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1. Introduction

In the last years the study of the separable systems (whose Hamilton-Jacobi
equations can be integrated by separation of variables) has known a remarkable
development, also in relation with other kinds of integrable systems (bi-Hamiltonian
systems, Lax systems). I think that an outline of the Riemannian background of
this theory may be useful for specialists as well as for beginners. With the exception
of the last section, we shall confine our discussion to the orthogonal separable

systems (or Stäckel systems) and to a special class of Stäckel systems, here
called L-systems. Some theorems presented here are new. For some of the recalled
theorems a new shorter proof is given.

Let Q be a n-dimensional Riemannian manifold with generic local coordinates
q = (qi) and (contravariant) metric tensor G = (gij), which we assume to be
positive-definite, and let T ∗Q be the cotangent bundle of Q, with canonical coordi-
nates (q, p) = (qi, pi). We shall deal with the additive separation of the Hamilton-
Jacobi equations

G(q, p) = E, H(q, p) = E, pi = ∂iW,

where G = 1
2 gij pipj is the geodesic Hamiltonian on T ∗Q, and H = G + V =

1
2 gij pipj + V is a natural Hamiltonian, being V (q) the potential energy, a
smooth function on Q canonically lifted to a function on T ∗Q. A coordinate system
q is called separable if the geodesic Hamilton-Jacobi equation G = E admits a
complete solution of the form

W (q, c) =

n
∑

i=1

Wi(q
i, c), c = (ci), det

[

∂2W

∂qi∂cj

]

6= 0. (1.1)

Such a solution is called separated solution. Note that in these definitions the
presence of a set of n constants c satisfying the completeness condition (1.1)2 is
fundamental. Note that here we consider only natural canonical coordinates,
where q are coordinates on the configuration manifold. Levi-Civita (1904) proved
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2 S. Benenti

that a Hamilton-Jacobi equation H(q, p) = E admits a separated solution (1.1) if

and only if the differential equations (notation: ∂i = ∂/∂qi, ∂i = ∂/∂pi)

Lij(H)
.
= ∂iH∂jH∂i∂jH + ∂iH∂j∂i∂jH − ∂iH∂jH∂i∂jH − ∂iH∂jH∂i∂

jH = 0,

are identically satisfied. They are called the separability conditions or sepa-

rability equations of Levi-Civita. They provide not only a simple method for
testing if a coordinate system is separable or not, but also the basis for the geo-
metrical (i.e., intrinsic) characterization of the separation. A first (and well known)
example of application is the following: the Levi-Civita equations for a natural
Hamiltonian, Lij(G + V ) = 0, are polynomial equations of fourth degree in the
momenta p, which must be identically satisfied for all admissible values of these
variables. It is easy to note that the fourth-degree homogeneous part of these equa-
tions is Lij(G) = 0. This means that: (i) the separation of the geodesic equation is
a necessary condition for the separation of equation G + V = E; (ii) the study of
the geodesic separation plays a prominent role, (iii) the above-given definition of
separable coordinates makes sense.

A special but fundamental case in this theory is the orthogonal separation,
where the coordinates are assumed to be orthogonal, gij = 0 for i 6= j. In this case,
examined firstly by Stäckel (1893), later on by Levi-Civita (1904), Eisenhart (1934,
1949), and more recently by many authors, the Levi-Civita equations Lij(G) = 0
are equivalent to equations

Sij(gkk) = 0, i 6= j, (1.2)

where Sij(·) denote the Stäckel operators associated with an orthogonal metric
(gii). For any smooth function V on Q, it is defined by

Sij(V )
.
= ∂i∂jV − ∂i ln gjj∂jV − ∂j ln gii∂iV, i 6= j.

The Levi-Civita equations Lij(G + V ) = 0 are equivalent to

Sij(gkk) = 0, Sij(V ) = 0. (1.3)

2. Killing tensors

As shown by Eisenhart (1934, 1939) (for the orthogonal case) and by Kalnins &
Miller (1980, 1981), the geodesic separation is related to the existence of Killing
vectors and Killing tensors of order two. In this section we recall the basic properties
of these objects. The contravariant symmetric tensors K = (Ki...j) on Q are in one-
to-one correspondence with homogenous polynomials on T ∗Q,

K = (Ki...j) ←→ PK = P (K) = Ki...j pi . . . pj .

For a tensor of order zero i.e., a function f on Q, we define Pf
.
= f , where f is

canonically lifted to T ∗Q (by constant values on the fibers). The space of these
polynomial functions is closed w.r.to the canonical Poisson bracket

{A, B}
.
= ∂iA∂iB − ∂iB ∂iA.
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Hence, on the space of the symmetric contravariant tensors we define a Lie-algebra
structure [·, ·] by setting

P ([K1, K2]) = {P (K1), P (K2)},

and the symmetric product � by setting

P (K1 �K2) = P (K1) · P (K2).

Note that all the above-given definitions do not depend on a metric tensor. If a
metric tensor G is present, then we say that K is a Killing tensor (KT) if P (K)
is in involution with P (G) = 2G,

{P (K), P (G)}= 0 ⇐⇒ [K, G] = 0. (2.1)

This means that P (K) is a first integral of the geodesic flow. In the special case of a
function f , this definition is equivalent to ∇f = 0 (by ∇f we denote the gradient

of a function f). A vector field X is a Killing vector, [X, G] = 0, if and only if its
flow preserves the metric.

Let us consider the case of a symmetric 2-tensor K. Since a metric tensor is
present, the boldface object K can be represented in components as a tensor of
type (2, 0), (1, 1) and (0, 2), respectively, K = (Kij) = (Ki

j) = (Kij).
As a symmetric tensor of type (1, 1), K defines an endomorphism on the space

X (Q) of the (smooth) vector fields on Q and an endomorphism on the space Φ1(Q)
of the (smooth) 1-forms on Q. We shall denote by KX the vector field image of
X ∈ X (Q) by K, and by Kφ the 1-form image of φ ∈ Φ1(Q) by K. This means
that KX = Ki

jX
j ∂i, Kφ = Ki

jφi dqj . Note that the metric tensor G coincide
with the identity operator I, whose (1, 1) components are given by the Kronecker
symbol δi

j . Then a 2-tensor K gives rise to eigenvalues, eigenvectors or eigenforms,
according to equations KX = ρX, Kφ = ρφ. We recall that, in a positive-definite
metric, (i) all symmetric tensors have real eigenvalues; (ii) the algebraic multiplicity
of an eigenvalue ρ (i.e., its order as a root of the characteristic equation det(K −
ρG) = 0) is equal to its geometrical multiplicity (i.e., the dimension of the space
of the corresponding eigenvectors, or eigenforms); the eigenspaces corresponding
to distinct eigenvalues are orthogonal. We shall denote by K1K2 the product of
the two endomorphisms K1 and K2; in components (K1K2)ij = Kih

1 K j

2h. The
algebraic commutator of two tensors will be denoted by

[[K1, K2]]
.
= K1K2 −K2K1.

