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Preface

This monograph grew out of a series of lectures given at the XXVI Summer
School of Mathematical Physics, Ravello, September 2001, organized by G.N.F.M.
(Gruppo Nazionale di Fisica Matematica) of I.N.d.A.M. (Istituto Nazionale di
Alta Matematica, Roma), at the Department of Mathematics of the University of
Torino in the academic years 2000/2001 and 2001/2002, and at the Department
of Physical Sciences of the University of Napoli, May 2003.

The elements of Symplectic Geometry and Analytical Mechanics on which these
lectures are based can be found in the literature of the seventies and eighties of the
last century. The bibliography is of course far from complete and refers the reader
to some of the important contributions. Here, we introduce only the essential
notions of symplectic geometry needed for application to the geometrical theory
of the Hamilton-Jacobi equation and to the control theory of static systems. Most
of these notions are well known, but the way they are assembled and used is new
in many respects.

A fundamental role in the present approach is played by the notion of generating
family and by two operations: the composition of generating families of symplectic
relations and the canonical lift from objects on manifolds (submanifolds, relations,
mappings, vector fields, etc.) to symplectic objects on the corresponding cotangent
bundles. Generating families describe special subsets of cotangent bundles which
we call Lagrangian sets. A Lagrangian set is a Lagrangian submanifold (which
may be immersed) if the generating family is a Morse family. However, there
are physically interesting examples of Lagrangian sets which are not Lagrangian
submanifolds. An advantage of considering generating families as fundamental
objects is that, while the composition of two symplectic relations may not be a
smooth relation, the composition of two generating families is always a smooth
function. In other words, the symplectic creed as formulated by A. Weinstein
in his article Symplectic geometry (1981) in the form everything is a Lagrangian
submanifold, which means that one should try to express objects in symplectic
geometry and mechanics in terms of Lagrangian submanifolds, is here replaced by
everything has o generating family.

The geometrical theory of the Hamilton-Jacobi equation is closely related to
Geometrical Optics. The symplectic formulation of Hamiltonian Optics presented



here differs from other formulations illustrated in papers and well known reference
books cited in the Bibliography and it is, in my opinion, very close to the original
ideas of Hamilton. From a geometrical view-point a Hamilton-Jacobi equation
is a coisotropic submanifold of a cotangent bundle. A geometrical solution is a
Lagrangian set described by a generating family and contained in the coisotropic
submanifold. There are two fundametal symplectic relations associated with a
Hamilton-Jacobi equation, the characteristic relation and the characteristic re-
duction. The two corresponding generating families are the Hamilton principal
function and the complete solution of the Hamilton-Jacobt equation, respectively.
By composing the latter with its transpose we get the former. Since the char-
acteristic relation is a singular Lagrangian submanifold, the Hamilton principal
function is necessarily a generating family and not a two-point function as in the
classical theory. Cauchy data (or sources of systems of rays), mirror and lenses are
represented by symplectic relations thus, by generating families. Then the Cauchy
problem and the actions of a lens or of a mirror on a system of rays are translated
into the composition of generating families.

What is presented here is only a first approach to Geometrical Optics based
on the notions of symplectic relation and generating family. We do not cover
many important examples of optical phenomena, which can be found in standard
reference books (e.g. Synge, Luneburg, Buchdahl) and which probably can be
treated within this framework.

Perhaps, the use of generating families and symplectic relations does not yield
a revolutionary progress in Hamiltonian Optics, but we are obliged to introduce
these concepts if, for example, we want to give a global meaning to the Hamilton
characteristic function, as shown in Chapters 3 and 4.

Symplectic relations and generating families can play an interesting role also
in the control theory of static systems, including thermostatic systems. Chapter
5 is devoted to this matter. Our approach is based on the notion of control re-
lation and on an extended version of the wvirtual work principle for constrained
systems with non-controlled degrees of freedom (hidden variables). Several ex-
amples of singular phenomena concerning static systems and thermostatics are
illustrated. In particular, it is shown how the Mazwell rule follows as a theorem
from the extended virtual work principle. Thermostatics of simple and composite
systems is here described in the four-dimensional state space, with global coordi-
nates (S,V, P, T, entropy, volume, pressure, absolute temperature, endowed with
the natural symplectic structure induced by the first principle of thermodynamics.

An outline of the basic tools of calculus on manifolds needed in our discussion is
given in Appendix A. A supplementary note (Appendix B) written in collaboration
with Franco Cardin (Dipartimento di Matematica Pura e Applicata, Universita di
Padova), is devoted to the calculus of global principal Hamilton functions for the
eikonal equations on the two-dimensional sphere S, and pseudo-sphere Hs.
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Chapter 1

Symplectic manifolds and
symplectic relations

1.1 Symplectic manifolds

A symplectic manifold is a pair (S,w) consisting of an even-dimensional differ-
entiable manifold S endowed with a symplectic form w i.e., a non-degenerate
closed 2-form.

In local coordinates z = (x
admits the representation

M, a=1,...,m, m = dim(S), any 2-form on S

w= %wAB dz? /\de,

with

dz® A da® = da® @ daP — da® @ da?, wap = w(0a,0B).
Here, 05 denotes the partial derivative 9/0z* interpreted as a vector field. The
components wap(z) form a skew-symmetric m X m matrix, [wAB], WAB = — WBA.-
A 2-form is non-degenerate if w(u,v) = 0 for all vectors v implies uw = 0. This

is equivalent to
det [wAB] #0.

This shows that the dimension of a symplectic manifold is even. A 2-form is closed
if dw = 0. This is equivalent to dawpc dz® A dxP Adz® = 01ie., to

O(awncy = 0,

where {...} denotes the sum over the cyclic permutation of the indices. Let us
denote by [Q4P] the inverse matrix of [wag],

AB A
Q wWoeB = 60 .
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The symplectic form generates two basic operations:
(i) A R-linear mapping from smooth (C°°) real-valued functions on S to vector
fields on &,
F(S) - X(S8):H w— Xy,

defined by
(1) wXg,X)= —(X,dH), VX € X(S).

The vector field X is called the Hamiltonian vector field generated by the
Hamiltonian H.

Here we denote by {v,6) and (X, 8) the evaluation between tangent vectors v,
or vector fields X, and 1-forms 8. In local coordinates,

9:9Ad1}A, U:vAaA, X:XA(.T})aA,

so that
(v,60) = v 0, (), (X,0) = XA 0,.

Equation (1) is equivalent to equation
iXHw = — dH,

where i x denotes the interior product of a differential p-form with respect to a
vector field X. The result is a p — 1-form defined by

(ixw)p..c =X wap..c.
Thus, the coordinate expression of equation (1) is
X4wap = — 0pH.
By applying the inverse matrix [24#] we get the explicit definition of the compo-

nents of Xg,
X4 = —0*BoH.

(ii) A binary internal operation in the space F(S) of smooth functions on &,
called Poisson bracket (PB), defined by

(2) {F,G} =w(Xr, Xa).

In local coordinates,

{F,G} = QAB 9\ FoRG.
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The following properties hold:

{F,.G} = —{G,F} (anticommutativity)
{aF +bG,H} =a{F,H}+b{G,H} (bilinearity: «,b € R)
3) {F{G,H}}+{G,{H F}}+{H,{F,G}} =0 (cyclic or Jacobi identity)
{F,GH} ={F,G}H+{F,H}G (
{F,G}=0,YVF = dG=0 (

Leibniz rule)

regularity).

The first three properties show that the space F(S) endowed with the PB is a
Lie-algebra. It can be seen that the Jacobi identity is equivalent to dw = 0.

Two functions are said to be in involution if {F, G} = 0. By the last property
(3), if a function is in involution with all functions, then it is constant on the
connected components of §. A manifold endowed with a bracket on functions
satisfying conditions (3), except the last one, is called Poisson manifold (for
further information and references see for instance [Weinstein, 1998], [Libermann,
Marle, 1987], [Vaisman, 1994]).

A remarkable property, relating the Poisson bracket of functions to the Lie
bracket of vector fields, is expressed by formula

(4) [Xr, Xe] = Xiray

which shows that the Lie bracket [Xp, Xa] of two Hamiltonian vector fields is the
Hamiltonian vector field generated by the function {F,G}. This means that the
mapping H — Xy is a Lie-algebra homomorphism. An equivalent form of (4) is

(5) i[XFaXG]w = — d{F,G}

1.2 Symplectic vector spaces

Several notions and properties of symplectic geometry are related to basic notions
of linear symplectic algebra, since any tangent space 1,,S of a symplectic manifold is
a symplectic vector space. A symplectic vector space is a real even-dimensional
vector space Fs, endowed with a real-valued bilinear, non-degenerate and skew-
symmetric form w: E x £ — R,

{ wlu,v) = — w(v,u)

w(u,v) =0, Ywe E = u=0.

With a symplectic vector space (E,w) we associate its dual symplectic space
(E*, Q). The dual symplectic form ( is defined by

1 Qu’, ") = wlu,v)
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(2) w = w(u,-) € B, (v, v’y = w(u,v).

The mapping b: E — E*:u — u’ is a linear isomorphism, since w is non-degenerate.

If wap = w(ea,ep) € R are the components of w in any basis (ea) of E, then the

mapping b corresponds to the operation of lowering the indices, (v")s = vBwga,

and the components Q4B of ) are the elements of the inverse matrix of [wag],
QABWCB = (59

With each subspace A of a symplectic vector space E we associate its polar
dual subspace

(3) A°={a e B | {u,a) =0, Vue A} C E*
and its symplectic orthogonal subspace
(4) AS={ve E|w(u,v)=0,VYuec A} CE.

The dual polar operator o and the symplectic polar operator § satisfy the
same formal rules of the orthogonal operator L in Euclidean spaces:

dim(A4) + dim(A°) = dim(E)
A°CB° < BCA

(5) (A+B)° = A°N B°
A° 4+ B° = (AN B)°
A =(A),

where ¢: E — E** is the natural isomorphism defined by {(a, t(v)) = (v, a), a € E*,
v EF;

dim(A) + dim(4%) = dim(E)
AYcBY «— BcA

(6) (A+ B)S = A3 n BY
A%+ B = (AN B)}
ASS = 4,

The correspondence between (5) and (6) follows from equation
(M h(A%) = A°.
We observe that

(8) A% = 4°8,
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A subspace A C E is called

isotropic AcC Al
coisotropic if A¥cC A
Lagrangian A = A,

By using these formulae it can be proved that:
(i) If A is isotropic (coisotropic, Lagrangian) then A% is coisotropic (isotropic,
Lagrangian).
(ii) If A is isotropic (coisotropic, Lagrangian) then dim(A) < I dim(E) (>, =,
respectively).
(iii) A subspace A is isotropic if and only if w(u,v) =0 for all u,v € A.
(iv) A subspace of dimension 1 (codimension 1) is isotropic (coisotropic).
(v) A subspace A C E is coisotropic (isotropic, Lagrangian) if and only if its
polar A° C E* is isotropic (coisotropic, Lagrangian) in the symplectic dual space
(E*, Q).
(vi) A subspace C E contained in (conlaining) a Lagrangian subspace L is isotropic
(coisotropic).
(vii) A Lagrangian subspace L of a coisotropic subspace C contains the symplectic
polar C%.

All these “linear” results will be applied in the following analysis of the special
submanifolds of a symplectic manifold.

1.3 Special submanifolds

Let K be a submanifold of a symplectic manifold Ss,,. We define, for each p € K,
TSK ={veT,S |p€ K, wlu,v) =0, Vu € T,K}.
We consider the set TK of all vectors tangent to K and
TIK = Upek THK.
Both TK and T3K are submanifolds of T'S. If dim(K) = k, then

dim(TK) = 2k, dim(T8K) = k+ (2n — k) = 2n.
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A submanifold K is called

isotropic TK CTYK,
coisotropic if TYK C TK,
Lagrangian TSK = TK.

In these three cases we have respectively,
dim(K) <n, dim(K)>n, dim(K)=n.

Notice that a Lagrangian submanifold is simultaneously coisotropic and isotro-
pic, and that it is an isotropic submanifold of maximal dimension or a coisotropic
submanifold of minimal dimension.

LK/ g coisotropic
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K Lagrangian

As shown by the following theorems, the isotropy of a submanifold is charac-

terized by means of the symplectic form, while the coisotropy is characterized by
means of the Poisson bracket.

Theorem 1. A submanifold K is isotropic if and only if (1) w|K = 0 i.e., w(u,v) =
OVu,v € TK, or (i) t*w = 0, where 1: I — § is any injection (injective immersion)
of a manifold I into S with image +(I) = K. (iii) If the injection 1 is represented
by paramelric equations z® = z*(k®), then its image is isotropic if and only if

dz? 9xB

WAB 55 g

K isotropic

This suggests the following extension of the definition of Lagrangian subman-

ifold: a Lagrangian immersion is an immersion ¢: K — & into a symplectic

manifold such that dim(K) = § dim(S) and ¢*w = 0. An immersed Lagrangian
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submanifold is the image A = ¢(K) of a Lagrangian immersion. If the immersion
is an embedding, then we have a Lagrangian submanifold in the ordinary sense.!
Theorem 2. (i) A submanifold K is coisotropic if and only if {F,G}|K = 0 for
all functions F,G € F(S) whose restrictions F|K and G|K to K are constant.
(i) If K is defined by independeni equations K¢ = 0, then it is coisotropic if and
only if {K*, K"}|K = 0.

From these characterizations it follows that,
Theorem 3. A submanifold of dimension 1 is isotropic. A submanifold of codi-
menston 1 is coisotropic.
Theorem 4. On a symplectic manifold of dimension 2n, the mazimal number of
independent functions in involution is n (i.e., if n+ k (k > 0) functions are in
involution then they are necessarily dependent).

1.4 The characteristic foliation of a coisotropic
submanifold

If C,,, C &»,, is a coisotropic submanifold, then T5C is a subbundle of TC, whose
fibres have dimension r = 2n — m, equal to the codimension of C. In other words,
T35C is a regular distribution on C of rank r = 2n — m, which we call the
characteristic distribution of C' and denote by I'cc. Note that it is an isotropic
distribution.

A characteristic vector field of C is a vector field X on S, tangent to C' and
such that its image is contained in the characteristic distribution,

X(p) € TP§C’, VpeC.
This is equivalent to equation
w(X,Z2)=0,

for all vectors Z tangent to C'. The characteristic vector fields form a linear
subspace of X(S).
Theorem 1. A Hamiltonian vector field Xy is a characteristic vector of a
coisotropic submanifold C if and only if H is constant on C.

Proof. This follows from the identity w(Xg,v) = {v,ix,w) = — {v,dH) for
allveTC. m

Two fundamental geometrical properties of the coisotropic submanifolds are
stated in the following two theorems.

! For a detailed discussion and further references on Lagrangian immersions and La-
grangian embeddings, as well as for special submanifolds of symplectic manifolds, see e.g.
[Marmo, Morandi, Mukunda, 1990].



1.4 The characteristic foliation of a coisotropic submanifold 9

Theorem 2. The characteristic distribulion of a coisotropic submanifold is com-
pletely integrable.

This means that for each point p € C there exists an integral manifold of
T¢ ie., a submanifold of dimension r = codim(C) containing p and tangent to
T'c. The integral manifolds of ' are called characteristics of C. A maximal
connected integral manifold is called a maximal characteristic of C. Thus,
any coisotropic submanifold admits a characteristic foliation made of maximal
characteristics.

Proof. Let the submanifold C be (locally) described by r = 2n—m independent
equations C'* = 0. Because of the coisotropy, the functions C'* are in involution (at
least on C), {C°, C*}|C = 0 (Theorem 2, §1.3). It follows that the Hamiltonian
vector fields X, generated by the functions C® commute, [X,, X;]|C = 0 (formula
(4), §1.1). Since the differentials dC® are pointwise linearly independent, these
vector fields are pointwise independent characteristic vector fields of C' (Theorem
1). Thus, they span the characteristic distribution. The corresponding (local)
flows ¢f commute. Thus, starting from any fixed point zg € C, the set of points
x € C such that £ = ¢} o ... o ¢} (20) defines a submanifold of dimension r
which is tangent at each point to the vector fields X,. Hence, this submanifold is
an integral manifold of the characteristic distribution of C'. m

characteristics

C coisotropic

Theorem 3. A Lagrangian submanifold A contained in a coisotropic submanifold
C is the union of characteristics of C.
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This property is known as absorption principle [Vinogradov, Kuperschmidst,
1977].

Proof. It is a consequence of a property of linear symplectic algebra: if L C
K C FE, where F is a symplectic space, K is a coisotropic subspace and L is
Lagrangian, then K8 C L¥ = L. m
Remark 1. (i) The dimension of the characteristics is equal to the codimen-
sion of C. The characteristics are isotropic submanifolds. (ii) Any submanifold
of codimension 1 is coisotropic; hence, its characteristics are (one-dimensional)
curves. (iii) If C is Lagrangian then the maximal characteristics coincide with the
connected components of C'.

As a complement of Theorem 1 we have
Theorem 4. A Hamiltonian vector field Xy is tangent to a coisotropic subman-
ifold C if and only if H is constant on the characteristics of C.

Proof. Apply the identity w(Xp,v) = (v,ix,w) = — (v,dH), Vv € T5C. u
Remark 2. In §6.5 we shall apply Theorem 2 for proving Frobenius’ theorem
concerning the complete integrability of regular distributions. On the other hand,
we can use Frobenius’ theorem to prove Theorem 1 as follows. We show that the
characteristic vector fields form a Lie-subalgebra of X'(S). (i) The Lie bracket of
two vector fields tangent to a submanifold C' is tangent to C (this is a general
property of the Lie bracket of vector fields). (ii) The intrinsic definition of the
differential of a 2-form is expressed by the following formula:

dw(X,Y,Z) =dx (w(Y, 2)) + dy (w(Z, X)) +dz (w(X,Y))-
W([X, Y],Z) _w([Yv Z]aX) —w([Z,X],Y).

If wis closed, X and Y are characteristic vectors and Z is tangent to C, then we
get
0=w([X,Y],2)

for each vector Z tangent to C'. This shows that the Lie bracket of two character-
istic vector fields is a characteristic vector field. m

1.5 Relations

A (binary) relation is a subset of the Cartesian product of two sets:
RCB x A.

The sets A and B are called the domain and the codomain of the relation,
respectively. For a relation we also use the notation

R:A— B



1.6 Symplectic relations 11

or
A5 B

The transpose relation or inverse relation
R'CAxB
is made of the same pairs of R, but in the opposite order. A relation RC B x A

is symmetric if

A=B and R' =R.

Relations can be composed according to the following rule: if
RC B x A, SCCxB,
then
SoR={(c,a) e Cx A|FeB, (bya) € R, (¢,b) € S} CC x A.
The composition of relations is associative
(Se@)eR=50(QR)
and satisfies the contravariant transposition rule
(SeR)"=R"o8S".
For relations and their composition we use the notation from the right to the

left in agreement with the standard notation for the composition of mappings. A
mapping is a relation R C B x A characterized by conditions

{RToB:A,
(b,a) € R, (V,a) e R = ¥ =hb.

We identify a mapping p: A — B with its graph R = graph(p) C B x A:
(b,a) € R = b= p(a).

The diagonal of A x A is denoted by A4,
Agy={(a,d)e AxAla=2d}.

It behaves as the identity relation over the set A;if RC BxAthen Ro Ay =R
and AB o R=R.
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In this framework, it is convenient to interpret a subset S C A as a relation
S C A x {0} where {0} is a singleton, an arbitrary set made of a single element.
If RC B x A then RS is the image of the subset S by the relation R. In
particular Ro A C B is the image of the relation R and R' « B C A is the
inverse image of R.

1.6 Symplectic relations

A smooth relation is a submanifold R C & x &7 of the product of two differen-
tiable manifolds & and S,. In general, the composition of two smooth relations
is not a smooth relation.

Let (S1,w1) and (Sa,ws) be two symplectic manifolds. Let us consider the
2-form on the product manifold S; x &; defined by

* *
W2 © w1 = Praws — Priwi,

where
pI‘1282><81 —)81, pI‘gZSgXSl —)82,

are the canonical projections. This is a symplectic form. Thus, (Ss X S1,ws S wy)
is a symplectic manifold, also denoted by (Sa,ws) x (St, —w1)-

A canonical or symplectic relation is a Lagrangian submanifold of a sym-
plectic manifold (Ss x S1,ws © wy). These Lagrangian submanifolds have been
named “canonical relations” by Hormander [Hérmander, 1971] and “symplectic
relations” by Tulezyjew [Sniatycki, Tulczyjew, 1972]. This definition is suggested
by the following property:

Theorem 1. ([Sniatycki, Tulczyjew, 1972], [Tulczyjew, 1974, 1977b]) A diffeomor-
phism ©:S1 — Sa between two symplectic manifolds is a symplectomorphism
i.e., it preserves the symplectic forms,

*
@ W = W1,

if and only if its graph R C S xSy is a Lagrangian submanifold of (SaxS1,wsSwy).
Proof. The graph R is the image set, of the injective mapping

L= (p,ids,): 81 = S x S1:a (cp(a),a).
Since pry o ¢ = ids, and pry o ¢ = ¢, it follows that

* * * * *_ % kK
(w2 ©wy) = ¥ (priws — priwy) = " prows — L priw

= (pra o t)*was — (pr1 o 1) w; = Y ws — wy.
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Thus, R is isotropic if and only if ¢*ws = w;. For a diffeomorphism, dim(R) =
% (dim(Ss) + dim(S;)). =

When &1 = 8Ss, a symplectomorphism is called canonical transformation.
Thus, the notion of symplectic relation is an extension of that of canonical trans-
formation.
Remark 1. A Lagrangian submanifold A of a symplectic manifold (S, w) can be
considered as a symplectic relation, since it is a Lagrangian submanifold of the
symplectic manifold & x {0}.

In general symplectic relations do not compose nicely. A sufficient condition is
given by the following theorem proved in [Sniatycki, Tulczyjew, 1972].
Theorem 2. Let Roy and Rse be symplectic relations from (S1,w1) to (S2,ws)
and from (Sa,wa) to (Ss,ws), respectively, such that: (i) Rs; = Rsa 0 Roy is a
submanifold, (i) for each (ps,p2,p1) such that (p3,p2) € R3z and (p2,p1) € Rox,
Tips,pr)F31 = Tipy poy B2 o Tipy py) 1. Then Ray is a symplectic relation.
Remark 1. Another sufficient condition for the smooth composition of two sym-
plectic relations is illustrated in Remark 1, §1.10. As we shall see below, there are
physically interesting examples of non-smooth composition of symplectic relations.
Moreover, symplectic relations between cotangent bundles can be represented by
functions, called “generating families”, in such a way that the composition of
symplectic relations is translated into a suitable composition of generating fami-
lies. This composition rule always yields a smooth function, even if the composed
relation is not smooth.

1.7 Linear symplectic relations

A linear relation R C B x A is a linear subspace of the direct sum B & A of two
vector spaces A and B. The direct sum is the Cartesian product endowed with
the natural structure of vector space. This definition is suggested by the fact that
a mapping f: A — B is linear if and only if its graph R is a linear subspace of
B @ A. It can be shown that the composition of two linear relations is a linear
relation. Vector spaces (as objects) and linear relations (as morphisms) form a
category [Benenti, Tulczyjew, 1979]. Let (A, «) and (B, ) be symplectic vector
spaces. On the direct sum B@® A a bi-linear skew-symmetric form  © « is defined
by

(1) (ﬁ@a)((b,a),(b',a')) :B(bvbl) —a(a,a').

This form is non-singular, thus it is a symplectic form. With a linear relation
R C B x A we associate its symplectic dual relation RS C B x A, where § is
the symplectic polar operator with respect to 8 © «,

(2) (b,a) € R® —  VY({,d)ER, B(bY)—alad)=0.
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According to the terminology used for special subspaces, a linear relation R C
B x A between symplectic vector spaces is called Lagrangian if R = R, isotropic
if R C RS, coisotropic if R¥ C R. A Lagrangian linear relation is also called
symplectic or canonical. Note that if R is a linear symplectic relation, then R
is symplectic. Symplectic spaces and symplectic linear relations form a category
[Benenti, Tulczyjew, 1981].
Remark 1. Many properties concerning with symplectic relations have a “linear”
background. Indeed, if R C S x & is a smooth relation between symplectic
manifolds, then it is a symplectic relation if and only if for each pair of points
(p2,p1) € R the tangent subspace T(p, , R C T},S2 @ Tp, 81 is a symplectic
(linear) relation (this follows from the fact that a submanifold A of a symplectic
manifold § is Lagrangian if and only if at each point p € A, T,A is a Lagrangian
subspace of T,,S).

A basic property of linear relations between symplectic vector spaces is the
following functorial rule,
Theorem 1. If S o R is the composition of two linear relations between symplectic
vector spaces, then

(3) (SoR)=8% RS

A proof of this formula, taken from [Benenti, 1988], is given in §6.7. It follows
from general properties of the linear relations.

By using this formula we can easily prove the following two fundamental state-
ments:

Theorem 2. The composition of two linear symplectic relations is a linear sym-
plectic relation.

Proof. f R = Rand S% =S, then (So R) =88 RI=SoR. u
Theorem 3. The image R o Kof an isotropic [coisotropic, Lagrangian] subspace
K by a linear symplectic relation R is an isotropic [coisotropic, Lagrangian] sub-
space.

Proof. If K is an isotropic subspace of A, K C K%, and R is symplectic,
then by (1) and the inclusion property of the composition of relations, we find
(RoK)! = RoK¥ DO Ro K. This shows that the image R o K is isotropic.
Similarly, if K is coisotropic, K% C K, it follows that also R o K is coisotropic. m

1.8 Symplectic reductions

A reduction is a special case of relation between differentiable manifolds. It is
a relation R C Sg x & which is the graph of a surjective submersion p: C' — &
from a submanifold C C S onto Sy. The transpose RT of a reduction is called
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coreduction. Special cases of reductions are the surjective submersions, the dif-
feomorphisms, the transpose of the embeddings of submanifolds. Reductions and
symplectic reductions are morphisms of categories [Benenti, 1983]. The notion of
symplectic reduction plays a fundamental role in the global symplectic formulation
of the Cauchy problem for a first-order partial differential equation (§1.10) and of
the Jacobi theorem (§3.6).

In order to establish the basic properties of the symplectic reductions we need
to consider them within the category of linear relations. A linear symplectic
reduction is a Lagrangian subspace R C B x A which is the graph of a linear
surjective mapping from a subspace K C A onto B.

Theorem 1. If R C B x A is a linear symplectic reduction then (i) K = R' o B
is a coisotropic subspace, (i) BT o {0} = K.

Proof. By the functorial rule (3), §1.7, we have K% = (RT o B)! = (R%)T c B=
RTOB§:RTO{O}CK. ]

Then we can prove
Theorem 2. Let R C Sy x S be a symplectic reduction. Then: (i) the inverse
image R' « N C S of a coisotropic (isotropic, Lagrangian) submanifold N C S,
is a coisotropic (isotropic, Lagrangian) submanifold; (ii) the inverse image C' =
R" o Sy of R is a coisotropic submanifold; (iii) the inverse image R' o {po} of a
point py € Sy is an integral manifold of the characteristic distribution of C.

Proof. The inverse image of a submanifold by a submersion is a submanifold.
Being a reduction R the graph of a (surjective) submersion p: C' — &, the inverse
image of any submanifold N C & (in particular of a point) is a submanifold of
C=R'" oSy Let (po,p) € R. Then Tipopy B C TpySo X TS is a linear symplectic
relation i.e., a Lagrangian subspace,

(Tipo.p) R)Y = Tipy ) B-

Because of the definition of submersion, this linear relation is the graph of a
surjective linear mapping. Thus, T(,, ,) R is a linear symplectic reduction, with
inverse image 7,C.

(Tipo.p) R)T o TpySo = TpC'.

Due to Theorem 3, §1.7, items (i) and (iii) are proved (note that Sp is coisotropic).
Moreover,
(TipopyR) T 0 {0} =T5C,  0€TpSo.

Let us consider the fibre
Ipo = RT o {po}
We have
Tplp, = {v € T,C | Tp(v) = 0} = {v € Tp,C' | T(ppo) R o {v} =0}
= (TipoR) " o {0} =TEC.
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This shows that the tangent space of a fibre at a point p coincides with the tangent
space of the characteristic containing that point. This proves item (iii). m

The operation considered in the preceding theorem is called coreduction or
counter-reduction of a submanifold. As we have seen, this operation preserves
the submanifold structure and the symplectic kind. Instead, the reduction of a
submanifold, N CS — Ny = Ro N C &y, is more delicate and for preserving
the submanifold structure for the image Ny it requires some special assumptions
on the intersection C'N N.
Definition 1. Two submanifolds N and C of a manifold S are said to have clean
intersection [Bott, 1954] [Weinstein, 1973, 1977] if

(i) CN N #£ § is a submanifold and
(i) I,CNT,N =T,(CNN) for every z € CNN.

Remark 1. The inclusion T(CNN) C TCNT N always holds for two submanifolds
N and C whose intersection C'N N is a submanifold. Indeed, if v = [y] € T(NNC)
is a vector represented by a curve v on N N C, then v is a curve on N and on C
simultaneously, so that v € TN and v € TC.

Remark 2. The case N C (' is a special case of clean intersection. For the
characterization of the clean intersection in terms of equations of submanifolds see
Appendix A .4.

As above, in what follows R C Sy x S is a symplectic reduction, C = R o S
is its inverse image, p: C — & is the associated submersion and py: NNC = &
the restriction to N N C.

Theorem 3. (i) If N and C have clean intersection and dim (TEC NT,N) does
not depend on x € N N C then each x € N N C admits a neighborhood U such
that R o U is a submanifold of So. (i) If N is of special type (i.e., coisotropic,
isotropic, Lagrangian) then R o U is of the same type.

Remark 3. The condition dim (7$C' NT,N) = constant in this statement can be
replaced by dim (TfC + T, N) = constant, due to the Grassmann formula,

dim (TEC NT,N) + dim (T3C + T, N) = dim (7£C) + dim (T, N).

Proof. The subspace TSC is the kernel of the linear mapping T, p:T,C —
Tp(m)SO. Then,

dim (Ker(T,pn)) = dim (TEC N T,(N N C)) = dim (TECNT,CNT,N)
=dim (TEC NT,N).

It follows that py has constant rank i.e., it is a subimmersion. Thus, for each x €
NNC there exists a neighborhood U such that pn(U) = R o U is a submanifold (cf.
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[Dieudonné], 16.8.8 and [Libermann, Marle, 1987] p.344). Assume for simplicity
that U = NNC and V = R o U. We have

T(RoN)=T(R-(NNC)) =T (pn(NNC)) =T (p(NNC))
=Tp(T(NNC))=TRo (T(NNC)) =TR- (TNNTC)
=TRoTN.

We have used the property T'(p(A4)) = Tp(T A) which holds for any submersion
p:C — & and any submanifold A C C such that p(A4) is a submanifold, and the
fact that TC is the inverse image of TR. For x € NN C and y = p(z) we have
T,V =Ty o Ro Ty N. Since Ty, )R is a linear symplectic relation, it follows that
T,V is a subspace of the same type of T, N (Theorem 3, §1.7). m

If we apply Theorem 3 to the case of a Lagrangian submanifold N = A then
we get the following fundamental result [Weinstein, 1977]:
Theorem 4. Let R C Sy x & be a symplectic reduction and let A C S be a
Lagrangian submanifold. If A and C = R o Sy have clean intersection, then
Ao = R o A is an immersed Lagrangian submanifold of Sg.

Proof. If N = A is Lagrangian then the clean intersection implies the second
assumption in item (i) of Proposition 1 (see Remark 3). Indeed we have

TN+TSC =TK+TC = (TKNTC) =TS(NNCO),

and T3(K N C) has a constant dimension, equal to the codimension of K N C. =
A special case of clean intersection is the transverse intersection:

Definition 2. Two submanifolds N and C of a manifold S are said to be tran-

verse or to have transverse intersection if

(1) T, +T,N =T, VYzeCNN#0.

It can be proved that (a prof can be found in the books [Lang, 1972] and
[Abraham, Robbin, 1967]; see also [Libermann, Marle, 1987], Appendix 1).
Theorem 5. If N and C are transverse submanifolds of S, of dimensions n, c
and s, respectively, then: (i) NNC is an (n + ¢ — s)-dimensional submanifold of
S (as well as of N or of C); (i) T,C +T,N=T,5,Vze CNN.

This means that iransverse intersection implies clean intersection.

Remark 4. If N = A is Lagrangian and C is coisotropic in the symplectic
manifold &, then the tranverse intersection (1) is equivalent to

(2) TSCNT,A=0, Yz ANC #0.

This means that A is not tangent to the characteristics of C'. The dimension of
CnNAisn+c—2n = c—n, where ¢ = dim(C) and 2n = dim(S). If k = 2n—cis the
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codimension of C, then dim(C N'A) = n — k. This is in agreement with Theorem
4: the dimension of AN C, which is transversal to the characteristics, is equal to
the dimension of the reduced submanifold R o A, which must be Lagrangian. On
the other hand, the dimension of the reduced symplectic manifold is 2(n — k).
Remark 5. If the intersection of A and C = R" o Sy is not clean, then Ag = R o A
may not be a submanifold. In this case we say that it is a Lagrangian set (cf.
§2.5; physically interesting examples will be given in Chapters 4 and 5).

1.9 Symplectic relations generated by a coisotropic
submanifold

Let C,, € S»,, be a coisotropic submanifold. Let us denote by S¢ the reduced
set of § by C i.e., the set of the maximal connected characteristics of C. A
coisotropic submanifold C' C S generates two relations [Tulczyjew, 1975]: (i) the
characteristic relation

DCQSXS,

made of pairs of points (p,p') belonging to a same characteristic of C,

(1) (p,p)eDec <= 3IveSc|pp e

characteristics

C coisotropic

" Sc reduced set
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(ii) the characteristic reduction

Re CSc xS,
defined by
2) (1,p) € Rc < pen.
It follows that
(3) Do =Rl o Re.

According to its definition, D¢ is a relation from C to C, since it involves points
of C' only. However, it is convenient to consider D¢ as a relation in &. Indeed, by
using local coordinates adapted to the characteristics (whose existence is due to
the local Frobenius theorem) it can be proved that it is (locally) a 2n-dimensional
submanifold of § x & and moreover, that it is a Lagrangian submanifold with
respect to the symplectic form w © w [Benenti, Tulczyjew, 1980].

In general, the reduced set S¢ is not a differentiable manifold, so that R¢ is
not a smooth relation. However,

Theorem 1. If the reduced set Sc has o differentiable structure such that the
canonical projection
pC—>Sc:p—~y | pery

is @ surjective submersion, then: (i) There is a unique reduced symplectic form
we such that ([Lichnerowicz, 1975], [Weinstein, 1977])

(4) w|C = p*(we).

(ii) With respect to this symplectic form Rc C Sc x S is a symplectic relation.
(iii) Do = R} o R¢ is a symplectic relation.

We call (S¢, we) the reduced symplectic manifold and R¢ the symplectic
reduction associated with C'. Note that

(5) dim(S¢) = dim(C) — codim(C) = 2dim(C) — dim(S) = 2(m — n).
Proof. (i) The reduced symplectic form is defined by equation
(6) wo(v,v')=w(w,w), Y(ww)eTCxcTC st. Tplw)=v, Tpw') =w.

