectively, are related byt=(E-V)dt. (iii) Any first integral

F of X; is constant along the integral curvesXf; contained on |=0. (iv) If a complete solution
of the geodesic HIEgFh is known, then for h1 we get the orbits of the fielXy on the
hypersurface H=0.

Proof: By (4.23, we get(6.16. Moreover, due to4.26, we have thatX—(E-V)X; is
vertical outside the hypersurfa¢é-=0, since it is generated by the functioarcrE-V which is
constant along the fibers. |

Hence, as a corollary of Theorem 6.6, we have the following.
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Theorem 6.8: The orthogonal separation (in the ordinary sense) of the geodesic H3E &
equivalent to the orthogonal separation of the HJE=H for a fixed value E of the energy. For
h=1 we get the orbits corresponding to the integral curvexXgfwith total energy E

Remark 6.5Equation(6.15 shows thas;(V)=0 if and only if S;(g®)=0. These two condi-
tions characterize the orthogonal Stackel separation for a natural Hamiltonian. In this case the
Jacobi metric is a Stackel metric for all values Bf From (6.15 it follows also that if the
conformal Jacobi metri¢6.14) is a Stackel metric for two distinct valués # E, of the energy,
then it is a Stackel metric for all values Bf Indeed, from(6.15 written for E=E; andE=E, it
follows that

Lsv=—
V-E, " V-E

Si(V).

Thus, §;(V)=0, so that alscaj(gkk):o. As a consequence, we have the following.

Theorem 6.9: The HJE(6.13 is separable for two distinct values of the energy E if and only
if it is separable in the ordinary sense.

Remark 6.6According to Theorem 6.9, we have that if a natural HamiltoriienG +V is not
separable in the ordinary sense, then there exists at most one value of the Emseicly thatH
=E is separable.

Remark 6.7:For a natural Hamiltonian in orthogonal coordinates the Lagrangian multipliers
\; or the functionA, involved in Theorems 4.1 and 4.3, respectively, which in general are func-
tions onT"Q, are necessarily constant along the fibers, i.e., they reduce in this case to functions on
Q.

We conclude this section with the formulation of Theorems 6.2 and 6.3 in terms of Stéackel
matrices. We recall that an orthogonal metric is a Stackel metric if and only if it is a row of the
inverse of a Stackel matriS:[goi(”(q‘)]. By applying this definition to the general conformal
metricg"=g"/o and to the Jacobi metri®.14) we get the following.

Theorem 6.10: (i) Coordinates(q) are conformal separable if and only if there exists a
Stackel matrixS=[¢"(q)] such that

ii i
=3 (6.1
Pm P
where[goi(j)]:S‘l. (ii) The Jacobi metrid6.14) is a Stackel metric if and only if there exists a
Stackel matri>6:[goi(”(qi)] such that(6.17) holds and moreover

E-V=2 ¢"g'. (6.18
i
Proof: We have
g L g B gl
Do) 2 =¢w= =1
Py P
gii . gii gjj -
Eoy =¥ = DE-V=3,¢"d" 7
Pm)y P

Remark 6.81Let us denote bWI} the cofactor 0f<p]-(i). We have deS:Eiqoi(”)Mi“ and

P M
0~ ets’

Hence,(6.17) is equivalent to
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gii gjj
M M]
We observe that in these conditions, only the firstl columns of the Stackel matrix are involved,

while the last column is involved only in the expressi@l8 of E-V. Hence, in the character-
ization of the null geodesic separation only a rectangabain-1) Stackel matrix is involved,

A
R

VII. THE INTRINSIC CHARACTERIZATION OF THE ORTHOGONAL SEPARATION

Theorems 6.4 and 6.5 show that the separation of variables of the HJE for the null geodesics
and for a fixed value of the energy is equivalent to the ordinary complete orthogonal separation of
a conformal(contravariant metric

— 1
G=-6G,
g
whereG=(g'), G=(g') ando is a nowhere vanishing function @ In these two cases we have,
respectively,

o =a suitable function 0iQ)  for the null geodesics,

oc=E-V forthe Jacobi metric.

Since the ordinary geodesic separation can be characterized by means of Killing {&f%®rsin
both cases we are led to consider KT’s of a conformal metric. A basic well known property is the
following. B

Proposition 7.1: A symmetric two-tenskiris a KT for the conformal metriG=(1/0)G i.e.,

[G,K]=0(={Pg,Px}=0), (7.0)
if and only if

2 2
[G,K]:__KV(TQG (Q{PG,PK}:__PKVUPG). (72)
o o

Notation: Here we denote by-, -] the Lie—Schouten bracket of contravariant symmetric
tensors and by the symmetric tensor product. If we consider the homogeneous polynomial
functionsPx on T'Q associated with contravariant symmetric tendérs(K'-+1) on Q, then this
bracket is defined bk, k,;={Px,. Pk} and the symmetric product By ok ,=P« Pk, We say
thatK; andK, are in involution if[K,,K,]=0. We denote bXX the image of a vector fielX
by K interpreted as &1,1) tensor.