If a symmetric 2-tensor K can be diagonalized in orthogonal coordinates, Kij =
0 for i 6= j, then Kii = ρi gii, where (ρi) are the eigenvalues of K. By writing the
Killing equation (2.1) in these coordinates, we see that K is a KT if and only if
equations

∂iρ
j = (ρi − ρj)∂i ln gjj. (2.2)

are satisfied by the eigenvalues. These equations have been called Killing-Eisenhart

equations in Benenti et al. (2002a), since they have been extensively used by Eisen-
hart (1949). However, they already appear in a paper by Levi-Civita (1896), p.285.
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4 S. Benenti

3. Killing-Stäckel spaces

Equations (2.2) can be interpreted as a linear system of n first-order partial differ-
ential equations in normal form, in the n unknown functions ρi(q). It is remarkable
the fact that the integrability conditions assume of the form

(ρi − ρj) Sij(gkk) = 0.

Then their link with the orthogonal separation is at once clear. A second, and even
more remarkable property, is that the unknown functions ρi appear in the integra-
bility conditions through their differences ρi−ρj . This means that if the system (2.2)
admits a solution such that ρi 6= ρj, then it is completely integrable. Note that for a
linear system the converse is always true. Going back to the orthogonal separability
conditions (1.2) we can immediately conclude that: (I) a system of orthogonal co-
ordinates is separable if and only if there exists a KT which is diagonalized in these
coordinates and which has pointwise simple eigenvalues. Furthermore, since system
(2.2) is linear, if it is completely integrable then it admits a n-dimensional space
of solutions (and conversely). As a consequence: (II) a Killing tensor K which
has simple eigenvalues and is diagonalized in orthogonal coordinates generates a
n-dimensional space K of Killing tensors which are all diagonalized in the same
coordinates. Such a space will be called Killing-Stäckel space (KS-space). In the
space of direct sums of Killing tensors, K = c ⊕K1⊕K2⊕ . . .⊕Kn⊕ . . . endowed
with the Lie bracket [·, ·] defined above, a KS-space, which is made of elements
0 ⊕ 0 ⊕K2 ⊕ 0 ⊕ . . ., is an involutive subalgebra. For this reason it has also been
called Killing-Stäckel algebra in Benenti et al. (2002a).

Three remarks are in order: (i) the metric tensor belongs to any KS-space (in-
deed, ρi = 1 is a trivial solution of system (2.2)); (ii) if two KS-spaces have an
element with simple eigenvalues in common, then they coincide; (iii) all elements
of a KS-space are in involution (if equations (2.2) are satisfied for two tensors K1

and K2, then {P (K1), P (K2)} = 0).
All the above properties have a local character and are related to a coordinate

system. We remark, however, that they are more precisely related to an equivalence
class of orthogonal systems, being equivalent two systems of coordinates q and q′

simply related by a separated transformation or a rescaling: qi = qi(qi′ ).
We look for a coordinate-free description of all this matter. To this end we recall

some basic concepts.
A frame on a differentiable manifold Q (not necessarily Riemannian) is a set

of vector fields (Xi) which form a basis of the tangent space TqQ at each point q of
their domain of definition. In general, frames exist only locally. Global frames are
defined if and only if the manifold is parallelizable i.e., when TQ ' Q × R

n. Two
frames (Xi) and (X′

i) are said to be equivalent if there are nowhere vanishing
functions fi such that Xi = fiX

′
i. A frame is called holonomic or integrable if

it is equivalent to a natural frame (∂i) associated with coordinates (qi). A basic
property is (cf. Schouten 1954 and Benenti et al. 2002a)

Theorem 3.1. The three following conditions are equivalent: (i) the frame (Xi) is
holonomic, (ii) for each pair of indices (i, j) the distribution spanned by the vectors
Xi and Xj is completely integrable, (iii) for each index i the distribution spanned
by the n− 1 vectors Xj for j 6= i is completely integrable.
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Separability in Riemannian manifolds 5

On a Riemannian manifold a vector field X is called normal if it is orthogonally
integrable or surface forming i.e., if it is orthogonal to a family of hypersurfaces. In a
positive-definite metric a symmetric tensor K with simple eigenvalues and normal
eigenvectors gives rise to and equivalence class of holonomic orthogonal frames
hence, to an equivalence class of orthogonal coordinates. Then we get the following
simple intrinsic characterization of the orthogonal geodesic separation (Kalnins &
Miller 1980, corollary 4, §3; see also Benenti 1993):

Theorem 3.2. The geodesic Hamilton-Jacobi equation is separable in orthogonal
coordinates if and only if there exists a Killing 2-tensor with simple eigenvalues and
normal eigenvectors.

A KT having these properties will be called a characteristic Killing tensor

(ChKT). The eigenvectors generates a family of n orthogonal foliations of manifolds
of codimension 1, which we call Stäckel web. Any coordinate system (qi) such that
the web is locally described by equations qi = const. (this is equivalent to say that
dqi are eigenforms of the ChKT), is separable.

In accordance with the remarks above, a ChKT generates a KS-space. A suitable
coordinate-independent definition of this concept is the following: a Stäckel space

on a Riemannian manifold Qn is a n-dimensional linear space Kn of Killing 2-
tensors whose elements (a) commute as linear operators, [[K1, K2]] = 0, and (b)
are in involution, [K1, K2] = 0. Indeed, in the algebraic realm it can be proved
that in such a space there exists an element with pointwise distinct eigenvalues
(in the neighborhood of any given point of the domain of definition of Kn); as a
consequence, the commutation relation (a), applied to such a tensor K1, shows that
all elements have common eigenvectors. Furthermore, from (b) it follows that

Theorem 3.3 (Kalnins & Miller). If n independent KT’s in involution have the
same eigenvectors, then these eigenvectors are normal.

This very remarkable property was firstly discovered by Kalnins & Miller (1980)
(proof of theorem 6, §3). However, it is also remarkable the fact that in this last
theorem the assumption that the independent tensors are KT’s is redundant. In
fact, it can be proved that

Theorem 3.4. An orthogonal frame made of common eigenvectors of n indepen-
dent symmetric 2-tensors in involution is holonomic (the eigenvectors are normal).

For a detailed discussion and proof see Benenti et al. (2002a). Hence, we have a
second intrinsic characterization of the orthogonal geodesic separation (Kalnins &
Miller 1980, theorem 6, §3; Shapovalov 1981; note that in theorem 6 of Kalnins &
Miller 1980 item (4) is redundant):

Theorem 3.5. The geodesic Hamilton-Jacobi equation is separable in orthogonal
coordinates if and only if the Riemannian manifold admits a KS-space i.e., a n-
dimensional linear space K of Killing tensors commuting as linear operators and in
involution.

In the applications, one of these last two theorems can be used according to
the convenience. In applying theorem 3.2 we have the advantage of dealing with
a single KT, but difficulties may arise in testing if it has simple eigenvalues and
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6 S. Benenti

normal eigenvectors. However, for solving this problem we can use the following
two effective criteria:

Theorem 3.6. A (1, 1) tensor K has distinct eigenvalues if and only if

D
.
=

∣

∣

∣

∣

∣

∣

∣

∣

∣

n S1 . . . Sn−1

S1 S2 . . . Sn

...
... · · ·

...

Sn−1 Sn . . . S2n−2

∣

∣

∣

∣

∣

∣

∣

∣

∣

6= 0, Sp
.
= tr(Kp).