By definition of pull-back this is equivalent to (4). Definition (6) does not depend
on the choice of the vectors (w,w’). Consider a point p € C and w, w', w, @' € T,C
with Tp(w) = v = Tp(w), Tp(w') = v' = Tp(w'). Then the vectors w — w and

w' — @' projects onto the zero vector; this means that they are tangent to the
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characteristic at p. Hence, w—w, w' — @' € TEC. Since this subspace is isotropic,
w(w—w,w —w') =0 and w(w,w') = w(w,d"). This proves the independence of
the definition (6) from the choice of the vectors (w, w') at a fixed point p. Consider
the (local) flow ¢;: C — C of a Hamiltonian characteristic vector field (generated
by a Hamiltonian constant on C). For all admissible ¢ € R we have p, = ¢,(p) € C
and p o ¢ = p. Then the vectors wy = T'¢(w) € 1}, C and w; = T'(w') € T, C
still project onto the vectors (v, v'). Since ¢, is symplectic, w(w,w') = w(w, w}).
Moreover, we observe that any two points p and p’ on the same characteristic can
be joined by a finite number of integral curves of characteristic Hamiltonian vector
fields. This proves the independence of the definition (6) from the choice of the
point p on a fixed characteristic. Hence, definition (6) is well posed. The fact that
wc is nondegenerate is a consequence of the fact that 7),p is everywhere surjective
(by definition of submersion). The fact that we is closed follows from (4). (ii) The
relation R is the image of the topological immersion ¢: C' = S¢xS:p — (p(p),p).
It follows that

Hwe ©w) =7 (prywo — prsw)
(prse o ¢) we — (prs o ¢) w
= pfwe —w|C =0.

This shows that R¢ is isotropic. On the other hand, dim(S¢) = 2(m—n), dim(S¢ x
8) = 2m, and dim(R¢) = dimgraph(p) = dim(C) = m. This shows that Rc¢ is
Lagrangian. (iii) From an atlas on § of charts adapted to the submersion p we
can construct an atlas of charts adapted to D¢. Thus, D¢ is a submanifold of
dimension equal to 2n = dim(S). Any vector tangent to D¢, interpreted as an
equivalence class of curves on D¢, is a class of pairs of curves on C which are
pointwise projected by p on a same curve of S¢. This implies that a vector w
tangent to D¢ at a point (p,p’) is a pair of vectors (v,v') € T, C C T(pp1S
whose images by T'p coincide, T'p(v) = T'p(v'). Since the projections of w = (v, v')
onto the first and second factor S are v € T,C C T},8 and v' € T,y C C TS
respectively, it follows that for two vectors w and w at the same point (p,p’),

w O w(w,w) =w,v) —wl,v).
By definition of w¢, this last difference is equal to

we(Tp(v), Tp(®)) — we (Tp(v!) — Tp(t')).

But these two terms are equal, since Tp(v') = Tp(v) and Tp(?') = Tp(v). Thus,
w e w(w,w) =0 and D¢ is isotropic. m

Example 1. Let S = R* = (2,y,u,v), w = dz A du+ dy A dv, C' = S3 the unit
sphere z? + y? + u? +v? = 1. Then: (i) the characteristics of C are the maximal
circles, (ii) the reduced set S¢ is the unit sphere So, (iii) the surjective submersion
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p:Sg — Sy is the Hopf fibration, (iv) the reduced symplectic form we is the area
element of So ([Weinstein, 1977, [Benenti, 1988], p.139, [Libermann, Marle, 1987],
§14.14).

Remark 1. The reduced Poisson bracket associated with the reduced symplectic
form can be directly defined as follows. Let f:Sc — R be a smooth function on
the reduced manifold. Let us denote by f: C' — R its extension to C' constant on
the characteristics, so that

f'=7fep

Furthermore, let us denote by f” any (local) extension of f’ in a neighborhood of
C, so that f"|C = f'. Then the reduced Poisson bracket is completely determined
by equation

({fag}C)l = {fllag”}|0'

This definition is well posed because of the following properties, whose proof is
straightforward.

Proposition 1. Let C be a coisotropic submanifold of a symplectic manifold S and
let (F1,Fy) and (G1,G2) be two pairs of functions on S such that F1|C = F»|C,
G1|C = G2|C Then {F17G1}|C = {F27G2}|C

Proposition 2. Let C' be a coisotropic submanifold of a symplectic manifold S.
If F and G are two functions on S constant on the characteristics of C, then their
Poisson bracket {I',G} is constant on the characteristics.

1.10 The symplectic background of the Cauchy
problem

An important application of the results of the preceding section is the following
Theorem 1. Let Af C S be a Lagrangian submanifold having clean intersection
with a coisotropic submanifold C C S. Then there exists a unique connected
immersed Lagrangian submanifold A contained in C and containing C N Ar. This
Lagrangian submanifold is defined by the composition formula

A=Dc o A;

thus, it is the union of the mazimal characteristics of C intersecting Aj.

Proof. By Theorem 3, §1.8, R¢ o Ay is an immersed Lagrangian submanifold
of 8¢ and by Theorem 2, A = Rg o Rc o Ay is a Lagrangian submanifold of S.
The uniqueness follows from the absorption principle. =
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Re o A

A[ — RCOA] = REORCOA[:A

As we shall see, when applied to cotangent bundles, this statement can be

interpreted as a symplectic background of the Cauchy problem: C will
represent a first-order PDE, Ay (or C N Ay) the initial or boundary conditions
and A the corresponding solution. However, the case in which the intersection
C' N Ay is not clean occurs in many interesting applications of this theory. In this
case, Rc o Ay and A = D¢ o A; may not be Lagrangian submanifolds.
Remark 1. A remarkable application of the above considerations concerns the
composition of symplectic relations (cf. [Weinstein, 1977]). Let Ry C (S1 X So, w16
wo) and Ry C (S2 X871, w2 ©wy ) be smooth symplectic relations; then the composed
relation can be interpreted as a reduced set,

Ry o Ry = R¢ o (Rz XRl),

where Ry X Re C § = 53 x 81 x 81 xSy is interpreted as a Lagrangian submanifold
with respect to the symplectic form

W =wy Ow) bw ©wo,
and R is the reduction relation generated by the coisotropic submanifold
C =83 x As, x S,

where Ag, C &1 xS is the diagonal. In this case the reduced symplectic manifold
Sc is just (S2 X Sp,we S wp). It follows that if €' and Rs x R; have clean (or
transverse) intersection, then the composite relation Ry o Ry is a smooth (possibly
immersed) symplectic relation.



Chapter 2

Symplectic relations on cotangent
bundles

2.1 Cotangent bundles

A tangent covector on a manifold @ is a linear mapping
F1,Q = Riom (v, f).

We denote by
T;Q
the cotangent space at the point g i.e., the dual space of the tangent space 7, Q.

The cotangent bundle 7*Q of a manifold Q,, is the set of all covectors i.e.,
the union of all cotangent spaces. It is a 2n-dimensional manifold. We denote by

7o:1T"Q — Q

the cotangent fibration of O, which maps a covector f € T*Q to the point
q € Q where it is applied. We denote by

(¢',pi)

the canonical coordinates on T*Q corresponding to coordinates ¢ = (¢°) (i =
1,...,n) on Q. They are defined as follows: if f is a covector at a point ¢ in the
domain of the coordinates, then ¢*(f) are the coordinates of ¢ and p;(f) are the
components of the covector in these coordinates, such that for all v € T, Q,

(v, [) = ¢'pi = pi 6q".

There are two mechanical interpretations of a cotangent bundle.
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(1) If Q is a configuration manifold, then a covector f € T*Q represents a
force and the evaluation (v, f) the virtual work of the force corresponding to
the virtual displacement v (or the virtual power if v is interpreted as a virtual
velocity).

(2) If Q is a configuration manifold, then a covector p € T*Q represents an
impulse and the cotangent bundle 7*Q the phase space of the mechanical sys-
tem.

It is useful to consider the vectors tangent to a cotangent bundle: they form
the manifold T(T*Q) = TT*Q. Natural canonical coordinates (¢, p;) on T*Q
generate coordinates

(qlap17ql7pl> = (qiapia 6qz76pl)

on TT*Q, where (¢°,p;) = (dq’,8p;) are the components of the tangent vectors
weTT*Q.

T*Q
vertical vector
w ;(5131')
) | le i fibre
f (611’)

! Q

A vector w tangent to T*Q is called vertical if is tangent to a fibre. A vector
is vertical if and only if Twg(w) = 0. The vertical vectors are characterized by
equations d¢* = 0.

2.2 The canonical symplectic structure of a cotan-
gent bundle

With each vector w tangent to a cotangent bundle 7*Q we can associate “in a
natural way” a real number, Let w € T,(T*Q). The point p where w is attached
is an element of T*Q i.e., a covector. As a covector, p is attached at a point ¢ € Q.
Let u be the image of the vector w by the tangent mapping Tno: TT*Q — TQ
of the cotangent fibration 7g:7*Q — Q. It is a vector u € T,Q attached at the
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same point ¢ of p. Thus, the evaluation {u, p) makes sense. This is just the number
associated with w. If we consider the mapping defined in this way,
) o TT*Q — R:w — {u,p),

we can see that it is linear over the fibres of T'(T*Q), so that it can be interpreted
as a 1-form over 7% Q, and instead of (1) we can write

(2) (w,00) = {u,p).
This is the fundamental form of a cotangent bundle, also called the Liouville
1-form. By the process illustrated above we have

u = Trg(w), p=T1r-0(W)
where

T T(T*Q) - T7Q

is the tangent fibration over T*Q. It follows that the formal definition of the
Liouville form is

3) (w,0g) = (Tmo(w), 77+ 0(w))

Its representation in natural canonical coordinates (¢’,p;) corresponding to
coordinates (¢*) of Q is

(4) 0o = p;idq’

Indeed, if w = (¢%,p;), then u = (¢’) and (2) reads {(w,0g) = p;¢* (1). On the
other hand, any 1-form 6 over T Q can be locally written 6 = 8, dg* + 6% dp;, so
that (w,6) = 6; ¢* + 6% p;. In order to get (1) we must have #° = 0 and §; = p;.

The differential of the fundamental 1-form is the canonical symplectic form
on TQ,

(5) wg = dfg

In coordinates,

(6) wo = dpi Adg’

The corresponding expression of the canonical Poisson bracket is

OF 0G  OF 0G
(7) {FG=a—75 — 7377

dp; 0q'  Oq' Op;
and the first-order equations corresponding to a Hamiltonian vector field Xz are
the Hamilton equations

. O0H . 8H
(8) ‘=5, b=
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2.3 One-forms as sections of cotangent bundles

A 1-form (or linear differential form) on a manifold Q can be interpreted in
three equivalent ways: (i) as a mapping

) o:TQ - Riv— (v,0),

which is linear when restricted to each tangent space T,Q, ¢ € Q; (ii) as a section
of the cotangent bundle, that is as a mapping

(2) 0:Q = T"Q:qw o(q),

such that o(g) is a covector in 7,7 Q (in this interpretation, we can say that a 1-form
is a field of covectors; (iii) as an object locally expressed as a linear combination
of the differentials of coordinates

3) o = 0i(q) dd’,

where o, are the components of o. The link between (1) and (3) is given by
(v,0) = ¢' 0;.

The link between (2) and (3) is given by

pi = 0i(q).

T*Q = (¢',ps)

The image of a 1-form

WQ\L o=o0;dq ﬁ

There is an important link between 1-forms and Lagrangian submanifolds:
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Theorem 1. The image o(Q) C T*Q of a I-form (interpreted as a section) is a
Lagrangian submanifold if and only if o is closed, do = 0.

Proof. The image A = ¢(Q) is a submanifold of dimension n = 1 dim(T*Q).
If we consider the canonical symplectic form restricted to A, then we get

wolA = do; Adg' = 00, dg’ A dqg'.

It follows that wg|A = 0 (isotropy condition) if and only if 0;0, = 0;0;, that is
do=0.m

Remark 1. Let (G: @ — R be a differentiable function. Its differential dG is an
exact, thus closed, 1-form. Then its image

A =dG(Q),

which is locally described by the n equations

oG

is a Lagrangian submanifold. This is the case when the closed 1-form o is exact:
o = dG. Then G is said to be a global generating function of A. Of course
any other function G + constant is a generating function.

2.4 Lagrangian singularities and caustics

Let A C T*Q be a Lagrangian submanifold of a cotangent bundle. A regular
point p € A is a point where A is transversal to the fibres i.e., where the
tangent space T,A is complementary to the space V,, of the vertical vectors at p:

) {TpAﬁszo

T,A+V, =T,(T*9Q).
We remark that these two conditions, which express the complementarity of the

two subspaces TpA and V), are in fact equivalent, since the subspaces T,A and V),
are both Lagrangian subspaces of T,,(7Q),

T,ANV,=0 & (T,ANV,)! =T,(T*Q)
< (TpA)§ + (Vp)§ =T,(T*Q)
& DA+V,=T,(T°9Q).

A non-regular point is called singular. A singular point of a Lagrangian subman-
ifold is also called Lagrangian singularity or catastrophe. The set I'(A) C Q
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of the points of Q on which are based all the singular points is called the caustic
of A.
Remark 1. (i) A point p is regular if and only if the tangent space T, A does not
contain vertical vectors except the zero vector. A point is regular if and only if the
restriction m: A — Q of the cotangent fibration 7o:7*Q — Q to A is a submersion
at p.

T*Q = (¢',ps)

singular points

A

(¥o) caustic I'

1 4

Q=(q")
To “measure” the degree of singularity we introduce the rank of a point p € A:
it is the dimension of the projection onto T,Q, ¢ = wo(p), of the tangent space
TpA:

(2) rank(p) = dim (Two(THA)).

A point p is regular if and only if rank(p) = n = dim(Q). A Lagrangian submani-
fold is called regular if all its points are regular.

As for any submanifold, a Lagrangian submanifold can be represented, at least
locally, by parametric equations or by wmplicit equations. For a Lagrangian sub-
manifold there is however a third local representation, by means of generating
families. This will be examined in the next section. In this section we consider
the particular case of a representation by means of generating functions. In
the following discussion we shall assume that the Lagrangian submanifold under
consideration is a C'* submanifold.

2.4.1 Parametric equations. A system of 2n parametric equations in n param-
eters (\F),

i i \k
W {q—q(A),

pi= pi(/\k)v
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represents a local immersion 1: A — T*Q of a n-dimensional manifold A, with
coordinates (A*), if and only if

g
Ok

(max).

(2) rank [ N

3]%} _

Indeed, the tangent mapping T': is represented by equations

g

X - /\k
) T= a0

AN

and this is a linear injective mapping at each point if and only if the rank of the
matrix (2) is maximal (¢ = 0 and p; = 0 must imply \* = 0). The submanifold
A is Lagrangian if and only if

dq' dpi  Oq' Ipi

(4) ANE OM  ON ONE

Indeed, these equations are equivalent to the isotropy condition t*dfg = 0. The
left hand sides of equations (4) are called Lagrangian brackets. In this repre-
sentation, the rank of a point is given by

i

(5) rank(p) = rank {a%} R

where the evaluation at the point p of the matrix means its evaluation at those
values of the parameters A* corresponding to the point p. Indeed, the tangent

i gt -
mapping Tm: TA — TQ is described by equations ¢* = 8/(\1’“ A*. Hence,
(6) regular <= det Oq' #0
p g 8}\k v *

It follows that the set of the singular points is described by equation

(7) det {ggk] = 0.

Note that this is a single equation on the parameters A*. Hence, it is an equation
on A.
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2.4.2 Implicit equations. A submanifold A C 7*Q of codimension n (thus, of
dimension n) can be represented (at least locally) by n independent equations

(8) A(g,p) = 0.
This means that

oA’
Opy,

OA?
Oqg*

9) rank {

} =n  (max)

at each point of A i.e., for each set of values of the coordinates satisfying equations
(8). The submanifold A is Lagrangian if and only if it is coisotropic i.e., if and
only if

(10) {AY,A7YA = 0.

In this representation,

OA?
11 k(p) = k .
(11) rank(p) = ran { 8PkL

Indeed, the tangent subbundle TA C T'T*Q is described by equations

ON L N
8qkq 8pkpk_ ’

so that at any point p the dimension of the space of the vertical vectors, for
which ¢* = 0, is given by the corank of the matrix (11) at that point; this is the
codimension of the space Tp7(T,A). Hence,

i

(12) p regular <= det {3/\] # 0.
Opr ],

and the caustic I' C Q of A is described by equation

OA! }
Opy,

(13) det { = 0.
P
together with equations (8).

2.4.3 Generating functions. In a neighborhood of a regular point p a La-
grangian submanifold can be described by equations of the kind
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where G(g) is a function in a neighborhood of the point ¢ = wg(p). Indeed, due
to condition (12), equations (8) are locally solvable with respect to p;, p; = 0;(¢?).
Being A Lagrangian, the form o = o; dq’ is closed, thus locally exact.

However, there are cases in which a representation of the kind (14) holds also
in a neighborhood of a singular point. A simple example is the following.
Example 1. Q =R = (¢), T*Q = R? = (¢, p), A the curve ¢ = p*. All points of A
are regular except (g, p) = (0,0). Since p = g%, this Lagrangian submanifold is the
image of the 1-form o = q% dg; thus, it is generated by the function G(g) = %q%.
We remark, however, that this function is only C* (it does not admits the second
derivative at the point ¢ = 0). In spite of this, as we shall see in the next section,
this Lagrangian submanifold admits a C*> “generating family”.

p

T°Q =R* = (¢,p)

2.5 Generating families

A way for extending the notion of generating function is the following.
Definition 1. We call generating family on a manifold Q a smooth function
G:Q x U — R, where U is a supplementary manifold.! A generating family

L A more general definition of generating family is illustrated in Remark 3 below: it is
a function G: Z — R on a manifold Z endowed with a surjective submersion (: Z — Q.
However, in all the examples of application we shall encounter in these lectures, Z is a
Cartesian product Q X U and (: @ x U — @Q is the natural projection. For a general
survey on the notion of “generating family”, or “generating function”, and its applications
to Analytical Mechanics see [Tulczyjew, 1974], [Weinstein, 1977], [Tulczyjew, 1977b],
[Arnold, 1986], [Libermann, Marle, 1987]. The definition given here differs from that
given for instance in [Arnold, 1986] and in [Chaperon, 1995], where the term “generating
family” is introduced for what here (or in [Weinstein, 1977]) is called “Morse family”.
In [Chaperon, 1995], §1.3, the term “phase function” is used for a function on Q x F,
where F is a finite-dimensional vector space. As remarked in [Arnold, 1986], the notion
of generating family already appears in the works of Jacobi and Lie and in [Whittaker,
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generates a Lagrangian set A C 7" Q, locally defined by equations

_ oG

(1) Pi = 8qi
0 oG

du~

where G = G(q,u) is a local representative of G in coordinates (¢?,u®) of Q x
Upi=1,...,n; a=1,...,r n = dim(Q), r = dim({U). We call u = (u®)
supplementary coordinates or supplementary (extra) variables. A point
p € T Q belongs to A if and only if its coordinates (g, p) satisfy equations (1) for
some values of the supplementary coordinates. The critical set of a generating
family is the subset = C @ x U of the stationary points of G along the fibres

E={(¢q,u) € Qx U |d,G(g) =0}.
This set is locally described by equations

oG _,

(2) oux

Definition 2. A generating family is called Morse family if the v x (n + r)
matrix

0*G liale
(Gou | Gua] = {m W]
has maximal rank at each point of the critical set,
0*G 0*G
) rank {maaqi 3ua3uﬁ} = ’

Theorem 1. If G is a Morse family then the Lagrangian set A described by
equations (1) is an immersed Lagrangian submanifold of T*Q.

Proof. (i) To prove that A is a n-dimensional submanifold of 7% Q we consider
the set A’ C T*Q x U defined by the n + r equations

oG oS
F,=p,— — = , F,= =
(1) Pi~ o 0 Hyo = 0

We remark that: (i) the canonical projection of A’ to @ x U is the critical set,

§ = (mo x idy)(A);

1927]. The expression generating family or Morse family is suggested by the fact that
G is regarded as a family of functions parametrized by the points ¢ € Q.
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(ii) the canonical projection of A’ to T*Q is the set A,
A =prr-g(A).
The matrix

&F, 8;F, 9F ] _[8 8;F;, 8sF
&F, 8;F, 93F,| |0 8;0.G 83.G|’

where d, = 8/0u®, has maximal rank at the points of A, since the submatrix
[00aG | 05aG]

has maximal rank, due to condition (3). This proves that equations (}) are in-
dependent, so that A’ is a submanifold of codimension n + r in a manifold of
dimension 2n + r thus, a submanifold of dimension n. The set A is the projection
on T*Q of A, since it is defined by the same equation of A’, leaving out the coordi-
nates (u®). The Cartesian projection T*Q x U — T*Q preserves the submanifold
structure if A’ is transversal to its fibres. This happens if A’ has no tangent vectors
(except the zero vectors) which are vertical in this projection. Let T'A’ be the set
of the vectors tangent to A'. It is described by equations

) { pi — 0ijG ¢/ — 8i0,G u* = 0,
v 0;00G ¢ + 0G0’ = 0.

together with equations (}). A vertical vector is defined by ¢* = p; = 0. From (%)
it follows that
{ 0;0,G u* =0,
8(15G W’ = 0.

This is a linear homogenous system in (4¢®). The matrix of the coefficients is
again the matrix (3) of maximal rank. It follows that 4® = 0 i.e., that the only
vertical vectors tangent to A’ are the zero vectors. This proves the assertion. (ii)
It remains to prove that A is isotropic (since it has dimension n, it is Lagrangian).
By equations (1) we get

w|A = (dp; A dg")|A = 0;0,G dg’ Adq' + 8,0;g du® Ndg' =0,

since 0;;G is symmetric in the indices, and 8;0,G = 0 on A, because of (1). m
Remark 1. Equations (1) are equivalent to the “differential equation”

y

or to the “variational equation”

)
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Theorem 2. If G is a Morse family, then the caustic I' C Q of A is described by
equations

=0

0*G oG
5) det [8uaauﬁ} =0, u®

A point g € Q belongs to I if and only if its coordinates satisfy equations (5) for
some values of the supplementary variables.?
Remark 2. Equations (5) are equivalent to the single equation

2*G
(6) det {—81%“(%5} T 0

Remark 3. Global definition of generating family. The above-given defi-
nitions and statements have a coordinate-independent meaning. It is convenient
to introduce the notion of generating family within a more general setting. Let
(:Z — Q be a surjective submersion (in most of the applications ¢ is a trivial
fibration and 2 = @ x U) and let V({) C T'Z be the subbundle of the vertical
vectors,

V() ={veTZ|T(() =0}

Let C = V°(({) be the conormal bundle of V(¢) i.e., the set of the covectors
annihilating the vertical vectors,

(7) C=VHQ)={feT22|{v,[) =0,V € V2(()}.

2 Proof. A point of A is regular if at that point ¢ =0 = p; =0. fweput ¢’ =0

in equations (1) we get, in matrix notation

5 — Gy 1= 0,
(%) {P ’q_u
Gy, u=0.

(i) Assume det Gy, = 0. Then K = KerGy,,, # 0. Suppose that G4, (K) = 0. This
means that K # 0 is in the kernel of both Gy, and Gy, so that K is sent to the zero
vector also by [un, Guu]. But this matrix has zero kernel, since it has maximal rank:
absurd. Hence, G4, (K) # 0. This means that there exists a vector 1 € K whose image
p = Gy, 1 is not zero. Thus, equations (x) admits a non-zero solution and the point is
singular. (ii) If det G, # 0, then from the second part of equations (x) we get u = 0,
and from the first part p = 0. In this case the point is regular. Hence, the points of
the caustic are such that their coordinates (¢') satisfy equation det[0y3G] = 0 for some
values of the supplementary coordinates (u®). m
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Let us consider the graph of ¢ as a relation R C Q x Z. Its “canonical lift” (cf.
§2.9) is a symplectic reductions ﬁ’( C T*Q x T*Z, whose inverse image is just
C=Ve().3

Let Ag = dG(Z) be the regular Lagrangian submanifold generated by a smooth
function G: Z — R. Then the reduced set

(8) A=R¢oAg

is the Lagrangian set generated by the generating family (. It can be shown that
this set is locally described by equations (1), being (g, u) local coordinates on Z
adapted to the fibration . We say that G is a Morse family if C' and Ag have
transverse intersection (cf. [Weinstein, 1977]). This means that

(9) ToAe +1,C =T,(T*2), VpeAgnC,
or equivalently,
(10) TyAcNTIC =0, VpeAanC.

The transversality is locally expressed by condition (3).*

A fundamental fact is that any Lagrangian submanifold of a cotangent bundle
is locally generated by Morse families:
Theorem 3 (Maslov-Hérmander theorem). If A C T*Q is a Lagrangian
submanifold, then for each p € A there exists a Morse family generating A in a
neighborhood of p.

3 Cf. [Weinstein, 1977]. See also the proof in the following footnote.

4 Proof. Let us consider coordinates (qi, u®) on Z adapted to the submersion (. Let
(¢',u%; p;, o) be the canonical coordinates on T*Z. The vertical vectors are then
characterized by equations ¢* = 0. Since (v, f) = p; ¢* + 74 4%, the condition expressed
in the definition (7) is equivalent to r, ©* = 0 for all (¢*) € R". Thus, the conormal
bundle C' = V° is described by equation 14 = 0 (since {rq,r3} = 0, this shows that C'
is coisotropic). Due to Theorem 1, §1.4, the characteristic distribution of C is spanned by
the Hamiltonian vector fields generated by the Hamiltonians H, (Q, f) = 74. It follows
that the characteristic distribution T5C is described by equations

.

re =0, ¢"=0, p;=0, a¥=X% 7,=0.

On the other hand, Ag is described by equations

oG oG

bi = 8_(]“ Ta = Jud’
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Proof. 5 Let us consider a Lagrangian immersion

(11) ¢ = q'(\"), pi =pi(A")

(equation (1) of §2.4.1) and the 2n x n matrix with maximal rank
Qh e

(12) =
Pl L

Since the immersion is Lagrangian, equation (4) of §2.4.1 hold i.e.,
Qi Pij — Q5 Py =0.

Under this condition, it can be proved (see §6.8) that, up to a reordering of the
coordinates (¢*), the matrix (12) admits a regular n x n submatrix of the kind

Qa dq®
k OAF

= ) , a=1,...,m, a=m+1,...,n,
Pak 8?\%

so that T'A¢ is described by equations

oG oG
pi_a_q"_o’ roz_aua—ov
0*G . hiazes
y; — W .8 =
pi OqtOq’ e Oqiou’ @ =0,
’I;og 82G '] 82G ﬁ = O

— - ) — U
Ou*0q’ T~ Bucous
It follows that C' N Ag is described by equations

_G G
pl_aqi7 _8ua7

which are just the equations (1) of the Lagrangian set A generated by G, while the
intersection TAg N T5C is described by equations
le, G 4 9°G

C
= : u” = w” = 0.
oue ’ Oqtouf ’ Oudub
This system admits the unique solution ©® = 0 if and only if the rank of the involved
matrix is maximal, condition (3). m

5 See also [Libermann, Marle, 1987], [Weinstein, 1977]. The proof given here is taken
from [Benenti, 1988].
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so that the subsystem of (11),

q” :qa(/\k)v Pa :pa()‘k)v
can be solved (locally) with respect to (A*): A¥ = A*(¢®, p,). This means that we
can take (g%, p,) as parameters of the immersion, so that a Lagrangian submanifold
A can be always represented by local immersions of the kind®
(13) ¢ =4(¢",ps),  Pa=Dald’0p)-
The 1-form

8 = padq” — q" dpa

is such that df = w = dp; A dq' (the canonical symplectic form). Its pull-back to
A is closed (since A is Lagrangian), thus locally exact. It follows that there exists
a function F(g%,p,) such that (13) are equivalent to

oF
14 = o 7
( ) p(L 8qa 9 q apa
Let us consider the function
G(¢%;pa) = F(q*,pa) + Pa 4*.

This is a Morse family on (¢°) with supplementary variables (p,). Indeed, in the

matrix ) )
[ 02°G ‘ 02°G }
Opadps | Op.0q’
we find the regular square matrix
O*F
—| = [5].
|:8pa8q6:| [ ﬁ]
The equations of the Lagrangian set generated by this Morse family are
L _9G _0oF
oG “ T 9gr g
Di = 8_(ﬂ — B 8_G B
Pa = Bg- = Pa
0 — 8£ — qa + 8i
Opa Opa

6 The parameters (g%, pa) are local coordinates on the Lagrangian submanifold A.
They are called canonical coordinates of A. For more information about the exis-
tence and the use of a canonical atlas of a Lagrangian submanifold see [Mishchenko,
Shatalov, Sternin, 1978].
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These equations coincide with equations (14) of A. m

Remark 4. Two generating families (or Morse families) are equivalent if they
generate the same Lagrangian set (or the same Lagrangian submanifold). Two
generating families differing by an additive constant are obviously equivalent.”
Remark 5. In some cases it is possible to “lower” the dimension of the sup-
plementary manifold (i.e., the number of the supplementary variables) of a given
generating family GG and get an equivalent reduced generating family. This
depends on the critical set of G. For instance, if the critical set is the image of a
section £: Q@ — Z of ¢, then A is generated (in the ordinary sense) by the function
G o £: Q@ — R. This is of course an extreme case. In general, we can remove some
of the (u®) when, by solving equations (2), they can be expressed as functions
of the coordinates and of the remaining ones. Note that all the supplementary
variables can be removed, and get an ordinary generating function, if and only if

0%G
(14) det {%aauﬁ} _#0

and this is the case of a regular Lagrangian submanifold (no caustic), in accordance
with Theorem 2 and Remark 2.

Example 1. The Lagrangian submanifold of Example 1, §2.4, is generated by the
global C°° Morse family G(g;u) = ug — L u*.

Remark 6. In considering generating families which are Morse families, as it is
commonly done in the literature, we lose most of the interest and of the power
of this concept. Indeed, as we shall see in the following, there are physical and
mathematical interesting examples related to generating families which are not,
or cannot be, even up to equivalences, Morse families. For instance, there are
systems of rays or sets of equilibrium states of static systems which are Lagrangian
sets, and not Lagrangian submanifolds (cf. Chapters 4 and 5); there are global
Hamilton principal functions which are not Morse families (cf. Appendix B; see
also [Cardin, 2002], where such an example arises in the construction of global
solutions of the Cauchy problem for a ¢-dependent Hamilton-Jacobi equation).

2.6 Generating families of symplectic relations

Let (: Qs x Q1 x U = Qs x @1 be a trivial fibration. Let G: @, X @ x U — R be
a smooth function, locally represented by functions

G(g,, 4,50

" For a general theory of the equivalence of Morse families, and related references, see
[Arnold, 1986], [Libermann, Marle, 1987, [Viterbo, 1992], [Théret, 1999].
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in the coordinates of the factor manifolds. By setting @ = Q1 x Qs and applying
the definitions and theorems of the preceding section, it follows that if G is a
Morse family, then it generates a Lagrangian submanifold R' of T*Q ~ T* Qs x
T Q1 with respect to the canonical symplectic form wg, @ wg,. This is not a
symplectic relation. In order to get a symplectic relation we apply the symplectic
transformation

:T"Qa xT*Q1 = T7Qo x T*Qq: (p2,p1) = (P2, —p1)

so that
1w, Owg,) =wg, Dwg,.

Thus we get a Lagrangian submanifold R = «(R’) with respect to the symplectic
form
wo, Owg, =dp, Ndg, —dp Ndg,

i.e., a symplectic relation R from T*Q; to T*Qs. Then we say that G is a gen-
erating family of the symplectic relation R. This relation is locally described by
equations

_ 9@
L agl
oG
(1) p,= o,
oG
"= %

which are equivalent to the single “differential equation”

(2) p,dq, — p,dq, = dG

We denote a generating family of a symplectic relation by

G(Q2 x Q1;U).
Theorem 1. If the symplectic relation R C T* Qg x T*Q; is generaled by G(Q2 X
Q1;U), then the inverse relation R' C T*Qp x T*Qy is generated by G'(Q; x
Qo3 U) defined by

(3) G (g, @u) = —Glg2, qui;u),  (q1,¢2) € Q1 x Do
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Proof. If R is described by equations (1) then R' is described by similar
equations

(4) py=——F5— P = , 0=

The relations R and R'" must be described by equivalent equations, since these
two relations differ only by the order in the pairs. Equations (1) and (4) coincide
if ST is defined as in (3). m
It follows that
Theorem 2. A symplectic relation D C T*Q x T*Q generated by G(Q x Q;U)
18 symmetric,
D' =D,

if and only if G is skew-symmelric, up o a constant, on the pairs (q,q') belonging
to the critical set,

G(g,q'\u) = —G(d,q,u), (¢,¢,u) €E.

Proof. If D is symmetric then G(q,¢',u) = — G(¢',q,u) + ¢, where c is a
constant. If we replace G by G = G —§, then G(q,¢';u)+G (¢, ¢;u) = G(g,¢';u)+
G ,gu)—c=0.m

2.7 The composition of generating families

Theorem 1. If the symplectic relations
Ry CT7Qy xT"Q, R CT"Q1 xT*Qq
are generated by the families
G2(Q2 x Q1;Us), G1(@1 x Qo; Ur),
then the relation Rs o Ry C T*Qy x T*Qq is generated by the family
G21(Q2 X Qo; Q1 x Uy x U1)
defined by®

(1) Ga1(q2, 905 @1, u2,u1) = Ga(g2, qisu2) + G1(q1, qo; u1)

8 The composition rule of the “generating forms” of linear symplectic relations has
been introduced in [Lawruk, Sniatycki, Tulczyjew, 1975] and [Benenti, Tulczyjew, 1981]
(see also [Benenti, 1983c]) and extended to generating families of symplectic relations in
[Benenti, 1988].
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We shall denote this composition rule by
Go1 = Gy B Gy

Remark 1. In the generating family G5; the manifold Q; plays the role of
supplementary manifold, together with U; and U,. The composed generating
family GG2; may not be a Morse family, but in any case it generates the relation
R o Ry, which may not be a smooth relation. In other words, while smooth
relations do not always compose nicely, the composed generating family is always
a smooth function.

Proof. The two relations are respectively described by equations

e , _ 00
=0 ago =1 321
e _ e
@ sy B~ gy i) BT g,
_ 8G1 _ an
0= B, 0= oy

In composing the two relations the two sets of coordinates p; coincide. Thus the
relation Ry o Ry is described by equations

oGy  0GH
0=2224L
_ oG g, ! dq,
=0 dq 9C.
%o _9G
=27 9, 0 3G,
\ B 3Q1 ’

These equations are equivalent to the single equation

(4) p, dg, — p,dg, = d(G> + G1)

This proves the composition rule (1). m
Equation (4) is an equivalent form of the composition rule (1) of the generating
families.

2.8 The canonical lift of submanifolds

There is an operation, which we call canonical lift or canonical prolongation
and denote by ~, which transforms “geometrical objects” on a manifold Q (vector
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fields, transformations, submanifolds, etc.) into “symplectic objects” on the cor-
responding cotangent bundle 7> Q. This operation plays an important role in the
theory of symplectic relations and in its applications. The basic definition, from
which the canonical prolongation of all other classes of objects are derived, is the
canonical lift of a submanifold. N
Definition 1. The canonical lift of a submanifold ¥ C @Q is the set ¥ =
T°% C T*Q of the covectors annihilating the vectors tangent to 3,

peT;Q, ¢q€X

1 €Y —
) b {(MM:JLVUGEE

Remark 1. The set & has the following mechanical interpretation: if ¥ is a
smooth conitraint imposed on the configuration manifold Q of a holonomic
system, then X is the set of the reaction forces, whose virtual work is zero. If
we interpret these forces as vectors (by means of a metric tensor) then ¥ is the set
of all vectors orthogonal to 3. Special remarkable cases are

Y=qeQ (apointof Q) += g=T;Q (the fibre over q)
X=09 — 0=20 (interpreted as the zero-section of T*Q)

The zero-section of T*Q is the set of all zero covectors; thus it is identified with
Q itself.