Proof of Proposition 7.1:The equivalence of7.1) and (7.2) is proved by the following
calculation:

[G,K]= L—lr@G,K] :%G[G,K]+ E,K]@G
=E[G,K]—2KVEQG=E([G,K]+EKV(T®G>. ]
g g g

g
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A symmetric two-tensoK is a conformal Killing tenso(CKT) if there exists a vector fiel@ such
that

[G,K]=2COG (= {Pg,Px} =2PcPg). (7.3

We say thaK is a CKT ofgradient typef there exists a functiotd such thalC=VU. We say that
K is a CKT of self-gradient typef C=K VU.

We remark that in Proposition 7.1 the tensois a CKT of self-gradient type with respect to
the metricG with U=~In|o].
_ Remark 7.1The eigenvectors o in Proposition 7.1 are the same with respect both metrics
G andG. If p' are the eigenvalues &f with respect tdG, then the eigenvalues with respectGo
are

pl=". (7.4)
g
If the eigenvalues are simple with respecﬁothen they are also simple with respectGo

Remark 7.2:Tensors of the kindG are at the same time CKT'’s of gradient typeith C
=Vf, i.e.,U=f) and of self-gradient typéwith C=fGV Inf, i.e.,U=Inf).

Definition 7.1: Two CKT’'s K and K’ are said to besquivalentif K'=K+fG for some
function f.

Equivalent CKT's have the same eigenvectors. We shall be interested in equivalence classes of
this kind. In any equivalence class there exists a trace-free representative, so that only trace-free
CKT'’s are considered by some auth6#$>3*

As shown by the following proposition, in some special case a KT equivalent to a
tensorK’ of self-gradient typghence, a KT of a conformal metyic

Proposition 7.2:(i) A CKTK which is diagonalized in orthogonal coordinates is equivalent to
a CKT K’ of self-gradient type(ii) For any given orthogonal coordinate system there exists a
function U such that any CKK diagonalized in these coordinates is equivalent to a GKTof
self-gradient type such thdG,K']=2K' VUGG, i.e., to a KT of the conformal metrié =eVG.

(iii) The n functions W=-In|g"Y satisfy item (ii)
Proof: If gi=0 andK'i=0 fori+ |, thenK=pigl and Eq.(7.3) is equivalent to

ap=(p' =p)aIngl +ap, C=ap. (7.9
Let us take the tensdf’ =K —p"G with eigenvalueg''=p'-p". By using (7.5 we get

aip' = (p" = p'); Injg"| = p''4 In|g™.

This shows thatk’ is a CKT with C/=-p''d, In|g", hence of self-gradient type withJ
=-In|g"" and a KT for the conformal metriG/g™. We remark that) does not depend oK but
only on the given coordinates. |

In the following two sections we give intrinsic versions of Theorems 6.4 and 6.5, respectively,
for the case considered in Theorem 6.3 the intrinsic characterizations are just that of the ordinary
orthogonal separatio‘}’nl.8 We shall use the following.

Definition 7.2:A (conforma) Killing two-tensor with simple eigenvalues and normal eigen-
vectors is calleccharacteristic (conformal) Killing tensor

A. The orthogonal separation of the null geodesics

A first characterization is related to the existence of a single CKT.

Theorem 7.1: The HIE(6.12) for the null geodesics is separable in orthogonal coordinates if
and only if on Q there exists a characteristic CKT

Proof: According to the intrinsic characterization of the orthogonal separation of a geodesic
Hamiltonian?*® a metricG is orthogonally separable if and only if it admits a KT, [G,K]
=0, with simple eigenvalues and normal eigenvectors. S&e&/ o, due to Proposition 7.1, this

Downloaded 17 May 2005 to 192.58.150.41. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



042901-19  Variable separation for the null HJ equation J. Math. Phys. 46, 042901 (2005)

is equivalent to the existence of a characteristic CKT satisfying equéfi@ Proposition 7.2
shows that this is equivalent to the existence of a characteristic CKT without any other condi-
tion. |

Remark 7.3Theorem 7.1 was first stated by Kalnins and Mili&ef. 20, Theorem 1, Sec. Il
with a different proof, not involving the use of self-gradient CKT’s.

A second characterization is relatedrntcCKT's.