Here Kp is the power p = 0, 1, 2, . . . of the linear mapping K. This theorem is
a consequence of a classical theorem of Sylvester about the discriminant D of an
algebraic equation, here applied to the characteristic equation of K.

Theorem 3.7 (Haantjes, 1955). A symmetric tensor K with simple eigenvalues
has normal eigenvectors if and only if

Hh
ab Ka

i Kb
j + 2 Hb

a[i Ka
j] K

h
b + Ha

ij Kh
b Kb

a = 0,

where H is the Nijenhuis torsion of K,

Hh
ij(K)

.
= 2 Ka

[i ∂|a|K
h
j] − 2 Kh

a ∂[iK
a
j].

This is a special case of a more general theorem due to Haantjes (1955) (see
also Schouten (1954), p. 248).

As it will be seen in §7, it is interesting the case of a torsionless tensor: H(K) =
0. We shall apply the following

Theorem 3.8 (Nijenhuis, 1951). A symmetric tensor K with simple eigenvalues
ρi is torsionless if and only if it has normal eigenvectors Xi such that

Xiρ
j = 0, i 6= j.

This means that each eigenvalue ρj is constant on the hypersurfaces orthogonal
to the corresponding eigenvector Xj. It is worthwhile to observe that

Theorem 3.9. A torsionless KT with simple eigenvalues is necessarily a constant
KT on a flat Riemannian manifold.

Proof. If H(K) = 0, then equations (2.2) implies

0 = ∂iρ
j = (ρi − ρj) ∂i lngjj, i 6= j, ∂iρ

i = 0.

This shows that ρi = const. and that ∂ig
jj = 0 for i 6= j. This last condition

means that gjj is a function of qj only. In this case, up to a change of scale of the
coordinates, we can consider gjj = const..

This is a case considered in Bruce, McLenaghan & Smirnov 2001.
Going back to theorem 3.5, it is interesting to make a comparison with the

intrinsic characterizations of the geodesic orthogonal separation due to Eisenhart
(1934, 1949) and Woodhouse (1975). In the Eisenhart theorem (Eisenhart, 1934;
p. 289) the necessary and sufficient conditions for the orthogonal separation are:
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Separability in Riemannian manifolds 7

(i) the existence of n − 1 independent Killing tensors K1, . . . ,Kn−1 with normal
common eigenvectors and such that (ii) for each of these tensors the eigenvalues
are simple and (iii) for any pair (i, α) of fixed indices (α = 2, . . . , n, i = 1, . . . , n)
the square matrices ‖ρα

i − ρα
j ‖ (with j 6= i) are regular. In the Eisenhart notation,

ρα
i are the eigenvalues of Kα. Condition (i) should be replaced by the existence of

n−1 Killing tensors such that G, K1, . . . ,Kn−1 are independent. Then theorem 3.5
shows that conditions (ii) and (iii) are redundant. In Woodhouse 1975 (theorem 4.2)
the n−1 KT’s are assumed to be in involution and with common closed eigenforms.
Theorem 3.3 shows that the requirement closed is redundant, since it is equivalent
to the normality of the eigenvectors.

4. The orthogonal separation of a natural Hamiltonian

With each symmetric 2-tensor K and a function U on Q we associate the function
F = 1

2 PK + U on T ∗Q. We observe that F is a first integral of H = G + V ,
{H.F }= 0, if and only if

{G, PK} = 0, dU = KdV.

The first equation means that K is a Killing tensor. If it is a ChKT, then, in any
orthogonal coordinate system determined by its eigenvectors, the second equation is
equivalent to ∂iU = ρi∂iV . Due to the fundamental equations (2.2), the integrability
conditions of these equations assume the form ∂j∂iU−∂i∂jU = (ρi−ρj) Sij(V ) = 0.
This proves

Theorem 4.1. If K is a symmetric 2-tensor with simple eigenvalues and normal
eigenvectors, then F is a first integral of G + V if and only if K is a Killing
tensor and Sij(V ) = 0 in any orthogonal system of coordinates generated by the
eigenvectors.

Since the existence of coordinates is a local matter, condition dU = KdV can
be replaced by d(KdV ) = 0. Thus, by recalling theorem 3.2 and the remarks at
the end of §1, we find (Benenti, 1993)

Theorem 4.2. The Hamilton-Jacobi equation G+V = E is separable in orthogonal
coordinates if and only if there exists a Killing 2-tensor K with simple eigenvalues
and normal eigenvectors such that

d(KdV ) = 0. (4.1)

This equation has been called characteristic equation of a separable poten-

tial V . We observe that for n = 2 any vector field is normal. Since it can be proved
that on a two-dimensional manifold the separation always occurs in orthogonal
coordinates (Levi-Civita 1904), we get

Theorem 4.3. On a two-dimensional Riemannian manifold the Hamilton-Jacobi
equation G +V = E is separable if and only if there exists a (non-trivial) quadratic
first integral.

This is the extension to a two-dimensional manifold of the so-called Bertrand-
Darboux-Whittaker theorem for the Euclidean plane E2 (Whittaker 1937, §§152,
153; Ankiewicz & Pask 1983).
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8 S. Benenti

When written in Cartesian coordinates on a Euclidean n-space, equation (4.1)
gives rise to the so-called Bertrand-Darboux (BD) equations. If we know the form
of all characteristic tensors of a manifold, then equation (4.1), written in any coordi-
nate system (even not separable), provides an effective criterion for the separability
of the Hamilton-Jacobi equation. This criterion have been applied for instance in
the study of the super-separability of the inverse-square three-dimensional Calogero
system (Benenti et al., 2000). In Benenti et. al. (2000) we can find the intrinsic (i.e.,
”boldface”) expressions of all the characteristic Killing 2-tensors in the Euclidean
three-space E3, so that this criterion is ready to be used for any potential V . For
a general En, the basic ChKT’s and the corresponding BD equations have been
determined in Marshall & Wojciechowski 1988 and in Benenti 1992b, 1993. This
analysis has been completed by Waksjö 2000. In his thesis he presents an effective
general criterion for the separability of a potential V in the Euclidean n-space. See
also Waksjö & Rauch-Wojciechowski 2003. Other separability criteria can be based
on the analysis of the fundamental invariants of spaces of Killing tensors under the
action of isometry groups and the method of moving frames (see, also for related
references, McLenaghan & Smirnov 2002, Deeley et. al. 2004).

If in En we take

K = tr(L)G− L, L
.
= A + m r⊗ r + w � r, (4.2)

where A is symmetric and constant, m ∈ R, w is a constant vector, and r is the
vector representing the generic point, then in Cartesian coordinates (xi) equation
(4.1) yields the Bertrand-Darboux equations (2.2) of Rauch-Wojciechowski 2004,
in this volume, or equations (3.25) of Waksjö 2000. The correspondence of notation
is the following: A = (γij), m = α, w = (2βi)).

For w = 0 we get the BD equations for the separation in elliptic coordinates
centered at the origin. For m = 0 we get the BD equations for the separation in
parabolic coordinates centered at the point P where LP (w) (the existence of such
a point is proved in Benenti 1992b). For w = 0 and m = 0 we have the separation
in Cartesian coordinates. In the remaining case w 6= 0 and m 6= 0, we have the
separation in elliptic coordinates centered in the point c = − 1

2m
w (see below).

