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The theory of the separation of variables for the null Hamilton–Jacobi equation
H=0 is systematically revisited and based on Levi–Civita separability conditions
with Lagrangian multipliers. The separation of the null equation is shown to be
equivalent to the ordinary separation of the image of the original Hamiltonian under
a generalized Jacobi–Maupertuis transformation. The general results are applied to
the special but fundamental case of the orthogonal separation of a natural Hamil-
tonian with a fixed value of the energy. The separation is then related to conditions
which extend those of Stäckel and Kalnins and Millersfor the null geodesic cased
and it is characterized by the existence of conformal Killing two-tensors of special
kind. © 2005 American Institute of Physics.fDOI: 10.1063/1.1862325g

I. INTRODUCTION

The aim of this paper is to propose a general approach to the theory of variable separation for
the null Hamilton–Jacobi equationsHJEd

Hsq,pd = 0, q = sqid, p = spid, pi =
]W

]qi .

This approach is based on a suitable definition of separationsSec. IId, whose geometrical content
sSec. IIId is related to special integrable Lagrangian distributions on the cotangent bundleT*Q, of
coordinatessq,pd. By the Hadamard lemma, the integrability conditions of these special distribu-
tions lead in Sec. IV toLevi–Civita separability conditions with Lagrangian multiplierssTheorem
4.1d, which are a natural extension of the classical Levi–Civita conditions,24 and from which we
derive two characterizations of the separation of the null HJE. The first onesTheorem 4.2d asserts
that the separation occurs in a given coordinate system if and only if the ordinary Levi–Civita
equations are satisfied on the surfaceH=0; the second onesTheorem 4.3d asserts that the sepa-
ration occurs if and only if there exists a functionLsq,pdÞ0 such that the ordinary Levi–Civita
equations are satisfied by theconformal HamiltonianH /L. The passage from a HamiltonianH to
a conformal HamiltonianH /L is an extension of the so-calledJacobi sor Maupertuisd transfor-
mation for natural Hamiltonians,9,16,23,28,31,33recalled and discussed in Sec. VI.

We apply these general results to the analysis of particular cases of Hamiltonians. In Sec. V
we consider the so-calledhomogeneous formalismin time-dependent mechanics and get a rigorous
proof of a known property of the separation in the time-dependent HJE.15 In Sec. VI we consider
a natural Hamiltonian in orthogonal coordinates,H= 1

2giipi
2+Vsqd and the corresponding HJE with

a fixed valueE of the energy,

Hsq,pd 8
1
2giipi

2 + Vsqd − E = 0.

From a general theoremsTheorem 6.1d concerned with the separation of this equation, we derive
three theoremssTheorems 6.3, 6.4, and 6.5d characterizing the separation for the following three
special cases,
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V = 0, E Þ 0, non-null geodesics,

V = 0, E = 0, null geodesics,

V − E Þ 0, dynamical trajectories with total energyE.

The case of null geodesics occurs, of course, for indefinite metric tensors. In Sec. VII we analyze
the intrinsic framework of the theorems stated in Sec. VI, by considering special kinds of confor-
mal Killing tensors and by introducing the notion of conformal involution. The first integrals and
the separated equations are examined in Sec. VIII. In Sec. IX we consider the two-dimensional
case. We renounce here to deal with the nonorthogonal separation for natural Hamiltonians, which
is currently under investigation within the general framework presented in this paper. All this work
is also made in the perspective of application to the theory of the ordinary multiplicative separa-
tion and of theR-separation for the second-order differential equations of mathematical physics
sLaplace, Helmholtz, Poisson, Schrödinger equationsd.20,22As possible applications of the present
theory we mention:sid The integration of the equations of the null geodesics in general relativity
theory,11 sii d The integration of dynamical systems which are Hamiltonian only on single hyper-
surfaces of the phase space.

II. DEFINITION OF SEPARATED COMPLETE SOLUTION OF THE NULL HJE

Let Q be a realn-dimensional differentiable manifold andH be a smooth real-valued function
on the cotangent bundleT*Q. Let q=sqid be local coordinates on an open subsetU#Q and
sq,pd=sqi ,pid the corresponding standard canonical coordinates onT*Q. In the following,]i and
]i will denote the partial derivative with respect toqi andpi, respectively.

We restrict our analysis to the open setO#T*U#T*Q, where ]iHÞ0 for all i =1,… ,n,
assuming that it is not empty. In this open set we have dHÞ0, so that any equation of the kind
Hsq,pd=h, h[R, defines a setEh that, if not empty, is a submanifold of codimension 1. In
particular, we focus on the submanifoldE0 described by equationH=0.

We consider the HJE forh=0,

HSq,
]W

]q
D = 0, s2.1d

and two definitions of complete solution.
Definition 2.1:An internal complete solutionof the HJEs2.1d is a solutionWIsq,cad depend-

ing on n−1 parametersscad such that the following completeness condition is satisfied:

rankF ]2WI

]qi ] ca
G = n − 1. s2.2d

An extended complete solutionof the HJE s2.1d is a function WEsq,cd depending onn real
parametersc=scid satisfying the completeness condition

detF ]2WE

]qi ] cj
G Þ 0 s2.3d

for all admissible values ofsq,cd, and satisfying Eq.s2.1d for all c belonging to a suitable
n−1-dimensional submanifold ofRn ssee Remark 2.1 belowd or sup to a transformation ofcd for
cn=0.

The geometrical meaning of these two definitions is the following. An internal complete
solution WI defines a Lagrangian foliationLI of the submanifoldE0, Fig. 1sad, via equationspi

=]iW
I. Each Lagrangian submanifoldLscad[LI is parametrized by the value of then−1 param-

etersscad.

042901-2 Benenti, Chanu, and Rastelli J. Math. Phys. 46, 042901 ~2005!

Downloaded 17 May 2005 to 192.58.150.41. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



An extended complete solutionWE defines a Lagrangian foliationLE on an open neighbor-
hood ofT*Q via equationspi =]iW

E. Each Lagrangian submanifoldLscid
[LE is parametrized by

the value of then parametersc=scid. This foliation is compatible with the submanifoldE0, in the
sense that it is reducible to a foliation ofE0, Fig. 1sbd.

Remark 2.1:The quotient setC of the foliationLE is locally an-dimensional manifold with
coordinatesscid. The restrictionLI of LE to E0 is a submanifoldS,C of dimensionn−1. ThenS
is locally defined by an equationhscid=0 with dhuSÞ0. Up to a transformationscid↔ sci8d we can
find coordinates adapted toS such that equationhscid=0 is replaced bycn8=0. This means that for
a suitable choice of the parameters appearing in aWE equations2.1d is satisfied forcn=0.

Remark 2.2:In general, the foliation generated by aWE may be not reducible to the submani-
folds Eh with hÞ0. When it is reducible to eachEh, then we have anordinary complete solution,
Fig. 1scd, of the HJE

HSq,
]W

]q
D = h. s2.4d

The following proposition shows that the two definitions of internal and extended complete solu-
tions are, in a sense, equivalent.

Proposition 2.1: Equations2.1d admits an internal complete solution WI if and only if it
admits an extended complete solution WE.

Proof: Let WI be an internal complete solution. By the completeness conditions2.2d, we know
that there existn−1 linearly independent columns in the matrix]2WI /]qi ]ca. Thus, we can
assume without loss of generality that

detF ]2WI

]qb ] ca
G Þ 0, a,b = 1,…,n − 1.

Then, the function

FIG. 1. The geometry of the three definitions of complete solution.
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WEsq,cd = WIsq,cad + cnq
n, c = scid = sca,cnd s2.5d

is an extended complete solution: the completeness conditions2.3d is satisfied. Conversely, ifWE

is an extended complete solution, then the functionuWI =WEucn=0 is an internal complete solution.
j

Now we adapt the above-given definitions to a particular class of complete solutions:
Definition 2.2:An internal separated solutionof the HJEs2.1d is an internal complete solution

WIsq,cad of the form

WIsq,cad = o
i=1

n

Wi
Isqi,cad. s2.6d

An extended separated solutionof the HJEs2.1d is an extended complete solutionWEsq,cd of the
form

WEsq,cd = o
i=1

n

Wi
Esqi,cd. s2.7d

It is obvious that the additive separation is preserved in the passage from aWE to aWI. However,
it is remarkable that it is also preserved in the inverse passage, from aWI to a WE, due to the
particular form of formulas2.5d. Hence, from Proposition 2.1 it follows that

Proposition 2.2: Equations2.1d admits an internal separated solution WI in a coordinate
systemq=sqid if and only if it admits an extended separated solution WE in the same coordinates.

The equivalence proved in Proposition 2.2 leads to the following definition of separability for
H=0:

Definition 2.3: The null HJE s2.1d is separablein the coordinatesq=sqid if it admits an
internal separated solution or, equivalently, if it admits an extended separated solution.

Remark 2.3:The definition of internal separated solutiongiven here, i.e., depending onn
−1 constant parameters satisfying the completeness conditions2.2d, is that commonly adopted in
the literature. See, e.g., Ref. 17, p. 107. However, the use of a second, although equivalent,
definition of separationsProposition 2.2d is essential for a complete development of the present
theory. Indeed, as will be shown in Sec. IV, the definition ofextended separated solutionallows
the characterization of the separability for the null HJEs2.1d by means of Lagrangian multipliers.

III. SPECIAL DISTRIBUTIONS RELATED TO THE SEPARATION

In order to give necessary and sufficient conditions for the existence of separated solutions it
is convenient to give a geometrical interpretation of the separation in terms of complete integra-
bility of a special kind of first-order differential systems. This interpretation is related to the
concept of separated connection on a cotangent bundle.5

With a coordinate systemq=sqid on Q we associaten differential operators on functions on
T*Q of the kind

Di = ]i + Risq,pd]i , s3.1d

whereRi are assigned functions onT*Q. The vector fieldsDi on T*Q are pointwise independent
and transversal to the fibers. Thus, they span a regular distributionD,TT*U of rankn transversal
to the fibers: this means that at each pointx[T*U they span ann-dimensional subspace
Dx,TxsT*Ud which is transversal to the vertical vectors ofTT*U. We say that the vector fieldsDi

are the generators ofD.
With the same functionsRi entering s3.1d we associate the first-order normal differential

system
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]ipj = di jRisq,pd s3.2d

and we remark as follows,

sid Any integral manifoldL of D, i.e., a submanifoldL,T*U such thatTxL=Dx for all x[L,
is locally described by equations

pi = wisqd, s3.3d

where the functionswi are solutions of systems3.2d. Indeed, sinceD is transversal to the
fibers, any integral manifoldL of D is an n-dimensional submanifold transversal to the
fibers, thus locally described by equations of the kinds3.3d. Moreover, by definition of
integral manifold, the generatorsDi are tangent toL, so that equationsDjspi −wisqdd=0 are
satisfied on L. This implies 0=Djspi −wisqdd=s] j +Rj]

jdspi −wisqdd=−] jwi +Rjdi j . This
shows that the functionss3.3d satisfy the differential systems3.2d.

sii d Any integral manifoldL is a Lagrangian submanifold, since the distributionD spanned by
Di is Lagrangian with respect to the canonical symplectic formv=dpk∧dqk. Indeed, we
have

vsDi,Djd = sdpk ∧ dqkdsDi,Djd = kDi,dpklkDj,dqkl − kDj,dpklkDi,dqkl = Rid j
i − Rjdi

j = 0.