Theorem 7.2:The HJE(6.12 for the null geodesics is separable in orthogonal coordinates if
and only if on Q there exist n CKT&;)=(K1,K,,...,K,), (i) pointwise independentii) with
common eigenvectar§ii) in involution

Proof: By Theorem 8.8 of Ref. 7 the common eigenvectors are normal. There exists orthogo-
nal coordinate systems in which all the tensors are diagonalized. Then, the pointwise indepen-
dence implies the existence of a linear combinatjmith constant coefficienjsk =c'K; with
simple eigenvalues. This is a conformal characteristic tensor. Then we apply Theorem 7.1. Con-
versely, since the separation (8.12 is equivalent to the ordinary separation of a conformal
metric G=G/ o, there exisin KT's K; for the conformal metric satisfying), (ii), (iii). Due to
Proposition 7.1, these tensors are CKT's @r |

Remark 7.41n the intrinsic characterization of the ordinary orthogonal separation in terms of
n independent KT'¢in involution), the metricG may be one of them. On the contrary, in Theorem
7.2 none CKT'sK; can be the metric. Indeed, if one of tKg is the metric, then conditiofiii)
implies that allK; are KT's and we reduce to the ordinary orthogonal separation. In other words,
the metric cannot belong to the linear space generated b¥X {Hby linear combinations with
constant coefficienjs However,

Proposition 7.3: Givenn CKT's K; with common normal eigenvectors, there exist a linear
combination with constant coefficients and a function f such th&at=dG.

Proof: We apply the second part of Proposition 7.2. Then, there are equivalent CKT’s of
self-gradient typek ! =K;+f;G with the same functiotd. They are KT’s of the metrie"G=G
with common normal eigenvectors. Thus, there exists a linear combination with constant coeffi-
cients such that'K/=G. It follows thatc'K;=—c'f;G+e'G=fG with f=e"-c'f;.l

A third characterization of the separability f@.12 involvesn—1 CKT's.

Theorem 7.3:The HIE(6.12) for the null geodesics is separable in orthogonal coordinates if
and only if on Q there existvl CKT's (K,)=(K{,Ks,...,K,_1) with (i) common normal eigen-
vectors (i.e., all simultaneously diagonalizable in orthogonal coordinates) and such(ithat
G,K,Ks,...,K,-1 are pointwise independent

Proof: Due to the pointwise independence of the tensors, there exists a linear combination
with constant coefficients having distinct eigenvalues, i.e., which is a characteristic CKT and by
Theorem 7.1 we have the separation of variableg@dr2 Conversely, if(6.12 is separable, then
the conformal metricG is separable and there exists 1 tensorgK,) which are(a) KT's with
respect toG, (b) with common normal eigenvectors, and such tfet(G,K4,K>,...,K,_;) are
pointwise independent. Hendg,, satisfy (i), (i), and(iii). [ |

This theorem is a slightly modified version of Theorem 2, Sec. Il of Ref. 20. In general, a set
of tensors(K ,) satisfying the hypotheses of Theorem 7.3 may not be in involution. However,

Proposition 7.4: The tensord,) in Theorem 7.3 are equivalent to CKT’s in involution

Proof: First of all we remark that also the tenséts+f,G satisfy the hypotheses of Theorem
7.3, for any choice of the—1 nonzero functions,. By using equation$7.5), we see that two
CKT’s K, K4 (diagonalized in orthogonal coordinateare in involution if and only if for all
indicesi,

C—F":E-f—‘ (@,BEL,...n-1), (7.6)

Pa pﬁ

Wherepia are the eigenvalues ¢f, andC,; are the covariant components of the vector figljs
satisfying[G,K ,]=2C,©G. Condition(7.6) is not preserved by replacing the tensors by equiva-
lent ones. Moreover, by Proposition 7i2), K, are equivalent to CKT'« |/, of self-gradient type

Downloaded 17 May 2005 to 192.58.150.41. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



042901-20  Benenti, Chanu, and Rastelli J. Math. Phys. 46, 042901 (2005)

with the same functiotJ. By Proposition 7.1K | are KT’s of the conformal metrieVG, having
common normal eigenvectors. Hence, they are in involution. |

There is an alternative formulation of Theorem 7.3, still involvingl CKT’s, due to Kalnins
and Miller (Ref. 20, Theorem 4, Sec.)il

Theorem 7.4:The HJE(6.12 for the null geodesics is separable in orthogonal coordinates if
and only if on Q there exist-nl CKT's (K,)=(K1,K5,...,K,-1) (i) with common eigenvectars
(i) in involution and such thatiii) G,K4,K>,...,K,_; are pointwise independent

We give here a proof which is based on the following general characterization of the integra-
bility of frames, which is an extension of that given in Ref. 7, Theorem 8, Sec. VIII.

Theorem 7.5:Let (X;) a frame on QLet (K,) be n contravariant symmetric two-tensdis
pointwise independentii) simultaneously diagonalized in the frarf);,) and such thatiii) for
each &* b there exists a vector fiel@,, and a symmetric two tensdv ,, diagonalized in the
frame (X;) such that

{P(Ka),P(Kp)} = 2P(Cap)P(M 4p). (7.7)

Then, the frame is integrable and all the two-tensors are simultaneously diagonalized in a same
coordinate system

We recall(cf. Ref. 7 that(l) a frame is calledntegrableif for each index the distributionA,
spanned by the vectofXy,...,X;_1,Xis1,...,X,) is completely integrable(ll) a frame is inte-
grable if and only if the distributiongd; spanned by pairs of vectof;,X;) are completely
integrable;(ll1) a frame is integrable if and only if there exist local coordma(k@ such that

Xi=f;d/3q', wheref; are nowhere vamshmg functions.