Definition 2. Let ¥ C @ be a submanifold and F:¥ - R a smooth function.
The canonical lift of a submanifold with function is the set (X, F) C T*Q
defined by

g eTrQ, cy
(2) pe (S, F) {P 1< a
(v,p) = (v,dF), YveT,%

This is the set the covectors p whose evaluation with any vector v tangent to ¥ is
equal to the derivative of the function F with respect to v. In the above definition
F' can be a function on the whole Q or on an open neighborhood of ¥. Indeed,
only the restriction of F' to X is involved.

Remark 2. The second line of definition (2) is equivalent to

(3) p—d,F eX.
Note that

(4) (%, const.)A: 5.
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If F represents a potential energy, then (ﬁ') is the set of equilibrium states.

Theorem 1. The canonical lifts S and (3, F) are Lagrangian submanifolds.®
This can be proved in a direct way!'? or by using Morse families, as shown by

the following

Theorem 2. Let ¥ be defined by independent equations

(5) Ea(q):07 a:17"‘7r7

e

then, (X, F) is generated by the Morse family G:Q@ x U = R, U = R", defined
by

(6) G(g;u®) = u® Zalq) + F(g)

Proof. The critical set E is determined by equations 0G/0u® = ¥, = 0, thus
it coincides with ¥ x U. The maximal rank condition is fulfilled:

76 76 = rank 9%a 0| =rank 9%al _
ou*dq’ | Oudul |- g’ = g’ E_T'

Thus, G is a Morse family and generates a Lagrangian submanifold A by equations

rank {

pi = —8G =u*3; X, + O F
oqt
oa
= =3,.
0 ou®

The vectors v tangent to X are characterized by equations

8—(]i41207

thus, ' ' '
(v,p) =¢"'pi = ¢ (u* 0;Eq + O;F) = ¢' O;F = {v,dF)

9 Lagrangian submanifolds of this kind have been introduced by Tulczyjew [Tulczyjew,

1977b]. The definition of the canonical lift ¥ can be extended to any subset ¥ C Q, by
a suitable definition of the tangent T'Y of a subset given in [Tulczyjew, 1989].
10 Let (ql) be local coordinates on Q adapted to X. This means that ¥ is locally
described by equations ¢® = 0 (o = 1,...,7), r = codim(X). Then, T'Y is described
by equations ¢* = 0, ¢* = 0, and the condition {v,p) = {v,dF), Yv € 1,3 becomes
G® (pa — 0. F) = 0,¥(¢*) € R® 7 (wherea = r+1,...,n). Thus, A = (X, F) is
a submanifold of dimension n described by the n equations ¢* = 0, p, = 0, F. The
isotropy follows from Remark 5.
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for all p € A. This shows that A = S m

Remark 3. The supplementary variables (u«®) in definition (5) play the role of
Lagrangian multipliers. We say that (ﬁ') is the Lagrangian submanifold
generated by the function F on the constraint X.

Remark 4. The Lagrangian submanifold A = (ﬁ) projects onto X,

e

WQ((E,F)) =3

and the restriction m:A — ¥ of g to A = (%, F) is a surjective submersion.
Hence, all points have constant rank equal to dim ¥ (if everything is of class C?)
and the caustic is X, unless X is an openﬂbset of Q; in this case, A is regular.
Remark 5. The canonical lift A = (¥, F) is a Lagrangian submanifold of a
special kind, which we call exact. Indeed, from definition (2) it follows that for
all w € THA, (w,0g) = {v,p) = (v,dF) = (w,x*dF), where v = T'r(w). This
means that

(7) 0o|(S, F) = dn* F

This shows that the pull-back of the Liouville 1-form to A is exact. For F =0 (or
constant) we get in particular

(8) 6o|T =0

See §6.6 for further details.

2.9 The canonical lift of relations

We can extend to relations the definition of canonical lift of submanifolds.
Definition 1. TheAcanonical lift of a smooth relation R C () x ¢} is the
symplectic relation R C T* Qs x T*Q; defined by

(p2,p1) €Ty, Qo x T, Q1, (g2,q1) €ER

1 pa.p) ER = {
( ) ( 2 1) <'U27p2> = <U17p1>7 V('L}Q,Ul) € T(qQ’ql)R

Remark 2. Note that this is not the “true” canonical lift Rof Rasa submanifold,
that is the set

ﬁ = {ﬁ S T(Z27q1)(Q2 X Ql) | ((I2a(J1) € R7 <1_)7ﬁ> = 07 Vo € T(q27q1)R}
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which is a Lagrangian submanifold of R c T*(Q2 x Q1) with respect to the
canonical symplectic form dflg,«x o, . Indeed, in order to get a symplectic relation
from 7™ Q; to T*Qy we use the natural identification T*(Qa x Q1) ~ T* Qo X T* Q4
and the symplectomorphism ¢:T*(Qy x Q) — T*Qy x T*Q considered in §2.6.
Then we find definition (1). We use the same symbol R for simplicity, since there
is no danger of confusion. Indeed, if we consider a submanifold ¥ C Q as a
zero-relation ¥ C Q x 0, then the canonical lift of ¥ as a relation, defined in
this section, is just the symplectic zero-relation in 7"Q x 0 associated with the
Lagrangian submanifold R C T*Q defined in the preceding section.

In a similar way we can introduce the canonical lift of a relation R C Qs x Q4
associated with a function F: R — R or F: Qs x Q@; — R. It is the smooth
symplectic relation defined by

(p2,p1) € (R, F)
(2) { (p27p1) € T(II2,II1)(Q2 X Q1)7 (q27q1) €ER
<U2ap2> - <U17p1> = <(U2,U1),dF>, V(U27U1) € T(quZl)R

We say that this is the symplectic relation generated by the function F
over the relation R. From this definition it follows that (cf. (7) of the preceding
section)

(3) 80, ©00,|(R, F) = 7"dF

where #: (R, F) — R is the surjective submersion associated with 7o, X 7o, .
Hence, in particular,

(4) fg, ©00,|R=0







Chapter 3

The geometry of
the Hamilton-Jacobi equation

3.1 The Hamilton-Jacobi equation

A Hamilton-Jacobi equation is a first-order PDE of the kind
. 0G

1 ) =

(1) C (q ; 8(11) 0,

in the n variables ¢ = (¢‘) which involves only the partial derivatives of the
unknown function G(g), where C(g,p) is a smooth function in the 2n variables
(@p) = (', py)-

This kind of equation has the following geometrical interpretation. Let us
consider a regular function C:T*Q — R on the cotangent bundle of a manifold
Q with local coordinates gq. “Regular” means that dC # 0 at all points such that
C(q,p) = 0. Thus, equation

(2) C(ga B) =0

defines a submanifold C' C T*Q of codimension 1 (a hypersurface). Let us consider
the submanifold A C T*Q described by equations

oG
(3) bi = 87(11

This is a Lagrangian submanifold, generated by the function G(g) on the manifold
Q. Tt follows that G is a solution of the Hamilton-Jacobi equation (1) if and only if
A C C. Hence, the Hamilton-Jacobi equation can be interpreted as a submanifold
C of the cotangent bundle 7*Q and a solution can be interpreted as a Lagrangian
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submanifold A contained in C. This submanifold is regular, since it is the image
of the differential of a function.

We can extend these classical concepts (i) by calling Hamilton-Jacobi equa-
tion any submanifold (of any dimension) of a cotangent bundle 7*Q and (ii), by
considering as a solution any Lagrangian submanifold A C C'. We call it a smooth
geometrical solution: this will include the cases in which A has singular points.!
A Hamilton-Jacobi equation is then (at least) locally represented by a system of
independent equations

(4) Calg,p) =0 (a=1,... k).

This means that the differentials dC; are independent at all points satisfying
equations (4). Furthermore, a classical solution G(g) is replaced by a generating
family G(g,u) satisfying equations

oG
5G_O a=1,...,r
dua

for some values of the variables u = (u®). If this solution is a Morse family, then
it generates a smooth geometrical solution A C C' described by equations

(6) A e

8F—O.

If G is not a Morse family, then the subset A of T*Q described by equations
(6) may not be a Lagrangian submanifold. In any case, it is a Lagrangian set
(according to the definition given in §2.5). So, by geometrical solution we
mean any Lagrangian set A C C generated by a generating family.

! The common geometrical interpretation of the “Hamilton-Jacobi equation” is a hy-
persurface (i.e., a submanifold of codimension 1) of a cotangent bundle or of a contact
manifold (cf. [Vinogradov, Kupershmidt, 1977] and [Arnold, 1980]). In this case it is
represented by a single partial differential equation and it is always integrable in the
sense given below. The fundamental elements of the geometrical theory of the Hamilton-
Jacobi equation, interpreted as a submanifold C' C T*Q,, of any dimension k < n, are
given in the short note [Tulczyjew, 1975]. Some of these elements have been developed
in [Benenti, Tulczyjew, 1980] and [Benenti, 1983a,b] and in further papers cited below.
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About the existence of solutions, we can consider the following definition: a
Hamilton-Jacobi equation C' C T*Q is integrable if for each p € C there exists
a Lagrangian submanifold A C C containing p (in other words, we require the
existence of a smooth geometrical solution at each point of C').

Theorem 1. A Hamilton-Jacobi equation C C T*Q is integrable if and only if it
is a coisotropic submanifold.

Proof. (i) Assume that C is integrable. From T,A C T,C it follows that
TSC C TEA = TyA, since A is Lagrangian. Thus, T5C C T,C, and C is coisotropic.
(ii) Assume that C is coisotropic. Take a point p € C. There always exists a
neighborhood C}, C C of p, such that the reduced set S/Cp, (here, § = T7Q) is
a manifold, thus a symplectic manifold and a symplectic reduction B = R¢, is
defined from S to this manifold. Consider the reduced point v = R o {p}. We ob-
serve that for each point of a symplectic manifold there always exists a Lagrangian
submanifold containing that point.? Consider a Lagrangian submanifold A, con-
taining . The inverse image A = R' o A, is a Lagrangian submanifold (Theorem
2, §1.8) containing p. m
Definition 1. Since we are interested in dealing with the integrable cases only, by
Hamilton-Jacobi equation we mean a coisotropic submanifold of a cotangent
bundle: ¢ C T Q.

This means that the systems of equations (4) we are going to consider are such
that the left hand sides are in involution, at least at the points of C,

(7) {Ca, Cp}|C =0.

One of the main problems related to a Hamilton-Jacobi equation is how to
generate a (possibly unique) maximal solution from suitable énitial conditions
(Cauchy problem). We shall give a geometrical construction of such a solution,
by using the composition rule of symplectic relations, then we shall transform this
geometrical construction into an analytical method. The terminology we shall use
is taken from Geometrical Optics, since one of the most important examples of
Hamilton-Jacobi equation is the eikonal equation,

(8) 9" (@) pip; —n*(g) =0,

determined by a positive-definite contravariant metric tensor G = (g%/) on a (Rie-
mannian) manifold @ and by a function n: @ — R. A special but fundamental
case is that of an isotropic medium, where @ = R® is the Euclidean three-space
and n is the refraction index,

9) n=-

)

2 This follows from the existence of local canonical coordinates (Darboux theorem).
Indeed, if w = dy; A dz?, where (z*,y;) are canonical coordinates such that z*(p) = 0,
then equations £° = 0 define a Lagrangian submanifold containing p.
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where v is the velocity of the light in the medium. A homogeneous medium is
characterized by n = constant, the vacuum by n = 1.3

Other basic examples of Hamilton-Jacobi equations C are the following:

(i) The Hamilton-Jacobi equation of a holonomic time-independent and con-
servative dynamical system, for a fixed value of the total energy F € R,

(10) Lgi(q)pip; +V(g) — E = 0.

The reduced symplectic manifold R¢ is the manifold of the orbits of total energy
E [Souriau, 1970] (see Remark 5, §3.2, for an example).

(ii) The Hamilton-Jacobi equation of a holonomic time-independent conserva-
tive system

(11) L9 (q) pip; + V(g) +po =0,

in the cotangent bundle of the extended configuration manifold R x Q, where
R = (1) = (¢°) is the time-axis. This way of considering classical dynamics is
called homogeneous formalism: time is considered as a Lagrangian coordinate.
It can be extended to time-dependent holonomic systems,

(12) Lg'(t,q)pip; + V(t, @) +po =0.

(iii) The Hamilton-Jacobi equation associated with a vector field X = (X?) on a
manifold Q,

(13) X'p; =0,
whose solutions are the first integrals of X (see Remark 4, §3.2, and Remark 2,
§3.3). In order to avoid singularities, it is convenient to consider its extension to

the cotangent bundle of R x Q,

(14) X'pi 4+ po = 0.

3 In the gravitational lensing theory the effective refraction index is
n(x) = 1-2U(x)/c,

where U(x) is the Newtonian potential of the mass distribution p(x),

Ux) = —G/ p(x21| '

|x —

See e.g. the article by N. Straumann in [Straumann, Jetzer, Kaplan, 1998].
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(iv) The Hamilton-Jacobi equation associated with a completely integrable distri-
bution,

(15) X;pl = 07

where X, = (X!) are 7 < n independent vector fields spanning the distribution.
In this case the coisotropic submanifold C' has codimension r > 1 (see §6.5).

3.2 Characteristics and rays

Due to Theorem 1, §1.4, if a coisotropic submanifold C is represented by k <
n independent equations C3 = 0, then the functions Cy generate characteristic
vector fields X3. The corresponding Hamilton equations are (notation: 9 = -2

Op;?
;= 5or)

M) {¢:y@

pi = — 0;Ca.
These vectors are pointwise independent since the rank of the 2n x &k matrix
(2) [6’Ca |8¢Ca]

is maximal. By linear combinations X = A? X; these fields span the characteristic
distribution. Thus, the differential system associated with a characteristic vector
field is of the kind

X - /\a 810
(3) { q a

pi= — A 9,Ca,

where A2 are arbitrary functions.

Definition 1. The rays of a Hamilton-Jacobi equation C' C T*Q are the projec-
tions onto the configuration manifold Q of the characteristics of C.

Remark 1. The characteristics of C' projects onto (immersed) submanifolds of Q
of dimension equal to the codimension of C' if the characteristics are transversal
to the fibres,*

(4) TSCNV(T*Q) = 0.

4 The converse is not true in general. Let us consider for instance the Lagrangian
submanifold of Example 1 in §2.4.3. It is a coisotropic submanifold with only one char-
acteristic, the submanifold itself, which is not transversal to the fibre at the origin, while
it projects onto a submanifold, the g-axis.
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In this case we say that the Hamilton-Jacobi equation C is regular. This condition
is fulfilled if the rank of the n x k matrix [8iCa] is maximal,

(5) rank[0'Ca] = k.

Indeed, the vertical vectors are characterized by equations ¢° = 0. A vertical vector
in T8C is the zero vector if equations A? 9°Cy = 0 imply A? = 0 thus, p; = 0. This
happens if the matrix (5) has maximal rank.

Remark 2. In the case codim(C) = 1, the characteristics are transversal to the
fibres if rank[0°C] = 1. Then the rays are (one-dimensional) curves.

Remark 3. In the case of the eikonal equation, we have C = |p|* — n*(g) so
that 9'C = g% p;. Tt follows that the transversality condition is satisfied for all
(p;i) # 0 € R" thus, for all p € C, since n # 0.

Theorem 1. For the homogenous (or vacuum) eikonal equation, gijpipj =1, the
rays are oriented geodesics of the Riemannian manifold (Q,g"). For the eikonal
equation, g p;p; = n® withn # 0, the rays are the oriented geodesics of the Jacobi
metric

1
(6) 9”27729”-

Proof. The integral curves on T*Q of the Hamiltonian dynamical system
generated by H = £ g% p;p; project onto the integral curves (on Q) of the Lagrange
equations associated with L = % 9i5 G* ¢7. These integral curves describe motions
with constant scalar velocity on geodesic trajectories. m
Remark 4. (i) The characteristics of the Hamilton-Jacobi equation (13) of §3.1,
X'ip; = 0, associated with a vector field X on Q, are the unparametrized integral
curves, starting from points (g,p) satisfying this equation, of the Hamiltonian

vector field X on T*Q generated by the Hamiltonian Px = X'’p; (cf. §6.4). The
rays are the unparametrized integral curves of X i.e., the orbits of X. (ii) The
rays of the Hamilton-Jacobi equation (14), §3.1, are parametrized integral curves
of X: two integral curves describing the same unparametrized curve differs by the
initial point. (iii) The rays of the Hamilton-Jacobi equation (15), §3.1, Xip; =
0, associated with an integrable distribution, are the integral manifolds of the
distribution (see §6.5 for details).

Remark 5. An interesting example of Hamilton-Jacobi equation with fixed value
of the energy of the kind (10), §3.1, is that of the Kepler motions in the Euclidean
space R™. The Hamiltonian is (for the notation see §4.1)

H(x,p)=5p|* — —

For each value of the constant E, equation H = F defines a coisotropic submanifold
Cg of T*R"™. For each dimension n, we have three distinct cases, corresponding
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to &£ > 0 (hyperbolic case), £ = 0 (parabolic case) and E < 0 (elliptic case).
The manifolds of the oriented orbits i.e., the reduced manifolds R¢,, have been
determined in [Moser, 1970] (for n = 2,3) and in [Pham Mau Quan, 1980]. For
example, for n = 2 these manifolds are: Hy (hyperbolic case), $; x R (parabolic
case) and So (elliptic case). Further investigations on the corresponding reduced
symplectic structures are needed. For an accurate treatment of all the aspects of
the Kepler problem see the recent book [Cordani, 2003].

3.3 Systems of rays and wave fronts

Definition 1. A system of rays associated with a Hamilton-Jacobi equation
C C T7Q is the set of the projections on the configuration manifold Q of the
characteristics contained in a geometrical solution A C C.

If C is regular (§3.2), then all characteristics project onto submanifolds of
dimension equal to the codimension of C; so, if A is a smooth solution (i.e., a
Lagrangian submanifold) then the corresponding system of rays is made of a set
of these submanifolds, with possible points of intersection. In all other cases a
system of rays may be a complicated family of subsets of Q.

Let us consider for simplicity the case of a smooth geometrical solution. Assume
that A is the image of a closed one-form ¢ on an open domain U C @, and that
¢ # 0 everywhere. Then on the domain U two regular and integrable distributions
are defined.

The first distribution Ay C T'U has the 1-form ¢ as a characteristic form i.e., it
is made of the vectors annihilated by ¢. Since the 1-form is closed, this distribution
is completely integrable with integral manifolds of codimension 1. These integral
manifolds are called wave fronts of the solution A. If ¢ = dG, then the wave
fronts are described by the equations G = constant.

The second distribution Ag C TU is the projection onto TU of the character-
istic distribution T8C restricted to A. By the absorption principle this restriction
is well defined: TEC’ C TA. If we assume that on A the characteristic distribution
is transversal to the fibres (as we have seen, also this condition is satisfied by the
eikonal equation), then the distribution R is completely integrable and its integral
manifolds form a system of rays (whose dimension coincide with the codimension
of the Hamilton-Jacobi equation C'). Note that Ay and Ag have a complementary
rank.

The distribution Ag is spanned by the projections on @ of the characteristic
vector fields X3 restricted to A. The dynamical systems corresponding to these
projected vector fields are the first set of the Hamilton equations

(1) i' = 0'Calg, p),

where in the right hand sides the momenta p are replaced by their expressions in
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terms of the coordinates ¢, defined by the components of the 1-form ¢:

(2) pi=vile)  (p=vidg).

Remark 1. In the case of the eikonal equation equations (1) become
(3) q'=29"p;,

and on a regular solution A generated by G,

(4) it =2g¢" 9,G.

This shows that the gradient of the generating function G is a vector field spanning
the distribution Agr. Since G is constant on the wave fronts, we have that o
reqular solution of the eikonal equation generales a system of geodesics (the rays)
orthogonal to a system of hypersurfaces (the wave fronts). In fact, this is an
equivalence: any orthogonally integrable system of geodesics corresponds to a
regular solution of the eikonal equation. This was one of the leading idea of
Hamilton’s Theory of systems of rays [Hamilton, 1828]. Since the wave fronts are
orthogonal to a system of geodesics, they are geodesically parallel i.e., the ray
segments between two given wave fronts have constant length.

Remark 2. The wave fronts of the Hamilton-Jacobi equations (13) or (14), §3.1,
X'ip; = 0, are defined by equations GG = const., where G is any first integral of the
vector field X. Since G is constant along the integral curves, in this case any wave
front is made of rays. The same property holds for the Hamilton-Jacobi equation
(15) associated with a completely integrable distribution.

Remark 3. The above description of the wave fronts and rays fails in a neighbor-
hood of a singular point i.e., when rays and wave fronts approach the caustic of A.
An even more complicated situation is that arising from a non-smooth geometrical
solution i.e., from a Lagrangian set generated by a solution G (with supplementary
variables) which is not a Morse family. In this case wave fronts and caustics are
not defined.

Remark 4. The vectorial form of the (vacuum) eikonal equation in a Euclidean
affine space @ = R™ is (cf. §4.3)

©) Ipl* =1.

A system of parallel {oriented) rays is represented by a unit (constant) vector u.
The generating function of the corresponding Lagrangian submanifold is

(6) Gx)=x-u

The wave fronts are the n — 1-planes orthogonal to u.
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Remark 5. In a Euclidean space, the system of rays originated by a fixed point
X¢ is generated by the function

(7) G1(x) = [x =0

(this distance function, as a generating family, will be examined in detail in §4.1)
or by the Morse family

(8) Ga(x;a) = (x — xg) - a, acS,_1,

with supplementary manifold S,_1. The generating function Gy yields outgoing
rays only, since

_0G1  x—x¢
(9) P—aT—

|x — xo|

Note that it is not differentiable for x = %, so that the Lagrangian submanifold
described by equation (9) is not defined over the point xo. The generating family
GG is globally defined and differentiable. The corresponding equations

_8G,
0= %2
_ G,
T oox

are equivalent to (cf. Remark 4, §4.3)

{ Xx—xgo |l a (|| = parallel to)
p=a.

Thus, G, gives outgoing as well as incoming rays.

3.4 The characteristic functions

The characteristic relation Do C T*Q x T*(@Q defined by a coisotropic submanifold
C C T*Q is a symmetric symplectic relation between cotangent bundles. Thus,
it is generated (at least locally) by generating families on the product manifold
Q xQ.
Definition 1. A Hamilton principal function (or a characteristic function)
of a Hamilton-Jacobi equation (i.e., of a coisotropic submanifold) C C T*Q is a
generating family S(Q x @; A) of the characteristic relations Do C T*Q x T*Q.
As we shall see, a global Hamilton characteristic function (if it exists) can be
used for computing (i) all solutions of the Hamilton-Jacobi equation and (ii) the
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system of rays associated with a solution. If S(q, ¢'; @) is a local representative of a
Hamilton principal function (where ¢ = (¢*) and ¢’ = (¢'*) are local coordinates on

Q and a = (a®) local coordinates on A) then D¢ is locally described by equations

,_ 08
T
a5
1 90
1) Pi = 5
oS
0_%.

Remark 1. If py is a point of C, then the set D¢ o {pg} is the maximal character-
istic containing (or passing through) po. If in equations (1) the coordinates (¢, p’)
are just the coordinates of pg, then these equations describe (locally) this charac-
teristic and consequently the corresponding ray. A system of rays corresponding
to a solution of the Hamilton-Jacobi equation C' can be computed in this way.
Theorem 1. If the coisotropic submanifold C' is not a section of the cotangent
bundle T*Q, then the characteristic relation D¢ is singular over the diagonal of
Qg x Q.

Proof. Assume that D¢ is regular at a point (g,q) € Ag. Hence, it is locally
generated by a function S(g,¢') which is skew-symmetric (Theorem 2, §2.6). In
this case equations (1) reduce to

, 08
b= — 8(]”
88

pi = aq'

and show that for ¢ = ¢’ we have p = p'. This means that we have a unique
covector p € Ty QN C. This is in contradiction with the assumption that C' is a
section. m

Remark 2. If C is a section, then it is a Lagrangian submanifold. If it is
connected, then we have only one characteristic (the manifold C itself) and the
characteristic relation D¢ is defined by

pp)eDe <= ppeC.

If G:Q — R is a global generating function of C, then D¢ is generated by the
global (skew-symmetric) generating function

S(g,q") = Glg) — G(g).

Remark 3. The eikonal equation and the Hamilton-Jacobi equation of classical
mechanics are not sections, since at each point g the intersection T;Q N C is
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diffeomorphic to a sphere. Hence, the theorem above shows that for these equations
a global Hamilton characteristic function is necessarily a generating family. This
is a novelty with respect to the classical Hamilton-Jacobi theory, where S is a
function of pairs of points of Q, locally represented by a function S(gl, go) of 2n
coordinates.> Moreover, in the classical theory the Hamilton principal function is
defined as an action integral. This is due to the following general property.
Theorem 2. If we exclude the singular points and assume that the remaining part
of D¢ is an exact Lagrangian submanifold (§6.6), then a potential function of D¢
is the integral

(2) I(Plapo) = / o,
clpo,p1]

where c[po, p1] is any path with extremal points (po,p1) and contained in the char-
acteristic containing these two points.

Proof. From the definition of potential function of a Lagrangian submanifold
it follows that a potential function of the Lagrangian submanifold Do C (T*Q X

5 The Hamilton principal function .S has been introduced by Hamilton as a function
depending on 2n+2 variables (gl 14y L1, o), where q, are the initial values of coordinates
(at the time Zg) of a holonomic system, and ¢, are their final values (at the time ;).
This function satisfy the Hamilton-Jacobi equations

05 oS
+H<q1, ,t1> = 0

8t1 8%1

oS a8

] P
8t0 + <q0a 8@0 7t0> 07

where H = H(g,p,t) is the (time-dependent) Hamiltonian function of the mechanical
system. We have used here the classical notation adopted by Levi-Civita ([Levi-Civita,
Amaldi, 1927], Ch. XI, n. 27). In the homogenous formalism of Hamiltonian dynamics,
time is considered as a coordinate and the n-dimensional configuration manifold Q of
the system is replaced by the n 4 1-dimensional extended configuration manifold
R x Q. The notion of Hamilton principal function as a generating function of the
characteristic relation of a coisotropic submanifold or as a generating function of the
symplectic relation Dy C T*Q X T*Q, between the initial values (at {g = 0) and the
final values (at ¢ = #;) of the coordinates in the motions generated by the Hamiltonian
has been introduced by Tulczyjew [Tulczyjew, 1975, 1977b]. In Hamiltonian Optics other
“characteristic functions” are considered. See e.g. [Synge, 1962], Chapter II, [Luneburg,
1964], p.100, [Buchdahl, 1970], p.8. What we are considering here is just a generalization
of the so-called point-characteristic function.
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T*Q,dfg © dfg) is given by the integral

I(p1,po) :/9999@

taken along any path ¢ over D¢ joining a fixed pair (§1, Pp) with the pair (p1,po).
This path can be represented by two curves ¢;(t) and co(t) on C' and defined
on the real closed interval [0,1] such that ¢;(0) = p;, ¢;(1) = p; (i = 0,1) and
(e1(t), co(t)) € De. Hence,

I(phpo):/ 99—/ 992//99—/199

where ¢’ = (¢}, ¢f)) is another path having the same property. By choosing ¢ = ¢

we see that
/ 0o = / fo.
c1 cq

This means that f¢ is exact for the chosen paths from p; to p1, as well as for those
from pg to pg. Moreover, for each ¢t € [0, 1] the two points ¢ (1) and ¢o(t) are the
end points of a curve v (s) defined for s € [0,1] with image on a characteristic.
Since the characteristic are isotropic, ¢ is exact on all 71. It follows that

A:/QQ-F/ QQ—/QQ
c1 Y1 €o

is a number depending only on the fixed end points (1, po). Thus,

I(p1,po) :/ 99—/ fo=A- [ bo.
c1 co Y1
Since A depends only on the fixed points (51, P ), and the path v goes from p; to
Po, the integral (2) is a potential function. m
As a consequence of this theorem we have another link with the classical theory.
Theorem 3. For the eikonal equation gijpipj =1 the characteristic relation D¢
outside the diagonal is locally generated by the distance function

t1
d(go,q1) :/ \/9i4'¢7 dt
to

where the integral is taken along the geodesic q(t) such that q(to) = qo, ¢(t1) = ¢1.
Proof. Since the rays are the geodesics, because of the preceding theorem a
local potential function is given by

t1 t1
I(p1,po) = /pidql =/ pid’ dt:2/ g pip; dt,

c to to
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where ¢ is a characteristic from pg to p; and the integrals are taken along a geodesic
¢'(t) such that ¢° = 2 g¥p; (cf. (1) of §3.4). The kinetic energy of the motion ¢*(#)
is K = 10* = 19456'¢7 = 2¢"p;p; = 2, so that the scalar constant velocity is
v = % = 2. This means that the Euclidean distance is such that ds = 2d{. Hence
the last integral above is just the integral of ds. This shows that the characteristic
function projects onto the generating function given by the distance. m

The Hamilton principal function can be derived, at least locally, from another
characteristic function associated with the Hamilton-Jacobi equation.
Definition 2. A complete solution or a complete integral of a Hamilton-
Jacobi C C T*Q is a smooth function W: @ x A — R, where A is a manifold, such
that

(i) for each a € A the function W,: Q@ — R, W,(q) = W(q, a), is a generating
function of a Lagrangian submanifold A, contained in C' (thus, a regular solution
of the Hamilton-Jacobi equation);

(ii) the set {A,, a € A} is a Lagrangian foliation of C' (this means that for
each p € C there exists a unique a € A such that p € A,);

(iii) the canonical projection 7: C' — A:p — a such that p € A, is differentiable.
Remark 4. From this definition it follows that

(3) dim(A4) = dim(Q) — codim(C).

As we shall see below (§3.6) the canonical projection 7 (which is obviously surjec-
tive) is a submersion.

Remark 5. We can extend this definition by considering generating families
Wa(g;v) parametrized by a € A and defining a Lagrangian foliation of C' with
singular points. In the classical Hamilton-Jacobi theory, W is locally represented
by a function of the coordinates ¢ of @ and a set of constants of integration
(a®), which represent a point a € A. No extra variables v are present, since in the
classical theory only ordinary generating functions are considered.®

6 According to Levi-Civita, [Levi-Civita, Amaldi, 1927], Ch. X, n. 38, the letter W is
used for denoting a complete solution of the time-independent reduced Hamilton-
Jacobi equation H — E = 0, for any fixed value of the energy E. It is a function of
the n Lagrangian coordinates ¢ and of n constant parameters m = (71'14)7 satisfying the
completeness condition

Zal
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Actually, since the energy IY becomes a function of these constants, for a fixed value

of I/, they are not all independent. So, they can be expressed as functions of n — 1
independent parameters g satisfying the completeness condition (3). This is in accordance
with Definition 2, being in this case m = n — 1 since codim(C) = 1. For a time-
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As shown by Theorem 6 below, by means of a global complete solution (if it

exists) we can easily construct a global Hamilton principal function. For proving
this theorem we need the following global version of the classical theorem of
Jacobi.
Theorem 4. (i) A complete solution W:Q x A — R of C generates a symplectic
coreduction RT C T*Qx B such that R o B = C, where B is an open submanifold
of T*A. (ii) The characteristics of C are the connected components of the images
R" o {b} of the points b € B. (iii) The reduction R is isomorphic to the reduction
relation Re i.e., there exists a symplectomorphism ¢:T*Q/C — B such that R =
@Y o RC.7

Its local version is
Theorem 5. A function W(q,a) of n coordinates ¢ = (¢') on Q and of m
parameters ¢ = (a®) is a local representative of a complete integral of C if and
only if: (1) m = n—k = dim(Q)—codim(C); (ii) for each values of these parameters
it satisfies the differential equations

where Ca(q,p) = 0 are local independent equations of C; (iii) the n x m matriz
[82W/ 8g8g] has maximal rank,

(1) rank[ ?;W } —m

In this case the reduction relation R C T*AxT*Q is locally described by equations

ow ow
5 i = A ba = — =,
(5) pi g Dae
where a = (a®) are interpreted as local coordinates on A and (a,b) = (a®,b,) as
the corresponding canonical coordinates on T*A.
The proofs of these theorems are given in §3.6.

independent Hamiltonian H one can think of a complete solution of the Hamilton-Jacobi
equation AV /0t + H(q,0V/dq) = 0 of the form V = — Et + W. Then, this equation
reduces to H — F = 0. In this reduction procedure, Jacobi considered W as depending
on F and on further n — 1 constant parameters a.

" This is an improved simplified version of the global Jacobi theorem treated in
[Tulczyjew, 1975], [Benenti, Tulczyjew, 1980, 1982a, 1982b], [Benenti, 1983a], [Benenti,
1988]. See [Libermann, Marle, 1987] for a general review.
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Theorem 6. If W(q,a) is a complele integral of C, then the generating family
S(Q x Q; A) defined by

(6) S(qaql;a’) = W(qaa’) - W(qlaa’)

is a Hamilton principal function.
Proof. Since D¢ = Rg o R¢, it follows from the last item of Theorem 1 that

Dc=R"oR.
Thus, if W' is the generating function of the reduction R, then
WT(aa q) = - W(q7 a’)

and by composing, in the order, W' with W we get a generating family of D¢c. m
Remark 6. Note that in the generating family S the manifold A plays the role of
supplementary manifold. Note that S is skew-symmetric, in accordance with the
symmetry of D¢ and Theorem 2, §2.6. The Hamilton principal function S defined
by (6) is a Morse family. Indeed, due to (4), the matrix

%S
Oq" da®

[ 0?8

25 1
Hqida™ N

daPHa

_{32W(q,a) FPW(g,a) | *W(g,a) *W(d,a)
| 9g¢ida~ ~ Og" da~ 9aPda®  dafda”

has maximal rank m everywhere.

Remark 7. From item (iii) of Theorem 4 it follows that a necessary condition for
the existence of a global complete integral is that the reduced symplectic mani-
fold T*Q/C be symplectomorphic to a cotangent bundle (or at least to an open
subset of a cotangent bundle). If W(g,a) is a local representative of a complete
solution, then equations (5) generate an open subrelation of R". In general, by
the integration the Hamilton-Jacobi equation we can find only local complete
solutions, which generate Lagrangian foliations on open subsets of C'. Then the
composition formula (6) generates local principal functions.

Remark 8. There are cases in which a global principal function S exists, while
a global complete solution does not. An example is the eikonal equation on the
sphere S; C R?, for which the reduced manifold is S, (indeed, any oriented geodesic
on the unit sphere S, C R? is represented by a unit vector orthogonal to the plane
on which it lies). In these cases a global principal function may be determined by
other methods. For S, see Appendix B.
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Remark 9. All the above definitions and results concerning a complete solution
can be extended to the case of a generating family: W(Q x A4; V), where V is a
supplementary manifold, with coordinates (v*). Then W and S depend on these
extra variables and equations

a5 ow

() = T aw

must be added to systems (1) and (5), respectively.
Example 1. Let us consider for the eikonal equation of the Euclidean plane
Q=E, =R

(8) C(xayvpzapy)ipi+pz—1:0.