This shows thatD is an isotropic distribution. Being of rankn, it is a Lagrangian distribu-
tion.

siii d Any Lagrangian submanifoldL transversal to the fibers ofT*Q admits local generating
functions, i.e., functionsWsqd such thatL is described by equationspi =]iW. If L is an
integral manifold of the distributionD, thenpi =]iW must be a solution of systems3.2d. It
follows that for i Þ j , ]i] jW=0, i.e.,

Wsqd = o
i=1

n

Wisqid. s3.4d

sivd The Lie brackets of the generatorsDi are vertical vectors, i.e., vectors tangent to the fibers
of T*Q. Indeed,

fDi,Djg = f]i + Ri]
i,] j + Rj]

jg

= ]i] j + ]iRj]
j + Rj]i]

j + Ri]
i] j + Ri]

iRj]
j + RiRj]

i] j − ] j]i − ] jRi]
i − Ri] j]

i − Rj]
j]i

− Rj]
jRi]

i − RjRi]
j] j = s]iRj + Ri]

iRjd] j − s] jRi + Rj]
jRid]i .

It follows that

fDi,Djg = DiRj]
j − DjRi]

i , s3.5d

being

]iRj + Ri]
iRj = DiRj . s3.6d

Hence,D is completely integrable if and only if the generators commute,fDi ,Djg=0, i.e.,
if and only if

DiRj = 0, i Þ j . s3.7d

So far we have no links with the HJEH=0. Now we introduce the functionH.
svd The distributionD, when restricted to the points ofE0, gives rise to a distributionD0 on E0

if and only if the generators are tangent toE0, and this happens if and only if

uDiHuE0
= us]iH + Ri]

iHduE0
= 0. s3.8d

In this case we say thatD is reducible toE0 and a well-known property of the Lie bracket
tells us that
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fDiuE0,DjuE0g = fDi,DjguE0. s3.9d

It follows that the reduced distributionD0 is integrable if and only if

DiRjuE0 = 0, i Þ j . s3.10d

Theorem 3.1:The HJEs2.1d admits an extended separated solution in the coordinate system
q if and only if there exist n functions Risq,pd satisfying one of the following equivalent condi-
tions: sad The distributionD spanned by the generatorss3.1d is completely integrable and reduc-
ible to a distributionD0 on E0. sbd Conditionss3.7d and s3.8d are satisfied:

]iRj + Ri]
iRj = 0, i Þ j , us]iH + Ri]

iHduE0
= 0. s3.11d

Proof: Conditions sad and sbd are clearly equivalent because of the remarks above. Let
WEsq,cd be an extended separated solution. The completeness conditions2.3d means thatsq,cd are
local noncanonical coordinates ofT*Q. Thus, the functionsRi =]i

2WEsq,cd are well defined on an
open subset ofT*Q. Then we consider the separable connectionD with generators

Di = ]i + ]i
2WE]i .

The integral manifolds ofD are locally described by equationspi =]iW
Esq,cd and, due to the

completeness conditions2.3d, we get the complete integrability ofD. Moreover, since forcn=0,
WE is a solution ofs2.1d, the generators are tangent toE0. Conversely, assume that functionsRi

exist satisfyings3.11d. Then the distributionD is completely integrable and the integral manifolds
are generated by a separated solutionWEsq,cd parametrized byn parametersc=scid. Since the
integral manifolds form a foliation, there is only one integral manifoldLc containing a given point.
This means that equationspi =]iW

E must be solvable with respect toc. This is equivalent to the
completeness conditions2.3d. j

Theorem 3.2:The HJEs2.1d admits an internal separated solution in the coordinate system
q if and only if there exist functions Risq,pd such thatsad the distributionD spanned by the
generatorss3.1d is reducible to a distributionD0 on E0 and this reduced distribution is completely
integrable, i.e., such thatsbd conditionss3.8d and s3.10d are satisfied:

us]iH + Ri]
iHduE0

= 0, us]iRj + Ri]
iRjduE0

= 0, i Þ j s3.12d

Proof: The equivalence between conditionssad and sbd follows from the above remarks. Let
WI be an internal separated solution. Then, by Proposition 2.2, we can construct an extended
separated solutionWE in the same coordinates. Hence, by Theorem 3.1, there exist functionsRi

satisfyings3.11d. It is clear that these functionsRi satisfy s3.12d. Conversely, we consider func-
tions Ri satisfying s3.12d which are associated with a distributionD reducible to a completely
integrable distributionD0 onE0. The integral manifolds ofD0 are generated by a separated solution
WIsq,cad parametrized byn−1 parametersscad. Since they form a foliationLI #E0, there is only
one integral manifold containing a given pointp[E0. This means that equationspi =]iW

I are
solvable with respect toca so that the completeness conditions2.2d holds. j

Remark 3.1:We know from Proposition 2.2 that the existence of a separated solutionWI is
equivalent to the existence of a separated solutionWE. However, this does not mean that the
functionsRi entering Theorem 3.1 and Theorem 3.2 are the same functions. Indeed, it is obvious
that functionsRi satisfyings3.11d also satisfys3.12d; but functionsRi satisfyings3.12d may not
satisfy s3.11d.

IV. THE LEVI–CIVITA SEPARABILITY CONDITIONS WITH LAGRANGIAN MULTIPLIERS

The ordinary separation of the HJEH=h s2.4d is characterized by the Levi–Civita
equations,24
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]iH] jH]i] jH + ]iH] jH]i] jH − ]iH] jH]i] jH − ]iH] jH]i]
jH = 0, i Þ j . s4.1d

We want to write similar differential equations characterizing the separation of the null HJEH
=0 s2.1d. For this reason, we look for differential systems equivalent to the conditionss3.11d and
s3.12d, respectively. Since these conditions are differential conditions restricted to a submanifold,
we base our approach on the Hadamard lemmascf. Ref. 1, for the one-dimensional cased.

Lemma 4.1: Let fsx,yd be a smoothsC`d function on an open subset Uof Rm+1 such that
fsx,0d=0. Then there exists a smooth functionlsx,yd such that fsx,yd=ylsx,yd.

Proof: The functionlsx,yd is defined by

lsx,yd =E
0

1 ] f

]y
sx,tyddt. s4.2d

Indeed we have

yE
0

1 ] f

]y
sx,tyddt =E

0

1 ] f

]y
sx,tydy dt =E

0

y ] f

]y
sx,uddu = fsx,yd − fsx,0d = fsx,yd.

The function defined bys4.2d is smooth. j

We use Hadamard’s lemma in the following form.
Lemma 4.2: A smooth function F on T*Q which vanishes on the submanifoldE0 defined by

equationH=0 is of the form

F = Hl, s4.3d

wherel is a suitable function on T*Q.
Proof: Since E0 is a submanifold of codimension 1, and dHÞ0, we can consider local

coordinatessx,yd on T*Q, such thatE0 is locally defined by equationy=H=0. Then, by applying
Lemma 4.1 to the functionF=Fsx,yd, there exists a smooth functionlsx,yd such thatF=yl, i.e.,
a smooth functionlsq,pd such thats4.3d holds. j

Due to Lemma 4.2, and recalling our assumption]iHÞ0, we can reformulate Theorems 3.1
and 3.2 as follows.

Proposition 4.1: The HJEs2.1d admits an extended separated solution in the coordinatesq
=sqid if and only if there exist n functionslisq,pd such that equations

]iRj + Ri]
iRj = 0, i Þ j , s4.4d

are satisfied for

Ri 8 −
]iH − liH

]iH . s4.5d

Proof: It is sufficient to examine the second equations3.11d. Due to Lemma 4.2, this is
equivalent to the existence of functionsli on T*Q such that

]iH + Ri]
iH = liH. s4.6d

Then we get forRi the expressions4.5d. j

Proposition 4.2: The HJEs2.1d admits an internal separated solution in the coordinatesq
=sqid if and only if there exist functionslisq,pd and mi jsq,pd such that equations

]iRj + Ri]
iRj = mi jH, i Þ j , s4.7d

are satisfied for Ri given bys4.5d,

Ri 8 −
]iH − liH

]iH .
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Proof: By recalling the proof of Proposition 4.1, the first equations3.12d means thatRi must
have the forms4.5d. Moreover, due to Lemma 4.2, the second equations3.12d is equivalent to the
existence of functionsmi j on T*Q such thats4.7d holds

.j
We remark that the additional functionsli and mi j play the role of Lagrangian multipliers.

Now we are able to state three effective criteria for the separabilitysDefinition 2.3d of the null
HJE.

Theorem 4.1: The HJEH=0 s2.1d is separable in the coordinatesq=sqid if and only if there
exist n functionsl=slkd on T*Q such that equations

LijsH;ld 8 LijsHd + Hflis] jH]i] jH − ] jH]i] jHd + l js]iH]i]
jH − ]i] jH]iHd

+ lil jsH]i] jH − ]iH] jHd − ] jli]
iH] jH + ] jlis] jH]iH − l jH]iHdg = 0 s4.8d

are satisfied for iÞ j , where

LijsHd 8 ]iH] jH]i] jH + ]iH] jH]i] jH − ]iH] jH]i] jH − ]iH] jH]i]
jH. s4.9d

We call equationss4.8d, LijsH ,ld=0, theLevi–Civita conditions with Lagrangian multipliers.
Proof: By Proposition 4.1, the HJEs2.1d is separable if and only if there exist functionsli on

T*Q such that equationss4.4d and s4.5d hold. Due to the expression ofRi given by s4.5d, the
left-hand sideDiRj of s4.4d becomes

DiRj = −
1

]iHs] jHd2LijsH;ld, s4.10d

so that equationss4.4d are equivalent to equationss4.8d. j

Remark 4.1:For all li =0, the expressions4.5d reduces to

Ri = −
]iH
]iH , s4.11d

and s4.8d become the usual Levi–Civita conditionss4.1d. Conditionss4.8d are more general than
s4.1d. Indeed, equationss4.1d are satisfied if and only if forRi given by s4.11d we haveDiRj =0,
i.e., if and only if the associated distributionD is completely integrable on an open subset ofT*Q
and reducible to everyEh, that is if and only if there exists an ordinary complete solution of
equationH=h s2.4d.