Proof: Let us set[X;,X;]=QjX,, Q}=-Q}, P(Xj)=x, so that{x,f}=(X;,df), {x,x}
=P([X;,X;])= thh Assumonns{u) and(m) mean thaK , K' X;OX;, M =M'X;©X;. By recall-
ing the caIcuIauon of Ref. 7, Sec. VIII, we have

{P(Ka), P(Kp)} = 2(2KLKEQ, + (K5(X;, K = KX, AKEY) 8t 1) XXX,
Being 2P(C4,) P(M 5,) = 2CK kaMabXI 2C"bMabxkx|, from Eq.(7.7) it follows that
(2KEKRO), + (KX, dKEY = KX, dKE) = CLMEp) shal) xixex = 0.

This is a homogeneous polynomial equation which must be identically satisfied for all values of
the variableqpy), i.e., for all values of the variablds;), sincexi=P(Xi)=X!‘pk, and de[tXH #0.

Thus, all coefficients vanish. In particular, the coefficientxpf,x; (as well as for all possible
choices of three distinct indicggives rise to equation

KIK203, + KIK302, + K2K30 5, + K2KEOS, + K3KEQZ, + K3K203,=0.

From now on the proof is the same of Theorem 8.8 of Ref. 7. [ |
Proof of Theorem 7.4The tensorgK ,)=(G,K ) fulfill the assumptions of Theorem 7.5. In
particular, Eqs(7.7) become

{P(Ko),P(Kp}=0, {P(K,),P(G)}=2P(C,)P(G).

Hence, the common eigenvectors are normal. |
A final important remark is that Theorems 7.2 and 7.4 can be derived from more general
statements.

Definition 7.2:We say that two symmetric two-tensdfg andK, on a Riemannian manifold
are in conformal involution if there exists a vector figld, such that

[K1,K2]=2C1,0G (= {Pk Py }=2Pc Po). (7.9

Theorem 7.6:The HJE(6.12) for the null geodesics is separable in orthogonal coordinates if
and only if on Q there exist n CKT&,)=(Kq,K4, ...,K,_1) (i) pointwise independentii) with
common eigenvectors arfil ) in conformal involution
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Proof: The common eigenvectors are normal, since equd@id is a particular case df7.7).
ltem (i) implies the existence of a linear combinatikire¢'K; with simple eigenvalues. Then we
apply Theorem 7.1. Conversely, due to Theorem 7.2, the separation implies the existence of
independent CKT'K; satisfying(7.8) with C;;=0. |

Remark 7.5:Theorem 7.6 is in perfect analogy with the intrinsic characterization of the
ordinary orthogonal separation in termsmihdependent KT's in involution: it is enough to cancel
the word “conformal.” This shows that the notion of conformal involution is a natural and useful
extension of the ordinary involution.

Proposition 7.5: All CKT's diagonalized in orthogonal coordinatég) are in conformal
involution

Proof: According to Proposition 7.2, two tensdfs, K , diagonalized in(q') are equivalent to
two KT's K=K ;-p]G, K;=K,-p5G of the conformal metricG=G/g"™ Two simultaneously
diagonalized KT’s are in involutiofRef. 4, Sec. l. Hence,

[K1, Kol =[K{+piG,K;+p3G] =2(K, V p3 =K, V pOG.

[ |

Remark 7.6As a consequence of this proposition, for two CKT’s simultaneously diagonalized
in orthogonal coordinates equati¢n?), [K;,K,]=2C;,0M ,, impliesM 1,=G, thus the confor-
mal involution (7.8). In other words, in Theorem 7.6 by replacing the conformal involution
conditions iii ), [K;,K;]=2C;;OG with [K;,K;]=2C;;OM;; we do not get an extension of the
theorem.

Remark 7.7The CKT'sK; of Theorem 7.6 generate andimensional spac& of CKT’s in
conformal involution which are simultaneously diagonalized in orthogonal coordinates. We call
such a space eonformal Killing—Stéackel spac€CKS spacg The existence of such a space is
necessary and sufficient for the orthogonal separation of the null geodesic HJE. However, since
properties(i), (ii), and(iii) in this theorem are invariant with respect to the equivalence transfor-
mationsK; — K/ =K;+f;G, there are infinitely many CKS-spac&$ associated withC, corre-
sponding to any choice of the functiois having the same properties and diagonalized in the
same coordinates. We remark thét each CKS space contain a tensor of the ki@l (i.e., a
symmetric tensor witm coinciding eigenvalugs(ll) There exists a CKS space which contains the
metric tensoiG. Property(l) follows from Proposition 7.3. To prov@l), starting from the given
K, according to Proposition 7.3, we can find a linear combination suchctidat fG. Thus, if
c®+#0, we replaceK ; by the equivalent tensdf ;=K +[(1-f)/c°]G. Then the CKS space gen-
erated by(K{,K 1, ... ,K,-1) contains the metriG =c°K j+c'K ;+---+c" 1K _;. A consequence of
these remarks is that we can reformulate Theorem 7.6 assuming that the metriczessore of
the K;. This shows that Theorem 7.4 follows from Theorem 7.6.