It must be emphasized that in the characteristic equation (4.1) for a separable
potential V the eigenvalues of K must be simple (outside a singular set). For the
present case we have

Theorem 4.4. The tensor K defined by (4.2) has simple eigenvalues if and only
if for m = 0 the eigenvalues of A are simple and for m 6= 0 the eigenvalues of
A− 1

4m
w⊗w are simple.

This is (a slightly modified version of) a theorem of Waksjö 2000, p. 45. We give
here an alternative proof.

Proof. The tensor K has simple eigenvalues if and only if L has simple eigenvalues.
For m = 0 we have L = A + w � r; we are in the case of the parabolic web
(Benenti 1992b) and L has simple eigenvalues if and only if A has simple (constant)
eigenvalues. For m 6= 0, let us change the origin by considering the transformation
r = c + r′, where c is a constant vector. We obtain

L = A + m (r′ ⊗ r′ + 2 r′ � c + c ⊗ c) + w � c + w � r′.
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Separability in Riemannian manifolds 9

If we take c = − 1
2m

w, then

L = A− 1
4m

w ⊗w + m r′ ⊗ r′ = A′ + m r′ ⊗ r′.

We known that for a symmetric tensor of the kind A′ + r′⊗ r′ the eigenvalues (ui)
are the roots of equation

∑

i

x2
i

u− ai
=

1

m
,

where (xi) are Cartesian coordinates and (ai) are the constant eigenvalues of A′.
This equation is equivalent to

m
∑

i x2
i

∏

k 6=i(u− ak)−
∏

j(u− aj) = 0. (4.3)

If (ai) are simple, then also (ui) are simple, since a1 < u1 < a2 < u2 < . . . <
un−1 < an < un. If (ai) are not all simple, for instance a1 = a2, then equation (4.3)
has a double root u = a1.

The tensors K and L have a mechanical meaning: they were introduced in
Benenti (1992b) as the inertia tensor and planar inertia tensor of a set of
massive points (including, this is important, negative masses) in En. The parameter
m is just the total mass (it may be 0). Indeed, it is a remarkable fact that an inertia
tensor is a KT. This interpretation is of help in the problem of finding the intrinsic
expressions of all the ChKT’s of En (see also Marshall & Wojciechowski 1988).

Notation. A matrix of the kind A+r⊗r has been used by Moser (1981) for con-
structing a Lax pair for the geodesic flow of an asymmetric ellipsoid. For this reason
it was denoted by L in Benenti (1992b) (indeed, in analogy with the Lax method,
starting from L we can construct by a pure algebraic process, a complete system
of first integrals in involution). There were other two reasons which suggested this
notation: (i) L is a letter adjacent to K, and this is appropriate because a tensor L

generates a tensor K according to (4.2); (ii) L stands for Levi-Civita, and indeed the
orthogonal metric associated with L was firstly introduced by Levi-Civita (1896)
(see the end of §7).

5. First integrals associated with the orthogonal separation

Going back to the characteristic equation (4.1) we recall that at the beginning of
§3 we observed that a characteristic Killing tensor (like that appearing in equation
(4.1)) generates a KS-space K. It is remarkable the fact that

Theorem 5.1. If (Ka) = (K0, K2, . . . ,Kn−1) is a basis of K (G and K may
belong to this basis) then locally there exist functions Va such that

Ha
.
= 1

2 PKa
+ Va (5.1)

are independent first integrals in involution.

An easy proof can be found in Benenti (1993). Indeed, it can be shown that
equation (4.1) implies d(Ka dV ) = 0 for each index a. This implies that a ChKT
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10 S. Benenti

K and a separable potential V generates a n-dimensional space H(K, V ) of first
integrals in involution,

HK = 1
2 PK + VK, K ∈ K, (5.2)

and that the associated potentials VK can be determined by integrating the closed
1-forms Ka dV . We observe that there are separable systems (an example is the
three-body Calogero system, Benenti et al. 2000) in which this integration can be
avoided and replaced by an algebraic process.

We remark that, if we know a basis of a KS-space, then for testing if a potential
V is separable it is sufficient to verify that equation (4.1) is satisfied for an element of
this space with simple eigenvalues. When the answer is affirmative, then a complete
set of integrals in involution can be determined by integrating the closed 1-forms
Ka dV .

It is well known that the orthogonal (as well as the non-orthogonal separation) is
related to Stäckel matrices. A Stäckel matrix in the n variables (qi) is a regular n×
n matrix S =

[

ϕ(a)

i

]

of functions ϕ(a)

i depending on the variable qi corresponding to

the lower index only. We denote by
[

ϕi
(a)

]

the inverse matrix. The original Stäckel

theorem asserts that an orthogonal coordinate system (qi) is separable if and only
if there exists a Stäckel matrix such that gii = ϕi

(0). In this case, (i) the diagonalized
tensors Kii

a = ϕi
(a)

are the basis of a Stäckel space, (ii) all separable potentials V
have the form V = φi(q

i) ϕi
(0)

, where φi is a function of the corresponding coordinate
qi only; (iii) a basis Ha of the space of first integrals in involution is given by (5.1)
with Va = φi ϕi

(a).

6. Conformal Killing tensors

As remarked above, the existence of a KT K with simple eigenvalues and normal
eigenvectors is a necessary and sufficient condition for the existence of a KS-space
K i.e., of a n-dimensional linear space of KT’s with common normal eigenvectors
(and, consequently, in involution). The following question arises: is it possible to
construct a basis of the space K by a coordinate independent algebraic procedure,
starting from K? Note that this problem can be solved (in principle) by integrating
the linear differential system (2.2), if we know a separable coordinate system.

As illustrated in Benenti (1992b), the answer is affirmative at least for spe-
cial kinds of Stäckel systems. In the next sections we shall revisit this matter, by
proposing new definitions and theorems. To this end, we need to recall some basic
definitions and properties concerning conformal Killing tensors.

A conformal Killing tensor (CKT) on a Riemannian manifold Qn is a sym-
metric tensor L of order l satisfying equation {PL, PG} = PX PG, where X is a
suitable symmetric tensor of order l− 1. Since we are interested in CKT’s of order
two, we write this equation in the form

{PL, PG} = − 2 PC PG, (6.1)

where C is a vector field which we call associated with L (also denoted by C(L)).
A CKT is said to be of gradient-type (GCKT) if C = ∇f . An example of

GCKT is fG. In this case we have C = ∇f . Indeed, {PfG, PG} = {fPG, PG} =
PG{f, PG} = − 2gijpj∂if PG. A KT is obviously a GCKT with C = 0.
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Proposition 6.1. A CKT L is of gradient-type with C = ∇f if and only if K =
f G− L is a Killing tensor.

Proof. {PL − fPG, PG} = {PL, PG} − PG{f, PG} = − 2PCPG + 2PGP∇f .

A conformal Killing tensor of trace-type L is a CKT for which C = ∇tr(L).
In this case, K = tr(L)G− L is a KT.