Remark 4.2:Equationss4.8d can be written in the formLijsHd=Pijsq,pdH. This is just a
special casefcorresponding to a first order PDEHsq,pd=0g of a general equation written by
Kalnins and Miller in their theory of the variable separation for partial differential equationsfEq.
s1.25d of Ref. 26, or Eq.s1.17d of Ref. 21g. In fact, equationLijsHd=HPij is considered as a
definition of a so-called regular separation of equationH=0. Instead, in our approach it is a
consequence of the definitions of separation given in Sec. II and rigorously proved by means of
the Hadamard lemma, as shown by the following.

Theorem 4.2: The HJEH=0 s2.1d is separable in the coordinatesq=sqid if and only if the
Levi–Civita conditions LijsHd=0 are satisfied forH=0, that is on the submanifoldE0,

uLijsHduE0
= 0. s4.12d

Proof: The Levi–Civita conditions with Lagrangian multiplierss4.8d obviously imply
LijsHd=0 for H=0. Conversely, assume thats4.12d holds. Then, by Lemma 4.2, there exist
functionsni j such thatLijsHd=ni jH. If we set
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mi j = −
1

]iHs] jHd2ni j ,

and li =0, then due tos4.10d we get that equationss4.5d and s4.7d are satisfied, and due to
Proposition 4.2 the HJE admits an internal separated solution. j

We remark that conditionss4.12d do not involve Lagrangian multipliers.
Remark 4.3:When the functionsRi are given bys4.5d, the generatorsDi become

Di = ]i −
]iH − liH

]iH ] i . s4.13d

Then, the Levi–Civita conditions with Lagrangian multiplierss4.8d can be written in the form

LijsH;lkd = LijsHd + Hflis] jH]i] jH − ] jH]i] jHd + l js]iH]i]
jH − ]i] jH]iHd + lil jsH]i] jH

− ]iH] jHd − Djli]
iH] jHg = 0. s4.14d

It is a remarkable fact that the Levi–Civita separability conditions with Lagrangian multipliersli

are equivalent to differential conditions involving a single undetermined functionL on T*Q and
that these new conditions are the ordinary Levi–Civita separability conditions, but with respect to
a modified Hamiltonian,J=H /L.

Theorem 4.3:The HJEH=0 s2.1d is separable in the coordinatesq=sqid if and only if there
exists a nowhere vanishing functionL=Lsq,pd such that for any iÞ j ,

LijSH
L
D = 0. s4.15d

Proof: The Levi–Civita equations with Lagrangian multiplierss4.14d are not symmetric in the
indicessi , jd, due to the last term. By taking their skew-symmetric part, we obtain equations

]iH] jHDjli = ]iH] jHDil j , s4.16d

which are necessary conditions for the solvability ofs4.14d. SinceDi andDj commute, it follows
that s4.16d are locally equivalent to the existence of a functionFsq,pd such that

li = DiF. s4.17d

Indeed, the commutation conditionfDi ,Djg=0 is equivalent to the existence of local coordinates
sxi ,yjd such thatDi =] /]yi. Hence, equationss4.16d become equivalent to]li /]yj =]l j /]yi. By
considering the coordinatessxid as independent parameters, this is locally equivalent to the exis-
tence of a functionFsx,yd such thatli =]F /]yi, and we gets4.17d. However, it turns out to be
more convenient to replace the functionF in s4.17d with F=lnuLu, whereLsq,pd is a nowhere
vanishing function, so that

li = 1
LDiL. s4.18d

Then, by insertings4.18d in s4.5d, we obtain

Ri = −
]iH
]iH +

1

L
DiL

H
]iH ,

and, bys4.13d,

Ri = −
]iH
]iH +

1

L
s]iL + Ri]

iLd
H

]iH .

By solving this equation with respect toRi, we find

042901-9 Variable separation for the null HJ equation J. Math. Phys. 46, 042901 ~2005!

Downloaded 17 May 2005 to 192.58.150.41. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



Ri = −
L]iH − H]iL

L]iH − H]iL
, s4.19d

that is

Ri = −
]isH/Ld
]isH/Ld

. s4.20d

Hence, for the functionss4.20d the complete integrability conditionss4.4d become the Levi–Civita
conditionss4.15d for the new HamiltonianJ=H /L. j

Remark 4.4:The explicit expression of then Lagrangian multipliersli in terms ofL is

li =
hH,Lji

L]iH − H]iL
, s4.21d

wherehH ,Lji 8]iH]iL−]iL]iH. Indeed, bys4.20d, the generatorsDi become

Di = ]i −
]isH/Ld
]isH/Ld

]i .

In particular, usings4.19d, the Lagrangian multiplierss4.18d become

li =
]iH]iL − ]iL]iH

L]iH − H]iL
,

that is s4.21d.
We call the function

J =
H
L

s4.22d

the conformal Hamiltonianassociated toH and the functionL the conformal factor. The link
between the two Hamiltonian vector fieldsXH andXJ generated by the HamiltoniansH andJ,
respectively, is given by the following.

Proposition 4.3: On the submanifoldE0 the vector fieldsXH andXJ are parallel and differ by
the factorL,

usLXJduE0
= uXHuE0

s4.23d

so that the corresponding affine parameters t andt are related by equation

dt = L dt. s4.24d

Proof: Let v be the symplectic form onT*Q. Then,

iXJv = − dJ = 1
L2H dL − 1

LdH, iXHv = − dH. s4.25d

By eliminating dH in these two equations we get the single equationLiXJv−d lnuLuH= iXHv,
which is equivalent to

i sXH−LXJdv =
H
L

dL. s4.26d

By s4.26d, for H=0 the Hamiltonian vector fieldsXH−LXJd vanishes and we gets4.23d. If t and
t are the affine parameters ofXH andXJ, respectively, then bys4.23d, we find thats4.24d holds on
E0. j

Theorem 4.4:If we know a complete solution of the HJEJ=h for the conformal Hamiltonian
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s4.22d, then for h=0 we get the orbits onE0 of the Hamiltonian vector fieldXH.
Proof: According to Proposition 4.3, onE0, the integral curves of the vector fieldsXH andXJ

coincide, up to the reparametrization given bys4.24d. SinceH=0 meansJ=0, by inserting the
conditionh=0 in a complete solution of the HJEJ=h, we get the orbits of the fieldXH on the
hypersurfaceH=0. j

Remark 4.5:We recall that a first integral of a HamiltonianH is a functionF on T*Q which
is constant on the integral curves ofXH and that this is equivalent to the conditionXHF=0 or
hH ,Fj=0. We call isoenergetic first integral of a functionH any functionF which is constant on
all the integral curves contained in a submanifoldH=h for some values ofh[R. Due to the
Hadamard lemma, this is equivalent to the existence of a functionf such thathH ,Fj=fsH−hd.
Of course, any ordinary first integral is a special kind of isoenergetic first integral. Ifh=0 we call
F a null first integral of H: it is characterized by equation

hH,Fj = fH. s4.27d

By s4.23d, it follows that any first integralF of XJ is a null first integral ofXH. In Sec. VIII we
shall use this definition.

Remark 4.6:Let the HamiltonianH be of the formH=H+L. In this case we can consider a
particular conformal HamiltonianJ=H /L. We call the HamiltonianJ the generalized Jacobi
transformof H. According to Theorem 4.4, we get that the orbits ofH on the hypersurfaceH
=0 coincide with the orbits ofJ on J=1. Moreover, bys4.24d, the generalized Jacobi transform
can be considered33 as a transformation on the cotangent bundleT*Q of the extended configuration
manifold Q=R3Q which is a canonical transformation only on the hypersurfacep0+H=0.

V. A FIRST APPLICATION: THE SEPARATION FOR TIME-DEPENDENT
HAMILTONIANS

Let Hst ,qd be a time-dependent Hamiltonian, that is a function on thesn+1d-dimensional
manifoldQ=R3Q sthe extended configuration manifoldd. The well-known HJE associated with a
time-dependent system is

]W

]t
+ HSt,qi,

]W

]qi D = 0. s5.1d

In the so-called homogeneous formalism, this is equivalent to consider on the cotangent bundle
T*Q, with coordinatessqA,pAd=sq0,qi ,p0,pid, the function

HsqA,pAd = p0 + HsqA,pid, s5.2d

whose corresponding equationH=0 is s5.1d swith q0= td. We have the separation of variables of
s5.1d on the hypersurfaceH=0 if and only if the Levi–Civita conditionsLABsHd=0sAÞB
=0,… ,nd are satisfied onE0, that is for

p0 = − HsqA,pid. s5.3d

The Levi–Civita equationsLABsHd=0 for the Hamiltonians5.2d become

LijsHd = LijsHd, Li0sHd = ]iH]i]0H − ]iH]i]0H si, j = 1,…,nd. s5.4d

It is remarkable the fact that, due tos5.3d and since equationss5.4d do not containp0, we have

LABsHduE0 = 0 ⇔ LABsHd = 0.

Thus, in this case we have the perfect equivalence between the separation of the HJEH=h of the
kind s2.4d and the separation of variables for the single equationH=0 of the kinds2.1d. Then, in
order to have the separability for the HJEs5.1d we need that the following conditions be satisfied:

LijsHd = 0, ]iH]i]0H − ]iH]i]0H = 0 si n . s.d. s5.5d
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Remark 5.1:Equationss5.5d implies that theT*Q-Poisson bracket of the functionsH and]0H
vanishes,

hH,]0HjT*Q = ]iH]i]0H − ]iH]i]0H = 0.

Remark 5.2:If conditions s5.5d hold, then the Levi–Civita conditions withn+1 Lagrangian
multipliers LABsH ;lCd=0 are satisfied forlC=0sC=0,… ,nd or, equivalently, conditionss4.15d
hold for L=1.