B. The orthogonal separation for E-V#0

Theorem 7.7:The HJE(6.13 for a fixed value E of the energy and for& # 0 is separable
in orthogonal coordinates if and only if on Q there exists a characteristic ®K3uch that

2
G K]==——KVVOG 7.9
[G.K]= 2 (7.9

or, equivalently, if and only if there exist a function f and a characteristic ®Tsuch that

2
[G,K’]:ET/(K’VV+ VHOG. (7.10

Proof: The proof of the first part of this statement follows the same pattern of that of Theorem
7.1, with c=E-V. Moreover, if we find a characteristic CKK’ satisfying (7.10, then the
equivalent tensoK =K' —[f/(E-V)]G satisfies conditior{7.9). [ |

Theorem 7.8: TheHJE (6.13) for a fixed value E of the energy and for ¥+ 0 is separable
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in orthogonal coordinates if and only if on Q there exist n CKlKs)=(Ky,K4,...,Kn1) (i)
pointwise independent, (ii) with common eigenvectors, (iii) in conformal involution and such that

2

with suitable functions;f

Proof: Due to Theorem 7.5 and itefiii ) the common eigenvectors are normal. Itefmsand
(i) imply the existence of a CKT with simple eigenvalues satisfyiiigl0. Then we apply
Theorem 7.7. Conversely, (6.13 is separable, then the Jacobi metBie G/(E-V) is separable.
This means that there exigtKT’s K; for G, pointwise independent, with common eigenvectors,
in involution, hence in conformal involution. Recalling Proposition 7.1, we have

[G,Ki]=Z5K; VVOG.

This is a particular case @¥.11). [ |

Remark 7.8This theorem shows that, in other words, the orthogonal separation of the Jacobi
metric is equivalent to the existence of a CKS space satisfying the additional conditldn We
observe that we can always modify the bd#s) in order to include the metric tens@. Due to
Proposition 7.2, there exist a functidnand n real numbers' not all equal to zero, such that
fG=3;c'K;. Up to a reordering of the tensors, we can suppose ¢Aa0. Then, (G,K,)
=(G,Ky,...,K,-q) satisfy items(ii), (iii) and are pointwise independent,

o] 1, Joki| Ter [KE| @ [KE| @
det{ KJ = ?det[ < | gl Tde i + ?de <i | = Tde{Kj] +#0.

VIIl. SEPARATED EQUATIONS

Summarizing the results of Sec. VII A, we have five intrinsic characterizations of the orthogo-
nal separation of the null geodesic HJE: Theorem (htolving a single characteristic CKT
Theorem 7.2(involving n CKT’s in involution), Theorem 7.3(involving n—1 simultaneously
diagonalized CKT’s Theorem 7.4(involving n—1 CKT'’s in involution), and Theorem 7.6in-
volving n CKT’s in conformal involution. We show how, for each one of these characterizations,
we can reduce the HJE to separated ordinary differential equations. This reduction involves the use
of Stackel matrices. As shown in Ref. 2, we can state the following.

Lemma 8.1: LetF;)=(F4,...,F,) be n independent functions of the forr}FE;(,)p] They are

in involution if and only if the matn)[cp(,)] is the inverse of a Stackel matrScz[<pI')]

Proof: We prove this statement in a direct way, without any reference with the known links
between Stackel matrices and the orthogonal separation. The condition

{Fi,Fnt= 2(<P|((i)F7k€D{h) - @l((h)akQD{i))pkpjz =0

is equivalent to equations

i)kl = @lkeliy,  kn.s. (8.1
(|) MuIt|pIy|ng by (,o(') and summmg overi, we get the equivalent systen&k&kgo
= (p(h Zl(p(l)o'?k(pl() Fork+#1, <p(h)2,<p(,)§kq>| —O For any fixed indek there always exists an mdex
h such thatcp(h)aﬁo It follows that=;¢};, z?k(pl )=0. And this is equivalent t@kgol -0 fork=#1. (i)
Conversely, |et[(p(')] be a Stackel matrix. By applying, to equation (,o(h)(p —5'h, we get
2(<pI akgoh)+<p(h)(9kgok =0. Let us multlply by<p(|) and sum over the indek we get ﬂkcp(h)
—<p(h E,cpk c?k(,o(|)—0 If we multiply by cp without summing overk, then we find cp(l z?k(p )
—<p<,)<p(h)2|<pk 8k<p(|). This shows thato(,)&k@(h) is symmetric with respect to the indicésh). Thus,
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(8.1) is proved. [ |

Case of Theorem 7.2et (K;) be n CKT’s satisfying the conditions of this theorem. The
functionsF; =K/ p? fulfill Lemma 8.1. Henceg};, =K} form the inverseS™ of a Stackel matrix.
Moreover, since they are CKT's, sé&.3), we have{Pg,F}=2Pc Pg, where Pg= g'p?. This
shows thaf; are null first integralsof the null geodesickef. (4.27)]. SinceF; are independent and
in involution, equations