By considering in (6.1) PG = giip2
i and PL = uigiip2

i , we find

Theorem 6.2. Assume that a symmetric 2-tensor L is diagonalized in orthogonal
coordinates, so that Lii = ui gii, Lij = 0, i 6= j, where ui are the eigenvalues. Then
L is a CKT if and only if the following equations are satisfied,

∂iu
k = (ui − uk)∂i ln gkk + Ci, Ci = ∂iu

i. (6.2)

7. L-tensors

Let us call L-tensor a (i) conformal Killing tensor L with (ii) vanishing torsion and
(iii) pointwise simple eigenvalues (ui). The reasons for introducing such an object
will be explained in the next section. In the present section we examine the basic
properties of a L-tensor. Due to the vanishing of the torsion, there is an equivalence
classes of orthogonal coordinates (qi) in which this tensor is diagonalized and ∂iu

j =
0 for i 6= j. We say that these coordinates are associated with L. Since L is a CKT,
due to theorem 6.2 equations

∂iu
j = (ui − uj)∂i ln gjj + Ci = 0, i 6= j, Ci = ∂iu

i (7.1)

hold. For C = 0 we find equations (2.2) of a KT.
Remark. In the above definition no assumption is made about the independence

of the eigenvalues as functions on Q; some of them may be constant (a criterion for
the independence of the eigenvalues is given in theorem 9.2 below). This definition
has to be compared with those given in Ibort et al. (2000), B laszak (2003), Bolsinov
& Matveev (2003), where L is assumed to be a torsionless CKT of trace-type
(and called Benenti tensor) and in Crampin (2003a, b), where L is assumed to
be a torsionless CKT with independent (i.e., coordinate-forming) eigenvalues (and
called special conformal Killing tensor, see theorem 9.1 below). In all these papers
the essential condition that L has simple eigenvalues is missing (or understood). In
fact it can be proved that

Theorem 7.1. If an eigenvalue ui of a torsionless CKT of trace-type is not simple,
then it is constant.

The proof of this theorem (here omitted) requires the use of the Haantjes the-
orem for a tensor with non-simple eigenvalues.

Theorem 7.2. Let L be a L-tensor with associated coordinates (qi). Then: (i) Each
eigenvalue ui depends on the associated coordinate qi only, ui = ui(qi). (ii) It is of
trace-type, C = ∇tr(L). (iii) In associated coordinates the metric has the form

gkk = φk

∏

i 6=k

1

|ui − uk|
, ui = ui(qi), φk = φk(qk) > 0, (7.2)

Article submitted to Royal Society



12 S. Benenti

or, after a rescaling

gkk =
∏

i 6=k

1

|ui − uk|
. (7.3)

In both cases,

∂i lngkk =
∂iu

i

uk − ui
(i 6= k).

(We call normal coordinates associated with L the orthogonal coordinates for
which equations (7.3) hold). (iv) The associated coordinates are separable. (v) L

commutes with the Ricci tensor R, [[L, R]] = 0 i.e., the Robertson condition is
satisfied: in the associated coordinates, Rij = 0 for i 6= j.

These properties are derived from Benenti 1992b, 1993. They follow from equa-
tions (7.1) and from the fundamental properties of the elementary symmetric poly-
nomials (see the next section). From (7.2) it follows that the contracted Christof-

fel symbols Γi = ghjΓhj,i take the simple form Γi = −1
2 φ′

kφk. Thus, in normal
coordinates Γi = 0. Since in separable orthogonal coordinates Rij = 3

2
∂iΓj, for

i 6= j, the Robertson condition (v) is proved. Item (ii) (which follows from (7.1):
Ci = ∂iu

i and ∂iu
j = 0 for i 6= j implies Ci = ∂i

∑

j uj) shows that in proposi-

tion 1, §1, of Crampin 2003a the assumption that (ui) are functionally independent
eigenvalues is not needed.

It is a remarkable fact that the metric (7.2) associated with L is that of the
corresponding geodesics found by Levi-Civita (1896): there exists a metric G =
(gij) having the same (unparametrized) geodesics of a given metric G = (gij) if and
only if there are orthogonal coordinates in which the metric G assumes the form
(7.2). It must be pointed out that this theorem holds under the assumption that the
tensor G has simple eigenvalues w.r.to G. This matter has been recently analyzed
by Bolsinov & Matveev (2003), and by Crampin (2003b). The metric (7.2) is a
particular case of the orthogonal separable metric determined by Eisenhart (1949),
App. 13, and characterized by the condition Rjiik = 0 for i, j, k 6=.

8. L-systems

Let σa(u) denote the elementary symmetric polynomial of degree a of the n variables
u = (ui). Let σi

a and σij
a be the functions obtained from σa by setting ui = 0 and

uj = 0. Let us set

σ0 = σi
0 = σij

0 = 1, σ−1 = σi
−1 = σij

−1 = 0, σij
n = σij

n−1 = 0. (8.1)

Then the following equations are satisfied (Benenti 1992b, §2):

σa = σi
a + ui σi

a−1, σj
a = σij

a + ui σij
a−1, σi

a − σj
a = (uj − ui) σij

a−1. (8.2)
∑

i ui σi
a−1 = a σa, det[σi

a] =
∏

j>i(u
i − uj). (8.3)

∂σa

∂ui
= σi

a−1,
∂σj

a

∂ui
= σij

a−1, (uj − ui)
∂σj

a

∂ui
= σi

a − σj
a. (8.4)

If ui 6= uj for i 6= j, then

∂σj
a

∂ui
=

σi
a − σj

a

uj − ui
, det[σi

a] 6= 0, a = 0, 1, . . .n− 1, i = 1, . . . , n. (8.5)
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It follows that for any coordinate system (qi),

∂iσ
j
a = ∂iu

h ∂σj
a

∂uh
=

∑

h6=j

∂iu
h σhj

a−1 =
∑

h6=j

∂iu
h σh

a − σj
a

uj − uh
. (8.6)

Theorem 8.1. Let L be a symmetric 2-tensor with eigenvalues (ui). The tensors
(Ka) = (K0, K1, . . . ,Kn−1) defined by

K0 = G, Ka = 1
a

tr(Ka−1L)G−Ka−1L, a > 1, (8.7)

or by

Ka =

a
∑

k=0

(−1)kσa−kL
k, Ka = σa G−Ka−1L (K−1 = 0), (8.8)

form a basis of a KS-space if and only if L is a L-tensor.

Proof. (i) Assume that (Ka) defined by (8.7) is a basis of a KS-space. Then they
are linearly independent and there are orthogonal (separable) coordinates in which
these tensors as well as L are diagonalized and equations

∂iρ
j
a = (ρi

a − ρj
a)∂i ln gjj, det

[

ρi
a

]

6= 0, (8.9)

hold, being ρi
a the eigenvalues of Ka. Due to (8.7), these eigenvalues fulfill the

recurrence relation ρi
a = 1

a

∑

k ρk
a−1u

k − ρi
a−1 ui. On the other hand, from the first

equations (8.3) and (8.2) we get 1
a

∑

k σk
a−1 uk−σi

a−1 ui = σa−σi
a−1 ui = σi

a. This
shows that

ρi
a = σi

a(u).