Remark 5.3:Equations s5.5d are the Levi–Civita separability conditions for the time-
dependent case proposed by Forbat.15 However, the proof given by Forbat is unsatisfactory.
Indeed, it is based on the fact that, assuming that the equations5.1d admits a complete solution of
the formW=W0st ,cd+oiWisqi ,cd, by differentiatings5.1d with respect to a coordinateqi, we get
equations

]iH]ipi + ]iH = 0 s5.6d

sno summation on the indexid. By solving s5.6d with respect to]ipi, we obtain the system

] jpi = di jRi, Ri = −
]iH

]iH
, s5.7d

whose integrability conditions ares5.5d. However, equationss5.6d are derivable also from equation
H=h, whereh is any constant, not only from equationH=0. In other words, in considering the
integrability conditions of systems5.7d one is actually considering the separation of all equations
H=h=const, which is not in general equivalent to the separation of the single equationH=0, as
we have seen in the preceding sections.

VI. THE ORTHOGONAL SEPARATION FOR NATURAL HAMILTONIANS

Let us apply the general theory so far developed to the special but fundamental case of a
natural HamiltonianH=G+V in orthogonal coordinates,

Hsq,pd = 1
2giipi

2 + Vsqd.

With an orthogonal metricG=sgiid we associate differential operatorsSijsAd on functionsAsqd,

SijsAd 8 ]i] jA − ] j lnugii u]iA − ]i lnugjj u] jA = ]i] jA −
1

gii ] jg
ii]iA −

1

gjj ]ig
j j] jA,

which we callStäckel operators. The indicessi , jd are assumed to be distinct and not summed
sn.s.d. In the following the condition “i Þ j n.s.” referred to an operatorSij will be understood. We
know ssee, e.g., Ref. 3d that gkk is a Stäckel metric if and only if

Sijsgkkd = 0, s6.1d

and that a potentialV is separable in these coordinates if and only ifSijsVd=0. Indeed, for a natural
Hamiltonian in orthogonal coordinates the Levi–Civita equations become

LijsHd = giigjj pipjs 1
2Sijsgkkdpk

2 + SijsVdd = 0, s6.2d

and they are satisfied if and only if1
2Sijsgkkdpk

2+SijsVd=0. For the operatorsSij the following rules
hold:

Sijscd = 0, c [ R,

SijsA + Bd = SijsAd + SijsBd,
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SijsABd = ASijsBd + BSijsAd + ]iA] jB + ] jA]iB,

SijsA−1d = 2A−3]iA] jA − A−2SijsAd. s6.3d

The Stäckel operatorsSij corresponding to a conformal orthogonal metricgii =s1/sdgii obey rules
s6.3d and

SijsAd = SijsAd − s−3s]is] jA + ]iA] jsd,

Sijsgkkd = s−1Sijsgkkd − gkks−2Sijssd =
gkk

s
S 1

gkkSijsgkkd −
1

s
SijssdD . s6.4d

Remark 6.1:From the second equations6.4d, by settings=g11,… ,gnn, we derive the follow-
ing theorem due to Kalnins and Miller, Ref. 20, Lemma 1:If sgiid is a Stäckel metric then all
metricssgii /g11d ,… ,sgii /gnnd are Stäckel metrics. We recall also Lemma 2 of Ref. 20:An orthogo-
nal metric sgiid is conformal to a Stäckel metric if and only if gii /gjj , for any fixed value of the
index j, is a Stäckel metric. Indeed, this follows from Lemma 1 and the fact that for any conformal
metric gii we havegii /gij =gii /gjj . Note that equations6.1d are equivalent to equations

]i j
2 lnugii u − ]i lnugkku] j lnugii u + ]i lnugjj u] j lnugkku + ] j lnugii u]i lnugkku = 0.

With the substitutiongii =eiHi
2, ei = ±1, they coincide with the equations given by EisenhartsRef.

14, Appendix 13d.
Let us apply the results of Sec. IV to the function

H = 1
2giipi

2 + V − E, E [ R.

Theorem 6.1:The HJE

1
2giipi

2 + V − E = 0, s6.5d

is separable in the orthogonal coordinatessqid, for a fixed value E[R, if and only if equations

1

ghhSijsghhd =
1

gkkSijsgkkd, SijsVd =
V − E

ghh Sijsghhd, s6.6d

are satisfied for all indices h, k and iÞ j .
Proof: Due to Theorem 4.2, a necessary and sufficient condition for the separation ofH=0 is

that the Levi–Civita conditions be satisfied when restricted to the submanifoldE0, that is forH
=0. By s6.5d, equationH=0 is equivalent to

p1
2 = − o

k=2

n
gkk

g11pk
2 +

2

g11sE − Vd. s6.7d

Thus, bys6.2d and s6.7d, we get

Lij usHduE0
= giigjj pipjS1

2o
k=2

n

Sijsgkkdpk
2 + SijsVd −

1

2
Sijsg11do

k=2

n
gkk

g11pk
2 +

Sijsg11d
g11 sE − VdD .

s6.8d

Functionss6.8d vanish if and only if
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1

2o
k=2

n FSijsgkkd −
gkk

g11Sijsg11dGpk
2 − SijsE − Vd −

Sijsg11d
g11 sE − Vd = 0. s6.9d

Since conditionss6.9d must be satisfied for all values ofp2,… ,pn, they are equivalent to

Sijsgkkd −
gkk

g11Sijsg11d = 0, SijsE − Vd −
E − V

g11 Sijsg11d = 0,

hence tos6.6d. j

The first equationss6.6d mean that the functionss1/ghhdSijsghhd do not depend on the choice
of the indexh. This is a necessary condition for the separability of equations6.5d, which has the
following equivalent formulation.

Theorem 6.2:The necessary condition for the separability of the HJEs6.5d

1

ghhSijsghhd =
1

gkkSijsgkkd for all indices h, k and iÞ j , s6.10d

is equivalent to the existence of a functionsÞ0 such that the conformal metricgii =gii /s is a
Stäckel metric,

Sijsgkkd = 0. s6.11d

Proof: sid If such a function s exists, then by the second equations6.4d we derive
s1/gkkdSijsgkkd=s1/sdSijssd. Hence,s6.10d follows. sii d Conversely, assume thats6.10d holds. If
we chooses=g11 then from the second equations6.4d we getSijsgkkd=0. j

Remark 6.2:From this proof it follows that conditions6.10d is verified if and only ifs6.11d is
satisfied withs=gjj for any arbitrary choice of the indexj .

This theorem suggests the following.
Definition 6.1:We call conformal separable coordinatesorthogonal coordinatesq=sqid for

which conditionss6.10d or s6.11d hold.
Remark 6.3:A special class of orthogonal conformal separable coordinates is that for which

gii =cissqd , ci [R. In this case the components of the orthogonal conformal metric areci =gii /s
=constant; hence, they are obviously of the Stäckel type. Up to a rescaling of the coordinates we
can reduce to the casegii = ±s, according to the signature of the metric. Note that in this case the
original metricsgiid is conformally flat. Orthogonal coordinates for whichgii =gjj are called iso-
thermal.

Now we apply Theorem 6.1 to the following three special cases:

V = 0, E Þ 0, non-null geodesics,

V = 0, E = 0, null geodesics,

V − E Þ 0, dynamical trajectories with total energyE.

The results for the null geodesics case date back to Stäckel32 ssee also Ref. 20d.
Theorem 6.3:The HJE1

2giipi
2=E with a fixed value EÞ0, is separable in orthogonal coor-

dinatessqid if and only if sgiid is a Stäckel metric, i.e., if and only if it is separable in the ordinary
sense for all values of E.

Proof: For V=0 the second equations6.6d givesSijsgkkd=0. j

Theorem 6.4:The HJE of the null geodesics

giipi
2 = 0 s6.12d

is separable in the orthogonal coordinatessqid if and only if these coordinates are conformal
separable.

Proof: For V=0 andE=0 the second equationss6.6d are trivially satisfied, so that only the first
equations characterize the separation. j
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Theorem 6.5:The HJE

1
2giipi

2 + V − E = 0 sV − E Þ 0d, s6.13d

is separable if and only if the conformal metric

gii =
1

E − V
gii s6.14d

is a Stäckel metric, or equivalently, if and only if for all indices h, k and iÞ j ,

1

gkkSijsgkkd =
1

V − E
SijsVd. s6.15d

This means that the coordinates are conformal separable, according to Definition 6.1, but the
conformal factors must be equal to the functionV−E.

Proof: For V−EÞ0 systems6.6d is equivalent tos6.15d. Moreover, let us consider the con-
formal metrics6.14d and the associated Stäckel operatorsSij . From the second formulas6.4d with
s=E−V, we get

Sijsgkkd =
1

E − V
Sijsgkkd −

gkk

sE − Vd2SijsE − Vd.

Thus,Sijsgkkd=0 is equivalent tos6.15d. j

Remark 6.4:The metricgii =sE−Vd−1gii is called theJacobi metricor action metricssee, e.g.,
Ref. 33 and the references cited thereind of the natural HamiltonianH=G+V for the fixed valueE
of the total energy. Then, Theorem 6.5 can be reformulated as follows

Theorem 6.6:The HJEs6.13d is separable if and only if the corresponding Jacobi metric is
a Stäckel metric.

We adapt to the Jacobi metric the considerations about the conformal Hamiltonians stated in
Proposition 4.3 and Theorem 4.4.

With a natural HamiltonianH=G+V= 1
2gij pipj +V and a fixed value of the energyE[R we

associate two Hamiltonians,

HE = 1
2gij pipj + V − E, JE = 1

2
gij

E−Vpipj .

The passage from the natural HamiltonianH=G+V to the geodesic HamiltonianJE is called
Jacobi transformation16,28,30or Maupertuis transformation.9,33

Let XH be the Hamiltonian vector field generated byH sit coincides with that generated by
HEd andXJ the Hamiltonian vector field generated byJE. Adapting to these cases Proposition 4.3,
Theorem 4.4, and Remark 4.5, we get the following.

Theorem 6.7:Assume that equation HE=0 si.e., JE=1d defines a regular hypersurface of T*Q.
Thensid on this hypersurface the Hamiltonian vector fieldsXH and XJ are parallel,

sE − VdXJ = XH, s6.16d

and outside this surface the differencesE−VdXJ−XH is a vertical vector field.sii d On HE=0 the
integral curves of the vector fieldsXH and XJ coincide, up to a reparametrization, and the affine
parameters tand t of XH and XJ, respectively, are related bydt=sE−Vddt. siii d Any first integral
F of XJ is constant along the integral curves ofXH contained on HE=0. sivd If a complete solution
of the geodesic HJE JE=h is known, then for h=1 we get the orbits of the fieldXH on the
hypersurface HE=0.

Proof: By s4.23d, we get s6.16d. Moreover, due tos4.26d, we have thatXH−sE−VdXJ is
vertical outside the hypersurfaceHE=0, since it is generated by the functionL=E−V which is
constant along the fibers. j

Hence, as a corollary of Theorem 6.6, we have the following.
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Theorem 6.8:The orthogonal separation (in the ordinary sense) of the geodesic HJE JE=h is
equivalent to the orthogonal separation of the HJE HE=0 for a fixed value E of the energy. For
h=1 we get the orbits corresponding to the integral curves ofXH with total energy E.