Fi(a.p) =Klpf=c; (8.2

describe a Lagrangian foliation on an open subsét @f which is compatible with the submani-

fold of equationg' p; 2=0 (see Sec. )l This foliation is the geometrical counterpart of an extended
complete solution of the null HJE. This complete solution is separable. Indeed, by solving equa-
tions (8.2), <,o{i)pj2=ci, we get the separated equations

P =e'ci. (8.3)

Case of Theorem 7.3et (K,)=(K,...,K,_1) ben—1 CKT'’s satisfying the conditions of this
theorem. They are diagonalized in orthogonal coordinates. Let us consider the diagonalized ten-
sorsK/=K,—phG, wherep are the last eigenvalues #f,. Sincep) =K "/g"™", the diagonal
components oK are

K — K“”g—“ (8.4)
a a gr‘ln' :

By recalling the proof of Proposition 7.2, &/, are KT's of the conformal metri&/g"™", simul-
taneously diagonalized, hence in involution. As a consequence,-thefunctions

is a further null first integral in involution. Thegefirst integrals in involution are independent
because of itentii) of Theorem 7.3. Thus, due to Lemma 8.1, the functions

K ngnn’ (Pj(n) - F\’

form the inverse of a Stackel matrix. It follows that equations

elo =KL~

Fa: @{a)pjzzcw Fn: ¢{n)pj2:01 (85)

define a Lagrangian foliation of the submanif«yid:)izzo, which is the geometrical counterpart of

an internal complete solution of the null HJE. This complete solution is separable. Indeed, by
solving equationg8.5), go{i)pjz:ci, with ¢,=0, we get separated equations of the kiBd), but

with n—1 constant paramete(s,),

p; = ¢|”'c,. (8.6)

This result is in agreement with Remark 6.8.
Case of Theorem 7.4Fhe procedure is the same as for the case of Theorem 7.3.
Case of Theorem 7.8:et (K;) be n CKT’s satisfying the conditions of this theorem. By
recalllng Remark 7.7, we can always find a linéeonstant coefficienjscombination such that
K;=fG. When the constant and the functiorf are determined, assumirigp to a reordering
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thata®+ 0, we can replac& , by G, and we are in the case of Theorem 7.3.

Case of Theorem 7.M\MVe point out that Theorem 7.1 is convenient for characterizing the
separation, since it involves only a single CKT. However, in order to get separated equations
(involving a Stackel matrixwe need to know—1 CKT'’s. Letp' be the eigenvalues of the given

characteristic CKTK. According to Proposition 7.2, the tendé=K - p"G is a characteristic KT
for the conformal metricG =G /g™ (instead of the last one, we can choose any other indeRs

it is well known, any characteristic KT generates-apace of KT's simultaneously diagonalized
in orthogonal coordinates, whose eigenvalpgewith respect to the metri6 satisfy the Killing—
Eisenhart equations

ap = -p)5Ing (8.7)
which form a complete integrable system. Simde (p'-p"g™, we observe that for the given

tensork we havep"=0. We observe that, following Kalnins and Millgtjif we set w=p-p",
then from(8.7) we obtain equations

g = (' = w)g In gl = w'a Ing™,
which summarize Eq$2.8) of Ref. 20. Let us take independent solutiorﬁ of system(8.7) with

pl=1 for all j. The corresponding tensoks of componentK! =plgll /g™ are independent KT’s
for G such thatk ,=G. This means that

¢l =Kl =plglig™

form the inverse of a Stackel matrix and equatiap{§pj2=ci are equivalent to the separated
equationqajz:¢§')ci. This gives an extended separated solution. d;et0 we get the null geode-
sics.

Finally, let us consider the case BfV+# 0.

Case of Theorem 7.8:et (K;)=(Kg,...,Ky-1) ben CKT's satisfying the conditions of this
theorem. By recalling the proof of Theorem 7.7, if we perform the equivalence transformation
RizKi—[fi/(E—V)]G we getn KT's of the Jacobi metridG=G/(E-V), characterizing its or-
thogonal separation. Then the functioqa@zK{J -f,/(E-V) form the inverse of a Stackel matrix.

By solving equationso{i)pjzzci, we get the separated equations

pi=¢j'c (8.8

thus, a complete separated solution of the HJE,

(E-V)"'g'p?=2h. (8.9

The separated solution following frof8.8) is an extended separated solution of the I—%{lﬁpf
=E-V with the fixed valueE of the energy. By substituting i8.9) the expressions qd; given by
(8.8), we get an equation of the kina=h(c;). It follows that forh=1 we get equatiom(c;)=1.
When the constants satisfy this equation we get an internal separated solution of the HJE for the
given valueE of the energy.