In §4.3 it will be proved that: (i) The reduced symplectic manifold (T*Q)/C is
symplectomorphic to T*S;. (ii) A global complete integral is

(9) W:R*xS; - R,  W(x,a)=a-x.
(iii) The characteristic relation D¢ is generated by the Hamilton principal function
(10) S:R* x R? x §; — R, S(x,x',a) = (x—x') - a.

Note that R¢ is a regular Lagrangian submanifold which admits a global ordinary
generating function (without supplementary variables), while D¢ is singular over
the diagonal Ag C ¢ x ). Out of the diagonal, D¢ is made of two branches,
which are regular Lagrangian submanifolds generated by the functions

(11 S(x,x') = £|x — x'|.

Note that these functions are not differentiable for x = x’ i.e., over the diagonal.
All these results have a natural extension to the space R™. The unit circle Sy is
replaced by the unit sphere S,,_; (cf. §4.3). Note that for n = 2, instead of the
generating families W and S defined in (9) and (10), one can use the equivalent
generating families

(12) W:R? x R — R, W(x,0) =z cosf +y siné,
and

(13)  S:R*xR* xR = R, S(x,x',0) = (. — ') cosf+ (y —y') sind.
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3.5 Sources, mirrors, lenses

Let ¥ C Q be a submanifold. Let us compose its canonical lift $ with the charac-
teristic relation D¢,

(1) A=Dco3S.

The set A is the union of the (maximal) characteristics of C' intersecting . If
A is a Lagrangian submanifold, then it is a smooth geometrical solution of the
Hamilton-Jacobi equation €. As we have seen in §1.8, a sufficient condition is the
clean (or transversal) intersection of C'NY (see Remark 2 below). In this case the
submanifold ¥ behaves as a source of the system of rays represented by A and the
characteristic relation D¢ as a propagator. The composition formula (1) leads
to the following

Theorem 1. Let S be a Hamilton principal function of C' and let Gx; be a gener-
ating family of X, then the composed family S @ Gy, 1s @ solution of the Hamilton-
Jacobi equation generating the geometrical solution A = D¢ o X,

Remark 1. A generating family G is given by formula (5) of §2.8 (with F = 0).
Note that S & Gy is anyway a smooth solution of the Hamilton-Jacobi equation,
while A may not be a smooth geometrical solution. If it is a Morse family, then
A is an immersed Lagrangian submanifold. Similar results hold if| instead of the
pure canonical lift 3, we consider the canonical lift with a function (X, F) and the
set

2) A=D¢ o (S,F).
In this case the objects (X, F') behave as initial data [Cardin, 1989, 2002].

Remark 2. Let ¢ = (¢%,¢%) be coordinates adapted to ¥, so that X is locally

described by equations ¢¢ = 0. It follows that (ﬁ') is described by equations
¢* = 0 and p, — 0,F = 0 (cf. footnote 10, §2.8). Assume that C' is defined by

independent equations C(¢,p) = 0. Then the intersection of C'N (X, F) is clean
if the matrix (the symbol [ | denotes a square submatrix)

—050,F  95CA
(%) 0 0 C4

[0] 0 alen

0 abcA

has constant rank in a neighborhood of C'N (ﬁ') (Remark 4, appendix A.4).
Since only the restriction of F' to X is relevant, the coordinates ¢* can be chosen
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such that F' does not depend on them, so that the above matrix becomes

0 85CA
A
" o ac
[0] 0 a7 CcA
0 ohCA
These matrices must be computed for C = 0 (or C4 = 0) and p; = 6;F. In the
case of the canonical lift of ¥ (with ¥ = 0 or constant) we have

0 9304
0o [0] @&
0 8°c4

0 [ée] otcA

(% * %)

In the case of the eikonal equation we have C' = g¥p;p; —n? and the last columns
in the above matrices reduce to a single colum,

0 95C
(o) & 0C

0 29" p;
0 2g%p;

For F = 0 on ¥ we have p. = 0 and the matrix becomes

0 95C
0o [0] @&cC
(oo) @ 0 Qgﬁb’Vp,y

0 29"p,

Since at least one v°® = gﬂ'yp,y # 0 (due to the eikonal equation, otherwise all
p; = 0), this last matrix has maximal rank. This shows that for the eikonal
equation, C' and ¥ have clean intersection.

Let Ay C C be a geometrical solution and let ¥ C @ be a submanifold. Let us
consider the diagonal relation

Ay ={(¢,¢)€QxQlg=¢ €T} CQAxQ
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and compose its canonical lift 32 with the characteristic relation,
(3) Ao = D¢ o Ag o Ay

In this case, as it is shown below, the submanifold ¥ represents a mirror: it
transforms an input or incident system of rays Ay into an output or reflected
system Ao.
Definition 1. We call mirror relation associated with a submanifold ¥ C @
the canonical lift R

My =As CT*OxT*Q

defined by

N p,p €TFQ, ge X
(4) (p,p') € Mz, = Ay = — o .
p—p eIy =%

This definition follows from the general Definition 3 in §2.8, of canonical lift of
smooth relation. Indeed, by applying formula (7) of §2.8 to the present case we
have

As = {(p,p) € Tiy.y)(Q x Q), (¢,¢") € As, {v,p) = (v, ') Y(v,0") € Ty gy Ax}.

However, a tangent vector (v,v') € T, ) Ax is an equivalence class of a curve y

on Ay and such a curve is necessarily of the form ¢ — ~v(t) = (¢(¢),¢(¢)). Thus,
the pair (v,v') € T(y,4)As is represented by a unique vector v € T;E. So that

Ay ={(p,0) € T1yyy(Qx Q), g=¢' €, (v,p—p') =0Vv € T,%}

and we get the definition (4). Note that the second condition in (4) means that
(v,p—p)=0,YveT,X.

The output set Ao given by the composition (3) may not be a submanifold
(even if Ay is a submanifold), so that it represents a rather complicated system of
rays. But in any case,

Theorem 2. The composition, in the order, of a generating family of the incident
system of rays Ay, of a generating family of My and of o Hamilton principal
function S of C gives a generating family of the reflected system of rays Ao.
Remark 3. Similar results hold if we consider the canonical lift with function
(Ayx, F) and the set

(5) Ao = D¢ o (A, F) o A

Then the pair (3, F') represents an ideal lens.
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Definition 2. We call lens relation corresponding to the pair (X, F') the canon-
ical lift with function

L = (A5, F) CT*Q x T*Q

defined by

p,p €T;Q, g€ X,
(v,p—p —dyF)y=0, YweT,X

(6) (p,p’)GL@,F):(A;,\F) = {

Remark 4. Note that

~

(7) L(E,c) - ME? (Ea F) = L(E,F) ° 27 L(E’*F) = LIE,F)'

Remark 5. All the above definitions and theorems find a clear interpretation
in the case of the n-dimensional Euclidean space, @ = E, = R". If ¥ is a
regular r-dimensional surface, and covectors are interpreted as vectors, then a pair
(p2,p1) based on ¢ € ¥ belongs to the relation Lx gy if and only if the “vector”
po — (p1 + dy F) is orthogonal to the tangent plane T, X. It follows that all ps in
relation with a fixed p; belong to the n — r-dimensional plane II(p;) orthogonal to
T,% determined by the “end point” of p1 + d,F. Moreover, if II(p1) is the plane
passing through p; and orthogonal to T;X, then all pairs (ps, p1) whose end points
are on these two planes belong to the relation. If r = n — 1, then these planes
become straight lines. For F' = 0 (or constant) we get the mirror relation.

T, b
T, b
Mps) = — — 4 — + L = = -
P2
O{p1) — — — — i dhali - N\ A
1 qu 7 P1

q q

(p2,p1) € Liz,py (p2,p1) € Mx

Lens relation
Mirror relation

If the covectors have a prescribed constant length n = v/¢ (due for instance to
an eikonal equation), then only the vectors belonging to the sphere of radius n are
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involved in the relation. Thus, in the case of hypersurface of codimension 1, the
mirror relation yields the usual reflection law.

[p1l=|p2|=n

Reflection law

If the covectors have a different length in the two half-spaces separated by the
boundary ¥, then the mirror relation My, yields the refraction law.

Ip1l=n1

Ip2|=n2

Refraction law

Actually, with an incident vector p; this relation associates two refracted
vectors ps. Only one of them (and only a half-line determined by it) has a
physical meaning.

This is the case of two different Hamilton-Jacobi equations C; and Cs in T*Q
(for instance, two eikonal equations corresponding to two different media, with
refraction index n; and ns respectively, separated by a surface ). If we consider
these two media coexisting in the whole space, then we have to deal with two
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characteristic relations D¢, and D¢, and with a surface ¥. Let A; be a solution
of 4 (i.e., a system of rays in the first medium), possibly generated by a source
31, so that Ay = D¢, o il. If ¥ is a surface separating the two media, then the
composition

(8) Ay = D¢, o Mg o Ay

gives a solution of Cs representing the refracted system of rays.

3.6 The theorem of Jacobi

When a coisotropic submanifold C of a symplectic manifold (S,w) (in particular,
of a cotangent bundle T*Q) is given, then we are faced by the problem of finding
its characteristics. Indeed, if the characteristics are known then we can solve the
Cauchy problem i.e., we can construct geometrical solutions (Lagrangian subman-
ifolds) A C C starting from initial data (cf. §1.10). The geometrical background
of the problem of finding the characteristics is given by the following theorems.
Theorem 1. Let C be a coisotropic submanifold of a symplectic manifold (S,w).
Assume that we know a symplectic reduction R C Sy x § from (S,w) onto a
symplectic manifold (Sp,wq), whose inverse image is C,

C=R":S.

Then the characteristics of C are the connected components of the fibres of the
reduction R,

R" o {p}, po € So.

We call fibres of a reduction the inverse images of points.

Proof. We recall item (iii) of Theorem 2 of §1.8. Since we assume that the
inverse images of points are connected, they coincide with the characteristics. m
Theorem 2. Assume that a symplectic reduction R C Sy X S has connected fibres.
Then the symplectic reduction R¢ associated with the coisotropic submanifold C =
RT - 8y is isomorphic to R i.e., the composition

@ZRCORTCS/C—)SO

is the graph of a symplectomorphism ¢:Sy — S/C from (Sp,wo) to the reduced
symplectic manifold (S/C,w/C).

Proof. It is clear that ® is a one-to-one smooth relation. In order to prove that
it is the graph of a symplectomorphism we have to prove that ® is a Lagrangian
submanifold. For this we consider the relation R¢ x R from (S,w) x (S, —w)
to (§/C,w/C) x (Sp, —wp). We observe that it is a symplectic reduction with
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inverse image C' x C' and that @ is the image by R¢ of the characteristic relation
Do € C x C. Since D¢ is a Lagrangian submanifold having clean intersection
with C' x C (since it is contained in C' x C), it follows that ® is a Lagrangian
submanifold (Remark 1 and Theorem 3, §1.8). m

These two theorems prove the second part, items (ii) and (iii), of Theorem 1,

§3.4. The further geometrical foundation of the theorem of Jacobi (expressed by
item (i) of Theorem 1, §3.4) is strictly related to the cotangent bundle structure:
if the symplectic manifold S is a cotangent bundle T*Q, then a reduction R with
inverse image C is determined by any Lagrangian foliation of C, {A,, a € A}
described by a parametrized set of generating functions W,: @ — R (or generating
families W,: @xU — R). This is the concept of complete solution of the Hamilton-
Jacobi (Definition 2, §3.4). Indeed,
Theorem 3. A smooth function W:Q x A — R:(q,a) — W,(q) is a complete
solution of the Hamilton-Jacobi equation C' C T Q if and only if it generates a
symplectic coreduction R" C T*Q x B such that C = R' o B, where B is an open
submanifold of T*A.

Proof. (i) Assume that W is a complete solution according to Definition 2, §3.4.
Let (¢,a) = (¢*,a®) be local coordinates of Q@ x A. Let (q,p;a,b) = (¢*, pi; a®, by)
be the corresponding canonical coordinates on 7*Q x T*A. Let us consider the
symplectic relation R C 7*Q x T*A generated by the function W and described
by equations

_ OW(g,a)

(1) Pi = 78(11'
oW (g, a)
aT T T 9

Since the Lagrangian submanifolds A, described by the first equations (1) form
a foliation parametrized by a, these equations are solvable with respect to the
variables a. Thus,

82

2) rank { W] — m = dim(A)

dq0a
and by the implicit function theorem we get smooth functions
(3) a® =a“(q,p)

representing the canonical projection 7: C — A. By inserting these function into
the second equations (1) we get functions

(4) ba = ba(q, p)-
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Equations (3-4) are equivalent to equations (1). This shows that R is the graph
of a smooth mapping p: C — T*A. By a formal derivation of equations (1) we get
equations

W W
pi= 0qtdq? ¢+ Oqida® “
_PW L PW
= oboog & T ab0a7 ¢

(5) |
ba

which represent the tangent mapping Tp. If we assign any arbitrary value to
(a®,bs), due to the maximality condition (2) the second equations (5) admits a
solution ¢* and due to the first equations (5) we get values for p;. This shows
that p is a submersion thus, that R is a reduction. The image set of a surjective
submersion is an open submanifold [Dieudonné, 16.7.5]. This shows that R is a
symplectic reduction onto an open subset of T A. (ii) Conversely, assume that W
is the generating function of a symplectic coreduction R' C 7*Q x B, B C T* A,
with B open and C = R' o B. Then the first equations (1) describe Lagrangian
submanifolds A, = R" o (T*A N B) which are contained in . Since the fibres
TrAN B form a Lagrangian foliation, then the Lagrangian submanifolds A, form
a foliation. The canonical projection 7 is a submersion, since it is the composition
of two submersion, 1 = w4 o p, where p is the submersion associated with the
reduction R. m

Remark 1. About the requirement (iii) in Definition 2, §3.4 of complete solution
we observe that there are cases in which a differentiable function W: 9 x A — R
generates a Lagrangian foliation of C' such that the canonical projection = is not
differentiable. An example is the following: Q@ = R, C = 7*Q = R?, A = R,
W(q,a) = a®q. The Lagrangian submanifold A, is described by equation p = a3
and the mapping # is described by a = p%. This mapping is not differentiable
for p = 0 (¢ = 0). Hence, W is not a complete integral. Instead, the function
W{(q,a) = aq is a complete integral and defines the same foliation.



Chapter 4

Hamiltonian optics
in Euclidean spaces

4.1 The distance function

Let @ = R" = {x} = {(z%)} be the Euclidean n-space. We can identify the tangent
bundle TQ = {(x,p)} with the cotangent bundle 7*Q = {(z% p;)}. Notation:
u-v=> uv'is the scalar product of two vectors and [u| = y/u - u; for n = 3,
u X v is the cross product of two vectors.

Let U C Q be aregular and orientable r-dimensional surface (locally) described
by parametric equations x = u(u®), a = 1,... ;7. Let us consider the distance
function ®: 9 x U - R

(1) d(x,u) = |x —u|

as a generating family on Q with supplementary manifold U (and supplementary
coordinates (u®)).

Theorem 1. The distance function is a differentiable Morse family for x #u. It
generates the Lagrangian submanifold Ay defined by

X—1u

p= uel, u#x,

(2) (x,p) € Au = Ix —ul’
pLlLU,

and conlained in the 1-codimensional coisotropic submanifold C C T*Q defined by
equation

3) Ipl* =30 =1
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Proof. The equations of the Lagrangian set Ay generated by © are

_0%_x-u
P=ox = |x —u|’
(4) o® 1
0= fur = ey Pl ) (x-w = —eop,
where
0
(5) e, = 0,11 (804 = W)

are the coordinate vectors tangent to U. Equations (4) are equivalent to (2).
From the first equation (4) it follows that |p| = 1. From the second equation (4)
it follows that the critical set = is made of pairs of vectors (x,u) such that x —u
is perpendicular to U at the point u. Let us set

{ Aaﬁ = €qy * €3,
8(165 = Flﬁ e7+Bag,

(6)

where: A, are the components of the first fundamental form of the surface U, T'}
are the Christoffel symbols, and B,g are vector fields orthogonal to U, representing
the external curvature of the surface. Note that if U is of codimension 1, then
B.s = Bagn, where n = is a unit vector field orthogonal to U. Thus, B,g are
the components of the second fundamental form of the hypersurface U. It follows
that

op _ *e _ Oau
du>  Oxdu®  |x —ul
|x —ul

~1 X7 " 2(x—u) -+ dp(x—u)

1
2

x —uf?
(7)

?
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and
*®
oucdus
Aag — (P - €a)(P - €p)

= |X_u| —p . (Fzﬁe,y—l—Bagn)

_804(eﬁ “p)= —0up - ez —p- (F2667+Bagn)

(8)

On the critical set = we have p + e, = 0, so that

8% _Op e,
oxou®  Our  |[x—u|’
e A B
ouduP  |x —u| of " P

Since the vectors e, are independent, the first sub-matrix of the matrix

0?® 0P
{maami ‘ 8ua3uﬁ} =

has maximal rank. This proves that the distance function is a Morse family. m
Remark 1. The distance function has no derivative for x = u € U. Thus, the
Lagrangian submanifold Ay is not defined over the points x of U.

Remark 2. The Lagrangian submanifold Ay is contained in the coisotropic sub-
manifold C' defined by equation (3). This is the eikonal equation of the Euclidean
plane. The rays are oriented straight lines (Theorem 1, §3.2). The system of rays
corresponding to Ay is the set of outgoing straight lines perpendicular to U. Here,
the submanifold U behaves as a source of a system of rays, in accordance with the
theory developed in §3.5 (where a source has been denoted by X).

Remark 3. The caustic I'y of Ay is described by equations (Theorem 2, §2.5)
(10) { det[0,3®] = 0,

0, P = 0.

Due to (4)2 and to the second equation (9), these equations are equivalent to

1
7'u| Aaﬁ:| — 0,

|x -

det {p *Bus —

pP:e.=0.

(11)

Remark 4. Let us consider the particular case of an oriented surface U in the
3-space: n =3, r = 2. The first equation (11) is equivalent to

1

(x—u)-n

(12) det |:Ba5 — Aag:| =0,
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and the second one to x —u L U. Since the characteristic equation of the main
curvatures of a surface is

det [Bag - /\Aa[g] =0,

we find
1 1

(x—u)-n:|x—u|'

A=

This shows that

Theorem 2. The caustic I'y of the Lagrangian manifold Ay generated by the

distance function ®(x,u) = |x — u| is the set of the centers of curvature of the

surface U.

As a consequence,

Theorem 3. The only sources U which generate systems of rays without caustics

are the plane surfaces.

Remark 5. Let us consider the following parametric representation of Ay in the

three parameters (u®, p):

_ ay €1 X ey

13) p =n(u?) o1 X o]’
X=u+up, ©ER.

The determinant of the second order derivatives of x is equal to

p-(er+poip) X (ex+pdp)=p’p-0ipx hp+p- el X e
9 e; X es

:MP'| +Pp-e; Xen

x — uf?

2
:<1+7M >n'el><627£0.
x —uf?
Hence, the representation (13) is an immersion.

Example 1. The above results can be adapted to the case of a curve U in the
Euclidean plane R? = (z,y). Let us prove that if U is described by parametric
equations © = z(t), y = y(t), then the caustic 'y is described by parametric
equations

-2 2

mzm(t)—%',

(14) s
7ty .

y=yt)+ ——= =.

Let us consider the Morse family

(15) G(x;a,t) =a- (x —x(t))
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with supplementary variables a € §; and ¢ € R. By setting
| cos@
" | siné

we observe that this Morse family is equivalent to

(16) G(z,y;0,t) = (x — m(t)) cosfh — (y — y(t)) sin 6,

with supplementary variables §,¢ € R. The corresponding Lagrangian submanifold
is then described by equations

% = (y —y(t)) cosf — (z — z(t)) sinh =0,
(17)
oG =% cosf+ysingd =0
ot~ o
and
Pr = Z—G = cos#,
x
1 _ 9% =sinf
Py = dy = .

Equations (17) describe the critical set. The vectorial expression of equations (17)
and (18) is
p=a, (x—u(t)) xp=0, u(t) - p=0.

The last equation means that p L U. The second equation means that x —u(¢) is
parallel to p. Since |p|? = 1, this equation becomes equivalent to

x —u(l)

p=+— "
—u()]

Thus, the Lagrangian submanifold generated by this function has two connected

components. By choosing the + sign we find the equations (2) of the Lagrangian

submanifold Ay generated by the distance function. The caustic of this Lagrangian

submanifold is described by equation

R e
19) qet | 2900 900 | _
PG G

otoe  otot
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together with the equations (17). From (19) we get equation
[(z — 2(t)) cosf + (y — y(t)) sind] (& cosf + i sinf) — (& sinh — g cos#)* = 0.
By combining this equation with the first equation (17) we obtain the linear system

{ &cosf+msingd = X,
&sinf —ncosf =0,

where (isind — § cosh)?
Zsinf — g cos
gy E=eeh n=y—y)
It follows that
X sin# cosf X
&-: - ’ n= -
0 —cos# sinf 0

From the second equation (17) we get

cosf = py, sinf = —pa,

with
1=p? (&% +9%).
Thus,
(&% + 9%)? .
0 —pT , (2% +9°)? i+ 2
c=—| Zy—ii :pz@..ﬂ/...) g=2 1tV 4
R Yy —yxr Ty — Yyx
0 —py

This proves the first equation (14). The second equation is proved in a similar
way.

Example 2. For the parabola y = %1/2, by setting = = ¢, equations (14) yields
the following parametric equations of the caustic:

T = —1, y:l—i—%tz.

Yy
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The caustic U’ of a curve U in the plane i.e., the set of the centers of curvature
of U according to Theorem 2, is tangent to all lines orthogonal to U.
Remark 6. Instead of the distance function we can consider the function

®'(x,u) = § |x —ul’,

This is the Euclidean version of the world function introduced by Synge for
a generic Riemannian manifold [Synge, 1960]. By considering this function as a
generating family we write equations

P’
0= ou™

From the first equation it follows that

= —p-e,.

9 _

ou® o
This shows that ®' is a Morse family. This Morse family is now everywhere
differentiable. The corresponding Lagrangian submanifold is defined by

=x—u, uc/l,
Ay 3 (x,p) — {p

pLU.
Moreover,
et
m = _8ﬁp'ea —p'aﬁ - €y :Aaﬂ—p' (Fgae7+35an).
Hence, under the condition d,® = 0, which is also in this case equivalent to

P - e. =0, we find
8ﬁ8aq> = Aﬁa —n- (X — 11) Bﬁa,

and the equation of the caustic is identical to (12). Thus, I';; = I'y. Note that

the Lagrangian submanifold Aj; is not contained in the submanifold C of equation
2

p°=1

4.2 From wave optics to geometrical optics

Any component u(x,t) of an electromagnetic potential is a solution of the wave
equation
0%u
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where A is the Laplace-Beltrami operator. In Cartesian coordinates

H? H? H?
T o 0

Let us consider the special class of spherical solutions,
u = u(r,t), r=|x|.

Since Au = div(grad(u)), for such a function we have

82
Ay = ; W(TU),
and from (1) it follows that
v 0%
(2) w—wzo, v =Tru.

The general solution of this last equation is
(3) v=Ffr+8)+gr—1),

where f and g are arbitrary (smooth) functions. Solutions of the kind f(r+1¢) and
g(r — 1) are called incoming waves and outgoing waves, respectively. Thus,
the general spherical solution of the wave equation is

oty 9=t

(4) u=

Such a function represents the electromagnetic radiation generated by a
point source (the origin of the coordinates).

@ Among the spherical solutions let us consider oscillatory outgoing solu-
tions of the kind

c
(5) Uy (T’, t) = ezw(r—t)’ w e R-‘ra c € R.
T
If the source is located at the point u, then the corresponding solution of this kind
is
eiw|x7u|

(6) U(w,m) = C(ll) e—iw

x —ul’
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The factor

eiw|x7u|

(7) I = ¢(u)

|x —ul

is called the intensity of the radiation.
Let us consider the radiation generated by a surface U made of pointwise
sources. The resulting intensity at any point x is given by the integral

eiw|x7u|
(8) L(x) = / ) g
U |x —ul
This is a surface integral of the kind
() I = / a(u) e 2 gy
U

called oscillatory integral. The function ®(u) is called the phase function. In
the present case

(10) B(w)=x—u, afu)= 2

x —ul’

About this integral we have two fundamental theorems on the stationary
phase (see e.g. [Guillemin, Sternberg, 1977], Chapter I, for proofs and references).
Theorem 1. If x is such that dy® # 0 at all points of U, then for allm € N

(11) L,(x) = O(w™™).

The meaning of this theorem is that for w — oo, the radiations of all sources
interfere in such a way that the total intensity is “negligible” at any point x.
Theorem 2. If x is such that dy® = 0 at a finite number of points u, € U, then
the following asymptotic formula holds

T
e'+signH,

v/det H,

2 (1+0w)

(12) | L(x) = ( >_ S a(u) et

W

where n = dim(U) and H is the Hessian matriz of ® and

(13) sign(H) = #(positive eigenvalues) — #(negative eigenvalues).
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A first consequence of this theorem is that the non negligible contribution to
the intensity I, comes only from those points u, where d,® = 0, that is

0e
du
Since in our case ®(u) = |x — u|, for any chosen x, the points u, satisfying this
condition are the points where the line from u, to x (i.e., the vector x — w,) is
orthogonal to U, and this holds for any other point x' on this line. This means
that for an observer located at any point x on the line perpendicular to U at the
point u, only the radiation emitted by the source u, is detected. This line is called
the ray issued from wu,. It is parallel to the vector

(14) 0.

_02
p_ax'

(15)

Furthermore, from formula (12) we observe that the intensity I, (x) is un-
bounded at the points x where det H, = 0 i.e.,

(92@}_

where (u®) are local parameters of U. These points form the caustic. Equations
(14), (15) and (16) are just the equations of the Lagrangian submanifold Ay and
of the corresponding caustic generated by the distance function ®, as it has been
shown in the preceding section.

4.3 The eikonal equation and the global Hamilton
principal function

Let C C T*R"™ be the coisotropic submanifold of codimension 1 defined by equation

(1) b =pP =1
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This is the eikonal equation for the homogeneous (empty) Euclidean n-space.
The characteristics of C' can be found by integrating the Hamilton equations gen-
erated by the Hamiltonian H = >, p?,

{ i = Ap;
pi:07

where A is any function. By choosing A = 1, we find that: (i) the characteristics
are the straight lines described by parametric equations

©) {x:ta—b

p=a

ac€S,1, bean

since p € S,,—1 (the unit sphere) is equivalent to p € C; (ii) the rays are oriented
straight lines in R".

It is convenient to choose b orthogonal to a i.e., b tangent to the sphere S,
at the “point” a. In this way, through equations (2), any characteristic of C' is
determined by a pair of vectors (a,b), where a € S,,_1 and b is a vector tangent
to the sphere and orthogonal to a. This defines a one-to-one mapping from the
set S¢ of the characteristics to the tangent bundle T'S,,_1, which is identified with
the cotangent bundle T*S,_;. The minus sign in front of b is chosen in order to
get a symplectomorphism between the reduced symplectic manifold S- and the
cotangent bundle T*A = T*S,,_1 (see below).
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It follows from (2) that two pairs (x,p) and (x', p'), representing two points of
T Q, belong to a same characteristic if and only if

3)

=p'=a€S,-
{p P=as s (| = parallel to).

x—x'|p

Thus, the characteristic relation D¢ is defined by these conditions.

Remark 1. (i) With each pair (a,x) € A x Q@ = S,_; x R" we associate a
unique element ((a, b), (X,p)) € T*A x T*Q belonging to the reduction relation
R¢. Indeed, as it will be proved below, R¢ is a regular Lagrangian submanifold
of T*(A x Q). (ii) With each pair (x,x') € R" x R" = @ x Q such that x # x’
we can associate two elements of D¢ differing by the sign, ((x,p), (x,p’)) and
((x,—p), (x’,—p’)). This means that D¢ is two-folded over the points of Q@ x Q
out of the diagonal, while over the diagonal (i.e., for X’ = x) it is made of pairs
((x, -p), (%, —p’)) such that p = p’ € S,,_1. Indeed, as it will be proved below,
D¢ is aregular (and two-folded) Lagrangian submanifold of T*(Q x Q) out of the
diagonal, while it is singular over the diagonal (§3.4).

For the construction and the analysis of the characteristic relation D¢ we can
follow another way: to look for a complete solution of C' and use it for constructing
a Hamilton principal function.

Theorem 1. A global complete solution of the eikonal equation (1) |p|? = 1 is the
function on @ X S,_1 defined by

(4) Wi(x,a) =a - x, a€S,1

Proof. The partial differential equation associated with the eikonal equation

(1) is ,

It is integrable by separation of variables. A solution is
i

with integration constants such that

Za? =1.

i

This means a = (a;) € S,—1. The function (5) is a complete solution since for each
p € C there is a unique Lagrangian submanifold A,, generated by the functions
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Wa(x) containing p. Indeed, the vectorial equation of A, is p = a. Moreover, the
mapping 7: C — A is a submersion. m

Remark 2. Each Lagrangian submanifold A, corresponds to a system of parallel
rays or plane waves (Example 1, §3.3).

Remark 3. The function W generates the transpose R of a symplectic reduction
RCT*AxT*Q, A=S,_1, whose inverse image in C. As a consequence, (i) the
reduced set S¢ is symplectomorphic to the cotangent bundle T*A = T*S,,_1, (ii)
the equations of R C T*Q x T* A are

b= _8_W: — (x—x-aa) = — Pa(x),
©) Oa
_aW_a
p= ox

Remark 4. In the first equation (6) P, denotes the projection operator onto the
plane orthogonal to a,

(M P,(x)=(I-a®a)(x) (I = identity).

Here, we have used the following general property: assume that a hypersurface A
(of codimension 1) in R™ is (locally) described by a vector function a(a®) depending
on n — 1 parameters (surface coordinates) in such a way that the vectors tangent
to A

OJa
(8) €y = % = 8aa
are pointwise independent. Let f(a) be any function on A. This function is locally
represented by a function f(a®) of the surface coordinates. The partial derivatives

_ 9

(9) bo = da®

are the covariant components of a vector b = b e,, tangent to the surface, being
bo = Aagbﬁ and A,3 = e, * eg the components of the first fundamental form of
the surface (see §4.1). Since b, = b + e, we can write (9) in the vectorial form

of
1 b=,
(10) %
Let f(x) be any (local) extension of f(a) in a neighborhood of the surface. Its
gradient
of
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is not (in general) a vector tangent to the surface. However, its tangent component
coincides with the vector (10). It follows that

(1 o = Pu(Vi@),

where n is a unit vector orthogonal to the surface at the point a, and
(12) P,=I-n@n

is the projection operator onto the (n — 1)-dimensional plane orthogonal to n {and
tangent to the surface). Note that for A = S,,_; we have n = a. Note that
equations (6) coincide with equations (2) for t = x - a.

Theorem 2. The generating family S(Q x Q;S,,_1), with supplementary manifold
A=S,_1, defined by

(13) S(x,x';a)=(x—x')-a, a€S,_1

is a global Hamilton principal function of the eitkonal equation on the Euclidean
space @ = R".

Proof. The co-reduction relation R' is generated by W(x, a) (Remark 3). The
reduction relation R is generated by W' (a,x) = — W (x,a). In accordance with
Theorem 3 of §3.4 and formula (4), by composing these generating families we get
the generating family (13) of the characteristic relation Dc = R' o« R. m
Remark 5. The equations of D¢ generated by S are

05,
p_ ax1_7
a8
14 = — =
(14) P=5-=3
_85_ R
O_a_a_Pa(X x').

These equations coincide with equations (3).

Remark 6. The reduction relation R is a regular Lagrangian submanifold, since
it is generated by an ordinary generating function W (without extra variables).
On the contrary, the characteristic relation (Remark 1, §3.4) is singular over the
diagonal, so that in the neighborhood of the diagonal, is generated by a generating
family.

Theorem 3. The generating family S(x,x';a) = (x — x') - a is a Morse family
and the caustic of D¢ is the diagonal of Q x Q.
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Proof. Let us consider a parametric representation a(u®) of the sphere in the
n — 1 parameters (u®). The vectors e, = J,a are independent and tangent to the
sphere. Since

0,8 = (x — x') - e,, Do = 0/0u”,
the critical set = is given by the pair of vectors such that x —x’ 1 §,,_1. Moreover,
04055 = (x —x') - Opeq = (x —X) - (T'3, ey + Bpa a)
and ) :
{ 8i8a5 = 631, 8, = 3/8]}1,
8705 =€, 8y =0/0x"",

where €, are the Cartesian components of the vector e,. Then the matrix
{BQ&S ‘ 0.0y S ‘ aaags}

has maximal rank everywhere, since the submatrix [0,0;S] = [e%,] has maximal
rank, being the vectors (e,) independent. Hence, S is a Morse family. On the
critical set,

0a03S = (x — x') - a Bg,.

Since x —x’ is parallel to a and on the sphere det[Bg,] # 0, we have det [aaaﬁs] =
Oifand only if x —x' =0. m

Theorem 4. Outside the diagonal of Q x Q the characteristic relation D¢ is the
union of two disjoint reqular symplectic relations generated by the functions

(15) Si(x,x") = £]x — x|

Proof. The symplectic relation generated by S. is represented by equations
05y x-X
ox  |x—x|
05 ¥ —x
C0x [x—-x|

(16)

The requirements (3) are fulfilled. With S_ we get the opposite pair (—p, —p’). =
Remark 7. This theorem is in accordance with the general Theorem 3 of §3.4.
In accordance with Theorem 2, §2.6 (cf. Remark 6, §3.4), the global Hamilton
principal function (13) is skew-symmetric in (x,x'). Instead, the generating func-
tions (15) Sy are symmetric. This is not a contradiction, since these functions
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are “non-global” Hamilton principal functions: each one of them generates only a
branch of the symplectic relation D¢.

Example 1. Generating families of systems of rays generated by a sur-
face in R”. Let U C @ = R" be a r-dimensional regular surface described by
independent m = n — r equations

(17) U, (x) = 0.
Then the canonical lift U is generated by the Morse family (cf. (6), §2.8)
(18) Gu(x; A) = AU, (x), A=A eR" .

In accordance with what we have seen in §4.1 about the distance function, the
system of rays issued from U is represented by the Morse family

(19) Gi(x;u)=|x—u|, uelU

In accordance with Theorem 1 of §3.5, the system of outgoing and incoming rays
is described by the generating family

(20) Ga(x;x',a,A) = (x—x') a4+ A\ U,(x)

with supplementary variables x’ € R", a € S,,_1, (A*) € R" . This follows
from the composition of Gy (18) with the Hamilton principal function (13). It is
remarkable the fact that this is always a Morse family, whatever U (cf. Remark 2,
§3.5).

Example 2. Generating families of systems of rays generated by a point
in R™. If the surface U of Example 1 reduces to a point xg, then U = X; is the
fibre over this point and the generating family (18) becomes

(21) G (X A) = A+ (x —X9).

Then the generating family (19) becomes

(22) G1(x) = |x — x0|

On the other hand, the generating family (20) becomes

GQ(X§XI7a7)‘) = (X _XI) rat A (XI _XO)v a€Sp1, AER™
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However, one of the equations of the critical set of G5 is

OZW:A—EI.