Remark 6.5:Equations6.15d shows thatSijsVd=0 if and only if Sijsgkkd=0. These two condi-
tions characterize the orthogonal Stäckel separation for a natural Hamiltonian. In this case the
Jacobi metric is a Stäckel metric for all values ofE. From s6.15d it follows also that if the
conformal Jacobi metrics6.14d is a Stäckel metric for two distinct valuesE1ÞE2 of the energy,
then it is a Stäckel metric for all values ofE. Indeed, froms6.15d written for E=E1 andE=E2 it
follows that

1

V − E1
SijsVd =

1

V − E2
SijsVd.

Thus,SijsVd=0, so that alsoSijsgkkd=0. As a consequence, we have the following.
Theorem 6.9:The HJEs6.13d is separable for two distinct values of the energy E if and only

if it is separable in the ordinary sense.
Remark 6.6:According to Theorem 6.9, we have that if a natural HamiltonianH=G+V is not

separable in the ordinary sense, then there exists at most one value of the energyE such thatH
=E is separable.

Remark 6.7:For a natural Hamiltonian in orthogonal coordinates the Lagrangian multipliers
li or the functionL, involved in Theorems 4.1 and 4.3, respectively, which in general are func-
tions onT*Q, are necessarily constant along the fibers, i.e., they reduce in this case to functions on
Q.

We conclude this section with the formulation of Theorems 6.2 and 6.3 in terms of Stäckel
matrices. We recall that an orthogonal metric is a Stäckel metric if and only if it is a row of the
inverse of a Stäckel matrixS=fwi

s jdsqidg. By applying this definition to the general conformal
metric gii =gii /s and to the Jacobi metrics6.14d we get the following.

Theorem 6.10: sid Coordinatessqid are conformal separable if and only if there exists a
Stäckel matrixS=fwi

s jdsqidg such that

gii

wsnd
i =

gjj

wsnd
j , s6.17d

where fws jd
i g=S−1. sii d The Jacobi metrics6.14d is a Stäckel metric if and only if there exists a

Stäckel matrixS=fwi
s jdsqidg such thats6.17d holds and moreover,

E − V = o
i

wi
sndgii . s6.18d

Proof: We have

∃sUgii

s
= wsnd

i ⇔
gii

wsnd
i =

gjj

wsnd
j ,

gii

E − V
= wsnd

i ⇔
gii

wsnd
i =

gjj

wsnd
j ∧ E − V = oi

wi
sndgii . j

Remark 6.8:Let us denote byMj
i the cofactor ofw j

sid. We have detS=oiwi
sndMi

n and

wsnd
i =

Mi
n

detS
.

Hence,s6.17d is equivalent to
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gii

Mi
n = ¯ =

gjj

Mj
n .

We observe that in these conditions, only the firstn−1 columns of the Stäckel matrix are involved,
while the last column is involved only in the expressions6.18d of E−V. Hence, in the character-
ization of the null geodesic separation only a rectangularn3 sn−1d Stäckel matrix is involved,

3w1
s1d … w1

sn−1d

A A A
wn

s1d … wn
sn−1d 4 .

VII. THE INTRINSIC CHARACTERIZATION OF THE ORTHOGONAL SEPARATION

Theorems 6.4 and 6.5 show that the separation of variables of the HJE for the null geodesics
and for a fixed value of the energy is equivalent to the ordinary complete orthogonal separation of
a conformalscontravariantd metric

G =
1

s
G,

whereG=sgiid, G=sgiid ands is a nowhere vanishing function onQ. In these two cases we have,
respectively,

s = a suitable function onQ for the null geodesics,

s = E − V for the Jacobi metric.

Since the ordinary geodesic separation can be characterized by means of Killing tensorssKT’sd, in
both cases we are led to consider KT’s of a conformal metric. A basic well known property is the
following.

Proposition 7.1: A symmetric two-tensorK is a KT for the conformal metricG=s1/sdG i.e.,

fG,K g = 0 s⇔hPG,PKj = 0d, s7.1d

if and only if

fG,K g = −
2

s
K ¹ s(G S⇔hPG,PKj = −

2

s
PK¹sPGD . s7.2d

Notation: Here we denote byf· , ·g the Lie–Schouten bracket of contravariant symmetric
tensors and by( the symmetric tensor product. If we consider the homogeneous polynomial
functionsPK on T*Q associated with contravariant symmetric tensorsK =sKi… jd on Q, then this
bracket is defined byPfK 1,K 2g=hPK 1

,PK 2
j and the symmetric product byPK 1(K 2

=PK 1
PK 2

. We say
that K 1 andK 2 are in involution iffK 1,K 2g=0. We denote byKX the image of a vector fieldX
by K interpreted as as1,1d tensor.

Proof of Proposition 7.1:The equivalence ofs7.1d and s7.2d is proved by the following
calculation:

fG,K g = F 1

s
(G,KG =

1

s
(fG,K g + F 1

s
,KG(G

=
1

s
fG,K g − 2K ¹

1

s
(G =

1

s
SfG,K g +

2

s
K ¹ s(GD . j
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A symmetric two-tensorK is a conformal Killing tensorsCKTd if there exists a vector fieldC such
that

fG,K g = 2C(G s⇔hPG,PKj = 2PCPGd. s7.3d

We say thatK is a CKT ofgradient typeif there exists a functionU such thatC= ¹U. We say that
K is a CKT of self-gradient typeif C=K ¹U.

We remark that in Proposition 7.1 the tensorK is a CKT of self-gradient type with respect to
the metricG with U=−lnusu.

Remark 7.1:The eigenvectors ofK in Proposition 7.1 are the same with respect both metrics
G andG. If ri are the eigenvalues ofK with respect toG, then the eigenvalues with respect toG
are

ri =
ri

s
. s7.4d

If the eigenvalues are simple with respect toG, then they are also simple with respect toG.
Remark 7.2:Tensors of the kindfG are at the same time CKT’s of gradient typeswith C

= ¹ f, i.e., U= fd and of self-gradient typeswith C= fG¹ ln f, i.e., U=ln fd.
Definition 7.1: Two CKT’s K and K 8 are said to beequivalent if K 8=K + fG for some

function f.
Equivalent CKT’s have the same eigenvectors. We shall be interested in equivalence classes of

this kind. In any equivalence class there exists a trace-free representative, so that only trace-free
CKT’s are considered by some authors.20,29,34

As shown by the following proposition, in some special case a CKTK is equivalent to a
tensorK 8 of self-gradient typeshence, a KT of a conformal metricd.

Proposition 7.2:sid A CKTK which is diagonalized in orthogonal coordinates is equivalent to
a CKT K 8 of self-gradient type.sii d For any given orthogonal coordinate system there exists a
function U such that any CKTK diagonalized in these coordinates is equivalent to a CKTK 8 of
self-gradient type such thatfG ,K 8g=2K 8¹U(G, i.e., to a KT of the conformal metricG=eUG.
siii d The n functions Uk=−lnugkku satisfy item (ii).

Proof: If gij =0 andKij =0 for i Þ j , thenKii =rigii and Eq.s7.3d is equivalent to

]ir
j = sri − r jd]i ln gjj + ]ir

i, Ci = ]ir
i . s7.5d

Let us take the tensorK 8=K −rnG with eigenvaluesr8i =ri −rn. By usings7.5d we get

]ir8 j = sr8i − r8 jd]i lnugjj u − r8i]i lnugnnu.

This shows thatK 8 is a CKT with Ci8=−r8i]i lnugnnu, hence of self-gradient type withU
=−lnugnnu and a KT for the conformal metricG /gnn. We remark thatU does not depend onK but
only on the given coordinates. j

In the following two sections we give intrinsic versions of Theorems 6.4 and 6.5, respectively,
for the case considered in Theorem 6.3 the intrinsic characterizations are just that of the ordinary
orthogonal separation.4,18 We shall use the following.

Definition 7.2:A sconformald Killing two-tensor with simple eigenvalues and normal eigen-
vectors is calledcharacteristic (conformal) Killing tensor.

A. The orthogonal separation of the null geodesics

A first characterization is related to the existence of a single CKT.
Theorem 7.1:The HJEs6.12d for the null geodesics is separable in orthogonal coordinates if

and only if on Q there exists a characteristic CKTK .
Proof: According to the intrinsic characterization of the orthogonal separation of a geodesic

Hamiltonian,4,18 a metricG is orthogonally separable if and only if it admits a KTK , fG ,K g
=0, with simple eigenvalues and normal eigenvectors. SinceG=G /s, due to Proposition 7.1, this
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is equivalent to the existence of a characteristic CKT satisfying equations7.2d. Proposition 7.2
shows that this is equivalent to the existence of a characteristic CKT without any other condi-
tion. j

Remark 7.3:Theorem 7.1 was first stated by Kalnins and MillersRef. 20, Theorem 1, Sec. II
with a different proof, not involving the use of self-gradient CKT’s.

A second characterization is related ton CKT’s.
Theorem 7.2:The HJEs6.12d for the null geodesics is separable in orthogonal coordinates if

and only if on Q there exist n CKT’ssK id=sK 1,K 2,… ,K nd, sid pointwise independent, sii d with
common eigenvectors, siii d in involution.

Proof: By Theorem 8.8 of Ref. 7 the common eigenvectors are normal. There exists orthogo-
nal coordinate systems in which all the tensors are diagonalized. Then, the pointwise indepen-
dence implies the existence of a linear combinationswith constant coefficientsd K =ciK i with
simple eigenvalues. This is a conformal characteristic tensor. Then we apply Theorem 7.1. Con-
versely, since the separation ofs6.12d is equivalent to the ordinary separation of a conformal
metric G=G /s, there existn KT’s K i for the conformal metric satisfyingsid, sii d, siii d. Due to
Proposition 7.1, these tensors are CKT’s forG. j

Remark 7.4:In the intrinsic characterization of the ordinary orthogonal separation in terms of
n independent KT’ssin involutiond, the metricG may be one of them. On the contrary, in Theorem
7.2 none CKT’sK i can be the metric. Indeed, if one of theK i is the metric, then conditionsiii d
implies that allK i are KT’s and we reduce to the ordinary orthogonal separation. In other words,
the metric cannot belong to the linear space generated by theK i sby linear combinations with
constant coefficientsd. However,

Proposition 7.3: Given, n CKT’s K i with common normal eigenvectors, there exist a linear
combination with constant coefficients and a function f such that ciK i = fG.