Case of Theorem 7.7f we have a characteristic CKT tenskr’ satisfying(7.10, thenK
=K'-[f/(E-V)]G is characteristic KT of the Jacobi mete=G/(E-V). System(8.7) with
g/ =g!/(E-V) is completely integrable and providasndependent solutiong with p,=1 for all
j. With such a solution we define the inverse of a Stackel matrix by se(ﬁ@irggﬁ{g”/(E—V).
Then, by solving equation${i)pjz=ci we get separated equations which define an extended sepa-

rated solution. By setting,=1 we get an internal separated solution. We remark that in both cases
the Stackel matrices depend on the vatie
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IX. THE TWO-DIMENSIONAL CASE

A two-dimensional Riemannian manifold is always conformally flat. The link between the
conformal separation in two dimensions, the analytical functions and the CKT'’s is examined in
Ref. 28, and used for generalizing a result of Ref. 25. We show here how some known results
follow from the general theory developed in the preceding sections.

We can write the most generalk2 Stackel matrix in two variables in the form

1 1
- {zigzi ZzEZZ; }’ h1hp — oy # 0. 9.0
The inverse matrix is
3 1 b2 i
e
b1 = o~y Py 9.2

The componentg' of a separable orthogonal met@ and of the associated KK are given by
the second and the first line &,

1 1
b=y O b=y o
Then Theorem 6.10 implies the following.
Theorem 9.1: (i) The HJE of the null geodesi¢6.12 is separable in the orthogonal coor-
dinates(qt,q?) if and only if there exist two nowhere vanishing functigp&') and &,(g?) such
that

gt _ &4
=== (9.9
0? &
(i) The HIE(6.13, for a fixed value of E and for EV#0, is separable in the orthogonal
coordinates(q, g?) if and only if there exist four function&;(qY), &(0?), (), ¥n(g?)), with

23R
=+ 20, (9.4)
& &
such that(9.3) holds and moreover
E-V=yqg't+ 0% (9.5

Proof: From (6.17) and(9.2) it follows that there exist functiong,(g') and ¢,(g?) such that
gt/ g?2=-¢,/ ¢;. The functionsé; of the statement are then given By=1/¢, and &;=—1/¢,.
Formula (9.5 follows from (6.18 and (9.1). Condition (9.4) is the regularity condition of the
Stackel matrix(9.1). ]

From Theorem 9.1 it follows that on a two-dimensional Riemannian manifold, orthogonal
coordinates(g*,q?) are conformal separable coordinates if and only if the rgttdg®? has the
form (9.3), which is equivalent to say that'/g??is a product of two functions depending only on
" andg?, respectively. In Remark 6.3 we have seen that coordinates satisfyirgio(q) (c' € R)
are conformal separable. The following theorem shows that in fact any two-dimensional confor-
mal separable system is of this kind.

Theorem 9.2:0n a two-dimensional manifold an orthogonal coordinate system is conformal
separable if and only if, up to a rescaling

gtt= +g* (9.6)

Proof: According to Remark 6.3, if9.6) holds, then the coordinates are conformal separable.
Conversely, assume thé.3) holds. Theng;;=p/ &, 9,=p/ &, and
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(da®)? | (dqz)z)
& & )

In the coordinates(q) defined by the rescaling@=|&|"Y2dq we have &=p(e,(dgh)?
+e,(dg?)?), whereg =sign&). It follows thatG; = pe;. [ |

Remark 9.1:1f (9.6) holds, from(9.3) and (9.5 it follows that &=+ ¢, =constant andE-V
=(yn+p)g'L. Then the Stackel matrit9.1) and its inverse9.2) have the form

¢ (gh } 1 1 [ b — ’/’1:|
S= , +#0, S =——m— .
{ Fc (9P ot i c(rt )| 2c ¢

Let us consider the particular case of the Euclidean plgnwith Cartesian coordinatég,y). We
recall the following(see, e.g., Ref. 28

Proposition 9.11f f(z)=u(x,y) +iv(X,y), Z=Xx+iy, is a non constant analytic function, then in
the open domain wher&u+ 0 the real and the imaginary parts define conformal separable
coordinates g=u(x,y) and ¢f=v(x,y) such that g*=g?2

Proof: From the Cauchy—Riemann conditions

ds? = g;1(dgh)? + gox(dg?)? = P(

Uy=vy, Uy=-vy (9.7

(the suffixes denote the partial derivatiyésfollows that

9= Uag+ Uy =0, g'= (U2 + (U)? = (vy)* + (v)? = g% (9.9

Then we apply Remark 9.1. The coordinate transformation is singular at those points where the
partial derivativeq9.7) vanish, since

det{ N vx} = Uy = Uyly = (U) % + (uy)?. [ ]
Uy vy
By applying Theorem 9.2, we prove the converse of Proposition 9.1.