Thus, the generating family G5 is reducible to (we use the same symbol)

(23) Ga(x;a) = (x—Xg)-a, a€S,1

Note that the generating family (22) describe only outgoing rays, while the family
(23) describes both incoming and outgoing rays.

Example 3. Generating family of a reflected system of rays. Let V be a
regular surface described by m = n — r independent equations V,,(x) = 0. Then
the diagonal relation Ay C R™ x R™ is represented by equations

(x,xYeAy <= V,(x)=0, x—x"=0.

It follows from Theorem 2, §2.8 that the canonical lift ﬁv is generated by the
Morse family

(21)  GulximA) = p- (x—x) + X V(x), peR, A= (A7) € R™

This is the mirror relation associated with V' (cf. Definition 1, §3.5). Let G(x;u)
be the generating family of a system of rays A;. Then, in accordance with Theorem
2 of §3.5, the system of rays reflected by V is described by the generating family

Go(x;x',x" a,u,p,A)=a-(x—x)+p- (X —x")+ AV, (X") + Gr(x";u).

However, one of the equations of the critical set of this family is

_ 0Go ! "
0= 1 X'

Then this generating family is reducible to

(25) Go(x;x',a,u,A) =a - (x —x") + A"V, (x) + G;(x';u)

with supplementary variables x' € R", a € §,,—1, A = (A\%) € R™ and u.
Remark 8. If we exclude the points x,x' € V, then the mirror relation is gener-
ated by

(26) Guxxiv)=x—-v|+|v-x, veV
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Indeed, the equations associated with this generating family are

_0G _ x—v ,_ 06 x'—v

_8x_|x—v|’ P = ox' |x' —v|’
(27)

O—a—G—P v—x+v—x’

S ov "\v-x| |[v-x1)’

Due to the first two equations, the last equation (describing the critical set) is
equivalent to Py, (p' — p) = 0. This means that p — p’ is orthogonal to the surface
V' (Remark 4). This is in accordance with the reflection law, formula (4) of §3.5.
Note that the generating function G5, (26) is the total “optical” length from x to
x' through the point v € V and that equations (27) express the principle that in
the reflection by the mirror V' this length is stationary [Hamilton, 1828].
Example 4. Generating family of a system of rays generated by a source
U and reflected by a mirror V. It is described by the generating family (25),
where Gy is of the form (20). There is however a simpler description: the system
of rays generated by U and reflected by V is described by the generating family

(28) G(x;u,v) =|x—v|[+|v—u, uecl,veV

This can be shown by composing the generating function (19) |x’ — u| with the
generating function (26) and observing that on the critical set of the generating
family so obtained,

|x —v|+[x' —v|+|x —u],

we have (take the partial derivative w.r. to x’)

x —v x' —u
= 0.

|x' —v| |x' —u]
This means x' = k(v — u), so that |[x' —v|+ |x' —u| =|v —u].
Remark 9. The conclusion of Example 4 can be extended as follows: the system
of rays generated by a source U and reflected by a sequence of mirrors Vi, ... ,Vy,
is described by the generating family

Gx;u,vi,... , Vi) =[x = V| + |[Vin — V1| + - ..+ |v1 — u],

(29)
V; € Vi, uecl.
Example 5. Ideal lens. Let V be a regular surface in R" representing an

ideal lens. The lens relation (AT/,\F) (§3.5) is generated by the Morse family (cf.
Example 3)

Grlx,x's i, A) = - (x = X') + AV, (x') + F(x')
peERY, (A eR™"

(30)
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The lens relation is also generated by

(31) Gr(x,x;v)=|x—v|+[x' —v|+ F(v), veV

In this second representation the points x,x’ € V are excluded. Indeed, the
equations corresponding to this generating family are similar to equations (27);
the only difference occurs in the last equation of the critical set, which now reads

(32) 0= 5" =

Pn(p' -p+ VF(V)), nlV

This means that the vector p' —p+VF(v) is orthogonal to V. This is in accordance
with formula (6) of §3.5.

Example 6. Concave and convex ideal lenses. In R* let us consider the
y-axis as an ideal lens V. Let us look for a function F(y) on V such that the
corresponding lens relation maps a system of incident rays A; parallel to (and
oriented as) the z-axis to a system of rays Ao focused at a given point (f,0) on
the z-axis. The input system of rays is described by the Morse family G;(x) = z.
For the lens relation let us consider the generating family (30), written in the form

(33)  Grl@,y, @y s iy, ) = pa (@ — @) + 1y (y —¢) + 22" + F(y').
Let us consider the Hamilton principal function (13) written in the form
(34) S(z,y,2',y';0) = (x — ") cos§ + (y — y') sin,

where a = [cosf,sinf]. Then, by composing these three generating families, we
get the generating family of the output system of rays,

Go(z,y; 2"y, 2", y".0, iy, 1y, \) = (x — 2") cos 6 + (y — y') sin 6+

35
( ) +Hm($l _ xll) +My(yl _ yll) + )\xll + F(y”) +.’E”.

This family is reducible. Indeed, among the equations of the critical set we find

9Go ' "
= =z -z, 0
Ot

_aGO T

0 = =Y
Opy

ie,z' =2",y" =y". Then the reduced family is (we use the same symbol of (35)
for simplicity)

(36)  Golw,yia',y,0,v,0) = (x —a') cosf+ (y —v)sinf + v’ + F(v),
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where v = A+ 1 and v = ¢’ = ¢”. A further reduction can be performed. Indeed,
one of the equations of the critical set of this last family is

_0Go
0= ey =x.

Thus, the final reduced generating family of the output system of rays is

(37) Go(z,y;0,v) =z cosf + (y — v) sinf + F(v)

The corresponding Lagrangian set is described by equations (we write Go = G for
simplicity)

0= % = —z sinf+ (y —v) cosb,
(38) o
0= D0 = —siné + F'(v),
oG oG |
(39) Pe =5 = cosf, Dy = o =sind.

Equations (38) describe the critical set. The output system Ao is then completely
described by equations

pe = cosb,

Py =sind,
(40)

Py = I(U)a

It is two-folded. Since for the input system p, = 1 > 0, the physically interesting
part of Ao is that for which
py = cosf > 0.

The generating family (37) is a Morse family (thus, Ao is a Lagrangian subman-
ifold) for p, = cos@ # 0 or for cosf = 0 and F"(v) # 0. This follows from the
analysis of the matrix

0?’G  9*°G  8*G  9*G

0606  000v  9Pdx DDy

0?’G  0°G  8*G 9°G

Ovdd Ovlv Ovlx Ovdy

—a cosf — (y —v) sinf —cosf —sind cosd

— cosd F'(v) 0 0



4.3 The eikonal equation and the global Hamilton principal function 91

For cosf # 0 it has maximal rank (= 2). For cos# = Q it reduces to

Fly—-v) 0  F1 0
0 F'(v) 0 0|

and the rank is maximal only for F''(v) # 0. Let us compute the caustic of the
output system of rays. The first equation describing the caustic is obtained by
equating to zero the determinant of the first square sub-matrix (41),

8’G  9*@
0808  900v .
det = F"(0) [z cosf + (y — v) sinb] + cos? 8 = 0.
A B SO0 (y —v) sinf]
ovdl  Ovdv

The remaining equations are just the equations (38) of the critical set. For F""'(v) #
0 we get the linear system in (z,y)

. cos? @
x cosf + (y —v) sinf = — Fi(o)’
x sinb — (y —v) cosf = 0,
whose solution is
cos> 6 sinf cos? 6
42 = - - Ly = =7
( ) z 2 (U) ? y v 2 (U)

Since F'(v) = sinf, we get the parametric equations (in the parameter v) of the
caustic,

3
2

e (1—F"?(v))
(43) F'(v) ’
_,_ P (-rr)
y= F(v)

The caustic is given by the single point (f,0) if and only if
cos’ = — fF"(v),

cos? @ siné
FI/ (U)

By the first equation, F"'(v) = — %cos3 f#, the second equation gives

sinf fF

(44) 0= st T Vi P2
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if we consider p, = cosf > 0. It follows that

02 J& » 02
F:]__f127 r :f2+112'
Thus, from
(45) Fl(v) = £——0

we get, up to an inessential additive constant,
(46) Fv) = £/ f? + 02

These are the functions on the (y = v)-axis which represent an ideal lens. Due to
(44) and (45), the function F(v) = v/ f? + v? corresponds to the case f < 0 thus,
to a concave lens. The function F(v) = —/f? + v? corresponds to the case f > 0
thus, to a convex lens. Note that in these two cases we have p, = F'(v) > 0 and
py < 0, respectively.

AI Y AI
Ao E[»! Ao
f z f z
Fv)=+/f2+0? )=/

Example 7. All the preceding discussion can be extended to the more realistic
case of alens V in R? of equation # = 0 (coinciding with the (y, z)-plane). Then
the generating family (37) of the output system is replaced by

(47) Go(x;v,a) =(x—v)-a+ F(v),

where v is a vector on the (y, z)-plane representing a point of the lens. For an
axially symmetric lens F(v) = F(v), where v = |v| is the distance from the z-axis.
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Example 8. Let us extend Example 6 by considering, instead of a parallel system
of rays, any arbitrary input system of rays generated by a function G;(x) =
Gi(z,y). By replacing the last term «' in (35) with G(z",y""), it follows that the
generating family of the output system of rays is given by (37) with the additional
term

I(v) = G1(0,v).

This means that in all formulae following (37) the term F'(v) is replaced by the
term F'(v)+I(v). In particular the parametric equations of the caustic (43) become

(1— (F' + I'(v))?

r= — y

(18) (o) + 1"(0)
(P +I'w) (1= (F +I')(v))
' oSt |

Assume for instance that the input system of rays is emitted by a point x¢ =
(%o, yo0)- Then Gy is given by (22),

Gr=|x—%0| = V(T —20)2 + (y — y0)?

and
10) = /53 + (0 — o)

(49) I'v) = 7ot
"(0) = I*(v) 13((2)— Yo)

For a convex lens,

(50) F) =, P =i
Vit e? (f2+0)3

The analysis of equations (48) for this case shows that for o = £f and for yg — 0
we have £ — oo.

4.4 The eikonal equation in a space of constant
negative curvature

In the space T*R"™ = {(x,p)} = {(2%,p,)} we consider the modified eikonal equa-
tion C'

(1) PP +-x)7 =1 >+ (D ap) =1
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This can be interpreted as the eikonal equation associated with the modified con-
travariant metric tensor

(2) H=G+x®x, H®=4§"+2%",

where G = [§%%] is the natural metric tensor.
Theorem 1. The eikonal equation (1) admits a global complete solution

W:OxA=R"xS,-1 = R
defined by
(3) Wi(x,a) =In (a -x++/1+(a- X)2) = arcsinh(a - x), acS, 1.
Proof. The vector

() p=|:|=% =
Dn

satisfies equation (1) whatever a. From this equation we derive

p-x= %
thus,
(bex® =5 ix(;ca)i)z <!
and 2
(X-a)2:%, 1+(x-a)2:ﬁ.

Then the mapping 7: C' — A:p — a is given by

(5) a= é.
V1—(p-x)?
This is a submersion. =

Remark 1. The symplectic reduction R C T*S,—1 x T*R" corresponding to this
complete solution is described by equation (4) together with equation

ow 1 1

B e CYr RV R PR

(x -aa—x).
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Note that b - a = 0. From this formula it follows that the ray determined by the
pair of orthogonal vectors (a,b) is the hyperbola on the plane (a,b) with center
at the origin x = 0, asymptotes determined by the vectors b £ a and vertex at the
point x = — b (cf. Remark 6 below).

The vector v = (v?) defined by v* = H® p, is tangent to the ray. It follows
from (2) and (4) that

- v paxepxo ATAIXX
1+ (a-x)?

From Theorem 1, see also Remark 6, §3.4, we derive
Theorem 2. The function

. . 2
S(x,x';a) = W(x,a) - W(x',a) = In a-x+4/1+(a x).
(8) a-x'++/14(a-x')?

= arcsinh(x - a) — arcsinh(x' - a), acS,

is a global Hamilton principal function of the eikonal equation (1). It is a Morse
family.
Remark 2. The elements of the inverse matrix [hq] of [H*] are

1

ha = T 5
) R P

(600 — 2 2*), rP=x.-x=3 (29
These are the covariant components of the modified metric tensor (2). In this new
metric the scalar product of two vectors u = (u®) and v = (v®) is given by

1

(10) h(u,v) = hy, uv? = i

(u-v—x-ux-v).
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Remark 3. The modified metric is invariant under (Euclidean) rotations around
the origin x = 0. Thus, the origin is a distinguished point.
Theorem 3. The metric H has constant negative curvature.

Proof. Let us consider R™ x R referred to the canonical basis

1 0 0
¢ = O y B e . y cn-‘rl:t: : y
0 0 1

and endowed with the Minkowskian metric
m(u,v) = utv® — Tyt

Let us consider the set H,, of the unit time-like vectors q, m(q,q) = — 1, pointing
to the “future” i.e., such that m(q,t) < 0. Tt is known that H, is a proper
Riemannian manifold with constant negative curvature (cf. for instance [Wolf,
1984]). By taking (z%) = (2',...,2") as parameters, this is the hyperboloid
described by the parametric equation

a=2%,+/1+> (z%)? t.

The corresponding tangent frame (e,) is then defined by

eazaaq:ca'i‘%t:

z2=4/1+> () =141

It follows that the induced metric tensor (the first fundamental form) of H, is

being

z% z? 1
Gab = m(e,, ep) = m(cg, cp) — 2 = Oab — m a“z’

This is the metric (9). m

Note that q is a unit vector orthogonal to H,, and that Jye, - q = By, - q =
—Yab-

For the sake of simplicity in the following we consider the case n = 2. All
results can be easily extended to any dimension n.
Remark 4. In R? = (z,y) we have

1+2> oy 1 I+y* -y
(11) [H*] = v [hat) =
ry  1+y? —azy 1422
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and

(12) h(u, v) <u v+ (x xu) - (x X v)>

BN

where x is the standard cross product of vectors in R® = (z, v, 2).
Remark 5. Let us consider for instance a = ¢; (the first vector of the canonical
basis of R?). In this case equation (6) becomes

b_l‘Cl—X_ YycCo
V1422 V1422

By setting b = bcs we get equation

(13) bV1+az2= —y.

For b # 0 it follows that
y?
b2
This is the equation of the system of rays associated with the Lagrangian subman-
ifold Ag, generated by the function

-2 =1.

G(x)=In(z+V1+a?).

Equation (13) describes a family of hyperbolas centered at the origin of R? and
vertices the points (0,4b). For b = 0 equation (13) reduce to y = 0: the z-axis
is a ray. The corresponding wave fronts, described by equations G = const. i.e.,
y = const., are the straight lines parallel to the y-axis.

rays

wave fronts
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Remark 6. Let n be a unit space-like vector in the Minkowski three-space.
m(n,n) = 1. These vectors form the one-folded rotational hyperboloid which we
denote by Ky (it is diffeomorphic to a cylinder). Let II,, be the 2-plane passing
through the origin and orthogonal to n, described by equation m(q,n) = 0. It
can be shown that:

(i) The geodesics of Hy are the intersections of Hy with the planes I, of this
kind.

H

K

(ii) The geodesics project onto the hyperbolas of the 2-plane (z,y) described
in the preceding remarks; hence, the metric properties of the plane (x,y) endowed
with the metric H*® can be deduced by those of Hy by means of the Cartesian
projection (z,y, z) — (z,y) (cf. [Petersen, 1998]).

z




4.4 The eikonal equation in a space of constant negative curvature 99

The geodesics in the plane (z,y) are the projections of the intersections of Hy
with the planes in R® passing through the origin.

We recall that H, can be also reduced to the Lobachevskij disk D» by means
of the stereographic projection from the origin to the plane z = 1.

(iii) The systems of rays of the kind described in Remark 6 are obtained by
considering the unit vectors

n(¢,u) = coshfu+ sinh £ cs,

where £ € R is a parameter and u is a unit vector orthogonal to a in the plane (z, y).
The space-like unit vectors p associated with this family of geodesics (parametrized
by &) form a section A, of T*H,. If we take u = — c¢o, then with respect to the
frame (13) the components of these covectors are

1
=0, = — coshé = ——.
P R I
Since )
——=In|x+ 1+m2):arcsinhm,
/\/1+m2 ( (=)

the set Ay is a Lagrangian submanifold generated by the function
G(z,y) =In (x +v1+ 1}2> = arcsinh(z).

Since & = x - ¢1, by replacing ¢; by any unit vector u we get the complete solution
(3). This is an example of a complete solution of a Hamilton-Jacobi equation which
is obtained by means of a geometrical process and not by separation of variables.
Indeed, the Hamilton-Jacobi equation (1) is integrable by separation of variables
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in the polar coordinates (p,8), with 6 ignorable, since the metric of Hs is invari-
ant under rotations around the z-axis. Other systems of separable coordinates
are known, which are associated with pairs of rotations around time-like vectors.
However, these complete separated solutions are not defined on the whole plane
(for the general theory of separation of variables in spaces with constant curvature
see [Kalnins, 1986]; for the separability in Hy see [Kalnins, Miller, Pogosyan, 1997)
and [Kalnins, Miller, Hakobyan, Pogosyan, 1999]).

In Appendix B it is shown that the eikonal equation on the hyperboloid H,
admits another global principal Hamilton function S, which does not come from
a complete integral W and which is not a Morse family.



Chapter 5

Control of static systems

5.1 Control relations

If a differentiable manifold Q represents the configuration space of a holonomic
mechanical system, then any tangent vector v € T'Q represents a virtual velocity
or a virtual displacement, while any covector f € T*Q represents a force. The
evaluation

(v, f)

represents the virtual power or the virtual work produced by the force f in
the virtual velocity (or displacement) v. Let us denote by (¢’, d¢’) the coordinates
on 1T°Q associated with coordinates (ql) on Q. This means that the symbols 6qi
represent the components of the tangent vectors, so that the coordinate expression
of the virtual work is

(1) {v,f) = fidd',

being (f;) the components of the force f and dq° the components of the vector v.
In the following discussion © will represent a static mechanical system, on which

we act by means of “external devices”, imposing very slow changes of configuration,

in order to avoid inertial or “irreversible” effects. The manifold Q is related to a

“bigger” static system represented by a configuration manifold Q, in accordance

with the following definition.

Definition 1. A control relation is a relation R € Q x Q of the form

(2) R = graph(¢) N (Q x )

where ¥ C Q is a submanifold, called constraint, and ¢: @ — Q is a fibration or
a surjective submersion.
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| |
| |
| |
Q
|
| | v
T T
| | | | R
¢ l
v
2 Q

Hence, a control relation is the graph of the restriction to a constraint ¥ of a

surjective submersion ¢. We call Q the control manifold and O the extended or
complete configuration manifold. Note that R may be a non-smooth relation.
Definition 2. Two virtual displacements v € TQ and © € TQ are called com-
patible with respect to the control relation R if v € T'Y (i.e., ¥ is compatible with
the constraint ) and T'¢(v) = v.
Remark 1. The fibration ¢ represents the existence of “hidden” or “internal”
variables of the system O, which are not controlled and which may assume any
value belonging to the constraint 3. Control relations arise in control problems of
static mechanical systems, in catastrophe theory, in thermodynamics.

There is a useful equivalent definition of control relation:

Theorem 1. Definition (2) is equivalent to

(3) R:q>oA2

where ® = graph(¢), and Ay C Q x Q is the diagonal of ¥ x Y i.e., the identity
relation on X.
Proof. Definition (2) is equivalent to

R={(¢.9 € 2xQlq=¢(a), g€}
Definition (3) is equivalent to
R=®+Ax={(q,9) € Qx Q]3¢ € Qsuch that ¢ =¢(7), (7.7) € As}
q

={(¢,1) € 2x Q|37 € Qst. ¢q=¢(7), =7 €}
={(¢) € 2xQ|qg=¢(7), €I} n
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Definition 3. The canonical lift of a control relation B = ® o Ay, is the
composition

o~

(4) R=3.As CT*QxT*Q

of the canonical lifts of Ay, and of ®.
Theorem 2. Definition (4) is equivalent to

R={(}.])eT"QxT"Q | rg xno(f,[) = (¢,0) € R,

(5) I
<T¢(U)7f> - <U’f>7 Voe TITE}'

Proof. By definition of canonical lift of a smooth relation we have:

={(f,)) €eT*QxT*Q | mg xw5(f,[) = (q,7) € ¥,
(v, ) = {8, [), ¥ (v,0) € Ty, ®}
={(f,)) €eT*QxT*Q | mg xw5(f,[) = (q,7) € ¥,
(To(v), ) = (v, [), Vo € T}

and
A ={(f,f) €T"AxT"Q | mg(f) =mo(f) =q€X,
(0, f—fY=0,VoeT,X}
By applying the composition rule of relations we get

do Ay = {(ff)eT OxT*Q|3f eT*Q st.

(f,]Ye®, (f'.]) € As}
(©) :{(ff)eT*QxT*Q|EIf €eT*Q, s.t.
feT;Q, fleTrQ, q=¢(q), e,

Ty(®), f) = (v, ), YoeT;Q, q=mga(f),
fy=0,VoeTx}

From these last conditions it follows that (q,7) € R and {T¢(T), f) = (0, f) for all
v € TzX. This shows that $ o Ay C R as defined in (5). Conversely, if (f f)eR,
then the last conditions (6) are satisfied for f' = f. Thus, oAz DR. u

Remark 2. Formula (5) shows that a pair of forces (f, f) belongs to the relation

R if and only if these two covectors are based at a pair (g, ) of points belonging
to the relation R and such that

(7) (Te(0), f) = (1, ]),
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for any virtual displacement ¥ tangent to the constraint ¥. This means that
(v, f) = (B, f) for two compatible virtual displacements (v,).

We use the above-given definitions and theorems for stating the following two
azTioms:

The system with configuration manifold O remains in static equilibrium
under forces f € T*Q belonging to a Lagrangian submanifold £ C T*Q generated

by a function V:Q = R, called the extended potential energy:

(8) £=dv(Q)

One could consider the general case of a generating family V: 9 x U — R. How-
ever, in all examples illustrated below the potential energy V will be an ordinary
generating function defined on Q, without supplementary variables.

The system with configuration manifold Q remains in static equilibrium
under the action of an “external mechanism”, represented by the control relation
R, only with forces f belonging to a certain set of equilibrium states £ C T*Q,
also called the constitutive set of the system, defined by

(9) E=RoE

Remark 3. Definition (9) means that
(10) fe& <« 3Ifsuchthat (f,f)e R, Fe&.

Then (10) and (7) show that f € & if and only if for all compatible virtual dis-
placements (v, ) we have

(11) (v, f) = (5,d7) |

We analyze the local coordinate representations of the above concepts by using
generating families.

Let ¢ be (locally) represented by equations ¢° = ¢*(¢®) and ¥ by independent
equations ¥,(¢*) = 0. Thus, in accordance with definition (2), the control relation
R is described by equations

12) { ¢ —¢'(¢*) =0

Y. (q*) = 0.
Theorem 3. If the control relation R is locally described by equations (12), then
its canoncal lift R is locally described by the generating family

(13) Grlg, ;M. 1) = Xi (¢ — ¢'(@%)) + " Za(@*)
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with Lagrangian multipliers (A;, u®).
Proof. The generating families of the canonical lifts ® and Ay, are, respectively,
{ Gal(q', 7% M) = Ni (¢" — ¢'(7%))
G (G5, 4% 1% va) = p® Xalq@®) + valgg — 7°)-
Here, (A;, 4%, v,) are supplementary variables. By the composition rule of the
generating families we get the generating family G of ® o Ay,

GR(qi7qa;q(()l7Ainua7ya) = AZ (qz - ¢Z(Q(?)) +N‘a Ea(@(?) + Va(@(? - q_a)v

with supplementary variables (g%, A;, p%, o). Since R is then described by equa-
tion

(14) fidq' — fo dq® = dGr,

the vanishing of the coefficients of dv, implies g§ = ¢*. Thus, the generating
family is reducible to (13). m

Remark 4. Equation (14) with Gg defined by formula (13) is equivalent to
equations obtained by equating to zero the coefficients of (d¢®, dq®, d)\;, du?),

fi - /\z

N ) %
@ >\’ 8@0( —H 8qo¢
¢ = ¢'(7%)

Y.(@) =0

By eliminating the Lagrangian multipliers A; we get equations

;g 09t 0%,
g = ¢'(q*)
Za(qa) =

These are the equations describing R. The last two equations are the equations
of R (fibration and constraint, respectively). The first equation is in accordance
with (6). Indeed, if v = (§g%) and v = (6¢%), then

7€TY = 8?“ 5§ =0
oq~
(16) o
v=To@) = 0 =000
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By applying the composition rule of generating families, we prove
Theorem 4. The constitutive set £ = R o & is the Lagrangian set in T*Q (possibly
a Lagrangian submanifold) generated by the composite generating family

(17) V=GroV.

It is described by equation

(18) fidg' = d(Gr+V)

equivalent to the system of equations

_ 0GR
fi=
0= %n OV
oq*  0g®
(19)
0=%8 s gos@)
_ 9Gr =y
0_6m = () =0

If the potential energy V depends on supplementary variables u, then to this
system we add equation 0 = 8V /du.
Remark 5. With any smooth function F: Q — R we associate a function §F on
the tangent bundle T'Q defined by

(20) SF(v) = (v,dF).
The coordinate representation of this function is

oF _;
( ) 8(]1 q

This function is linear on each fibre of 7°Q. Thus, from the expression (1) of the
virtual work it follows that the equilibriumn states defined by (9) are characterized
by the following variational equation

(22) fidd' =8(Gr+V)

Although the two symbols d and § have different meaning, they have the same
formal properties (linearity, Leibniz rule, etc.). Thus, equation (22) is formally
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equivalent to equation (18). However, while (18) has a pure mathematical char-
acter, equation (22) has a physical meaning: it states that a force f = (f;) is an
equilibrium force (i.e., when applied to the system it is able to maintain the sys-
tem in equilibrium) if and only if the corresponding virtual work, for any virtual
displacement v = (dq?), is given by the value of the function 6(Gg + V). Hence,
equation (22) represents a generalized version of the classical virtual work prin-
ciple of D’Alembert-Lagrange.

Remark 6. We can think of more general kinds of control relations. For another
general approach to this matter see [Tulczyjew, 1989]. The definition of control re-
lation proposed here is suitable for dealing with the applications illustrated below.
For a further approach to thermostatics see [Dubois, Dufour, 1974, 1976, 1978].
Remark 7. There are special cases of control relations.

Case 1, complete control without constraint. In this case @ = ¥ = Q and
¢ is the identity. It follows that & = £ is the Lagrangian submanifold generated
by a potential energy V:Q — R.

Case 2, pure constraint: ¥ C Q@ = Q and ¢ is the identity. In this case we
have R = Ay and £ = (X, V)" C T*Q: £ is generated by the potential energy V
over the constraint ¥. We can interpret this case in another way: ¥ = @ = Q. It
follows that £ is the Lagrangian submanifold of T*¥ generated by the restriction
V|Z of the potential energy to the constraint. In other words, we look at ¥ as the
configuration manifold of the system.

Case 3, pure fibration. We have no constraint, but there are internal degrees
of freedom (internal or hidden variables) of @ which are not controlled.

Case 4. The constraint ¥ is such that the restriction of the fibration (or the
surjective submersion) ¢: @ — Q to ¥ is a fibration (or a surjective submersion)
¢: ¥ — Q. In this case we can replace @ with ¥ and the control relation reduces
to the case 3 of pure fibration.

Let us consider some basic examples.

Example 1. Let us consider a point P free to move in the plane R* = (z,y) = (x)
and submitted to internal forces with potential energy V. Let us act on it by
imposing its position x. In this case Q@ = Q = R* (¢ is the identity) and we have
no constraint. In this control, we first impose the position of P, and then we
measure the force f we have to apply for maintaining the point in that position.
Then, according to (22), the equilibrium states are described by equation

fox + goy = 6V,
which yields equations
PRI 1
Oz’ 9= Oy’

These equations give the components (f, g) of the force f to be applied for main-
taining the point at the assigned position. Thus, the set of the equilibrium states
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is the Lagrangian submanifold of 7*R? generated by the function V. This is a
case of complete control (case 1).

Example 2. A point P on the plane (Z,7) is constrained to the unit circle Sy,
72 + 2 = 1. We control only its coordinate z = z, by moving a bar parallel to the
y-axis along which P can slide freely. We can consider Q = R? = (z,§), ¥ = Sy,
Q = R = (2) and the projection onto the z-axis as the fibration ¢: R* — R. Since
this fibration is defined by equation = = z, the generating family of the canonical
lift R is, according to (13),

(23) Gr(z, 2, G; \p) =A@ — D +p (F+7 - 1).

<2

A

In the case of no active force, V' = 0, the variational equation (22) reads
(24) féx=06Gpg

and it is equivalent to equations

f=A _

0= —A+2uf {m_m:
ATEH P4 -1=0.

0=py

These equations are equivalent to

f=2ux
(25) 1y =0
2+ -1=0.

We observe that p #0 = g =0, z ==+1. Sothat z # £1 = g #
0, w=0, f=0 Moreover, z =+1 = ¢g=0, f==2u pel
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The equilibrium set £ is then represented in the plane (z, f) = R? = T*R by the
following picture:

The generating family (23) of R can be reduced in this case to a generating
family of &£,

(26) Ge(z;g,p) = p (2° +§° — 1)
with extra variables (7, ¢t). Indeed, the variational equation
fox =6Gg

is equivalent to equations (25). It can be seen that this is a Morse family except
at the two “circled” points (+1,0), in accordance with the fact that without these
two points £ is a Lagrangian submanifold.

Example 3. In the preceding example assume that a gravitational constant force
(parallel to the §-axis) acts on P. The potential energy is V = g, g > 0. In this
case equation (24) is replaced by

(27) fox =48GR+ 6V
and equations (25) by
f=2ux
(28) 2u5+9=0
?2+yP—-1=0.
Since the second equation implies pug # 0, thus § # 0, the last equation shows that

xz = 1 are incompatible values. This means that for z = +1 the force f cannot
assume a finite value. Indeed, since p = — g/g and § = £v/1 — 22, we have

f:iL

v1-— 22
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and the above graph of f is replaced by the following one

f

The sign of the force at a given point x # £1 depends on the position on the
constraint of the point P, which is not controlled.
Example 4. On the plane R? = (z,y) = (x) we consider a point P, = (x1) moving
on the z-axis and tied elastically to a point P> = (z2,y2) free to move on the plane.
Thus, Q = R? x R = (z9,ys, 1) is the configuration manifold of the holonomic
system made of these two points. Let us act simultaneously on both points by
imposing their positions. We are in the case of a complete control, Q@ = Q. Then
the set of the equilibrium states is the regular Lagrangian submanifold £ generated
by the potential energy

V= % (x1 —%x2) = % [(xl —3)* + yg]
and described by equations

oV oV %
fl_a—xlv 2_%7 92_8_y27
which provide the external forces fi = (f1) and f> = (f2, g2) needed for maintaining
the system in equilibrium.
Example 5. Let us act on the system of Example 4 by constraining the point P,
to move on the circle S; of radius 1 and centered at the origin and by controlling
only the position of the point P, on the z-axis. This is a particular case of the
so-called Zeeman machine [Poston, Stewart, 1978] where the point P is free to
move in the plane (see also [Dubois, Dufour, 1976].
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Yo

The control configuration manifold is now @ = R = (z), the constraint is
¥ = S; x R and the fibration ¢ is just the Cartesian projection onto the z-axis.
Thus, the control relation R is represented by equations

z34+y3—1=0
z—x1 =0,
and its canonical lift R is generated by the family
G, @1, @a,y2 A, 1) = Ale — 1) + (e + 93 — 1),

Then the set of the equilibrium states & C T*Q = (z, f) of the system under this
control is described by the variational equation

for=5(Gr+T) = 5(A<m—x1> (gl D)k (e — ) +y§]),

which is equivalent to equations

=X

0=—-A+k(x, —z2)
0=2xou — k(x1 — 22)
0 =2y2p + kyo
O=z—2;
0=a3+y; — 1L

These equations are reducible to
[ =k — )
2u+ k)zo = kx
2p+k)y2 =0
z3+ys =1
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For yo = 0 we get zo = £1 and f = k(z £ 1). For ys # 0 we get 2u + k = 0, thus
z =0and f = —kzy, with |z2] < 1. The set £ of the equilibrium states is then
represented by the following picture:

/k/
/1k/19”

Example 6. For the same system of Example 5 we can think of another control
relation. We can consider the configuration manifold @ = §; x R = (6,z). If we
control the positions of both points, then the equilibrium states are represented
by the regular Lagrangian submanifold A generated by the potential energy

V==~5(x —x)%=£[(z — cosh)? +sin” 4]

and described by equations

ov

f= i k(z — cosb),
ov .
T = 50 = kxsind,

where @ is the angle between x5 and the z-axis, and 7 is the torque applied to the
point P». If we control only the point P, leaving the point P free on S;, then
the control manifold is @ = R (the z-axis) and the control relation is given by the
trivial fibration ¢:S; x R — R only. The equilibrium states of the system form
the set £ € T*Q ~ R* = (x, f) represented by equations (we put 7 = 0 in the
equations above)

ov
= o k(z — cosb),
0= o _ kz sind.

0
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We get the same set £ as above. Since

Al Gl

96° =kz cosf, Mzksin@,

the generating family V(z;6) is a Morse family except for # = 0, sinf = 0, that
is over the points (0, k). In accordance with the theory, by excluding these two
points the set £ is a Lagrangian submanifold. It is made of five branches (open
segments and half-lines). The “vertical” segment is the set of the singular points,
in accordance with the fact that the caustic is represented by equations

- _
Oz%zkxcosﬁ, Oz%zkxsinﬁ.
Example 7. Two points P; and P> are constrained to the z-axis and the y-axis,
respectively. They are linked by a rigid rod of length a. The point P is tied
elastically to the origin by a spring. Let b be the length at rest of the spring. We
act only on the point P;. An interpretation of this static system is the following:
the extended configuration manifold is @ = R* = (x1,¥2), the constraint ¥ is
represented by the rod i.e., by equation x? + y3 = a?, the control manifold is
Q = R = (z), the fibration ¢ is represented by equation & = x1; y2 is considered
as an internal variable. The internal potential energy is V(x1,y2) = g (b —y2)2.
The generating family of the control relation R is

Grlw, a1, y2 A 1) = Ma — 1) + p(a? + 43 — a?),

and the set £ C T*Q of the equilibrium states of the system under this control is
described by equation

for=6(Gr+V) = 5(/\(1; —z) +pai +ys —a®) + % (b—y2)2)

which yield equations

f=A
O=x—x1
0=-A4+2px;

0=2zf+y; —a’
0=2py2 —k(b—y2).
These equations reduce to
f=2upzx
(29) 2?4+ y3 = a?
2py2 = k(b —y2).
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For ys # 0 we find

thus,

b

For y» = 0, the third equation has a meaning only for b = O (ideal spring). For
b = 0 equations (29) become
f=2upzx
> +yi=a
2p+k)y2=0

2

so that, for y» = 0 i.e., for £ = +a, the extra variable y is not determined and we
find that f may assume any arbitrary value. For y» = 0, we find p = —k/2 thus,
f = —kz. The set £ is then represented by the following picture, for all possible
values of b. For b = 0 is not a submanifold.

b>a
b=
x
b<a
b=0
)
P>
P
N ’

Example 8. Let us consider Example 2 modified as follows: (i) the point P is
constrained on a curve y = h(Z), and (ii) it is submitted to a force parallel the
g-axis with potential energy V(§).
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Y

SN 7= h(z)

<

—~

2

=

Paret!
FATAVAS==""1
\L ”<
I

The equilibrium set £ is then described by the variational equation
fox =68[V (@) + n(g - h(z))],
which yields equations
y=nh@), f=—ph(z), V@+p=0
It follows that & is described by equation
(30) J(@) = F(h(@) W(2), F=V"
If for instance V(y) = £ 52 (ideal spring), then
(31) J(x) = kEh(z) W ().