Proof: We apply the second part of Proposition 7.2. Then, there are equivalent CKT’s of
self-gradient typeK i8=K i + f iG with the same functionU. They are KT’s of the metriceUG=G
with common normal eigenvectors. Thus, there exists a linear combination with constant coeffi-
cients such thatciK i8=G. It follows thatciK i =−ci f iG+eUG= fG with f =eU−ci f i.j

A third characterization of the separability fors6.12d involvesn−1 CKT’s.
Theorem 7.3:The HJEs6.12d for the null geodesics is separable in orthogonal coordinates if

and only if on Q there exist n−1 CKT’s sK ad=sK 1,K 2,… ,K n−1d with sid common normal eigen-
vectors (i.e., all simultaneously diagonalizable in orthogonal coordinates) and such thatsii d
G ,K 1,K 2,… ,K n−1 are pointwise independent.

Proof: Due to the pointwise independence of the tensors, there exists a linear combination
with constant coefficients having distinct eigenvalues, i.e., which is a characteristic CKT and by
Theorem 7.1 we have the separation of variables fors6.12d Conversely, ifs6.12d is separable, then
the conformal metricG is separable and there existsn−1 tensorssK ad which aresad KT’s with
respect toG, sbd with common normal eigenvectors, and such thatscd sG ,K 1,K 2,… ,K n−1d are
pointwise independent. Hence,K a satisfy sid, sii d, andsiii d. j

This theorem is a slightly modified version of Theorem 2, Sec. II of Ref. 20. In general, a set
of tensorssK ad satisfying the hypotheses of Theorem 7.3 may not be in involution. However,

Proposition 7.4: The tensorssK ad in Theorem 7.3 are equivalent to CKT’s in involution.
Proof: First of all we remark that also the tensorsK a+ faG satisfy the hypotheses of Theorem

7.3, for any choice of then−1 nonzero functionsfa. By using equationss7.5d, we see that two
CKT’s K a, K b sdiagonalized in orthogonal coordinatesd are in involution if and only if for all
indicesi,

Cai

ra
i =

Cbi

rb
i sa,b [ h1,…,n − 1jd, s7.6d

wherera
i are the eigenvalues ofK a andCai are the covariant components of the vector fieldsCa

satisfyingfG ,K ag=2Ca(G. Conditions7.6d is not preserved by replacing the tensors by equiva-
lent ones. Moreover, by Proposition 7.2sii d, K a are equivalent to CKT’sK a8 of self-gradient type
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with the same functionU. By Proposition 7.1,K a8 are KT’s of the conformal metriceUG, having
common normal eigenvectors. Hence, they are in involution. j

There is an alternative formulation of Theorem 7.3, still involvingn−1 CKT’s, due to Kalnins
and Miller sRef. 20, Theorem 4, Sec. IId:

Theorem 7.4:The HJEs6.12d for the null geodesics is separable in orthogonal coordinates if
and only if on Q there exist n−1 CKT’s sK ad=sK 1,K 2,… ,K n−1d sid with common eigenvectors,
sii d in involution and such thatsiii d G ,K 1,K 2,… ,K n−1 are pointwise independent.

We give here a proof which is based on the following general characterization of the integra-
bility of frames, which is an extension of that given in Ref. 7, Theorem 8, Sec. VIII.

Theorem 7.5:Let sX id a frame on Q. Let sK ad be n contravariant symmetric two-tensorssid
pointwise independent, sii d simultaneously diagonalized in the framesX id and such thatsiii d for
each aÞb there exists a vector fieldCab and a symmetric two tensorM ab diagonalized in the
frame sX id such that

hPsK ad,PsK bdj = 2PsCabdPsM abd. s7.7d

Then, the frame is integrable and all the two-tensors are simultaneously diagonalized in a same
coordinate system.

We recallscf. Ref. 7d that sId a frame is calledintegrableif for each indexi the distributionDi

spanned by the vectorssX1,… ,X i−1,X i+1,… ,Xnd is completely integrable;sII d a frame is inte-
grable if and only if the distributionsDi j spanned by pairs of vectorssX i ,X jd are completely
integrable;sIII d a frame is integrable if and only if there exist local coordinatessqid such that
X i = f i ] /]qi, where f i are nowhere vanishing functions.

Proof: Let us set fX i ,X jg=Vi j
hXh, Vi j

h =−V ji
h, PsX id=xi, so that hxi , fj=kX i ,dfl, hxi ,xjj

=PsfX i ,X jgd=Vi j
hxh. Assumptionssii d andsiii d mean thatK a=Ka

i X i(X i, M =MiX i(X i. By recall-
ing the calculation of Ref. 7, Sec. VIII, we have

hPsK ad,PsK bdj = 2s2Ka
i Kb

hVih
j + sKa

i kX i,dKb
kl − Kb

i kX i,dKa
klddk

hdk
j dxixhxj .

Being 2PsCabdPsM abd=2Cab
k xkMab

l xl
2=2Cab

k Mab
l xkxl

2, from Eq. s7.7d it follows that

s2Ka
i Kb

hVih
j + sKa

i kX i,dKb
kl − Kb

i kX i,dKa
kl − Cab

i Mab
k ddk

hdk
j dxixhxj = 0.

This is a homogeneous polynomial equation which must be identically satisfied for all values of
the variablesspkd, i.e., for all values of the variablessxid, sincexi =PsX id=Xi

kpk, and detfXi
kgÞ0.

Thus, all coefficients vanish. In particular, the coefficient ofx1x2x3 sas well as for all possible
choices of three distinct indicesd gives rise to equation

Ka
1Kb

2V12
3 + Ka

1Kb
3V13

2 + Ka
2Kb

3V23
1 + Ka

2Kb
1V21

3 + Ka
3Kb

1V31
2 + Ka

3Kb
2V32

1 = 0.

From now on the proof is the same of Theorem 8.8 of Ref. 7. j

Proof of Theorem 7.4:The tensorssK ad=sG ,K ad fulfill the assumptions of Theorem 7.5. In
particular, Eqs.s7.7d become

hPsK ad,PsK bdj = 0, hPsK ad,PsGdj = 2PsCadPsGd.

Hence, the common eigenvectors are normal. j

A final important remark is that Theorems 7.2 and 7.4 can be derived from more general
statements.

Definition 7.2:We say that two symmetric two-tensorsK 1 andK 2 on a Riemannian manifold
are in conformal involution if there exists a vector fieldC12 such that

fK 1,K 2g = 2C12(G s⇔ hPK 1
,PK 2

j = 2PC12
PGd. s7.8d

Theorem 7.6:The HJEs6.12d for the null geodesics is separable in orthogonal coordinates if
and only if on Q there exist n CKT’ssK id=sK 0,K 1, . . . ,K n−1d sid pointwise independent, sii d with
common eigenvectors andsiii d in conformal involution.
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Proof: The common eigenvectors are normal, since equations7.8d is a particular case ofs7.7d.
Item sid implies the existence of a linear combinationK =ciK i with simple eigenvalues. Then we
apply Theorem 7.1. Conversely, due to Theorem 7.2, the separation implies the existence of
independent CKT’sK i satisfyings7.8d with Ci j =0. j

Remark 7.5:Theorem 7.6 is in perfect analogy with the intrinsic characterization of the
ordinary orthogonal separation in terms ofn independent KT’s in involution: it is enough to cancel
the word “conformal.” This shows that the notion of conformal involution is a natural and useful
extension of the ordinary involution.

Proposition 7.5: All CKT’s diagonalized in orthogonal coordinatessqid are in conformal
involution.

Proof: According to Proposition 7.2, two tensorsK 1, K 2 diagonalized insqid are equivalent to
two KT’s K 18=K 1−r1

nG, K 28=K 2−r2
nG of the conformal metricG=G /gnn. Two simultaneously

diagonalized KT’s are in involutionsRef. 4, Sec. IId. Hence,

fK 1,K 2g = fK 18 + r1
nG,K 28 + r2

nGg = 2sK 1 ¹ r2
n − K 2 ¹ r1

nd(G.

j

Remark 7.6:As a consequence of this proposition, for two CKT’s simultaneously diagonalized
in orthogonal coordinates equations7.7d, fK 1,K 2g=2C12(M 12, impliesM 12=G, thus the confor-
mal involution s7.8d. In other words, in Theorem 7.6 by replacing the conformal involution
conditionssiii d, fK i ,K jg=2Ci j(G with fK i ,K jg=2Ci j(M i j we do not get an extension of the
theorem.

Remark 7.7:The CKT’s K i of Theorem 7.6 generate ann-dimensional spaceK of CKT’s in
conformal involution which are simultaneously diagonalized in orthogonal coordinates. We call
such a space aconformal Killing–Stäckel spacesCKS spaced. The existence of such a space is
necessary and sufficient for the orthogonal separation of the null geodesic HJE. However, since
propertiessid, sii d, andsiii d in this theorem are invariant with respect to the equivalence transfor-
mationsK i →K i8=K i + f iG, there are infinitely many CKS-spacesK8 associated withK, corre-
sponding to any choice of the functionsf i, having the same properties and diagonalized in the
same coordinates. We remark thatsId each CKS space contain a tensor of the kindfG si.e., a
symmetric tensor withn coinciding eigenvaluesd. sII d There exists a CKS space which contains the
metric tensorG. PropertysId follows from Proposition 7.3. To provesII d, starting from the given
K i, according to Proposition 7.3, we can find a linear combination such thatciK i = fG. Thus, if
c0Þ0, we replaceK 0 by the equivalent tensorK 08=K 0+fs1− fd /c0gG. Then the CKS space gen-
erated bysK 08 ,K 1, . . . ,K n−1d contains the metricG=c0K 08+c1K 1+¯+cn−1K n−1. A consequence of
these remarks is that we can reformulate Theorem 7.6 assuming that the metric tensorG is one of
the K i. This shows that Theorem 7.4 follows from Theorem 7.6.