It follows that: (I) Due to the second equations (8.3) and (8.9), the eigenvalues
ui are simple. (II) Due to the first equation (8.2), the definition (8.7) implies the
alternative definitions (8.8). (III) Due to the first equation (8.9), ∂iρ

i
a = 0 thus,

0 =
∑

h6=i ∂iu
h σhi

a−1. Let us consider the case i = 1. We get the linear homogeneous
system of n− 1 equations

∑

h>1

∂1u
h σh1

a−1 = 0, a = 1, . . . , n− 1, (8.10)

in the n − 1 unknown functions ∂1u
h, with h = 2, . . . , n. We can put σh1

a−1 = σ̃h
b ,

where σ̃h
b , b = 0, . . . , n − 2, are the symmetric polynomials in the n − 1 vari-

ables (u2, . . . , un). In analogy with the third equation (8.4) we have det[σ̃h
b ] =

∏

j>i>1(ui−uj), thus det[σ̃h
b ] = det[σh1

a−1] 6= 0. It follows from (8.10) that ∂1u
h = 0

for all h > 1. In a similar way we prove that ∂iu
h = 0 for all h 6= i. This shows that

H(L) = 0. Finally, from K1 = tr(K1L)− L we get

L
.
=

1

n− 1
tr(K1)G−K1. (8.11)

Being K1 a KT, L is a CKT. (ii) Conversely, assume that L is a L-tensor. In
coordinates associated with L we have ∂iu

h = 0 for all h 6= i, and moreover,
0 = (ui − uj)∂i lngjj + ∂iu

i. By (8.6) we get

∂iσ
j
a = ∂iu

i σ
i
a − σj

a

uj − ui
= (σi

a − σj
a)∂i ln gjj.
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14 S. Benenti

Being ρi
a = σi

a, this shows that the tensors Ka are Killing tensors. They are point-
wise independent due to (8.3).

We call L-system any separable orthogonal system whose KS-space is gener-
ated by a L-tensor according to theorem 8.1. We call L-web any orthogonal web
corresponding to a L-system.

Remarks.
(i) All the Killing tensors Ka (a 6= 0) have simple eigenvalues. The sequence

(8.7) was suggested by the analysis (Benenti 1992b) of the planar inertia tensor
L of an asymmetric massive body in the Euclidean n-space. The tensor K1 is the
corresponding inertia tensor. Formula (8.8) shows that Ka = 0 for a > n− 1, since
for a = n the right-hand side vanishes due to the Hamilton-Cayley theorem. (ii)
Formula (8.7) is more effective than (8.8) since it does dot require the knowledge
of the eigenvalues of L.

(ii) The sequence (8.7) is the same of that considered is Schouten (1954), p. 30,
generated by a matrix L (in Schouten denoted by P). This sequence was firstly
introduced by Fettis (1950) and Souriau (1950) for computing the eigenvectors of a
matrix P without solving systems of linear equations (if the eigenvalues are known
and simple).

(iii) We observe (Schouten 1954) that the (1,1) tensor Q(x) = cof(L − xG) is
polynomial of degree n− 1 in x, whose coefficients, up to the sign, are the tensors
Ka defined in (8.8). We recall that the cofactor Ã = cof(A) of A is defined by
AÃ = ÃA = det(A)G. Hence, the Stäckel systems of the kind considered in the
last two theorems are just the so-called cofactor systems, (cf. B laszak & Ma
2003). In fact, they should be called Levi-Civita systems (so that ”L-systems”
is a good notation) since the separable metric (7.3) (but not the tensor L) appears
for the first time in Levi-Civita, 1896. In that paper it also shown that for such a
metric the function

F (q, q̇, c)
.
=

∏

j 6=i(u
j + c)|uj − ui| (q̇i)2

is a first integral of the geodesics for all values of the parameter c. Since F is a
polynomial in c of degree n− 1, its coefficients gives rise to n first integrals. These
first integrals coincide, up to the sign and after the Legendre transformation, with
the first integrals P (Ka).

(iv) Due to item (v) of theorem 7.2, a necessary condition for a Stäckel system
to be a L-system is the Robertson condition: [[K, R]] = 0 for a characteristic tensor
K (thus, for all elements of the KS-space). A criterion for testing if a Stäckel system
is a L-system is the following.

Theorem 8.2. A Stäckel system is a L-system if and only if in the corresponding
KS-space there exists a characteristic tensor K1 such that the tensor L defined by
(8.11) is torsionless.

Proof. (i) Assume that there exists a ChKT K1 such that the tensor L defined by
(8.11) is torsionless. Any tensor of the kind fG + K is a CKT if K is a KT. Since
K1 has simple eigenvalues, also L has simple eigenvalues. Then L is a L-tensor.
The tensors Ka constructed by applying (8.7) form a KS-space K∗ which has K1

in common with the original KS-space K. Thus, K∗ = K since two KS-spaces with
a ChKT in common coincide. (ii) The converse is obvious.
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About the uniqueness of a L-tensor generating a L-system, it can be proved that

Theorem 8.3. Two L-tensors L and L̃ generates the same L-system if and only
if L̃ = aL + bG, a, b ∈ R, a 6= 0.

In accordance with the remarks at the end of §5, a basis (Ka) of a KS-space
corresponds to the inverse of a Stäckel matrix S−1 =

[

ϕi
(a)

]

, ϕi
(a) = Kii

a . In the

sequence (8.7) we have K0 = G, then ϕi
(0) = gii and ϕi

(a) = Kii
a = σi

agii. By using
the formulas concerning the elementary symmetric function at the beginning of §8
it can be proved that

Theorem 8.4. For a L-system the Stäckel matrix associated with the basis (8.7),

S =
[

ϕ
(a)
i

]

, assuming u1 < u2 < . . . < un, is of alternating Vandermonde type,

ϕ
(a)
i = (−1)n−a+i (ui)n−a−1

{

a = 0, . . . , n− 1

i = 1, . . . , n index of row.
(8.12)

For n = 3 we have (a index of row)

[

ϕi
(a)

]

=





g11 g22 g33

(u2 + u3)g11 (u3 + u1)g22 (u1 + u2)g33

u2u3g11 u3u1g22 u1u2g33





with g11 = 1
(u1−u2)(u1−u3) , g22 = 1

(u2−u3)(u1−u2) , g33 = 1
(u3−u2)(u3−u1) . In accor-

dance with theorem 8.11, the inverse matrix is

S = [ϕ
(a)
i ] =





(u1)2 −u1 1

−(u2)2 u2 −1

(u3)2 −u3 1



 .

Remark. If we multiply each row ϕ
(a)
i of a Stäckel matrix by a function fi(q

i) 6=

0, then we get a new Stäckel matrix ϕ̃
(a)
i = fiϕ

(a)
i whose inverse ϕ̃i

(a) defines a

new basis of the same KS-space. By multiplying the lines of (8.12) by ±1 in a
suitable way and by changing L in −L, we can get a Stäckel matrix which is of the
Vandermonde type (see the case n = 3, for instance).

9. The functional independence of the eigenvalues of a

L-tensor

The results of §8 hold without any assumption on the functional independence of the
eigenvalues (ui) of L. Some of them may be constant. The only essential assumption
is that they are pairwise and pointwise distinct. The following theorems deal with
this matter.

Theorem 9.1. If a torsionless CKT has functionally independent eigenvalues (ui),
then it is a L-tensor (its eigenvalues are pointwise simple).