In this way, we can construct any kind of (smooth) force function f(z) (at least
in a neighborhood of a point z) by taking a curve h(z) which is a solution of the
differential equation (30) or (31). For instance, if we want a repulsive linear force

f@)= —kz

in the neighborhood of x = 0, then equation (31) reads zdz = — hdh and leads
to solutions of the kind h?(x) = ¢ — 2. The curve which realizes such a force is
then any circle centered at the origin.

Example 9. The static control of n-body systems. Let us consider a static
system made of four points (P;) = (P, P1, P», Ps) on a straight line (the z-axis),
with interacting forces with potentials V;;(r;;) which are even functions of the
distances r;; = z; — ;. We consider for simplicity the case of four points, but the

following discussion can be easily extended to the generic case of n points. Assume
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that the point P is constrained at the origin, so that zo = 0, and that we act only
on the last point P;. The total potential energy is

V= Vor(z1 — z0) + Voo(ze — o) + Vs (23 — 20)+
+ Vig(xe — 21) + Vis(zs — 1) + Vas(zg — 22).

A

P P P P,
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The generating family of the canonical lift of the control relation is
Gr = Mz — x3) + pxo.
Equation (27) now reads

fo0r =8(Gr+ V) =38\(x —x3) + A8z — §x3) + 1630 + T0 St
+ for(z1 — x0) (021 — 60) + foo(x2 — 20) (22 — d20)
+ fos(x3 — x0) (023 — 020) + fra(x2 — 21) (022 — d21)
+ fiz(zs — x1) (023 — 621) + faz(xs — 22) (023 — dx2),

where f;; = %g are the odd functions representing the internal interacting forces.
This is equivalent to the following system,

f=2A
=13
xz9 =10
(32) 0 =p— for(z1 — o) — for(z2 — 20) — foz(w3 — w0)

0= foi(x1 —xo) — fia(xs — x1) — fis(xs — z1)
0= f02($2 - xo) + f12($2 - $1) - f23($3 - xz)
\ 0= — A+ fo3(z3 — 20) + f13(23 — 21) + foz(23 — 22).

Due to the first three equations, from the last one we get the expression of the
controlling force,

(33) f = foa(x) + fis(z — 21) + foz(x — 22),
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which depends only on the interacting forces between the point P3; and the points
(Py, P1, P5). The remaining forces are internal forces. The fourth equation (32)
gives the expression of u as a reaction force at the fixed point Fp,

p= for(z1) + foz(w2) + fos(zs).
The remaining two equations (32) read

{ Joi(x1) = fiz(ze — 21) + fis(z — 21)

(3 Jas(® — x2) = foa(ma) + fi2(z2 — 21).

For any fixed value of z, equations (34) define a subset D, C R* = (21,22). By
replacing this subset of values of (z1,z2) in equation (33) we get a set F, C R
of forces f associated with the controlled value of z. The union & = U _pF, of
all these sets gives the equilibrium states of the system. In general, it is a very
complicated subset of R? = (z, f).

Remark 8. In the model of control of static systems we are considering, we
have not introduced and discussed the notion of stability of an equilibrium state.
Example 5 (the Zeeman machine) suggests the following definition: an equilibrium
state of £ is stable if it corresponds to stable states on the constraint manifold X.

5.2 Simple closed thermostatic systems

Let us consider a system of particles (atoms, molecules) in a closed vessel. Let us
act on it by means of an external device. The energy transfered to the system in
a “quasistatic process” ¢, made of slow transformations of equilibrium states, is
defined by

E.= / (6Q — PdV)

where P is the pressure, V is the volume, and §(Q) is a 1-form representing the heat
absorbed by the system. If we postulate that this 1-form admits an integrating
factor,

(1) 5Q = TdS,

where T is the absolute temperature and .S is the entropy, then the integral F.
can be written

(2) B, = /9, 0 =TdS — PdV.

This suggests to consider, following [Tulczyjew, 1977a], the four-dimensional space

S=(S,V,P,T)=R*
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as the space of states (or state manifold). A quasi-static process ¢ is one-
dimensional path in this space. Actually, in accordance with their physical mean-
ing, the variables (S,V, P,T) will assume only positive values, so that the physi-
cally interesting states are located in Ri. We call (S,V) extensive observables
and (T, P) intensive observables. A fundamental advantage of considering this
four-dimensional space is that the 1-form # induces a symplectic form

(3) w=dd =dl AdS +dV A dP.

In this way, as a consequence of the first principle of thermodynamics and formula
(1), the state manifold is endowed with a canonical symplectic structure.! The
corresponding Poisson bracket is

OF 0G OF 0G OF 0G OF 0G
) PGy =51 35 ~ap ov o5 o T v 9P

Definition 1. The equilibrium states, which are physically admissible, form a
subset

ECS

called the constitutive set. We say that the system is simple if £ is an exact
Lagrangian submanifold i.e., the restriction of the 1-form # to the vectors
tangent to £ (which is closed, since £ is Lagrangian) is an exact form:

(5) o|E = dw,

where W:& — R is a smooth function which we call intrinsic potential energy
of the system.

Remark 1. This is equivalent to assume that £ is a smooth 2-dimensional mani-
fold and that the integral F. is zero for all quasistatic “cycles” over £. It is also
equivalent to assume the existence of an internal energy (cf. (11) below). This
definition is in accordance with that of [Carathéodory, 1909].

As we shall see below, the intrinsic potential energy W will be represented
by four other functions, called thermostatic potentials (or “thermodynamical
potentials” in the classical literature) related to various control modes with
which we act on the system.

! The common geometrical setting of Thermodynamics is odd-dimensional, in
terms of contact manifolds [Hermann, 1973] [Mrugalta, 1995]. However, the even-
dimensional framework, in terms of symplectic manifolds and Lagrangian subman-
ifolds, seems to be more “symmetric” and elegant. A remarkable example of this
structural symmetry is the general setting of the Legendre transformation and the
definition of thermodynamical potentials illustrated in §5.5.
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Remark 2. Being a Lagrangian submanifold of a 4-dimensional symplectic mani-
fold, the constitutive set £ is represented {(we assume globally) by two independent
equations of state or constitutive equations,

{ E (S, V,P,T)=0

(©) Ey (S, V,P,T)=0

with functions (E;, Es) in involution on &:
(M {Ey, Ex}E =0.

Remark 3. In §5.4 the matter of this remark will be included in a more general
framework. Let us consider the extensive variables (S,V) as global coordinates
of a configuration manifold Q; = Ri. Let (S,V,ps,pv) be the corresponding
canonical coordinates on the cotangent bundle 7 Q;. The Liouville form is

(8) Ao, =psdS + py dV.
Thus, the injective mapping

a:S - T709;
defined by
(9) ps=T, pyv=-P

is a symplectomorphism onto the open subset of 7 Q; defined by ps > 0, py > 0.

P T Ps pv
agq
S /\/ S \/\ T
£ &
s 1% s 1%

1 \L TQ,
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It follows that the image & = a1 (€) of £ by «; is a Lagrangian submanifold of
the cotangent bundle 7% Q4. A generating function U (S, V) of & is called internal
energy. It may be a generating function, possibly a Morse family, U(S,V;u),
with supplementary variables (u). This means that £ is completely described by
equation

(10) psdS +pydV =dU(S,V)
so that, due to equations (9), £ is described by equation
(11) TdS — PdV =dU(S,V),
which is equivalent to equations

(12) T:Z—Z:US, p=-Y_ _y,.

If U is a Morse family, then to these equations we add equation

U

0_3_g'

Let us consider the fibration 71:S — Q:(S,V,P,T) — (5,V). We use the

following general property (for the proof, see §6.6).
Theorem 1. Let a1:S — T*Q; be a symplectomorphism. If a Lagrangian sub-
manifold £ C S is the image of a section of 11 = 7@, o a1: S — Q1, then it admils
a global generating function U: @1 — R if and only if it admits o global function
W:& = R such that dW = 6,|E, where 8; = a0g,. The link between these two
functions is W =njU =U o my.

In other words, if the constitutive set £ is a section of 71, then it admits an
internal energy U: Q@1 — R if and only if it admits an intrinsic potential energy
W:& — R. In the present case S ~ Ri and O ~ IR{i. Thus, both these conditions
are satisfied for a section of .

5.3 The ideal gas

Let us apply the general considerations of the preceding section to the special case
of an ideal gas. The well known constitutive equation of an ideal gas is

(1) E\(P,V,T) = PV —npRT =0

where n > 0 is the mole number and R > 0 is a physical constant. This equation
summarizes the Boyle, Gay-Lussac and Avogadro’s laws. In accordance with the
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assumption that the constitutive set £ is a 2-dimensional manifold, this equation is
not sufficient to describe the behaviour of the gas: a second constitutive equation
is needed. We can derive this second equation by the following “symplectic”
argument. Let us assume that the second constitutive equation has the form

(2) F(S,V,P,T):S—f(P,V,T):O

i.e., that the entropy can be expressed as a function of the remaining observ-
ables. Then £ is Lagrangian if and only if the function F' is in involution with
E: {F,E;} = 0 (we assume that this condition is satisfied everywhere, not only
on &). Due to the definition (4), §5.2, of the Poisson bracket, this conditions is
equivalent to the partial differential equation

nREFs +VFy — PFp =0,
where Fg = 0F/0S, etc., thus, to
(3) va - pr =nkR.

This is a Hamilton-Jacobi equation in the cotangent bundle of the configuration
manifold of variables (P,V). An evident solution is the function

4) f=a+nR+c)logV +clogP,

where (a, ¢) are constant parameters. This is a complete solution with respect to
the non-additive constant ¢, since the matrix

0 f *r 1 _[1 1

Ve OPdc| |V P
has maximal rank everywhere. However, since in equation (3) the temperature 7'
is not involved, we can consider (a,c) as functions of 7. So, with the “natural”

choice of (4) among the solutions of equation (3), we find the second constitutive
equation of an ideal gas:

(5) F(S,V,PT)=5—-a(T)— (R+¢(T)) logV —¢(T) logP =0

We can write this equation in the form

S a nR
- = - — +1)logV + log P,
. C+(C+)og + log P,
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and by setting

(6) 7=1+@, k:eXP<—g>,
c c
we get
. S
(7) EgZPV’Y—]{?eXpZZO
with
(8) nRk = c(y —1).

This is the standard form of the second constitutive equation of an ideal gas,
involving the entropy, as it appears in books of thermodynamics, with

(9) c=ney, kE=Kn".

Remark 1. We emphasize that the second equation of state (7) has been de-
rived from the first one (1) simply by assuming that (i) the constitutive set & is
a Lagrangian submanifold and, (ii) that the entropy is a function of the other
observables.

The matrix

O0FE, O0FE, OFE, OE; —nR 14 0 P
aT 9P 05 ov | _

oF oF oF oF | | . . ¢ nki+c
o obf ol O —a' —c'log(VT) —= 1 -—

aT 9P 05 oV P 4

has maximal rank everywhere, so that equations (1) and (5) are independent, and
this confirms that they define a submanifold of codimension 2.
Let us assume that the functions @ and ¢, thus v and %, do not depend on 7.

Since
0E, OE;

i ) _nR Vv
det | 9T 0P| _ 4oy = —nRVT£0,

0F, OF, 0o VI

or  op

the Lagrangian submanifold £ is a section of the fibration 7;. Let us show that it
admits an internal energy U(S, V') thus, that the thermostatic system described
by the two constitutive equations (1) and (6) is simple.
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Theorem 1. If £ is described by the two constitutive equations (1) and (6) with
a and ¢ = constant, then the internal energy is (up to an additive constani)

— k L S
(10) Us,v)= po— V"7 exp -

Proof. This follows from the integration of the exact form (11) of §5.2. By
solving equations (1) and (6) with respect to P and T, we get
T PV kVITY . S

= — = Xp —.

nk nR P

We observe that 7' = Ug and P = — Uy with U given by (10). m
Remark 2. Van der Waals gas. A similar analysis can be done for a Van der
Waals gas. The first constitutive equation is assumed to be

P= kV*”expg,
¢

na nRT
11 FE=P+——-———=
(11) ! +V2 V —nb

It follows that the internal energy is

_ nkey S—nRlog (LY —b) na
(12) Us,vV) = 7 oXP o -7

5.4 Control modes and the Legendre transforma-
tion

Definition 1. Let (S,w) be a symplectic manifold. A control mode on S is a
symplectomorphism

(1) a.:S - A, CT"Q,

into an open submanifold A. of a cotangent bundle T* Q. such that the mapping
(2) Te =TQ, o At S = Q.

is onto. We call Q. the control manifold and the 1-form on &

(3) f. = agfo,,

the control form. Note that

(4) d, = w.
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A,\
s e (/\ 9,

e Q.

R E—

Definition 2. Let £ C § be a Lagrangian submanifold. Since «. is a symplecto-
morphism, the set

) Ee = ac(€)

is a Lagrangian submanifold of 7*Q.. A generating function G, of &, is called a
generating function of £ with respect to the control mode a..

Remark 1. In the applications to the control theory of static systems, S repre-
sents the space of the states and £ the equilibrium states. The generating function
G is the potential energy with respect to the control mode a.. Functions on &
are called observables.

Remark 2. The fibres of 7, are Lagrangian submanifolds, so that observables
which are constant on the fibres are in involution. Conversely, if F? are n inde-
pendent global observables in involution, then they define a control mode. Indeed,
equations F? = ¢' (constant) define a Lagrangian foliation and the set of all the
admissible constant values (¢°) € R™ forms a control manifold Q. C R”. It can be
seen that if we choose a section of the corresponding projection 7., then we can
define a symplectomorphism into 7 Q..

Remark 3. From Remark 2 we derive the following “physical” rule: we cannot
“control” simultaneously and independently n observables of a static system if they
are not in involution. Here, “to control” means “to force the observables to assume
arbitrary values” (at least in a suitable domain). For example, for a point P in
the plane (see Example 1, §5.1) we cannot, control simultaneously the position x
and the force f along the z-axis (these two observables are not in involution).
Remark 4. It is interesting the case of the simultaneous existence of two control
modes on &, ag and ay. Then the transition from the generating functions Gy
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to Gy of Lagrangian submanifolds of S is called the Legendre transformation
[Tulczyjew, 1977]. A symplectic diffeomorphism from a symplectic manifold to
a cotangent bundle has been called “special symplectic structure” [Lawruk, Sni-
atycki, Tulczyjew, 1975]. If X is a vector space, then the direct sum X & X*
is endowed with a canonical symplectic form. A symplectic isomorphism from a
symplectic vector space (4, «) to a direct sum X @& X * has been called “frame” (see
for instance [Leray, 1981]). A special important case of Legendre transformation
is that connecting the Hamiltonian description and the Lagrangian description of
dynamics. Other important special cases are related to the control of thermostatic
systems. For another general approach to the catastrophe theory in thermodynam-
ics see [Dubois, Dufour, 1978].

The general setting of the Legendre transformation is the following.

Assume that a symplectic manifolds & is symplectomorphic to two distinct
cotangent bundles,

T*Qs 28 25 T7Q;.

The graph of the symplectomorphism as o aflzT*Ql — T*Q5 is a sym-

plectic relation
Ror CT7Qy xT™Qy

which may admit a global generating family Loy (possibly a Morse family) over
the product Q> x Q5.

Let & C & be a Lagrangian submanifold and let G4 and G2 be the generating
families of & = a1 (€) and & = a2(E), respectively. Since

Ey = Roy o &1,

it follows that the generating families of & and & are related by the composition
law

(6) Gy = Loy & Gy,

Remark 5. The relation R, is the image by as X a1: S X 8 = T*Qs x T*Q; of
the diagonal Ag i.e., of the identity mapping on &, as illustrated in the following
diagram:

T2 170y =—— T"Q1 ™M
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In this diagram we have considered the surjective submersions
Ty = TQ,; o O, =12
and the set
(7) Iy = mg, X mg, (R21) = (m2 X m1)(As) € Qo x &
as a relation from @Q; to Q. It is convenient to introduce the mappings
(8) a1:8 > 17 Qe x T Qy, ma: S — Qo x Oy,
defined by
(9) Qo1 () = (az(w),al(w)), 1 (z) = (7T2(517)7771($))7 T €S.
Then we have
(10) Ra1 = a21(5), Iy = m1(S).
We observe that as; is a one-to-one mapping: from
(a2(z), a1 (7)) = (a2(2"), 01 (2"))

it follows that «;(z) = a;(2'), i = 1,2. Thus z = 2/, since «; are one-to-one.
Remark 6. Since d(; —6,) = w—w = 0, the 1-form #; —#; on S is closed. Thus,
there exist local functions Ws5;: S — R such that
(11) 8y — 6, = dWo.

In the most interesting examples of Legendre transformation the set I is a
submanifold of Qs x Q1 and the function Ws; is globally defined on &. This is the
case illustrated by the following
Theorem 1. Assume that: (i) S is connected and Iy = 721 (S) is a submanifold;
(ii) the mapping ™ = 721|S: S — I is a surjective submersion; (iil) there exists a
global function Wa1:S — R satisfying (11); (iv) there exists o function Foy:Is; —
R such that
(12) W21 = Egl o = 7T*E21.

Then,

(13) Ry = (Io1, En)
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i.e., the symplectic relation Roy is generated by the function Es1 on the relation
121 .

This theorem recalls, although in a different form, the results of [Tulczyjew,
1977] (for further comments on the Legendre transformation see [Tulczyjew, Ur-
banski, 1999]). Tt is a corollary of a general theorem, Theorem 4, §6.6, about the
exact Lagrangian submanifolds over constraints. In order to apply this theorem we
observe that if S is connected, then the Lagrangian submanifold Rs; is connected
and maximal, since it is the graph of a symplectomorphism, az o oy L

5.5 Thermostatic potentials

For a simple and closed thermostatic system we have four fundamental control
modes. They correspond to the four possible pairs of the fundamental observables
(S,V,P,T) which are in involution ie., @; = (S5,V), @, = (V,T), @3 = (T, P),
Q4 = (P, S) [Tulczyjew, 1977]. The corresponding generating families of the La-
grangian set £ of the equilibrium states are called thermostatic potentials.

internal energy

U(s,v)
S Vv
Q1
T
H(P,S) S Ty s _V T F(V,T)
thzll < @ —_— free energy
cnthalpy | p PT T | (Helmholtz function)
y S )
3
P T
Q
G(T,P)

Gibbs function
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The corresponding control 1-forms 6;, for which df; = w, are

6, =TdS —-PdV
6, = —PdV - 5dT
O =VdP —Sdrl
6, =TdS+VdP.

1)

The generating families may be globally defined. They may be, in particular,
Morse families or ordinary generating functions. This depends on the constitutive
set &.

Let us consider the Legendre transformation from «aj to as. Since

O —6, = —SdT' —TdS = —d(ST),
we have, in accordance with the notation of §5.4,

Wor(S,V,P,T)= - ST
Q1 =(5,V), Q= (1)
(2) 721 (S, V, P, T) = ((V,T),(S,V))
Iy = {((V2,T),(S, V1)) | Vo =W}
B ((V2,T), (S, V1)) = — TS
Then, all requirements of Theorem 1 of §5.4 are fulfilled. Since I5; is a submanifold

defined by equation V5 — Vi = 0, it follows that the generating function of R is
the Morse family

(3) Loy(Vo,T,5,Vi;0) = =TS+ A(Va —11)

with supplementary variable A € R. Thus, if Gy = U(S,V) is the generating
function of & = (&), then the generating function Gy of & = a2(€) is the
Morse family

GQ(‘/Q,T;S,W) = U(S, Vl) +L21 = U(S, Vl) - TS+ /\(‘/2 — Vi)

with supplementary variables (S, V7). However, since one of the associated equa-
tions is Vo — V4 = 0, this generating function is reducible to (we do not change the
symbol for simplicity)

with supplementary variable S. In conclusion, & is described by the variational
equation

(5) —P§V - S8T = 8(U(S,V) - TS)
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equivalent to equations

" {P: ~Uy(S,V)

0=Us(S,V)-T.
However, if this second equation is solvable with respect to S, so that we can

express S as a function S = S(V,T), then we can eliminate the supplementary
variable S in GG> and get the classical Helmholtz function

. FV,T)=U(S(V,T),V) =T S(V,T)
@) {S:S(V,T) — T =Ug(S,V).

For this function we can use the notation

8) F(V,T) = stats (U(S, V) — TS)

Remark 1. It can be shown that: (i) The constitutive set £ of an ideal gas, defined
by equations (1) and (6) of §5.3, is a regular Lagrangian submanifold with respect
to all control modes, so that it admits the four thermostatic potentials as ordinary
generating functions. (ii) The constitutive set of a Van der Waals gas, Remark
1, §5.3, is regular with respect to the fibrations m; and ms, so that it admits an
internal energy U(S,V) and a free energy F(V,T), but it is singular with respect
to the fibrations w3 and 7y, so that the corresponding thermostatic potentials, the
Gibbs function and the enthalpy, are generating families G(T', P; V), H(P,5;V)
with supplementary variable V' [Fasana, 2003].

5.6 Simple open thermostatic systems
If we act on a thermostatic system also by adding or subtracting particles, then

we say that the system is open. In this case the energy transfered to the system
by the external device in a “quasistatic process” c is given by the integral

5= o

(1) 9 =TdS — PdV + pdn.

of the 1-form

The quantity p represents the chemical potential, and the molar number n is
assumed to have continuous values. If we set

(2) V =nv, S = ns,
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then v and s are the molar volume and the molar entropy, respectively.
The states of the system are represented in the manifold

S =(s,v,P,T,n,pn) =R,
endowed with the symplectic form

w=df =dI' ANdS +dV ANdP +du ANdn

3
) =n(dIl' Ads+dv AdP) + (dp — vdP + sdT') Adn.

We say that the system is simple if the set of the equilibrium states £ C & is
an exact Lagrangian submanifold: there exists a function W:& — R such that
0|E =dWV.

For an open system we have eight fundamental control modes, corresponding to
the triples of the fundamental observables which are in involution (now we include
the observables (n, u)).

Let us consider the control mode associated with the control manifold

Ql = (87 v, TL)

and the control form 8, = #. For a simple system we introduce the molar internal
energy u(s,v), so that the total internal energy is

(4) U(S,V,n) = nu(s,v),

and the constitutive set £ is described by the variational equation

(5) T0S — PV + pon =0U,

equivalent to the system of equations

(6) T = us(s,v), P = —uy(s,v), p=u(s,v)+ P —Ts.

Note that the observables T' and P do not depend on n, in accordance with their
character of “intensive observables”.
Example 1. For an ideal gas (cf. §5.2)

K
(M u(s,v) = ijlfv exp f,

and for a Van der Waals gas

(8) u(s,v) = ’YK (v —b)'77 exp S
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Let us consider the control mode associated with the control manifold
Qs = (v,T,n)
and the control form
(9) o= —PdV — SdT + pdn = (u— Pv)dn —nPdv —nsdl.
The constitutive set £ is then described by the variational equation
(10) (p— Pv)dn —nPdév— ST =46F
where F is the free energy,
(11) FV,T,n)y=nf(v,T)
and f(v,T') is the molar free energy. Equation (10) yields equations
(12) P=—fv,T), s=—-jrwT), p=f@T)+Pv

The two descriptions (6) and (12) of £ are equivalent if and only if the molar free
energy is related to the molar internal energy by the Legendre transformation.

In order to perform the Legendre transformation according to Theorem 1, §5.4,
we list the following ingredients:

By —6 = —PdV —SdT"+ pdn— (T'dS — PdV + pdn) = — d(ST)
Wor(s,v, P, T,n,u) = — ST = —nsT

Q1 = (871)1,”1), Q= (UzaT, nz)

w91 (s, 0, P,T,n, p) = ((U,T, n), (s,v,n))

I = {((vg,T,ng), (s,vl,nl)) | vo = v2, N2 =nq}

Es ((vg,T, na), (s,vl,nl)) = —msT (or equivalently, = — nasT).

Thus,

L21 (('UQ,T, nz), (s,vl,nl));/\l, AQ) = — TL1$T + Al ('UQ — 'Ul) + /\Q(TLQ — TLl)

Ga(v2, T, n9; 8,01, 01, A1, A2) = g uls,v1) —nsT + A (v2 — v1) + Aa(na — nq).

This last generating family, with supplementary variables s,vy,7m1, A1, A2 is re-
ducible to

(13) G2(v,T,n;s) = n (u(s,v) — sT)
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with the supplementary variable s only. This means that & is described by the
variational equation

(i — Pv)dn —nPdv —nsdT = 5G5,
and the vanishing of the coefficient of §s yields equation
(14) T = ugs(s,v).

If this equation is solvable with respect to s, we can remove s from (5 defined in
(13) and get an ordinary generating function of the kind (11), with

(15) f(v,T) = stats[u(s,v) — sT].

This formula, relating the molar free energy to the molar internal energy, is in
accordance with (8) of §5.5.

5.7 Composite thermostatic systems

Let us consider a general scheme where: (i) there are two symplectic manifolds, S
and S, representing the states of two physical systems; (ii) there are two control
modes a.:S — T*Q. and a.:S — T*Q,; (iii) there is a control relation R, C
Q. x Q., where Q. plays the role of control manifold; (iv) there is a Lagrangian
submanifold £ C S representing the equilibrium states of the system S; this is
assumed to be a Lagrangian submanifold generated by a function V: Q. — R with
respect to the control mode a., so that a.(&) = dV(Q.).

We consider the set of the equilibrium states (or the constitutive set) & C S of
the system S under the control relation R.. By considering the principle expressed
by formula (8) of §5.1 and the notion of control mode described in §5.4, we assume
that this set is defined by

~

(1) Ee=a' (Reo (&) CS

This scheme is illustrated by the following diagram,
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T°Q, <~—— T*Q, ¢+ dV(Q.)

Let us apply this mathematical model to a closed thermostatic system of n
moles subdivided into N open subsystems in equilibrium. The state manifold of
this composite system is

(3) S = %18 = xiL, (54,05, Ts, Piy iy i)
We control this system by acting only on macroscopic observables of the space
(4) S =(S,V,PT).

The subsystems are assumed to be open; this means that transfer of particles
between the subsystems is allowed.

Let us study the control of the volume and the temperature. The control
manifolds are

(5) Qo = (Vv T)v Q= Xilil(vivTiani)'
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The control relation Ry C Qs x Q5 is defined by the fibration ¢: Oy — Oy described
by equations

(6) V=> nw, T=T,

and by the constraint Y5 C Oy described by equations
i

This means that all the subsystems have the same temperature T' (we can control
the temperature by putting the system in heat bath at the temperature T') and
that we do not add or subtract matter to the whole system (the pot containing
the whole system is closed and has a controlled volume V).

We assume that the system is homogeneous: this means that the constitutive
set

EcS
of the complete control of the N subsystems is generated by the function (free
energy)

(8) F= Znif(vi,T,-),

where the function f is the same for all subsystems.
From the virtual work principle stated by formula (1) it follows that
Theorem 1. The constitutive set &5 is described by equations

Yni=n
S==3ni fr(v,T)

9) Vo=22nw;
—P=f,(v1,T)y=...= f,(on,T)
Pu; + f(v;,T) = Pvj + f(v;,T).

This means that (S,V, P,T) € & if and only if these equations are satisfied for
some values of (v;,n;).
Proof. The generating family of the control relation is

(10) Gpr, = /\1(T - Tl) + /\Q(V - Zz nﬂ)i) + A3 (Zl n; — TL) + Ziij /\ij (Ti - Tj).

The control form is
0= —SdIl — PdV.
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From the principle (1), written for ¢ = 2, and from the composition rule of gener-
ating families, it follows that & is described by the variational equation

(11) —S0T — P8V = 6Gg, + OF

thus by equation

—S6T — P&V =6[M(T —Th) + Ao (V = 3, nivi) + X3 (32, s — n)+
Dizg Nij (Ti — TH] +6( 2 ni f(vi, T3)).

The vanishing of the coeflicients of 6A; and dA;; of this last equation yields equa-

tions 1" = T and 1 = T, respectively. Note that the temperatures 7; play the

role of supplementary variables in the generating family Ggr & F. Hence, equation
(12) is reducible to

(13) —S6T —P6V = (5(/\2 (V — Zz nivi) +)\3 (Zz n; — TL)) -l—(S( Zz n; f(’UZ,T))

The coeflicients of (6T, 8V, 6Xa, d A3, dn;, dv;) yvield, respectively, the following equa-
tions
S= —=>,n fr(v;,T) 0=>,ni—n
(14) P= _AQ 0= —)\Q’Ui-l-Ag-f—f(’Ui,T)
OZV_ZZ‘”iUi 0:/\2ni+nifv(vi,T).
By eliminating the Lagrangian multipliers we obtain equations (9). m
Remark 1. The control relation considered above fits with Case 4 of §5.1. Indeed,
the fibration ¢ reduces to a fibration over the constraint X. This means that we
can replace Qs by ¥y = (X;(vi,n:), To) = IR{iN x Ry, being all subsystems at the
same temperature T = T,. The control relation is now described by equations

_ V=>.nw;, T=1T, (fibration
(15) Ry CQax Qs { 2i ( )

n=7y,n; (constraint)

and equation (12) is replaced by equation

—S0T — PoV = 6(/\1(T —To) + X (V =37, nvi) + A3 (D2, ni — n))
+ 6(22”1 f(UiaTO))a

(16)

which reduces to

(17) —S6T —P6V = (5(/\2 (V — Zz nivi) +)\3 (Zz n; — TL)) -l—(S( Zz n; f(’UZ,T))
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Then we find again equations (9).

Let us study equations (9) of &.
Theorem 2. Let (S,V,P,T) € &. For each pair (a,b) of values of the molar
volumes v; satisfying equations (9), we have ([Janeczko, 1983])

b
(18) / (P+ folv,T)) dv =0.

Proof. For constant values of P and T', a primitive of the function P+ f,(v,T)
is Pv+ f(v,T). Because of the last equation (9), this primitive takes equal values
at the end points of the interval of integration. m
Theorem 3. For each equilibrium state described by equations (9), the molar
volumes (v;) are determined by the points (v,y) € R? of the graph of the function
y = f(v,T) having a common Langent line.

Proof. For v; # vj, from the last equation (9) it follows that

P(vi - vj) = f('U],T) - f(vivT)v
thus,
FonT) = (0, T)

Ui—Uj

P=-

Because of the equations (9)4,

fi,T) = f(v;,T)

U,'—Uj

= fv(vkaT)a

for all vj,. m

Remark 2. The number of molar volumes (v;) resulting from this theorem is the
number of phases which may coexist in an equilibrium state. Note that the last
equation (9) and the last equation (12) of §5.6 show that the subsystems have a
common value of the chemical potential,

(19) Bi = Hj-

Remark 3. The two theorems stated above give an explanation of the so called
Maxwell convention or Maxwell rule of the “equal areas” (see the discussion
in [Poincaré, 1892], [Fermi, 1936] and [Huang, 1987]) and of the phenomenon of
the coexistence of phases. A first “symplectic” approach to this matter can
be found in [Janeczko, 1983a.b]. In the present approach, the Maxwell rule is a
theorem following from the general variational principle expressed by formula (1).
Remark 4. If for all values of T" the function f(v,T) is a convex function of
v, then any tangent line to its graph is tangent at a single point. This means
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that for each equilibrium state described by equations (9) all v; assume the same
value depending on 1": v; = v(T). It follows that & is a Lagrangian submanifold,
generated by the function

(20) F(V,T)=nf(£,T).

Indeed, in accordance with the expression of the control form #y in (1) of §5.5,
equations (9) reduce to equations

(21) P=—-Fy=—f,(£T), S=—Fpr=—nfr(LT).

In this case the thermostatic system (S, V, P, T') behaves as a simple closed system.
In all other cases £ may not be a submanifold, and we have coexistence of phases
i.e., there are states corresponding to different values of the molar volumes v;. The
pictures below illustrate the case in which for a certain value of T the graph of
y = f(v,T) admits a tangent to two distinct points vq # wv2. Then the graph of
the corresponding isotherm

(22) P = _fv(%aT)

in the (V, P)-plane is of the kind of Van der Waals for T' < T-.
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P= _fv(Z T)

n’

Py=—fy(v0,T)

Pr=—f,(v1,T)=—f,(v2,T)

V1 =nv1 Vg:n kib) 174

V=nvg=niv1+nsvs

If V1 = nvy and V, = nusg, then

Va Va Vs
(23)/ (P—Pl)de/ (fv(%,T)—Pl)dV:n/ (fo(v,T) = P) dv =0

\ %1 i v1

because of formula (18), Theorem 2. This is the Maxwell rule: all points on the
horizontal segment defined by P = P, = — f,(v1,T) = — fu,(v2,T) correspond to
further equilibrium states. The geometrical construction of this rule, illustrated by
the above pictures is known as the Maxwell construction (cf. [Huang, 1987]).
Remark 5. Assume that for each value of 7" any tangent to the graph of y =
f(v,T) admits at most two tangent points. This is the case of a Van der Waals
gas: for T < T,, the critical temperature, we are in the situation considered in
Remark 4. Then &, is the union of two sets,

&= U,

The first set &' corresponds to the case of a single phase: v; = v = V/n. It
is the Lagrangian submanifold described by equations (14). The second set &5
represents the equilibrium states with the coexistence of two phases v1 < vy (as
in the pictures above). For these equilibrium states the values of the volume V
belong to the open interval

1<V <y, V; = nv;.
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Indeed, for V< Vi or V > V, we have necessarily a single phase and the corre-
sponding states belong to £5". In accordance with equations (8) the states of £5”
are then described by equations

P= — fy(n,T), S= —ny fr(vi,T) — na fr(vs, T).

The first equation shows that P has a unique value determined by 7', when vy is
expressed as a function of T itself. About the second equation we observe that
the value of S depends on the mole numbers (n1,n2) of the two phases. However,
these two numbers are determined by the value of V. Indeed, by solving the linear
equations

{ N1V + Naty = 1%
ny +ns =n,

we find

@ m=fErefe me =D
Thus,

(25) 5= ivz [(Va = V) fr(v,T) + (V = VA) fr(v2,T)].

For a complete description of the set £ it remains to express vy and ve as
functions of T'.
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P
! 1
°T 27TbR
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C2Th?
V.=3b
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Isotherms of Van der Waals in reduced coordinates. "

Remark 6. Starting from the expression of the molar internal energy, formula (8)
of §5.6, and by performing the suitable Legendre transformation, it can be shown
that for a Van der Waals gas the Helmholtz molar function is

ek

RT

a

(26) fw,T)y=cyTlog — RT log(v — b)

By studying the graph of y = f(v,T), it can be shown that all v; assume the
same values for T' > T, or two distinct values for T < T, where T, is the critical
temperature.