B. The orthogonal separation for E−VÅ0

Theorem 7.7:The HJEs6.13d for a fixed value E of the energy and for E−VÞ0 is separable
in orthogonal coordinates if and only if on Q there exists a characteristic CKTK such that

fG,K g =
2

E − V
K ¹ V(G s7.9d

or, equivalently, if and only if there exist a function f and a characteristic CKTK 8 such that

fG,K 8g =
2

E − V
sK 8 ¹ V + ¹ fd(G. s7.10d

Proof: The proof of the first part of this statement follows the same pattern of that of Theorem
7.1, with s=E−V. Moreover, if we find a characteristic CKTK 8 satisfying s7.10d, then the
equivalent tensorK =K 8−ff / sE−VdgG satisfies conditions7.9d. j

Theorem 7.8:TheHJE (6.13) for a fixed value E of the energy and for E−VÞ0 is separable
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in orthogonal coordinates if and only if on Q there exist n CKT’ssK id=sK 0,K 1,… ,K n−1d (i)
pointwise independent, (ii) with common eigenvectors, (iii) in conformal involution and such that

fG,K ig =
2

E − V
sK i ¹ V + ¹ f id(G s7.11d

with suitable functions fi.
Proof: Due to Theorem 7.5 and itemsiii d the common eigenvectors are normal. Itemssid and

sii d imply the existence of a CKT with simple eigenvalues satisfyings7.10d. Then we apply
Theorem 7.7. Conversely, ifs6.13d is separable, then the Jacobi metricG=G / sE−Vd is separable.
This means that there existsn KT’s K i for G, pointwise independent, with common eigenvectors,
in involution, hence in conformal involution. Recalling Proposition 7.1, we have

fG,K ig = 2
E−VK i ¹ V(G.

This is a particular case ofs7.11d. j

Remark 7.8:This theorem shows that, in other words, the orthogonal separation of the Jacobi
metric is equivalent to the existence of a CKS space satisfying the additional conditions7.11d. We
observe that we can always modify the basissK id in order to include the metric tensorG. Due to
Proposition 7.2, there exist a functionf and n real numbersci not all equal to zero, such that
fG=oic

iK i. Up to a reordering of the tensors, we can suppose thatc0Þ0. Then, sG ,K ad
=sG ,K 1,… ,K n−1d satisfy itemssii d, siii d and are pointwise independent,

detFgii

Ka
ii G =

1

f
detFcjKj

ii

Ka
ii G = o

b=1

n−1
cb

f
detFKb

ii

Ka
ii G +

c0

f
detFK0

ii

Ka
ii G =

c0

f
detfKj

iig Þ 0.

VIII. SEPARATED EQUATIONS

Summarizing the results of Sec. VII A, we have five intrinsic characterizations of the orthogo-
nal separation of the null geodesic HJE: Theorem 7.1sinvolving a single characteristic CKTd,
Theorem 7.2sinvolving n CKT’s in involutiond, Theorem 7.3sinvolving n−1 simultaneously
diagonalized CKT’sd, Theorem 7.4sinvolving n−1 CKT’s in involutiond, and Theorem 7.6sin-
volving n CKT’s in conformal involutiond. We show how, for each one of these characterizations,
we can reduce the HJE to separated ordinary differential equations. This reduction involves the use
of Stäckel matrices. As shown in Ref. 2, we can state the following.

Lemma 8.1: LetsFid=sF1,… ,Fnd be n independent functions of the form Fi =wsid
j pj

2. They are

in involution if and only if the matrixfwsid
j g is the inverse of a Stäckel matrixS=fwi

s jdg.
Proof: We prove this statement in a direct way, without any reference with the known links

between Stäckel matrices and the orthogonal separation. The condition

hFi,Fhj = 2swsid
k ]kwshd

j − wshd
k ]kwsid

j dpkpj
2 = 0

is equivalent to equations

wsid
k ]kwshd

j = wshd
k ]kwsid

j , k n.s. s8.1d

sid Multiplying by wl
sid and summing over i, we get the equivalent systemdl

k]kw j
shd

=−wshd
k oiwsid

j ]kwl
sid. For kÞ l, wshd

k oiwsid
j ]kwl

sid=0. For any fixed indexk there always exists an index

h such thatwshd
k Þ0. It follows thatoiwsid

j ]kwl
sid=0. And this is equivalent to]kwl

sid=0, for kÞ l. sii d
Conversely, letfwi

s jdg be a Stäckel matrix. By applying]k to equationwshd
i wi

sld=dh
l , we get

oiswi
sld]kwshd

i d+wshd
k ]kwk

sld=0. Let us multiply bywsld
j and sum over the indexl; we get ]kwshd

j

−wshd
k olwk

sld]kwsld
j =0. If we multiply by wsid

k without summing overk, then we findwsid
k ]kwshd

j

=wsid
k wshd

k olwk
sld]kwsld

j . This shows thatwsid
k ]kwshd

j is symmetric with respect to the indicessi ,hd. Thus,
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s8.1d is proved. j

Case of Theorem 7.2:Let sK id be n CKT’s satisfying the conditions of this theorem. The
functionsFi =Ki

jj pj
2 fulfill Lemma 8.1. Hence,wsid

j 8Ki
jj form the inverseS−1 of a Stäckel matrix.

Moreover, since they are CKT’s, sees7.3d, we havehPG ,Fij=2PCi
PG, where PG=giipi

2. This
shows thatFi are null first integralsof the null geodesicsfcf. s4.27dg. SinceFi are independent and
in involution, equations

Fisq,pd 8 Ki
jj pj

2 = ci s8.2d

describe a Lagrangian foliation on an open subset ofT*Q which is compatible with the submani-
fold of equationgiipi

2=0 ssee Sec. IId. This foliation is the geometrical counterpart of an extended
complete solution of the null HJE. This complete solution is separable. Indeed, by solving equa-
tions s8.2d, wsid

j pj
2=ci, we get the separated equations

pj
2 = w j

sidci . s8.3d

Case of Theorem 7.3:Let sK ad=sK 1,… ,K n−1d ben−1 CKT’s satisfying the conditions of this
theorem. They are diagonalized in orthogonal coordinates. Let us consider the diagonalized ten-
sors K a8 =K a−ra

nG, wherera
n are the last eigenvalues ofK a. Sincera

n =Ka
nn/gnn, the diagonal

components ofK a8 are

Ka
j j − Ka

nn gjj

gnn . s8.4d

By recalling the proof of Proposition 7.2, allK a8 are KT’s of the conformal metricG /gnn, simul-
taneously diagonalized, hence in involution. As a consequence, then−1 functions

Fa 8 SKa
j j − Ka

nn gjj

gnnDpj
2

are null first integrals in involution of the null geodesics. Moreover, the function

Fn 8
gjj

gnnpj
2

is a further null first integral in involution. Thesen first integrals in involution are independent
because of itemsii d of Theorem 7.3. Thus, due to Lemma 8.1, the functions

wsad
j 8 Ka

j j − Ka
nn gjj

gnn, wsnd
j 8

gjj

gnn ,

form the inverse of a Stäckel matrix. It follows that equations

Fa = wsad
j pj

2 = ca, Fn = wsnd
j pj

2 = 0, s8.5d

define a Lagrangian foliation of the submanifoldgiipi
2=0, which is the geometrical counterpart of

an internal complete solution of the null HJE. This complete solution is separable. Indeed, by
solving equationss8.5d, wsid

j pj
2=ci, with cn=0, we get separated equations of the kinds8.3d, but

with n−1 constant parametersscad,

pj
2 = w j

sadca. s8.6d

This result is in agreement with Remark 6.8.
Case of Theorem 7.4:The procedure is the same as for the case of Theorem 7.3.
Case of Theorem 7.6:Let sK id be n CKT’s satisfying the conditions of this theorem. By

recalling Remark 7.7, we can always find a linearsconstant coefficientsd combination such that
aiK i = fG. When the constantsai and the functionf are determined, assumingsup to a reorderingd
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that a0Þ0, we can replaceK 0 by G, and we are in the case of Theorem 7.3.
Case of Theorem 7.1:We point out that Theorem 7.1 is convenient for characterizing the

separation, since it involves only a single CKT. However, in order to get separated equations
sinvolving a Stäckel matrixd we need to known−1 CKT’s. Let ri be the eigenvalues of the given

characteristic CKTK . According to Proposition 7.2, the tensorK̃ =K −rnG is a characteristic KT
for the conformal metricG=G /gnn sinstead of the last onen, we can choose any other indexd. As
it is well known, any characteristic KT generates an-space of KT’s simultaneously diagonalized
in orthogonal coordinates, whose eigenvaluesri with respect to the metricG satisfy the Killing–
Eisenhart equations

]ir
j = sri − r jd]i ln gjj s8.7d

which form a complete integrable system. Sincer j =sr j −rndgnn, we observe that for the given

tensorK̃ we havern=0. We observe that, following Kalnins and Miller,20 if we set mi =ri −rn,
then froms8.7d we obtain equations

]im
j = smi − m jd]i ln gjj − mi]i ln gnn,

which summarize Eqs.s2.8d of Ref. 20. Let us taken independent solutionsri
j of systems8.7d with

rn
j =1 for all j . The corresponding tensorsK i of componentsKi

jj =ri
jgj j /gnn are independent KT’s

for G such thatK n=G. This means that

wsid
j = Ki

jj = ri
jgj j /gnn

form the inverse of a Stäckel matrix and equationswsid
j pj

2=ci are equivalent to the separated

equationspj
2=w j

sidci. This gives an extended separated solution. Forcn=0 we get the null geode-
sics.

Finally, let us consider the case ofE−VÞ0.
Case of Theorem 7.8:Let sK id=sK 0,… ,K n−1d be n CKT’s satisfying the conditions of this

theorem. By recalling the proof of Theorem 7.7, if we perform the equivalence transformation

K̃ i =K i −ff i / sE−VdgG we get n KT’s of the Jacobi metricG=G / sE−Vd, characterizing its or-
thogonal separation. Then the functionswsid

j =Ki
jj − f i / sE−Vd form the inverse of a Stäckel matrix.

By solving equationswsid
j pj

2=ci, we get the separated equations

pj
2 = w j

sidci s8.8d

thus, a complete separated solution of the HJE,

sE − Vd−1giipi
2 = 2h. s8.9d

The separated solution following froms8.8d is an extended separated solution of the HJE1
2giipi

2

=E−V with the fixed valueE of the energy. By substituting ins8.9d the expressions ofpj given by
s8.8d, we get an equation of the kindh=hscid. It follows that for h=1 we get equationhscid=1.
When the constantsci satisfy this equation we get an internal separated solution of the HJE for the
given valueE of the energy.

Case of Theorem 7.7:If we have a characteristic CKT tensorK 8 satisfying s7.10d, thenK
=K 8−ff / sE−VdgG is characteristic KT of the Jacobi metricG=G / sE−Vd. Systems8.7d with
gjj =gjj / sE−Vd is completely integrable and providesn independent solutionsri

j with rn
j =1 for all

j . With such a solution we define the inverse of a Stäckel matrix by settingwsid
j =ri

jgj j / sE−Vd.
Then, by solving equationswsid

j pj
2=ci we get separated equations which define an extended sepa-

rated solution. By settingcn=1 we get an internal separated solution. We remark that in both cases
the Stäckel matrices depend on the valueE.
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IX. THE TWO-DIMENSIONAL CASE

A two-dimensional Riemannian manifold is always conformally flat. The link between the
conformal separation in two dimensions, the analytical functions and the CKT’s is examined in
Ref. 28, and used for generalizing a result of Ref. 25. We show here how some known results
follow from the general theory developed in the preceding sections.