Proof. In this case the eigenvalues define local orthogonal coordinates qi = ui in
which the tensor is diagonalized. We can apply theorem 6.2. Equations (6.2) become
δk
i = (ui − uk)∂i ln gkk + 1. For i 6= k we have ui 6= uk.
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16 S. Benenti

Note that in this case L is a special type of L-tensor (the type considered by
Crampin 2003 a, b).

Theorem 9.2. Let L be a L-tensor. (i) The eigenvalues (ui) of L are independent
functions (i.e., they define locally an orthogonal coordinate system) if and only if
L is not invariant w.r.to a Killing vector X. (ii) If there exists a Killing vector X

such that [X, L] = 0, then X is a linear combination (with constant coefficients) of
Killing vectors in involution which are eigenvectors of L.

In case (i) we have no symmetry of the separable web generated by the eigen-
vectors of L. This means that all the structures associated with L are not invariant
w.r.to groups of isometries.

Proof. The eigenvalues of a (1,1) tensor L are functionally independent, and thus
they define a coordinate system, if and only if det[∂iu

j] 6= 0. For a torsionless
tensor with simple eigenvalues we have, w.r.to the associated coordinates, ∂iu

j = 0
for i 6= j. Hence, the eigenvalues are independent functions if and only ∂iu

i 6= 0
for all indices. (i) If an eigenvalue ui of L is constant, ∂iu

i = 0, then from the
expression (7.3) of the metric we see that the corresponding (normalized) coordinate
qi is ignorable. This means that ∂/∂qi is a Killing vector which leaves invariant L.
Conversely, let us assume that there is a Killing vector X such that [X, L] = 0.
These two assumptions on X are equivalent to {PX, PG} = 0 and {PX, PL} = 0. In
an orthogonal coordinate system (qi) associated with L, these two equations read
{Xipi, g

jjp2
j} = 0 and {Xipi, u

jgjjp2
j} = 0, respectively. Since they are algebraic

equations in p, to be satisfied for any value of these variables,they are equivalent to

{

∑

i Xi∂ig
kk − 2 gkk ∂kXk = 0,

gjj ∂jX
k + gkk ∂kXj , j 6= k,

{

∑

i Xi∂i(u
k gkk)− 2 uk gkk ∂kXk = 0,

uj gjj ∂jX
k + uk gkk ∂kXj , j 6= k.

The first two equations characterize the Killing vectors in orthogonal coordinates.
The second and the fourth equations imply (uj − uk) gjj ∂jX

k = 0 for j 6= k. Since
uj 6= uk we conclude that ∂jX

k = 0 for j 6= k, which means that Xi = Xi(qi).
Since ∂iu

k = 0 for i 6= k, from the third equation it follows that Xk ∂kuk gkk +
uk

∑

i Xi ∂ig
kk − 2 uk gkk ∂kXk = 0. Due to the first equation (8.10), this last

equation implies Xk ∂kuk = 0 (no summation over the index k). Up to a reordering
of the coordinates, let us assume that Xa = 0 and Xα 6= 0 for a = 1, . . . , m and
α = m+1, . . . , n. From the last equation it follows that uα = const. and X = Xα ∂α.
At the beginning of this proof we have seen that if uα = const., then qα are ignorable
coordinates (we always assume that the coordinates (qi) are normalized so that
the metric assume the form (7.3)). Thus, ∂α are Killing vectors in involution and
eigenvectors of L. Since X = Xα ∂α is a Killing vector, the components Xa must
be constant.

Assume that the eigenvalues uα (uα = m + 1, . . . , n) of a L-tensor are constant
and the remaining (ua) (a = 1, . . . , m) are independent functions. Then we can
choose associated orthogonal coordinates (qi) = (qa, qα) such that qa = ua and qα

are ignorable. From (7.1) it follows that

(ua − ub)∂a ln gbb + 1 = 0, (ua − uα)∂a ln gαα + 1 = 0,
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being the remaining equations identically satisfied. Thus, we are faced with three
cases: (I) m = 0, all ui = const. i.e, all qi are ignorable: the manifold Q is locally
flat, the coordinates (qi) are orthogonal Cartesian coordinates, gii = const. and L

is a constant tensor. (II) 0 < m < n: in this case gαα 6= const. due to equation
(ua − uα)∂a ln gαα + 1 = 0. Condition gαα 6= const. means that the Killing vectors
Xα = ∂α are not translations (Eisenhart 1933, §52). (III) m = n, all eigenvalues
are independent: this is the case examined in theorem 9.2

Taking into account the proof of the preceding theorem, cases (I) and (II) shows
that:

Theorem 9.3. Let L be a L-tensor. (i) If L has all constant eigenvalues, then the
manifold Q is locally flat and L = const. (in the sense that all its components in
Cartesian coordinates are constant). (ii) If L is invariant w.r.to m < n Killing
vectors, then these vectors are not translations.

10. L-potentials

In this section we propose a few remarks on the potential functions associated with
a L-system. For further approaches to this matter we refer the reader to Ibort et
al. 2000, B laszak & Ma 2003. By (1.3) and (7.3) we have

Theorem 10.1. A potential V is separable in a L-system if and only if, w.r.to
normal coordinates (qi) associated with L,

∂i∂jV =
1

uj − ui
(∂jV − ∂iV ), ∂i =

∂

∂qi
.

Note that in this theorem (as well as in the following) the eigenvalues ui of L

may not be independent functions.

Theorem 10.2. Let (Ka) be the basis of the KS-space generated by a L-tensor L

according to formula (8.7). Then the functions Va(u)
.
= σa+1(u) (a = 0, 1, . . . , n−1)

fulfill equations dVa = Ka dV , with V = V0 = tr(L) =
∑

i ui, and the functions
Ha = 1

2 PKa
+ Va are first integrals in involution.

Proof. Ka dV = σi
a∂iV dqi = σi

a dqi = ∂iσa+1 dqi = dVa. Apply (5.1).

11. L-pencils

There are Stäckel webs which are not L-webs. A necessary condition is the Robert-
son condition. However, also in manifolds where this condition is identically satis-
fied, for instance in constant curvature spaces, there are Stäckel systems which are
not generated by a L-tensor. For instance, due to theorem 9.3, (ii), in a En all trans-
lational webs (except the Cartesian web) are not L-webs. As remarked above, also
the spherical-conical webs are not L-webs. This last case has suggested (Benenti
1992b) the introduction of a linear combination

L(m) = L0 + mL1,

which is a L-tensor for all values the parameter m ∈ R. We call L-pencil such an
object.
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18 S. Benenti

Theorem 11.1. Let L = L0 + mL1 be a L-pencil. Then: (i) L0 has simple eigen-
values. (ii) L is a CKT for all m if and only if L0 and L1 are CKT’s. (iii) The
condition H(L) = 0 is equivalent to

H(L0) = H(L1) = 0, L
0

h

[i ∂|h|L
1

k

j] − L
0

k

h ∂[iL
1

h

j] + L
1

h

[i ∂|h|L
0

k

j] − L
1

k

h ∂[iL
0

h

j] = 0.

(iv) The Ricci tensor R commutes with both L0 and L1.