Let us consider the control of the entropy and the volume. The control
manifolds are

(27) Q1= (va)v Ql = Xilil(sivviani)'
The control relation is defined by equations

S =3 nsi, V=71 (fibration)

n=7y,n; (constraint).

(28) R C Q1 xQq {
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The control form is

8, =TdS — PdV.

The generating function of £ is the total internal energy
(29) U= Zn, wu(sy, v;).

i
Theorem 4. The constitutive set

(30) Si=ai (Rioa(é)cS

15 described by equations

dni=n
S:Zini S;
(31) ) V= Zz N; v;
— P =wuy(s1,v1) = ... = uyu(sn,vn)
T =wus(s1,v1) = ... = us(sn,vn)
u(s;,vi) + Pv; — T's; = u(sj,v;) + Pv; — T's;.

This means that (S,V, P,T) € & if and only if these equations are satisfied for
some values of (s;,v;,n;). The proof of this theorem follows the same pattern of

that of Theorem 1. Equation (11) is replaced by
(32) T6S—Po6V =6(Gg, +U).

We can state a theorem similar to Theorem 3.

Theorem 5. For each equilibrium state described by equations (31), the molar
volumes (v;) and the molar entropy are determined by the points (s,v,y) € R® of
the graph of the function y = u(s,v) (called the Gibbs surface) having a common

tangent plane.

Proof. Let us consider two pairs (s1,v1) and (s2,v2) satisfying equations (31).

Due to the last equation,

u(s1,v1) — u(s2,v2) =T (51 — s2) — P (v1 — va),

and by applying equations (31)45 we get

u(s1,v1) — u(s2,v2) = (51 — 82) us(s1,v1) + (V1 — v2) Up(51,01)

= (81 — 82) us(82,v2) + (V1 — v2) Uy(S2,02)
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On the other hand, the equation of the tangent plane to the Gibbs surface at a
point P; = (sl,vl,u(sl,vl)) is

(s —s1)us(s1,v1) + (v —v1) up(s1,01) =y — uls1,v1).
By setting (s,v) = (s2,v2) we get equation above. m
Remark 6. The comparison of equations (9) and (31) shows that & = & i.e,

that the equilibrium states under the two control relations coincide. Indeed, (9)2
and (31)2 are equivalent because of (12)3 of §5.6,

si= — fr(v;,T).
The remaining equations are, respectively,

(33) { —P=f,(v,T) = fo(v;,T)

Pv; + f(vi,T) = Pv; + f(v;,T)

— P = uy(s:,05) = uo(uy,vj)
(34) T = us(ss,v;:) = us(sj, v5)
u(si, vi) + Pvi = T'si = u(sj,v;) + Pvj — Ts;.

The Legendre transformation (15) of §5.6 can be written

(35) f(,T) = (u(s,v) — sT)
s=s(v,T)

where the function s = s(v,T) is the inverse of T = wu,(s,v). It follows that for
any fixed value of T,

fo0,T) = (uu(5,0) + us(s,v) 22 — T 22) |s:s(v7T) (us(s,v)) |s:s(v7T).

This shows that (33); is equivalent to (34); and (34)2. Finally, equations (33)2
and (34)3 are equivalent because of (35).
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Supplementary topics

6.1 Symplectic relations generated by a submani-
fold

A submanifold ¥ C Q generates three smooth relations: (i) the zero-relation
I x {0} C @ x {0}, (¢,0)eTx {0} & g€,
(ii) the injection relation
Ry Cox Q, (¢,¢)€ERy & q=4¢ €3,
and (iii) the diagonal relation
A C@2xQ, (¢,d)€lds & g=4d €

Their canonical prolongations define three symplectic relations between cotangent,
bundles,

S c T x {0},
(1) Ry CT*Y x T*Q,
Ay C T*Q x T*Q.

The first one is the canonical lift of ¥ interpreted as a zero-relation. The third
one has been examined in §3.5. It is a remarkable fact that [Benenti, 1988]

Theorem 1. The symplectic relations Eg and 82 are, respectively, the reduction
relation and the characteristic relation of the coisotropic submanifold

C=T30={peT"Q|no(p) € T}
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made of the covectors based on points of 3,
Rc = Ry, D¢ = Ay,

Indeed, the characteristics of C' are the equivalence classes of the following
equivalence relation:

2) p~p = mwolp)=molW)=q€, (v,p—p) =0, WweT,X.
Remark 1. The canonical lift ¥ is invariant under the characteristic relation ie.,
3) DooX=%.
Indeed,

DcoS={peT*Q|3p, (p,p) € Dc, p' € T°S}

={peT*Q|3p,p-p €Ty, p GTOE}:TOEzi.

The same holds for the canonical lift with a function:
(4) De o (%,F) = (5, F).

This fact can be interpreted in the following way: the Lagrangian submanifold

-~

(X, F) is the geometrical solution of the Hamilton-Jacobi C' = T3,Q determined
by the initial data (X, F').

Remark 2. We can consider ¥ as the zero-section of 7*¥. Then, ¥ is a Lagrangian
submanifold of 7*X. Hence, its inverse image R/, o ¥ is a Lagrangian submanifold
of T*Q. This Lagrangian submanifold coincides with the canonical lift of X,

(5) RI.T =S
Indeed, since Rg = ﬁg and a covector p' € ¥ C T*X is a zero-covector, we have

RlLo¥=

={peT*Q |3 €Tst (p,p) € R}

={peT Q| € Tst.wmop') =nalp)=¢q, (v,p—p')=0, Yve T,Z}
—{peT Q| {v,p)=0 WweT,I}=3.

In a similar way it can be proved that if F:¥ — R and dF(X) C T*X is the
Lagrangian submanifold generated by F', then

—

(6) Rl o dF(Z) = (X, F).
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Remark 3. The characteristics of C' = 7%, Q are vertical submanifolds (i.e., their
tangent vectors are vertical) and the rays are the points of .

6.2 The canonical lift of reductions and diffeomor-
phisms

The definition of canonical lift of a relation, §2.9, can be applied to (the graph
of) a mapping, in particular to a diffeomorphism or to a surjective submersion.
These two last extensions are special cases of the canonical lift of a reduction.
Let R C Qs x Q; be a differentiable reduction i.e., the graph of a surjective
submersion p: A — Qs from a submanifold A C @; onto Q. Let V(p) C TQ; be
the subbundle of the vertical vectors i.e., of the vectors tangent to the fibres of p,

(1) Vip) ={veTQ|Tpv)=0
and V°(p) C T*Q; the subbundle of the covectors annihilating the vertical vectors,
@) V) ={peT " |{v,p =0 VoeV(p)NT,Q, q=ro, ()}

It can be proved that [Benenti, 1983b]:

Theorem 1. The canonical lift of a reduction R C Qs x @1, R = graph(p: A —
Q») is a symplectic reduction R c T*Qs x T*Q1, whose inverse tmage C =
RT o T3 Qs CT*Qy is the coisotropic submanifold C = V°(p) made of the covec-
tors annihilating the vectors tangent to the fibres of p. The underlying surjective
submersion p: C' — T* Q4 is defined by equation

(3) (Tp(v), p(p)) = (v,p),
where v € T,Q1 and g = g, (p), and
(4) prOo, =00,|T5Qi.

Theorem 2. The composition of two reductions S o R is a reduction and SoR=
SoR.

Remark 1. A diffeomorphism p: @1 — Qs is a special case of reduction. By
equation (3) we can see that its canonical lift p: T*Q, — T Qs is the symplecto-
morphism defined by

) (v,5(p)) = (Tp~"(v),p).

It preserves the Liouville forms,

(6) prlo, =H0g,.
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Note that the pair (p, p) is a fibre-bundle isomorphism,

(7) ﬂ—onﬁ:pOﬂ-Qr

6.3 Basic observables

There is a one-to-one correspondence between the vector fields X on a manifold
Q and the first-degree homogeneous functions Px on 7 Q defined by

Px:T*"Q - Rip— {X,p) = Xi(g)p,-.

Moreover, any function f: @ — R can be interpreted as a function f:77Q — R
constant on the fibres (we use the same symbol for simplicity). We call these
functions the basic observables. On the basic observables we define an internal
operation {-,-} by setting

{f,9} =0
(1) {Px,f}=Xf
{Px, Py} = Pxy)

We observe that these rules are fulfilled by the PB associated with the canonical
symplectic form on T*Q (§2.2). Conversely, assuming the rules (1) as fundamental,
we can extend the operation {-,-} in a unique way to a PB on functions over
T*Q. The resulting PB coincides with the canonical one. Hence, equations (1)
characterize the canonical Poisson bracket on a cotangent bundle, and provide a
direct definition which avoids the use of the canonical symplectic form.

6.4 Canonical lift of vector fields

Let X be a vector field on Q. We denote by X the Hamiltonian vector field on
T Q generated by the function Px,

(1) igdfg = — dPx.

We call X the canonical lift of X IfX "Aare the components of X in a coordinate
system (¢*) then the components X* = (X, dq*) and X; = (X, dp;) in the canonical
coordinates (¢’, p;) are

~ . ~ OXI
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The canonical lift of vector fields has the following properties:
(i) The vector field X is projectable onto X i.e.,

(3) TﬂQo)?:XoWQ,

(ii) The restriction of X to the zero-section of T*Q coincides with X.
(iii) The following equations hold

@) icbo=Px,  dgho =0,
(iv) The mapping X — Xisa Lie-algebra homomorphism,

(5) (aX +bYT=aX +bY (a,beR), [X,Y]=[X,Y].
(v) For each smooth function F on T*Q,

(6) doF = {Px,F}.

The following theorem shows that the above definition of canonical lift of vector
fields is strictly related to the basic definition of the canonical lift of relations.
Theorem 1. If X is a complete vector field with one-parameter group ¢i<: Q — Q,
t € R, then its canonical lift X is complele and its one-parameter group

i T*Q = T
is the canonical lift of p;¥,

(7) o = (9.

Proof. Let us put ¢ = ¢, for simplicity. Due to the definition of canonical
lift of a diffeomorphism, formula (5) of §6.2, we can write

(8) (v, 81(p0)) = (T, " (v), po)

for all py € T Q and v € T,Q, with ¢ = ¢:(go). Due to the functorial prop-

erties of 7', @; is a one-parameter group of transformations on 7*Q. Let X be
the corresponding (complete) vector field, and let (X*, X;) be its components in
standard canonical coordinates (g, p) = (¢°,p;). Let us consider a local coordinate

representation of @, , ,
{ ql = @Z(t7g0)7

Pi = @i(t7g071_)0)'
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Then (see appendix A.6),

X'q,,p,) = ¢°(0,9,),
(9) o

Xz(goaljo) - 901(0’@0’120)

On the other hand, definition (8) is equivalent to equation

v'i(t, 4. P,) = Poi ————> v,
o da
for all (v?), thus to equation
10 (g, = po; —— =07
(10) vi(t. 4,,p,) = Poj o4
From (9) and (10) it follows that
047 (—t,q,) oX7 dPx
Xi , D :p'i,JO :—p-—i:— —.
(dg:20) = Pos 0% |,_, " o 9qq

Due to equations (2), this is sufficient to prove that the vector field (X ¢ X;) is the
canonical lift of X = (X?). m

6.5 Regular distributions and Frobenius theorem

A regular distribution on a manifold Q is a subbundle A of the tangent bundle
TQ i.e, a submanifold of T'Q such that for each point ¢ € 9,

A,=ANT,Q

is a subspace of constant dimension 7, called the rank of the distribution. Hence, a
distribution is a mapping which assigns at each point ¢ € Q a subspace A, C 7,9
of constant dimension r, in such a way that the union A of all A, is a submanifold.

A vector field X on Q is said to be compatible with the distribution A if its
image is contained in A i.e.,

(1) X(gen, VgeQ.

A one-form 8 on Q is a characteristic form of A if it annihilates all vectors of
A,

2) 0,0) =0, WweA,
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A regular distribution A of rank r can be locally described in three equivalent
ways:
(i) By equations i.e., by m = n — r independent homogenous linear equations

(3) Hf(g)qizo, a=r+1,...,n.

(ii) By a basis of characteristic forms i.e., by n — r pointwise independent
one-forms #* annihilating the vectors of A (a = 7+ 1,... ,n). If equations (3)
hold, then such a basis is given by the one-forms

(4) 6% = 62 dq'.

(iii) By a basis of generators i.e., by r pointwise independent vector fields X,
(a =1,...,r) spanning at each point where they are defined the subspaces A,.
We have

(5) (0%, Xo) =0.

The set of all vector fields compatible with A form a subspace X'a of the space
X(Q). We say that the distribution is involutive if Xa is a Lie subalgebra i.e., if
it is closed in the Lie bracket,

X,YedXr = [X,Y]€Xa.

It follows that if (X,) is a basis of generators, then the distribution A is
involutive if and only if

(6) (X, Xp] = Flg X,

where F); are functions on the domain of definition of the local generators.
If (6*) is a basis of local characteristic forms, then the distribution A is invo-
lutive if and only if

(7) do AOTTEA L AG" = 0.

Let us prove the equivalence of conditions (6) and (7) for a distribution of rank
r =n — 1 (the proof for the general case is similar). In this case we have a single
characteristic form & and condition (7) becomes

(8) d9 A8 = 0.

If (X,Y, Z) are three vector fields, then the following identity can proved, by using
the fundamental properties of the derivations ix and dx (§A.15):

ixiyiz(de A 9) = iXG(dinG —dziy0 — Z'[y7z}9 + c.p.
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(c.p. = cyclic permutations of the vector fields). For each X, Y, € XA and Z ¢ Xa
we get
ixiyiz(de A 9) = — izﬁimy}@.

This shows that df A 6 = 0 if and only if i;x y10 = 0 i.e., [X,Y] € Xa.

An integral manifold of a regular distribution A is a submanifold § C Q
such that 7,8 = A,;. A maximal integral manifold is a connected integral
manifold which is not properly contained in another connected integral manifold.
A maximal integral manifold may be an immersed submanifold. A distribution is
said to be completely integrable if for all ¢ € Q there exists an integral manifold
containing gq.

Theorem 1. (i) A regular distribution is completely integrable if and only if it
is involutive. (ii) If a regqular distribution is completely integrable, then for each
point g € Q there is a unique mazimal integral manifold containing q.

This is known as Frobenius’ theorem.

An integral function of a distribution A is a smooth function F: @ — R such
that

9) (v,dF) =0, YveA.

Locally, the integral functions are the solutions of the linear homogeneous partial
differential equations

(10) (X,,dF) = X! 0;F = 0.

Theorem 2. A reqular distribution is completely integrable if and only if in o
neighborhood of any point q € Q there exists a basis of n —r integral functions
().

This means that the differentials (du®) are pointwise independent and any
other integral function is functionally dependent on (u*). Note that a completely
integrable distribution may have no global integral function.

Proof. If A is completely integrable, then the foliation of its integral man-
ifolds can be locally parametrized by coordinates (u’) = (u®,u®) such that the
differentials du® form a basis of local characteristic forms or, in other words, such
that the integral manifolds are locally described by equations u* = constant. As a
consequence, the derivations 9/0u® form a basis of local generators. Coordinates
of this kind are said to be adapted to the distribution. In adapted coordinates
equations (10) read

OF
11 — =0
(11) D
The most general solution of these equation is a function depending only on the
coordinates (u?). Conversely, if (u®) is a basis of integral functions, then locally we
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can find other functions (u®) in such a way that (u®,u®) is a coordinate system.
Since du”/Ou® = 0, the r derivations (X, = 0/0u®) form a basis of generators
which are tangent to the r-dimensional submanifolds u® = const. m

There is a remarkable symplectic interpretation of all these concepts, which
leads to a simple proof of Frobenius’ theorem.

Let A® C T*Q be the subbundle of the covectors annihilating the vectors of A,

(12) A°={peT"Q[{v,p)=0, YVve A, ¢=mo(p)}

Lemma 1. The distribution A is involutive if and only if A° is a coisotropic
submanifold.

Proof. It follows from the definition (12) that a vector field X is compatible
with A if and only if

(13) Px|A° =0.

Hence, A° is described by equations Px = 0 for X variable in the space Xa. It
follows that A° is coisotropic if and only if

(14) {Px,Py}|A° =0
for all X,Y € Xa. Due to (14), this equation is equivalent to
P[va]|Ao =0.

This shows that (14) holds if and only if [X,Y] € XA. n
Lemma 2. If A° is coisotropic then the canonical lift X of a vector field X € Xa
is a characteristic vector field of A°.

Proof. The Hamiltonian of X is Px. If X € XA then (13) holds. This shows
that the Hamiltonian of X is constant on A°. Hence, X is characteristic {Theorem
1,81.4). m
Lemma 3. If A° is coisotropic then (i) the corresponding rays are r-dimensional
submanifolds of Q tangent to A i.e., integral manifolds of A and (ii) they coincide
with the characteristics lying on the zero-section of T*Q.

Proof. Let (X,) be a local basis of generators of A. Due to Lemma 2, the
canonical lifts )A(a are pointwise independent and span the characteristic distribu-
tion of A°, Since they project onto the r independent vectors X, the character-
istics projects onto r-dimensional submanifolds tangent to these vectors. Hence,
the rays are the integral manifolds of A. This proves item (i). Ttem (ii) follows
from the fact that on the zero-section, identified with @, we have )A(Q|Q =X, m

Proof of Frobenius’ theorem. If we assume that A is involutive, then A°
is coisotropic (Lemma 1) and the corresponding rays are r-dimensional integral
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manifolds of A (Lemma 3). Thus, A is completely integrable. Conversely, if A is
completely integrable, then any basis of generators is tangent to the integral man-
ifolds, so that also their Lie brackets are tangent, and (6) holds. This proves item
(i) of Theorem 1. Ttem (ii) follows from item (ii) of Lemma 3, since two distinct
maximal characteristics of a coisotropic submanifold have empty intersection. m
Remark 1. An involutive (completely integrable) distribution provides an ex-
ample of Hamilton-Jacobi equation i.e., of a coisotropic submanifold C' = A° of
codimension r > 1. The complete solution W (g, n) is a solution of a system of r
independent linear homogeneous equations,

(15) XLo;W =0,

depending on n — r parameters u = (u®), which is in fact a parametrized family
of integral functions of the distribution. Assume that the set U of the maxi-
mal integral manifolds of A has a differentiable structure such that the canonical
projection 7: Q@ — U is a submersion. Then it can be proved that the reduced
symplectic manifold S = T*Q/A° is symplectomorphic to the cotangent bundle
TU and the symplectic reduction Ra- is isomorphic to the canonical lift of the
graph of m.

6.6 Exact Lagrangian submanifolds

Let A C T*Q be a Lagrangian submanifold. Since A is isotropic, the pull-back
of the canonical symplectic form dfg to A is the zero two-form: (dfg)|A = 0.
Since the differential operator commutes with the pull-back, this means that the
pull-back of the Liouville form fg to A is a closed one-form,

d(8o|A) = 0.

Hence, for each p € A there is an open neighborhood U, C A and a function
W,: U, — R such that g|U, = dWW,. We call these functions the local potentials
of A. We say that a Lagrangian submanifold A C T*Q is exact if it admits a
global potential i.e., if there exists a function W: A — R such that

fo|A = dW.
If :: A - T*Q is the immersion of A, then this equation can be written
L*QQ = dW.

Let w: A — @Q be the restriction of the cotangent fibration 7g:7*Q — Q to A.
Then,

T =mg o L.
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We observe that « is a differentiable function, since it is the composition of two
differentiable functions, and that T'ng(v) = Tw(v) for all v € TA.
Theorem 1. If A is generated by a function G: Q@ — R, then it is exact and
W =G ow =7"G is a global potential.

Proof. If v € T,A, then (v,8g) = (Tmgo(v),p) = (IT'n(v),dG) = (v, 7*dG) =
(v,dW). m

Note that this theorem follows directly from formula (7) of §2.8, with ¥ = Q:
Oo|A = dr*G. Conversely,
Theorem 2. Let A C T*Q be an exact Lagrangian submanifold, with global
potential W, such that: (1) m: A — Q is a surjective submersion; (ii) there exists
a function G: Q — R such that W = 7*G = G ow. Then A is the Lagrangian
submanifold generated by the function G, A = dG(Q).

Proof. Let p € A, g =w(p), v € TpA and v = Tw(v). Then,

(v,00) = (T'm(v),p) = (u,p)

and

(v, dW) = {v,d7"G) = (v, 7" dG) = (Tw(v),dG) = (u,dG).
Since {v,00) = (v, dW) for all v € TA, it follows that

(1) {(u,p) = (u,dG)

for all w € Tw(T,A). Since 7 is a submersion, T7(T,A) = T,9. Thus, p = d,G. n
Remark 1. For the sake of simplicity we consider only C**° Lagrangian submani-
fold, so that a global potential is a C°° function. However, there are cases in which
this theorem holds with a generating function G which is not C"*°. An example
is the Lagrangian submanifold ¢ = p3 of T*R (Example 1, §2.4). Its parametric
equations are p = A, ¢ = A®. The global potential is W()\) = %/\4, and the pro-
jection 7 is represented by equation g = A%. Tt is a one-to-one mapping, but it is
not a diffeomorphism. The generating function is G(g) = %q%, and this function
does not, admit the second derivative for ¢ = 0.

Remark 2. Assumption (i) in Theorem 2 does not imply (ii). An example is the
curve A C T*S; ~ 81 x R defined by parametric equations u = (cos A,sin A) € §;
and A € R.

Remark 3. Let us replace assumptions (i) and (ii) by: = is a diffeomorphism.
Then the function G = (77 1)*W = W o n ! is a C°° generating function of A.
Indeed, Tpm: TpA — T3, Q is an isomorphism for each p € A and moreover,

(u,dG) = (u, (= 1)*dW) = (Tm " (u),dW) = (v, dW) = {v,00) = (u,p).

Remark 4. We can replace assumption (i) by: = is surjective and A is connected.
In this case condition (1) still holds for all w € Tw(T,A). This shows that if pis a
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regular point i.e., Tn(Tp,A) = T, Q, then p = d,G. This means, in particular, that
A cannot have two distinct regular points p over a same point ¢ € @ (i.e., on a same
fibre of T*Q). Let us consider the caustic I' C Q of A and a point ¢ € T". (i) Assume
that ¢ is an isolated point of I': there exists an open and connected neighborhood
N, of ¢ not containing caustic points except ¢. Then A is generated by G over
Ny —{q}. Since A is connected, the exceptional point ¢ is included by continuity.
(ii) Assume that in any open neighborhood N of g there are points which do not
belong to the caustic. Then, in these points we have that A is the image of dG
and, by an argument similar to that of (i), we conclude that it is the image of dG
in a neighborhood of ¢. (iii) The case in which there exists an open neighborhood
N of ¢ all contained in I' is not possible. Indeed, a caustic cannot contain open
subsets.! To see this, let us consider a Morse family F(q?,u®), at least of class C?,
generating A in the neighborhood of a singular point. The caustic is the projection
into @ of the intersection of the singular set =, described by equations 9, F = 0,
with the set described by equation det [BaﬁgF] = 0. Hence, it is contained in
the projection of 2. Since F' is a Morse family, = is (locally) a submanifold of
dimension equal to the dimension of Q. It projects locally onto open subsets of Q
if and only if it is locally a section of the trivial fibration @ x U — Q. But this is
the case in which it is completely reducible to an ordinary generating function of
class C?, and this is against our assumption that it generates a neighborhood of
A containing a singular point. Note that in this last part of this proof we need the
existence of a Morse family of class C2. This is certainly satisfied if A is of class
C?.

Let us consider the case of a Lagrangian submanifold over a submanifold ¥ C Q.

Theorem 3. The Lagrangian submanifold A = (X, G) generated by a function
G: X = R on a submanifold ¥ C Q is exacl with global potential W = n*G, where
w: A — X is the restriction of mg to A.

Proof. As we have seen in §2.8, g|A = dr*G. n

Conversely,
Theorem 4. Let A C T*Q be an exact Lagrangian submanifold, with global
potential W, which projects onto a submanifold ¥ = ng(A) C Q. Assume that: (i)
the restriction m:A — ¥ of mg to A is a submersion, (i) there exists a function
G:¥ — R such thet m*G = W, (ili) A is connected and mazimal i.e., it is not
properly contained in o larger Lagrangian submanifold satisfying properties (i) and
(ii). Then A is generated by G on the constraint ¥: A = (X, G).

Proof. Since A projects onto ¥, it is made of covectors based on points of the
submanifold ¥. Hence, it is contained in the coisotropic submanifold C' = 73:Q. By
the absorption principle it follows that it is made of characteristics of C'. Because

LA caustic is a closed subset [Abraham, Robbins, 1967] (for further comments and
references on the Lagrangian singularities see e.g. [Marmo, Morandi, Mukunda, 1990]).
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of (i) it is the union of maximal characteristics. Then its image by the reduction
Re, Ap = Ro o A C T*Y, is a Lagrangian submanifold. Let p: C' — T*¥ be the
surjective submersion underlying R.. Since R is a canonical lift, then p*fs, =
8o|C and for each v € TA we have

2) (Tp(v),0x) = (v, p"0s) = (v,00|C) = (v, dW).

If v is tangent to a characteristic, then Tp(v) = 0 and (v,dW) = 0. This shows
that the function W is constant on the characteristics (contained in A) so that
it reduces to a function Wy on Ag. Let us consider the restriction of p to A,
plA: A = Ap. It is a surjective submersion such that

(3) W = (p|A)*Wo.
It follows that
(v, dW) = (v, (p|A)"dWo) = (T'(p|A)(v), dWo).

Thus, because of (2), for each vector u € T'Ag we have {(u,f0y) = {(u,dWp). This
shows that dWy = x|Ap i.e., that Ag is exact with potential function Wy. The
projection @ = mg|A: A — ¥ is the composition of p|A with ms|Ap: Ag — X,

(4) 7 = ms|Ag o p|A.

Since 7 is a surjective submersion (by assumption) as well p|A, wx|A¢ is also a
surjective submersion. From W = 7*@ and (3), (4) it follows that

(PI0)'TWo = W = 7°G = (p]A)" (mx|A0)"G.

This shows that Wy = (7s|Ao)*G. Hence, to the Lagrangian submanifold Ag C ¥
we can apply Theorem 2, so that Ag = dG(Z). Due to (6) of §6.1, A = R} o Ag =
Rl o dG(X) = (5,G). m

Remark 5. If in Theorem 4 the last assumption (iii) is not fulfilled, then we can
conclude only that A is an open subset of (ET,\G)

6.7 Dual pairings

Let A and B be (real, finite-dimensional) vector spaces. A dual pairing between
A and B is a bi-linear mapping

(1):Ax B—R:(a,b) = (alb),
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satisfying the following regularity conditions

{<a|b):0,Va€A = b=0,
(alb) =0,Vbe B = a=0.

With each subspace (or subset) K C A we associate a subspace K1 C B, which
we call the polar of K in the dual pairing (|), defined by

(1) KY={beBl|{ab) =0, Va€ K}.

By the same symbol HY we denote the polar of a subspace H C B.

A first example of dual pairing is the evaluation {, ) between vectors of a space
A and the covectors of the dual space B = A*. We denote by K° C A* the polar
of K C A in this canonical dual pairing (§1.2),

2) K°={be A" |{a,0) =0, Va € K}.

All dual pairings are isomorphic to this one, as shown by the following
Theorem 1. Let (| ): AxB — R be a dual pairing. The linear mappingy: B — A*
defined by

(3) {a,9(b)) = {a,b)
is an isomorphism, and for each subspace K C A,
(4) Y(EY) = K°.

Proof. Assume that ¢(b) = 0. From (3) it follows that {(a|b) = 0, Va € A,
and this implies b = 0, because of the regularity condition. Hence, the kernel of
¥ is the zero vector only, and the mapping is injective. It follows in particular
that dim B < dim A* = dim A. We can define in a similar way a linear mapping
¥': A — B*, and by the regularity condition (which operates on both sides of the
dual pairing) we conclude that it is injective, thus dim A < dim B* = dim B. Tt
follows that dim A = dim B, and v is an isomorphism. Formula (4) is a direct
consequence of (2) and (3). m

From this theorem and its proof it follows that,

Theorem 2. In o dual pairing {|): Ax B — R the spaces A and B have the same
dimension.

Due to Theorem 1 and formula (4), the polar operator 1 has formal properties
similar to those of ¢ (here 04 and Op denotes the zero vectors of A and B,
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respectively),
AT =0p, BY=04 0L=4, 0f=8B,
dimK +dimKY = dim A = dim B,
KicLY & LCK,
(5)

(K+ L)Y =KYnLY,
KV'+1Y=(KnL)Y,
K1 =K.

A second remarkable example of dual pairing is
(6) (|:Ax A= R:i(a,a') — ald,a),

where (A, @) is a symplectic vector space. We have denoted by K% the polar of
K C A in this dual pairing (§1.2). The isomorphism b: A — A* is the isomorphism
1 of Theorem 1.

The notion of dual pairing turns out to be useful in various applications. For
instance, in the proof of the basic functorial rule (3) of §1.7. We use three lemmas.
Lemma 1. Let R C B & A be a linear relation. A linear relation R®* C B* @ A*
is defined by

(7) R*={(y9,f) € B*® A" | (a, f) = {b,g9), ¥V (b,a) € R}.
The subspace R* is the polar of R in the dual pairing

(8) (1):(BeA) x (B"&A") = R:((b,a), (g, f)) = (b,g) — {a, f).

The proof is straightforward.
Lemma 2. Let (A, o) and (B, 3) be symplectic vector spaces and let RC B® A
be a linear relation. Ifb4: A — A* and bp: B — B* are the natural isomorphisms
defined by the symplectic forms « and 3, respectively (cf. (2), §1.2), then

(9) R® = (bp x a)(RY),
where R®* C B* @ A* is defined by (7) and R® C B @ A is defined in (2) of §1.7.

Proof. Due to the definition of b, (2) of §1.2, we can re-write definition (7) as
follows (here, we denote by the same symbol § the inverse mappings of b4 and bg),

R®={(g,f) € B ® A" | a(f,a') - B(¢",') = 0, ¥ (V',a') € R}.
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This is equivalent to
R*={(t’,d") € B* & A* | a(a,a’) — B(b,b') =0, V(V,d') € R},

and, because of definition of R, (2) of §1.7, this equation is equivalent to (9). m
The reason why we consider R® is explained by the following
Lemma 3. f RC B® A and S C C @ B are linear relations, then

(10) (SOR).:S.OR..
Proof. Because of the definition (7) we have

0 { R ={(g9,f) e B"® A" | {a, f) = (b, g), V(b,a) € R},

S*={(h,g) € C*® B* | {b,g) = (c,h), Y (c,b) € S},

(11) (SoR)*={(h,f)eC"® A" |{c,h) ={a, f), V(c,a) € So R},
and

S*eR*={(h,f)e C"® A" |Ig € B", (h,g) € 5%, (9,f) € R*}
(12) ={(h,f) €C"® A" |Ig € B, {c,h) = {b,9), (V. 9) = (a, f),
V(c,b) €S, V(b ,a) € R}.

(i) Let (h, f) € S* o R*. For any arbitrary element (¢,a) € S o R there exists
b € B such that (¢,b) € S and (b,a) € R. Tt follows from (12), with b = ¥/,
that {c, h) = {(a, f). Because of (11), (h, f) € (S o R)*. This proves the inclusion
S* o R* C (5o R)*. (ii) To prove the inverse inclusion we consider the following
dual pairing

(CoB®B®A)x (C*®B*®B @ A*) - R:

(13) 1 ' ! !
((c,b,b,a),(h,g,g 7f)) = <C7h> - <b’g>+<b’g>_ <a7f>'

We denote by 1 the corresponding dual operator. For this dual pairing we have
(14) (SoRrR)Y =5"aR".
Indeed, due to (13),

(SoR)Y ={(h,g,9, )| {c,;h) = {b,g) + V', g") — (a, [) = 0,
V{c,b) €S, V(¥,a) € R}
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and, due to (7'),
S*®R* ={(h,g9,9',f) | {c,h) = (b, g), (', gy =(a, [), V(e,b) € S, V(V,a) € R}.

This second expression shows that S® & R®* C (S @ R)Y. On the other hand, by
the dimensional property of the dual polar operators, we have

dim(S® @ R*) = dim S® 4+ dim R®* = codim$S + codimR
=dimC + 2 dim B + dim A — dim S — dim R.

and
dim(S ® R)Y = codim(S ® R)Y = dim C + 2 dim B 4 dim A — dim S — dim R.

Thus, dim(S® ® R*) = dim(S @ R)Y and (14) is proved. Let us consider the
following two subspaces of C & B& B @ A,

(15) L={(b,b,a)}, K=(S®&R)NL.

We remark that

(16) K ={(c,b,0,a) | (¢,b) € 5, (b,a) € R}
so that
(17) (¢,b,bya) e K = (c,a)eSoR.

The polar LY is made of elements of the kind (0, g, g,0) with g € B*. Indeed,

LY ={(h, 9,9, ) | {c,;h) = {b,g) + V', ¢') — {a, f) = 0,V (c,b,a) € C x B x A}

{
{(hagaglaf> | h:07 fZO, g:g'}.

Furthermore, from one of the rules (5) and from (14) we derive
(18) KV=5"oR*+ LY.

If (h,f) € (So R)® and g € B*, then (h,g,9, f) € KY. Indeed, (h, f) € (S R)*
means
{e,h) = {a, ), V(c,a) € S R,
and because of (16) and (17), for any (¢, b,b,a) € K we have, in the dual pairing
(13),
<(C7b7b7a) | (h7gagvf)> = <C7h> - <bag> + <bag> - <a’7f> =0.
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It follows from (18) that there exists elements § € B* and (', ¢',¢", f') € S* & R®
such that

(h,g,9,.f)=(1.g",9", f)+(0,5,7,0).

From this equality we see that ¢' = ¢"”, b’ = h and f' = f. Since (', ¢') € S* and
(¢",f") € R®, we conclude that if (h, f) € (S o R)® then there exists a ¢’ € B*
such that (h,g') € S* and (¢',f) € R®, that is (h, f) € S* o R*. This proves
(SOR).QS.OR.. ]

Now we can prove Theorem 1 of §1.7.

Proof. Let (A, «), (B,f) and (C,v) be symplectic vector spaces and let R C
B @ A and S C C & B be linear relations. Then we have

eC* @ A" |3he B*, (f,h) € (be xbp)(S),(h,g) € B x ba)(R)}
e C* @ A* |Ibe B, (ff,b) € S, (b,g") € R}

This proves the identity
(be xbp)(S) o 0B xDa)(R) = (e xba)(S  R),
which holds for any two relations R and S. We can write it for R¥ and S%,
(e x bB)(S%) o (hp x ba)(RY) = (be x b4) (5% o BY).
Because of (9) and (10), it follows that
(o x ba) (S o RY) = 8® o R* = (S o R)* = (b x ba)(S o R)S.

Since b X b4 is an isomorphism, this proves the functorial rule (3) of §1.7. m

6.8 Lagrangian splittings and canonical basis

A Lagrangian splitting of a symplectic vector space (4, «) is an ordered pair
(L, M) of Lagrangian subspaces such that

(1) LNnM=0.
This condition is equivalent to

(2) L+M=A.
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Indeed, from A% =0, L% = L and M?% = M it follows that
(LNME =185+ M =L+ M.

Hence, a Lagrangian splitting is a decomposition of A as a direct sum of two
Lagrangian subspaces,
A=Lae M.