We can write the most general 232 Stäckel matrix in two variables in the form

S= Ff1sq1d c1sq1d
f2sq2d c2sq2d G, f1c2 − f2c1 Þ 0. s9.1d

The inverse matrix is

S−1 =
1

f1c2 − f2c1
F c2 − c1

− f2 f1
G . s9.2d

The componentsgii of a separable orthogonal metricG and of the associated KTK are given by
the second and the first line ofS−1,

fg11,g22g =
1

f1c2 − c1f2
f− f2,f1g, fK11,K22g =

1

f1c2 − c1f2
fc2,− c1g.

Then Theorem 6.10 implies the following.
Theorem 9.1: sid The HJE of the null geodesicss6.12d is separable in the orthogonal coor-

dinatessq1,q2d if and only if there exist two nowhere vanishing functionsj1sq1d and j2sq2d such
that

g11

g22 =
j1

j2
. s9.3d

sii d The HJE s6.13d, for a fixed value of E and for E−VÞ0, is separable in the orthogonal
coordinatessq1,q2d if and only if there exist four functionssj1sq1d ,j2sq2d ,c1sq1d ,c2sq2dd, with

c2

j1
+

c1

j2
Þ 0, s9.4d

such thats9.3d holds and moreover,

E − V = c1g
11 + c2g

22. s9.5d

Proof: From s6.17d ands9.2d it follows that there exist functionsf1sq1d andf2sq2d such that
g11/g22=−f2/f1. The functionsji of the statement are then given byj1=1/f1 and j2=−1/f2.
Formula s9.5d follows from s6.18d and s9.1d. Condition s9.4d is the regularity condition of the
Stäckel matrixs9.1d. j

From Theorem 9.1 it follows that on a two-dimensional Riemannian manifold, orthogonal
coordinatessq1,q2d are conformal separable coordinates if and only if the ratiog11/g22 has the
form s9.3d, which is equivalent to say thatg11/g22 is a product of two functions depending only on
q1 andq2, respectively. In Remark 6.3 we have seen that coordinates satisfyinggii =cissqd sci [Rd
are conformal separable. The following theorem shows that in fact any two-dimensional confor-
mal separable system is of this kind.

Theorem 9.2:On a two-dimensional manifold an orthogonal coordinate system is conformal
separable if and only if, up to a rescaling,

g11 = ± g22. s9.6d

Proof: According to Remark 6.3, ifs9.6d holds, then the coordinates are conformal separable.
Conversely, assume thats9.3d holds. Theng11=r /j1, g22=r /j2, and
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ds2 = g11sdq1d2 + g22sdq2d2 = rS sdq1d2

j1
+

sdq2d2

j2
D .

In the coordinatessq̃id defined by the rescaling dq̃i = ujiu−1 / 2 dqi we have ds2=rse1sdq̃1d2

+e2sdq̃2d2d, whereei =signsjid. It follows that g̃ii =rei. j

Remark 9.1:If s9.6d holds, froms9.3d and s9.5d it follows that j2= ±j1=constant andE−V
=sc1±c2dg11. Then the Stäckel matrixs9.1d and its inverses9.2d have the form

S= F c c1sq1d
7c c2sq2d G, c2 ± c1 Þ 0, S−1 =

1

csc2 ± c1dFc2 − c1

±c c
G .

Let us consider the particular case of the Euclidean planeE2, with Cartesian coordinatessx,yd. We
recall the followingssee, e.g., Ref. 28d.

Proposition 9.1: If f szd=usx,yd+ ivsx,yd, z=x+ iy, is a non constant analytic function, then in
the open domain where¹uÞ0 the real and the imaginary parts define conformal separable
coordinates q1=usx,yd and q2=vsx,yd such that g11=g22.

Proof: From the Cauchy–Riemann conditions

ux = vy, uy = − vx s9.7d

sthe suffixes denote the partial derivativesd it follows that

g12 = uxvx + uyvy = 0, g11 = suxd2 + suyd2 = svyd2 + svxd2 = g22. s9.8d

Then we apply Remark 9.1. The coordinate transformation is singular at those points where the
partial derivativess9.7d vanish, since

detFux vx

uy vy
G = uxvy − vxuy = suxd2 + suyd2 . j

By applying Theorem 9.2, we prove the converse of Proposition 9.1.
Proposition 9.2: Up to a rescaling, every conformal separable system of the Euclidean plane

is generated by a nonconstant analytic function.
Proof:According to Theorem 9.2, we can rescale a conformal separable coordinate system in

order to haveg11=g22 and such that the corresponding coordinate transformation satisfiess9.8d.
The solutions ofs9.8d are

ux = vy, ux = − vy,

uy = − vx, uy = vx,

which are the Cauchy–Riemann conditions forf =usx,yd+ ivsx,yd or f̃ =vsx,yd+ iusx,yd. Hence
the coordinates are generated by an analytic function. j

Remark 9.2:The real and imaginary part of a given analytic function are both harmonic
functions onR2, i.e., solutions of the Laplace equation in the planeDu=0. Conversely, each
harmonic functionusx,yd can be chosen as real part of an analytic function. The corresponding
imaginary partvsx,yd is determined up to an additive constant.

Remark 9.3:It is possible to associate with every harmonic function a class of potentials,
depending on two real parametersa, b, which are separable for a single value of the energy. The
conformal separable coordinates and the suitable value ofE depend onsa,bd. Let usx,yd be a
harmonic function. Then, the functionsũ=u+ax+by, a,b[R are harmonic. According to Remark
9.2, we construct a coordinate transformation

q1 = q1sx,yd = ũ, q2 = q2sx,yd = ṽ,

with ṽ such thatũ+ iṽ is analytic. For these coordinates we have
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g11 = g22 = S ]ũ

]x
D2

+ S ]ũ

]y
D2

.

Hence,sq1,q2d are conformal separable coordinates compatible with a natural HamiltonianH
=G+V for a fixed value of the energyE if and only if

E − V = sc1sq1d + c2sq2ddg11. s9.9d

In particular, the caseE−V=g11 is satisfied by choosingE=a2+b2 and

Vsx,yd = S ]u

]x
D2

+ S ]u

]y
D2

+ 2a
]u

]x
+ 2b

]u

]y
. s9.10d

In the following example we consider a dynamical system with a scalar potential depending on a
single parametera, which is a special case of the potentials9.10d obtained by consideringb=0 in
the preceding discussion.

Example 9.1:In E2 let us consider the potential

Vsx,yd = −
2ax+ 1

x2 + y2 ,

where sx,yd are Cartesian coordinates anda is a real parameter. By examining the separability
condition

dsK dVd = 0, s9.11d

whereK is a generic KT of the Euclidean planessee Ref. 6 for the details of this techniqued, we
find that, foraÞ0, s9.11d is satisfied only forK =G sthe metric tensord. Thus, foraÞ0, V is not
separable inE2. However, for any value ofaÞ0 there is a suitable value of the energyE, such that
the HJE G+V−E=0 is separable in a conformal coordinate system depending ona. Let us
consider

q1 = logÎx2 + y2 + ax= log % + a% cosq, q2 = arctanSy

x
D + kp + ay= q + a% sinu.

With respect to these coordinates we have

g11sq1,q2d = g22sq1,q2d =
x2

sx2 + y2d2 + a2 +
2ax

x2 + y2 +
y2

sx2 + y2d2 =
2ax+ 1

x2 + y2 + a2.

Thus,sq1,q2d are conformally separable. Moreover, since forE=a2 we getE−V=g11, which is of
the form s9.9d, we have the separation of variables for the fixed value of the energyE=a2. Now
we solve the HJE and the corresponding dynamical system. We construct the Stäckel matrixS
associated withsq1,q2d. By applying to this special cases9.3d, s9.4d, ands9.9d, we have

j1 = 1 =j2, c1 = 1, c2 = 0,

so that the Stäckel matrix and its inverse are

S= F 1 1

− 1 0
G, S−1 = F0 − 1

1 1
G .

A basis of the conformal Killing–Stäckel space is

G =
]

]q1 ^
]

]q1 +
]

]q2 ^
]

]q2, K =
]

]q2 ^
]

]q2 .

With respect to the new coordinates, the natural Hamiltonian
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H =
1

2
px

2 +
1

2
py

2 −
2ax+ 1

x2 + y2 − a2

becomes the geodesic HamiltonianJE= 1
2p1

2+ 1
2p2

2. The quadratic first integral isHK= 1
2p2

2. The
separated equations are given by the system

JE = h,

HK = c,
⇔

1
2p1

2 + 1
2p2

2 = h,
1
2p2

2 = c,
⇔

p1
2 = 2sh − cd,

p2
2 = 2c.

The constants have to fulfill the conditions 0øcøh. The integral curves of the Hamilton equa-
tions are

p1 = ± Î2sh − cd, p2 = ± Î2c, q1 = ± Î2sh − cdt + q0
1, q2 = ± Î2ct + q0

2,

and their orbits are described by the equation

q1 − q0
1 = ±Îh − c

c
sq2 − q0

2d.

For h=1, we have the orbits ofH=0, i.e., of the natural Hamiltonian with potentialV and energy
E=a2, parametrized byc[ s0,1d. In Cartesian coordinates the orbits are given by

logÎx2 + y2 + ax= ±Î1 − c

c
FarctanSy

x
D + kp + ayG + d

and in polar coordinatess% ,qd by

log % + a% cosq = ±Î1 − c

c
sq + a% sinud + d,

whered=q0
1±Îf1−c/cgq0

2 is a constant depending on the initial point.
Remark 9.4: For n.2 it is no longer possible to relate conformal separable coordinates with

analytic functions, as for the casen=2. However, it can be seen that the orthogonal coordinate
systems which allow theR-separation of the Laplace equation inn-dimensional manifolds with
constant curvature, obtained by different methods,8,10,17,19,27and known in the Euclidean three-
space as confocal cyclides12,13are all conformal separable coordinates according to our Definition
6.1. This fact exhibits the deep relation between theR-separation and the separation of the HJE
with a fixed value of the energy developed in this paper. Indeed, both conformal separable and
R-separable coordinates are characterized by CKT’sssee, e.g., Ref. 20d. A further analysis of this
link is in progress.
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