The proof is straightforward. Let us apply the iterative formula (8.7) and the-
orem 8.7 to the tensor L(m). Since L is polynomial of degree 1 in m, each tensor
Ka(m) is at most of degree a: Ka(m) = Hama + Ha−1m

a−1 + . . ..

Theorem 11.2. (i) The tensors Ka(0) form a KS-space. (ii) The tensors Ha, given
by the coefficients of maximal degree of Ka(m), if independent, form a KS-space.
(iii) The Stäckel systems generated by these two KS-spaces satisfy the Robertson
condition.

Also for this statement we omit the proof. We remark that there are cases in
which all the Ka are of degree 1, as in the following example.

Example (Benenti 1992b): in En we consider the tensor L(m) = L0 + m r⊗ r.
It represents (for m 6= 0) the planar moment of inertia of a massive body with total
mass m and center of mass at the origin. L0 is a constant symmetric tensor (hence,
a KT) with simple eigenvalues (ai). L1 = r⊗ r is a CKT whose eigenvalues are all
zero except one (= r2). It can be proved that: (i) L is a L-pencil; (ii) the tensors
Ka(0) form a KS-space corresponding to Cartesian coordinates; (iii) Ka(m) are all
of degree 1 in m, Ka(m) = Ka(0) + mHa; (iv) the tensors Ha form a KS-space
corresponding to the conical spherical coordinates.

The above results stimulate investigations about the notion of L-pencil, also in
relation with recent studies on the same concept and the notion of cofactor pair
system (see e.g., Lundmark 2001, Rauch-Wojciechowski & Waksjö 2003, Marciniak
& B laszak 2002, Rauch-Wojciechowski, Marciniak & Lundmark 1999). A possible
generalization is a multi-pencil of the type L = L0 + miLi with (mi) ∈ R

k or
L = miLi with (mi) 6= 0. Basic examples are, in the Euclidean n-space, the case
L = L0 + m r ⊗ r + w c � r where c is a constant unit vector, see (4.2). For lack
of space, we cannot examine here which Stäckel webs in En (or in Sn, Hn) are
generated by a L-tensor or by a L-pencil.

12. The Riemannian background of the separation

Also for a better understanding of the orthogonal separation, it is necessary to
study the Levi-Civita equations without any a priori assumptions on the separable
coordinates q. The geometrical meaning of these equations has been firstly investi-
gated by Kalnins & Miller 1980, 1981, and by Benenti 1980 (see also Benenti 1991,
1996). A result of these investigations in the following theorem (Benenti 1997):

Theorem 12.1. The Hamilton-Jacobi equation G+V = E is separable if and only
if there exists a characteristic Killing pair (D, K) such that

DV = 0, d(K dV ) = 0. (12.1)
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A characteristic Killing pair (D, K) is made of a r-dimensional linear space
D of commuting Killing vectors and a D-invariant Killing tensor K having m = n−r
normal eigenvectors orthogonal to D and corresponding to distinct eigenvalues
(N.B., these eigenvalues may not be simple). Since the elements of D are in in-
volution, they generates r-dimensional orbits which are locally flat submanifolds.
It can be shown that if (D, K) is a characteristic Killing pair, then D is normal, in
the sense that the distribution orthogonal to its elements is completely integrable.
This means that there is a foliation of m-dimensional manifolds orthogonal to the
orbits of D. The leaves of this foliation are isometric Riemannian manifolds (the
isometries being generated by the orbits of D, assuming that they intersect the
orbits in only one point).

With a characteristic Killing pair we associate standard separable coordi-

nates (qi) = (qa, qα) (a = 1, . . . , m, α = m + 1, . . . , n) defined in this way: (i) dqa

are eigenforms of K orthogonal to D (or, equivalently, the orbits of D are defined
by equations qa = const.); (ii) the (qα) are the affine parameters, with zero value
on an arbitrary m-dimensional orthogonal section Z of the orbits of D, of Killing
vectors Xα forming a local basis of D. It follows that: (I) ∂/∂qα = Xα and the
coordinates (qα) are ignorable; (II) in these coordinates the contravariant metric
tensor components assume the standard form

[

gij
]

=

[[

gaa
]

[0]

[0]
[

gαβ
]

]

, (12.2)

where
[

gaa
]

is a diagonal m×m matrix and
[

gαβ
]

is a r×r matrix, with m = n−r.
Here we denote by [0] zero-matrices of proper dimensions.

The rather long proof of this theorem is based on the following (Benenti 1980)

Theorem 12.2. In an equivalence class of separable coordinates there exist coor-
dinates in which the metric assume the standard form (12.2).

Two separable systems are called equivalent if (in the intersection of their do-
mains of definition) the corresponding separated solutions of the Hamilton-Jacobi
equation generate the same Lagrangian foliation of T ∗Q. The geometrical represen-
tation of an equivalent class is given by a separable web: it is a pair (D,Sa) =
(D, (S1, . . . ,Sm)), where D is a normal r-dimensional space of commuting KT’s
and (S

a
) is a family of m orthogonal foliations of submanifolds of codimension 1,

all invariant w.r.to D (it follows that the orbits of D are the complete intersections
of the (Sa)). Moreover, the submanifolds (Sa) are orthogonal to m eigenvectors of
a D-invariant KT K with distinct (but not necessarily simple) eigenvalues (so that
(D, K) is a characteristic Killing pair). It must be observed that the quotient set of
the orbits of D is a m-dimensional manifold with a naturally induced orthogonal
separable metric (gaa) (it is isomorphic to any m-manifold orthogonal to D).

In this description of the separation we include the extreme cases: (I) m = n, r =
0, which corresponds to the an orthogonal separation.; (II) m = 0, r = n, which
corresponds to the separation in Cartesian coordinates (in this case the manifold is
flat). In Benenti et al. 2002a it is proved that

Theorem 12.3. A characteristic Killing pair (D, K) generates a m-dimensional
space Km of Killing tensors with the following properties: (i) they are D-invariant
and have m eigenvectors in common orthogonal to D; (ii) they are in involution;
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(iii) if the characteristic equations (12.1) of a separable potential V are satisfied,
then they are satisfied by all elements of Km.

Theorem 12.4. In a space Km having properties (i) and (ii), where D is a n−m-
space of Killing vectors in involution, all the common eigenvectors are normal.

Theorem 12.5. The functions Ha = 1
2 PKa

+ Va and PXα
= Xi

α pi, where dVa =
Ka dV and (Xα) is a basis of D, form a complete system of integrals in involution.

Theorems 12.2 and 12.3 show that if D admits an orthogonal basis, Xα·Xβ = 0
for α 6= β, then the standard coordinates are orthogonal. This means that the
separation occurs in orthogonal coordinates. It can be proved by a coordinate-
independent method that (Benenti 1992a)

Theorem 12.6. On a manifold with constant curvature any normal space D of
Killing vectors in involution has an orthogonal basis.

As a consequence,

Theorem 12.7. On a manifold of constant curvature the geodesic separation al-
ways occurs in orthogonal coordinates.

This important property was discovered by Kalnins & Miller (1984, 1986) (see
also Kalnins 1986), within a coordinate-dependent approach. This theorem can be
extended to a natural Hamiltonian H = G + V .
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