Proposition 9.2 Up to a rescaling, every conformal separable system of the Euclidean plane
is generated by a nonconstant analytic function

Proof:According to Theorem 9.2, we can rescale a conformal separable coordinate system in
order to haveg'=g?? and such that the corresponding coordinate transformation sa(i8f@s
The solutions 019.8) are

Uy = Uy, Uy =~ Uy,

Uy =~ Uy, Uy = Ux,
which are the Cauchy—Riemann conditions feru(x,y)+iv(x,y) or f=v(x,y)+iu(x,y). Hence
the coordinates are generated by an analytic function. |

Remark 9.2:The real and imaginary part of a given analytic function are both harmonic
functions onR?, i.e., solutions of the Laplace equation in the plane=0. Conversely, each
harmonic functionu(x,y) can be chosen as real part of an analytic function. The corresponding
imaginary partv(x,y) is determined up to an additive constant.

Remark 9.3:It is possible to associate with every harmonic function a class of potentials,
depending on two real parametexsh, which are separable for a single value of the energy. The
conformal separable coordinates and the suitable valué dépend on(a,b). Let u(x,y) be a
harmonic function. Then, the functioissu+ax+by, a,b& R are harmonic. According to Remark
9.2, we construct a coordinate transformation

q'=q'xy) =T, o*=d(xy) =7,
with 7 such thafli+iv is analytic. For these coordinates we have
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~\2 [ =\2
911=922:<@> +(@)
X ay)

Hence, (q,g% are conformal separable coordinates compatible with a natural Hamiltéhian
=G+V for a fixed value of the energl if and only if

E-V=(4a(qh) + ¢o(q?))g'. (9.9
In particular, the cas&-V=g*! is satisfied by choosinf=a’+b? and

au\? [ou\? _ 4u au
Vixy)=|—] +|—| +2a—+2b—. (9.10
X ay X ay
In the following example we consider a dynamical system with a scalar potential depending on a
single parametea, which is a special case of the potenti@l10 obtained by considering=0 in
the preceding discussion.
Example 9.11n [, let us consider the potential

2ax+1
V(x,y) = Ty

where (x,y) are Cartesian coordinates aads a real parameter. By examining the separability
condition

d(K dv) =0, (9.11)

whereK is a generic KT of the Euclidean plaigee Ref. 6 for the details of this techniguee
find that, fora+# 0, (9.11) is satisfied only folK =G (the metric tensor Thus, fora# 0, V is not
separable irf,. However, for any value d # O there is a suitable value of the enefgysuch that
the HIEG+V-E=0 is separable in a conformal coordinate system depending. dret us
consider

gt =logyx?>+y?+ax=loge +ag cosd, ¢°= arctar(%) +km+ay=9+apsiné.

With respect to these coordinates we have

2 ,  2ax y?  2ax+1

— &%+ + =
02 +y2)2 a Y2 0C+yRR xHy2

g(q".q?) =g*(q'.q?) =

Thus, (g%, 0?) are conformally separable. Moreover, sinceBara® we getE-V=g'!, which is of
the form(9.9), we have the separation of variables for the fixed value of the erier@?. Now
we solve the HJE and the corresponding dynamical system. We construct the StéckelSmatrix
associated witlig*,g?). By applying to this special ca$8.3), (9.4), and(9.9), we have
5121252! I/’lzli ¢2:01
so that the Stéackel matrix and its inverse are

11 |0 -1
S= , Si= .
-1 0 11
A basis of the conformal Killing—Stéackel space is

I RN BN
1

— E
With respect to the new coordinates, the natural Hamiltonian

— , K== —.
aqt  9q? ® P P @ I
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becomes the geodesic Hamiltonidg=3p3+3p3. The quadratic first integral i#lx=3p3. The

separated equations are given by the system

Je=h, 3pT+3p5=h, pi=2h-c),
He=c, Zp3=c, p3=2c.

The constants have to fulfill the conditionss@=<h. The integral curves of the Hamilton equa-
tions are

pi= £\2(h=c), p,=+y2c, qt= +\2(h-ot+qh of= ++2ct+c?,

and their orbits are described by the equation

h-c
a'=do= + \/~—(@*~qp).

Forh=1, we have the orbits df(=0, i.e., of the natural Hamiltonian with potentMland energy
E=a? parametrized bg € (0,1). In Cartesian coordinates the orbits are given by

—s 1-c
logVx? +y? + ax= \/T [arctar(%) + Kk + ay} +d

and in polar coordinate@,¥) by

1-c )
log o +ap cosd = + \/T(ﬂ+ag sin @) +d,

whered:qéi \/[1—c/c]q§ is a constant depending on the initial point.

Remark 9.4Forn>2 it is no longer possible to relate conformal separable coordinates with
analytic functions, as for the case=2. However, it can be seen that the orthogonal coordinate
systems which allow th&-separation of the Laplace equationrirdimensional manifolds with
constant curvature, obtained by different methdts’**?’and known in the Euclidean three-
space as confocal cyclidésare all conformal separable coordinates according to our Definition
6.1. This fact exhibits the deep relation between Rageparation and the separation of the HIE
with a fixed value of the energy developed in this paper. Indeed, both conformal separable and
R-separable coordinates are characterized by CKSEg, e.g., Ref. 20A further analysis of this
link is in progress.
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