Proposition 1. Let (L, M) be a Lagrangian splitting of (A, ). The mapping
(3) (|:LxM—=R:(1,m)— alim,l)

18 6 dual pairing.

Proof. Equation (I|m) = Oi.e., a(l,m) = 0, for each | € L, means that m € L%,
that is m € L. Since LN M = 0, it follows that m = 0. =

Let ¢: M — L* be the isomorphism associated with this dual pairing. It is
defined by

4) (I, (m)) = a(m,1).

Let (e;) be an ordered basis of the subspace L and let (¢%) be its dual basis in the
dual space L*: {e;,e’) = 6. It follows from (4) that the vectors f/ = ¢ 1(e/)
form a basis of M such that (e;, f7) is a canonical basis of (A4, a) i.e.,

(5) alee;) =0,  alf, f)=0,  ale, ) =0l

Conversely, let (e;, f/) be a canonical basis and let I be a subset of the set I,, =
{1,2,...,n},n= % dim(A). Let us denote by Ly the subspace of L spanned by
the vectors (e;, f!) with 4 € I and i € I, the complementary set of [ in I,,. Then,
Proposition 2. For each Lagrangian subspace L there exists o subset I C I, such
that (L, Ly) is a Lagrangian splitting.

For the proof we use the following
Lemma 1. If E is a n-dimensional vector space with a basis (e;) and S C E is a
subspace, then there exists a subset I C I, such that

SrnNS=0

E=S&S8
I{S+&:E

where St = span(e;, i € I).
Proof. Assume that S is defined by the m = n—r independent linear equations

SaiiL‘i =0.
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Up to an inessential re-ordering of the basis we assume that the submatrix [Sug]
(a,8 =1,...,m) is regular with inverse matrix [S*’], $0S3. = §2. From

Sagmﬂ—l—SanB:O (@, 8=m+1,...,n)

it follows that the vectors # € .S are characterized by equations

z? = —SﬁaSaBmE.
Let us consider the subspace S’ = span(e,) made of vectors y = y%e,. Let
v = v%, + v%4 be any vector of E. Let us set

a’;ﬁ = _Sﬂasagvﬁ

P = o

y? =0’ + SﬂaSag vP.

Then, z = 7%eg + mﬂeg € S and y = y’eg € S’ and moreover, z +y = v. This
shows that S+ 5" = E. Let y = y®eq = x € S. Then from y%e, = z’eg +27¢5 it
follows that 7 = 0 hence, z® = 0. This shows that SNS’ = 0. Note that S’ = S;
with IT={1,... ,m}. =

Proof. The subspace £ = L; = span(e;) is Lagrangian (it is isotropic due
to (5)1 and of dimension n). The subspace S = L N E is isotropic (it is the
intersection of two isotropic subspaces). There exists at least a subset I C I,, such
that Sy NS =0 and Sy + S = E, where S; = span(e;; ¢ € I) (Lemma 1). Note
that Sy C Ly is isotropic. As a consequence,

SCL A 5 CL; =
= LcS* A L;CS8
= LNL;Ccs8nsi=(5+S)=E=F
= LNL;=ENLNL;=(ENL)N(ENL)=5NS/=0. =

Now we remark that also (Ly, L;) is a Lagrangian splitting, having a common
element with (L, Ly). As a consequence, if we consider the two projections with
respect to the complementary subspaces (Ly, L), then L projects isomorphically
onto Ly.

Ly
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Hence, we can prove (cf. [Arnold, 1967] and [Mishchenko, Shatalov, Sternin,
1978, §2.1)
Proposition 3. Let

Q Qi
(6) L= =
P P

be a 2n x n matriz with mazimal rank n such that
(7) Qi Pin — Py Q, = 0.
Then there exists a subset I C I, such that the n X n submatrix

Q! Qf
®) S; = - , IC{1,2,....,n).
P; Pry,

is regular.

Proof. Let (A, ) be a 2n-dimensional symplectic vector space and let (e;, f7)
be a canonical basis. For each v € A we have the representation v = v'e; + v; fi.
Let L C A be the subspace described by parametric equations

(9) V= QLN u =P A, (W) e R,

with the matrix (6) of maximal rank. It follows that L is a subspace of dimension
n. Condition (7) is equivalent to the isotropy of this subspace:

a(u,v) = alu'e; + ujfj, vie; + Ujfj) = vlv; —ut = (Qink - Pisz) )\ﬁ )\Z.

Hence, L is a Lagrangian subspace and equations (9) describe an isomorphism
R™ — L. On the other hand, due to Proposition 2, there is an isomorphism
R™ — Lj. Since v € Ly if and only if v = 3 .;v%qa + 3 e vaf®, this last
isomorphism is described by equations

va:Qz)\k7 /Uoz:Pozk/\kv

it follows that
Q%
det # 0. L]
Pozk






Appendix A

Notation and basic notions
of calculus on manifolds

A.1 Tangent vectors and tangent bundles

Let Q be a differentiable (real) manifold of dimension n. We denote by:

—q= (¢"), (i=1,...,n), any coordinate system on an open domain of Q.

— 14, Q the tangent space of Q at a point ¢ € Q, the linear n-dimensional
space of the tangent vectors based (or applied, or attached) at g.

— TQ the tangent bundle of @, the set of all tangent vectors of Q; it is a
differentiable manifold of dimension 2n.

- 170:TQ — Q the tangent fibration of Q, which maps a tangent vector
v € TQ to the point ¢ € Q such that v € T;Q. A fibre is a tangent space:
To 1(q) =T1,0.

- F(Q) = C*(Q,R) the ring of all smooth real functions on @. A (real)
function f: @ — R is smooth if any local representative y = f(g) in coordinates
q is of class C°. B

A curve on Q is a smooth mapping v: 1 — Q, where I is an open interval
of real numbers containing 0 € R. We say that the curve is based at the point
q=(0).

We consider two definitions of tangent vector:

(i) A tangent vector v at a point ¢ € Q is a derivation on F, that is a mapping
v: F(Q) = R such that

{ v(aF +bG) = av(F)+bv(G) a,beR, (linearity)
v(FG) =v(F)G(g) + F(gq) v(G) (Leibniz rule).

We use the notation
v(F) = {v,dF).



166 Appendix A - Notation and basic notions of calculus on manifolds

(ii) A tangent vector is an equivalence class [] of curves. Two curves v and
~' are equivalent if

{10 =70
D(F 0 7)(0) = D(F « v/)(0), ¥ F € F(Q).

D is the symbol of derivative of a real-valued function on R.
A link between these two definitions is given by

v=[l < oF)=DF7)0)

This correspondence does not depend on the choice of the representative curve .
If ¢ € Q and g is a local coordinate system on a domain containing the point
g, then the components of v with respect to these coordinates are the numbers
defined by
vl = (v,dg’)

or ] )
Vi = Di(0).

In the first definition, a coordinate ¢’ is interpreted as a function. In the second
definition,
q =71, tel,

are the parametric equations of the curve v. It follows that

We denote by o o
<q’L’ (qu) or <q’L’ q‘l)
the coordinates on T'Q corresponding to coordinates q= (ql) on ©. They are
defined as follows: if v € T, Q with ¢ in the domain of the coordinates, then ¢(v)
are the coordinates of ¢ and d¢’(v) = v® are the components of the vector in these
coordinates.
There is a mapping 6: F(Q) — F(T'Q), from functions on Q to functions on

TQ, defined by
oF _
0F = — dq°.
aq’ 1
The function §F is linear on the fibres of T'Q.
With each curve v: I — Q we associate a curve 4: I — T'Q, called the tangent

lift, or tangent prolongation of v, defined by

(+,F) = D(y « F).
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Its local parametric equations are
{¢=¢®
§' = Dv'(t).

Mechanical interpretation. If Q represents the n-dimensional configura-
tion manifold of a holonomic mechanical system with n degrees of freedom,
then a curve 7:1 — Q represents a motion of the system (¢ € [ is the time).
Coordinates (¢*) on @ are called Lagrangian coordinates. A tangent vector
v € T, Q represents a virtual displacement or a virtual velocity of the system

at the configuration ¢. The curve 4(t) represents the velocity of the system at
each instant ¢.

A.2 The tangent functor

A mapping ¢: Q1 — G, between two manifolds is smooth if any local represen-
tative g, = ¢(g,) is of class €. A smooth mapping ¢: Q1 — Qo generates a
smooth mapping

T(p: TQl — TQ2

between the corresponding tangent bundles, called the tangent prolongation or
tangent mapping of ¢. It is defined by

<T90(U)7dF> = <'U,d(F °© @))7 Fe f(QQ)v
or by
To(v]) =l o]
If v € T,Q1, then Tp(v) € T4 Q2. Thus,
T, o T'p =@ oTg,.

This means that the following diagram is commutative,

T
TQ —2= TQ,

TQIJ{ J{ng

0 —— 9

The tangent mapping T'¢ is locally represented by equations

g5 =¢*(q,)
o 09"
4y =

= - ql
dgt ™’
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where the first set of equations is the local representative of ¢ in coordinates
q, = (g1) and g, = (¢%) of Q1 and Qs, respectively.
The functorial rules

Tidg =idrg, T(po¥) =TTy

hold. The operator T" which associates with each manifold @ its tangent bundle
TQ and with each mapping ¢ between manifolds its tangent prolongation Ty is a
covariant functor, called the tangent functor.

We denote by Typ: T, Q1 — T,(4) Q2 the restriction of T'p to a tangent space
T,9Q:. It is a linear mapping.

A.3 Special mappings

A smooth mapping ¢: Q1 — Qs is:

(i) A diffeomorphism if it is one-to-one and also its inverse ¢! is smooth.

(ii) A transformation if it is a diffeomorphism and Q; = Qs.

(iii) An immersion if T, is injective for all ¢ € Q1; a submersion if Ty is
surjective; a subimmersion if 7,¢ has a constant rank. In these three cases we
have respectively,

rank [0;0%] = n1 < no
rank [8z(pa] = MN3 S ny
rank [0;¢®] = const.

for any local representation of ¢, where ny = dim(Q;), ne = dim(Q2).

(iv) An embedding if it is an immersion and if, in addition, it is a homeo-
morphism onto its image ¢(Q1) C Qs equipped with the topology induced by the
topology of Qa.

(v) A fibration if for each ¢ € Qy there exists a neighborhood U C Q5 of ¢ and
a manifold F such that the set ¢ 1(U) is an open subset of Q; diffeomorphic to
the product U x F' in such a way that the restriction of ¢ to ¢~ 1(U) coincides with
the canonical projection of U x F over U. This is illustrated by the commutative
diagram

QD9 U) —— UxF

o] [pro

QDU id—U> U

It can be proved that a fibration is a surjective submersion. The manifold @ is
called fibre bundle on the base manifold Q,. If for all ¢ € Qs the corresponding
manifolds F' are diffeomorphic (this happens for instance when the manifold Qs
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is connected), then F' is called the fibre of the fibration. A fibration ¢: Q1 — Qs
is trivial if the commutative diagram above holds for U = Q5. This means that,
up to a diffeomorphism, Q; = Qs x F.

A mapping 0: Q> — Q; such that oo = idg, (ie., o(p) € ¢ Xp)) is a
section of the fibration.

The tangent fibration 79:7Q — Q is an example of fibration. When the
tangent fibration is trivial, then the manifold Q is said to be parallelizable and
TQ =9 x R".

A.4 Submanifolds

A submanifold S of a manifold Q is a subset of @ which has a structure of
differentiable manifold such that the canonical injection S — Q is an embedding.
An equivalent definition is the following: S C @Q is a submanifold if for every
point for all ¢ € S there exists an adapted chart of domain U and coordinates
(¢") = (¢, q%), such that the points U N S are described by equations ¢* = 0.
fa=1,...,m m<n=dm(Q) then S is a manifold of dimension m and of
codimension 1 — m.

An immersed submanifold is the image of an injective immersion ¢: S — Q
(which is not necessarily an embedding).

The distinction between immersed and embedded submanifolds is needed, for
instance, in the discussion of foliations or (in particular) of the orbits of vector
fields.

Let (S%) = (S1,...,5%) be k (real, smooth) functions on an open domain U
of Q. They are said to be independent at a point ¢ € U if their differentials
dS® are linearly independent at ¢g. This means that the n x k matrix [9;5%] has
maximal rank (= k) at ¢. Locally, a submanifold S,,, C Q,, can be represented by
independent equations

S) =0, a=1,..., k=n—m.

The equations are independent if the functions S are independent at each point
of S.
A vector v is tangent to a submanifold S if

v(F)=0

for all functions F constant on S, or equivalently, if it is represented by a curve =
on S (its orbit v(I) lies in S). With each submanifold .S we associate its tangent
prolongation T'S C T'Q, made of all vectors tangent to §. This is a submanifold
of dimension 2(n — k) locally described by equations

{ S g) =0
8;5%(q) ¢* = 0.
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The rank of a mapping F: Q — RY at a point ¢ € Q is the rank of the N x n
matrix
{ OF!

_} I=1,....N,
gt

at that point. It can be proved that (for further details and references see e.g.
[Libermann, Marle, 1987], Appendix 1),

Theorem 1. If F: Q — RY has constant rank r in a neighborhood of S = F~1(0),
then (i) S is a submanifold of codimension r and (ii) T,S = Ker(T,F).

By using this last theorem one can prove:

Theorem 2. Let N and C be submanifolds of S such that N = f~1(0) and C =
g 1(0), where f:S — R* and ¢:S — R® are subimmersions (i.e., with constant
rank). If the function (f,9):S — R" 2 — (f(z),9(z)) is a subimmersion in a
neighborhood of the set N N C, then N and C have clean intersection.

Proof. We have T, N = Ker(T, f) and T,C = Ker(T,g). Moreover, due to a
general property of the linear mappings, Ker(T, f) N Ker(T,g) = Ker (Tz(f, g))
Since NN C = (f,g9) *(0) and the mapping (f,g) is a subimmersion, it follows
that N N C is a submanifold and T,(N N C) = Ker(T,(f,g)). Furthermore,
To(NNC)=Ker(Tp f)NKer(Tp9) =T, NNT,C. m
Remark 4. Theorem 2 can be interpreted as follows. Assume that N and C' are
described by equations

fa(g) :07 ga(g) :07

where z = (z#) are coordinates on S. If the matrices
(2], [y, [ o
dzA L’ dzA L’ dzA | OxA

have constant rank in neighborhoods of N, C and NNC, respectively, then N and
C have clean intersection.

A.5 Vector fields

A vector field on a manifold Q is a section of the tangent bundle T'Q, that is a
smooth mapping X: @ — T'Q which assigns to each point ¢ € Q a vector X (g) at
that point. Such a section is locally described by equations

i’ =X"(q).

The functions X' are the components of the vector field X in the coordinates

(q")-
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There is an equivalent definition: a vector field is a derivation on F(Q) i.e.,
a mapping X: F(Q) = F(Q) such that

X@F+bG)=aX(F)+bX(G) a,beR, (linearity)
{ X(FG)=X(F)G+ FX(G) (Leibniz rule).

We use the notation
X(F) =(X,dF).

This function is called the derivative of F with respect to X. The link between
these two definitions is given by equation

(X,dF)(q) = (X(qg),dF).
The components of a vector field X are the derivatives of the coordinates,
X' =(X,dq"),

so that 4
(X,dF)y = X" O, F.

We denote by X(Q) the set of the smooth vector fields on Q. It is a module over
the ring F(Q) and an infinite dimensional vector space over R, the sum and the
product by a function being defined by

(X +Y)(g) = X(g) +Y(9), (fX)(q) = f(9)X(q)-

A.6 Integral curves and flows

Let X be a vector field on a manifold Q. An integral curve of X is a curve on
Q, v: I — Q, such that ¥(t) = X(y(¢)) for all t € T i.e., ¥ = X o v. The integral
curves of X are locally represented by the solutions of the first-order differential

system in normal form, 4
W xiw
au o\

Hence, a vector field can be interpreted as a dynamical system. We say that
an integral curve is based at a point ¢ if v(0) = ¢. For smooth vector fields
the Cauchy theorem asserts that for each point ¢ there exists a unique maximal
integral curve v,: I, — Q based on ¢, such that any other integral curve based
at ¢ is defined on an interval I C I,. When I, = R for all g, then the field is said
to be complete.
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A flow on a manifold Q is a smooth mapping
e:Rx Q= Q:(t,q) = p(t,q)
such that for all ¢ € R the mapping
Q= Qg 9, q)
is a transformation of Q and for all ¢, s € R,
(1) Pt o Ps = Ptts-
It follows that

wo =1idg
(2) Pt o Ps = Ps o Pt
vt = (o)™ .

The set of all ¢, t € R, is said to be a one-parameter group of transforma-
tions.
A complete vector field X generates a flow X defined by

(3) P (1, 0) = Y1)

Conversely, a flow ¢ generates a complete vector field X by setting
4) X(q) = 14(0),

where v,: R — Q are the curves defined by

) Y4(t) = o(t, q)-

These curves are the maximal integral curves of X. A non-complete vector field
generates local flows, defined on open subsets of R x Q.
If

(6) g =o't qf)

is a local representation of a flow ¢ in local coordinates (¢’) then, according to
(4), the components of the associated vector field at the point gy are given by

X*(q0) = ¢'(0,q0),

where the dot represents the derivative with respect to the variable ¢.
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If ;¥ is the one-parameter group of transformations generated by a complete
vector field X, then
T TQ—TQ

is a one-parameter group of transformations on T'Q, generating a vector field on
T Q which we denote by X. The vector field X is projectable onto X. This means
that the following diagram is commutative,

TTQ 24 TQ

4| [
TO =5 Q

ie.,
TTQ o X=X o TQ.

The components of X in coordinates (¢%, ¢*) of TQ are (X?, X?) where X are the
components of X and N 4 } ,

Xl(qg7 q(j)) = Qb;'(oa qg) q(]J’
where ]
dp'
8q6 ’

Qi (t,qp) =

being ¢'(t, q%) the local representative of ;¥ (cf. (6)).

A.7 First integrals
A first integral or integral function of a vector field is a function F' such that
(X,dFy=0.

The first integrals can be locally determined by integrating the first-order linear
partial differential equation 4
X'0;F =0.

There is an equivalent definition: a first integral is a function F' which takes a
constant value along any integral curve:

D(F o ’}/q) =0.
Indeed, the local expression of this condition is

9P ) = aF 50 = 9F Xt = 0.
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A vector field may not have global first integrals. However,
Theorem 1. In a neighborhood of a non-singular point ¢ € Q (X (q) # 0) there
exist n — 1 independent first integrals.

This follows from
Theorem 2. In a neighborhood of a non-singular point ¢ € Q (X(q) # 0) there
exists a coordinate system (q*) such that X = 8/dq*.

These coordinates are said to be adapted to X.

A.8 Lie bracket

The Lie-bracket [X,Y] of two vector fields is the vector field defined by
X, Y|F=XYF)-Y(XF).

In local coordinates,
(X, V] = X*o, V' — YR oX".

This operation satisfies the following rules,

[X,Y]= —[V,X] (anticommutativity)
[aX +bY,Z] =a[X,Z]+b]Y,Z], a,beR, (R-linearity)
(X, [V, Z]] + [V,[Z,X]] + [Z,[X,Y]] =0 (cyclic or Jacobi identity).

Thus, the space X(Q) endowed with the Lie bracket is a Lie-algebra.

We say that two vector fields commute if [X,Y] = 0. Indeed, it can be proved
that
Theorem 1. The flows of two (complete) vector fields commute i.e.,

Pl 0wy =05 o9

for all t,s € R, if and only if [X,Y] = 0.

A vector field is tangent to a submanifold S when all its values X(q) are
vectors tangent to S§. This holds if and only if any integral curve intersecting S
lies on S. It can be proved that:

Theorem 2. If two vector fields X and Y are tangent to a submanifold S, then
also [X,Y] is tangent to S.

A.9 One-forms

A one-form on a manifold Q is a mapping 4:TQ — R linear on each tangent
space 1,Q. We use the notation

6(v) = {v,0).
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An equivalent definition is the following: a one-form is a linear mapping from
vector fields to functions, 8: X(Q) — F(Q). We shall use the notation

8(X) = (X,6).
The link between these two definition is
(X,0)(9) = (X(q), )
The linearity implies that 4
(X,0) = X"6;,

where 6; are functions called the components of § (w.r. to the coordinates (¢*)).
It follows that
6; = (0:,9).

We can define the sum of two one-forms and the product of a one-form with a
function (or a number) in an obvious way.
A special case of one-form is the differential of a function dF. It is defined
by
(X, dFy=XF

and its components are
(dF); = 0;F.

It follows that in a coordinate system any one-form can be represented by a linear
combination of the differentials dg?,

6 =40;dq".

Thus, a one-form is also called a linear differential form. We call elementary
one-form a one-form of the kind F d@, where F and G are smooth functions on

Q.

A.10 Exterior forms

Let x%TQ be the subset of the Cartesian power (7'Q)? made of ordered sets of p
tangent vectors applied to a same point. It is a manifold of dimension (p + 1)n, if

n = dim(Q). An exterior form of order p, briefly a p-form, on a manifold Q
is a multilinear skew-symmetric smooth mapping from this space to R,

w: XGTQ = Ri (v, ... ,vp) = wlvg,. .. ,Up).
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The value w(vy,...,vp) changes in sign by interchanging any two arguments. It
follows that for linearly dependent vectors w(vy,...,vp) = 0. Thus, any p-form
for p > n vanishes identically.

A zero-form (p = 0) is a function F: @ — R. For p = 1 we get the definition
of one-form.

An equivalent definition is the following: a p-form is a multilinear and skew-
symmetric smooth mapping from the Cartesian power (X(Q))? of the space of
vector fields to F(Q),

Wi (X(Q)P = F(Q): (X1,..., X,p) — w(X, ..., Xp).

The sum of two p-forms and the multiplication of a p-form with a function or a
real number are defined in an obvious way. We denote by ®7(Q) the linear space
of all p-forms. It is a module on the ring F(Q). In particular, °(Q) = F(Q) and
®P(Q) = 0 for p > n. We set ®7(Q) = 0 for p < 0 and denote by ®(Q) the direct
sum of all these spaces,

B(Q) = ®,°2 , 27(Q).

An exterior or differential form is an element of this space.

A.11 Exterior algebra

The exterior product ¢ A ¢ of a p-form ¢ times a ¢-form ¢ is the p + ¢-form
defined by

|
pAYp = MAW@W
plq!

being A the antisymmetrization operator. On any p-linear form #: XPQTQ —+ R

it is defined by
1
A’I’} = *' Z EgN o O,
P ocGy

where G}, is the permutation group of order p and e, = +£1 is the signature of the
permutation o. For a O-form (function), Af = f. Forp <Qor ¢ <0, p Ay = 0.
If one of the two forms is a function, then

PNy = .

By a linear extension of the exterior product to the direct sum ®(Q) we get
the exterior algebra. It is a commutative and associative graded algebra,

dP(Q) A 21(Q) C PH(Q),
NP = (=1 A,
(@AD)Np =0 A (W Ag).
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For two one-forms the exterior product is anticommutative, o A = — 1 A .
An elementary p-form is a p-form of the kind

w=FdGA...NdG,,

where F,G1,... ,G, are functions. Then the exterior product of two elementary
exterior forms is obtained by applying the associative rule and the commutation
rules FAdG = dGAF and dF ANdG = — dG A dF. Any p-form can be locally

expressed as a sum of elementary p-forms. Indeed, in any coordinate system we
have the representation

1 . i
W= =Wy i, dg"t A A dg',

! et

where

Wiy .4

:w(@il,... ,81'?)

are the components of w.

A.12 Pull-back

Let a: @1 — Qs be a smooth mapping. For each p € Z we define a linear mapping

a*: @p(Qz) — @p(Ql)

by setting
a*wlvy, ..., vp) = w(Ta(n),...,Talv)), p>0,
a*w=woaq, p=0,
a*w =0, p<0.

By a linear extension we get a linear mapping
a®: ®(Qa) = &(Q),
called pull-back, with the following properties:
a*(wAY) =a*w A a*p,
idg, = idao),
(Boa) =a*op.
The last two properties show that the operator
. { Qs 3(Q)

o= of
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is a covariant functor from the category of the differentiable manifolds into the
category of the graded algebras, the exterior functor.

If 1S — Q is the canonical injection of a submanifold S C @, then the pull-
back t*w of a form on @Q is the restriction of w to .S and it is also denoted by
w|S. In fact, it is the restriction of w: x”QTQ — R to the submanifold ngS.

If in local coordinates the mapping « is represented by equations

gz = a*(q,),

then the pull-back of a form is obtained by replacing these functions into its local
coordinate representation. It follows that the pull-back is locally represented by
equations
. Jda  Halr
(a w)z‘l...z‘p = Way...a, W e Z?q—’l’

A.13 Derivations

A derivation of degree r € Z on ®(Q) is a mapping D: (Q) — ®(Q) satisfying
the following rules,

De*(Q) C ®"7(Q)  (pe ),
(1) D(ap + ) = aDp + bDy (a,b € R),
D(pAy)=DoAy+(-1)P"oADy (¢ € (Q)).

Hence, D maps a p-form to a (p + r)-form, it is R-linear and satisfies a graded
Leibniz rule. From the linearity and the Leibniz rule it follows that Da = 0 for
any number a € R interpreted as a constant 0-form.

The general theory of derivations is due to [Frélicher, Nijenhuis, 1956] and it
is based on the following theorems.

Theorem 1. Let D be o derivation. If v, € ®(Q) are two exterior forms such
that o|U = ¢|U in an open subset U C Q, then Dp|U = Dy|U (locality of a
derivation).

Theorem 2. Any derivation is uniquely determined by its action on ®°(Q) and
$1(Q) (i.e., on functions and one-forms).

In other words: any mapping D: ®°(Q) @ #1(Q) — ®(Q) satisfying the rules
(1) is extended in a unique way to a derivation of degree r on ®(Q). Note that if
r = —2, then D has image in ® 20 ® ! = 090, so that its extension is necessarily
the zero-mapping. Thus,

Theorem 3. Any derivation of degree v < —1 is trivial: D = 0.
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The commutator of two derivations Dy and Ds, of degree 1 and 7o respec-
tively, is the derivation of degree r; 4+ ro defined by

@) [[D1.D2] = DiDs — (~1)"D5D, |

Indeed, the composition Dy Dy = Dy o D5 is linear but it does not satisfy the
graded Leibniz rule, which is instead satisfied by the operator defined in (2).

There are three special important derivations: the differential, the interior
product and the Lie derivative,

A.14 The differential

The differential is the derivation d of degree 1 whose action on functions and
one-forms is defined by

(X,df) = Xf

[d6(X,Y) = (X, d(V,8)) — (¥, d(X,0)) — (X, Y],6)]

As a consequence, it can be proved that

dlp AY) =dp A+ (—1)Ppnd), @€ (Q)]

and

For an elementary p-form w = F dGi A ... AdG),
dw=dF ANdG1 N ... NdG.
The pull-back a™ associated with a mapping a commutes with the differential,
da”w = o dw

In particular, the differential commutes with the restriction of forms to submani-
folds,

|d(w]S) = (dw)|S |

A pform w is said to be closed if dw = 0, exact if there exists a (p — 1)-
form ¢, called potential form, such that w = d¢. An exact form is closed,
since d> = 0. Conversely, it can be proved that e closed form is locally ezact
(Poincaré-Volterra lemma).
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A derivation D is called of type i, if it is trivial on functions: Df = 0. It is
called of type d, if it commutes with the differential:

Dd = (-1)"dD.

Theorem 4. (i) Any derivation can be decomposed in a unique way as a sum of
a derivation of type i, and o derivation of type d.. (ii) Any derivation of type d.
is uniquely determined by its action on functions.

We have two fundamental derivations of type ¢, and d, associated with a vector
field: the interior product and the Lie derivative,

A.15 Interior product

The interior product (or the Cartan product) w.r. to a vector field X is the
derivation i x of degree —1 and type . defined by the following action on functions
and one-forms,

ixf=0
ix0 = (X,0)

It has the following properties,

|ix(w\¢):ixso/\1,/)+(—1)1’cp/\ix¢‘

where p is the degree of ¢;

|ixf<p:fix<p‘ |iyixw:w(X,Y)|

for a two-form. A similar formula holds for any p-form.

ixily = —iyix i =0

In local coordinates,

ixdg = X’ (ixw)ig...i, = X" Wiyip..4,
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A.16 Lie derivative

The Lie derivative w.r. to a vector field X is the derivation of type d. and degree
0 defined by

ddx = dxd
dx f =ixdf

For the Lie derivative there are other two (equivalent) definitions,

|dx =[ix,d] = ixd + dix |

N
de:}gr(l) ?(gatw—w)

The first one is known as Cartan formula (the Lie derivative is the commutator
of the Cartan product and the differential). The Lie derivative has the following
properties,

[dx (P A ) =dxp A+ Ndxtp

[dx,dy] = dxdy —dydx = dix v

[dx,iy] = dxiy —iydx =ix,y]

dO(X,Y) = dxiy0 — dyix8 —i;x,y)0

For a two-form w,

‘ dw(X,Y, Z) = ipx yiizw — dxiyizw + p.c.

where p.c. means the sum of the similar terms obtained by all cyclic permutations
of the vector fields.

A form w € ®(Q) is said to be invariant w.r. to a transformation ¢: @ — Q if
¢*w = w. It can be proved that
Theorem 1. A form w is invariant w.r. to the group ¢, generated by a (complete)
vector field X if and only if dxw = 0.






Appendix B

Global Hamilton principal
functions of the eikonal equations
on S5, and H,

S. Benenti, F. Cardin

B.1 Introduction

In R* = (z,y, z) endowed with the natural Euclidean structure we consider the
unit sphere So, 22 +9?+22—1 = 0. In R® endowed with a Minkowski metric, with z
time-like coordinate, we consider the hyperboloid Hs of equation z = /1 + x2 + y2
made of all unit time-like vectors oriented to the future.

Both are two-dimensional Riemannian manifolds with constant curvature (pos-
itive and negative, respectively). We will show that their eikonal equations admit
global Hamilton principal functions, which are not Morse families. To this end,
we need to recall some basic definitions and formulae of vector calculus in R,

B.2 Vector calculus in the real three-space

B.2.1 The metric tensor and the scalar product. In R® we consider the
ordered canonical basis ¢;,

C]_: C3:t:

[a—y

, €2 =

O O -
= OO
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and the metric tensors g., with ¢ = 1, such that

gs(ciacj):()a 7’7&]

We denote by
u-v=g- (uv V)

the scalar product of two vectors, and use the notation

uw=u-u, [u|] = /|u?|.

Two vectors are orthogonal if u - v = 0. In this case we use the notation u L v.
If

Yij = Ci * Cj,

then
1 0 0
o] = |0 1 0
0 0 ¢

For ¢ = 1 the metric is positive-definite (Euclidean). For ¢ = — 1 the metric is
hyperbolic (Minkowskian) and the vector ez = t is time-like.
Let (e,) be any basis. Its dual basis (e®) is defined by

e, - e :62.

If

[4 b
Gab = €4 * €p, ga :ea'ea

then the two symmetric matrices [gab] and [g“b] are each one inverse, g*® gy, = 62,
and we get the well known rules of raising and lowering of indices: if v = v%e, =
v.€%, then

Ve = gapv’, v = g"u,

and
Ug =V » €q, v® =v.e’

For the canonical basis,
Cc =cCq, 02202, 03:€C3,

v =01, 'UzZUQ, v’ = gus.
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B.2.2 The volume form. We define a volume three-form V (u, v, w) by setting
Vicr,eo,e3) =¢.

As a consequence,
V(Ch, C;, Cj) = 66}”‘]'

where 5,5 is the Levi-Civita symbol, and
V(u,v,w) =eepjuviwi =¢ | o' v 0¥,

For any arbitrary basis (e,) we have

ba® = V€ gy, vpw.

Viu,v,w) = Vope uv
where
Vabe = V(eq, €, €c), Vet = Ve, e e%) = g"g" g Vaey.
If the basis (e,) is oriented as (c;) i.e., if
ea:Aflc,-, det A >0, A:[Afl],
then

1 abc

—F¢& 9 g= det[gab]v
V19l

where €45 and €€ are Levi-Civita symbols. It follows that

(1) Vabc =& |g| Eabes Vabc -

VO Vape =3le, VPV =228, VP Ve = 2 830 = £ (850, — 620%).
To prove (1) we observe that from g, = AfLAi gi; it follows that
g = det[gas] = (det A)? det[g;;] = (det A)? e.

Thus, g has the same sign of £ and we can write g = ¢|g|. Moreover, since A has

positive determinant,
det A = /|g|

Hence,

Vabe = AZA%A’; Vijk = € &4k AZA%A’; =cegpe det A =¢ |g| Eabes
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Vabc — Vdef gadgbegcf —e \/m Edef gadgbegcf

1 1
Eabc Z

— &
9Vl

abc

=c+/|g| e det[g""] = ¢ /||

B.2.3 The cross product. By means of the volume form we define the cross
product u x v of two vectors by setting

uxv-w=V(u,v,w).
With respect to any basis (e,) we have
e, X ep-e. = Vipe, (UxV)e=uxv-e, = Vyeuo?,

and
uxv="Vyuvle® =V>®qy, v e,..

For the canonical basis, ¢; X ¢; = €¢&4;x, c¥; thus,

01X02:C3:t
Cy X C3 = £C]

C3 X €] = £Ca.
The cross product satisfies the following rules,
uXv= —vXxu

WXV - W=WXU V=V XW-1u

UXV - W=U+VXW,
whatever . For the double cross product we have
(uxvixw=c(u-wv-—v-.wu).

Indeed,
(uxv) xw=Vyeu®r’e® xw=Vyeu® v Ve¥uwye,

= Ve Ve u® vl wye, = ¢ 532 u®vPw, e,
=c(uwe v’ ey — 1P wyu’ e,.

As a consequence,
(nxa)-(nxb)=(nxa)xn-b=c(n’a-b—-n-an-b)

and
(nxa)’>=¢(n’a’— (n-a)?).
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B.2.4 Rotations. With a vector n such that
vy=n’=+1
we associate the linear operators R: R®* — R? of the kind
R(v)=v4+anxv+gn-vn—9yv), a,8 € R
It follows that

(1) R(n) =n,
2) veR(V)=(1-py) v +Bn-v)?

(RW)? = v2 +0% (0 x V) + 82 (y(m - v)? + 72 (v)? — 27 (m - v)?)
+ 23 ((n - v)? — sz)
& =V b a?e(yv? - (m-v)?) + 87 (42 v Afm - V)
£28 (- v —4v?)
= (L+y(ea® +782 = 28)) v + (28 — ea® —75°) (n - v)?,

(1) RV =v? & (v(ea?+98>=28)) v +(28—ca®—yB*) (n-v)* = 0.

Let us consider the case v = n? = 1 and (Rm(v))2 = v2. Then, for each vector
v L n, v? #0, from (2) and (4) we obtain

v:R
) RV _1-p
and
(6) ea’ + 42 —28=0.

In the Euclidean metric i.e., for ¢ = 1, equation (6) implies a® < 1, and
[1—8] <1 Letusset1—3=cosf, §=1-—cosf. Then (6) implies o® = sin®§.
If we choose a = sin 8, then we obtain the Rodrigues formula for the rotations
in the Euclidean three-space,

(M Rn,)(v) =v+sinfdnx v+ (1—cosf)(n-vn-—v)
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The choice a = sinf (instead of @ = —sin#) is in accordance with the conditions
R(n%)(v) =nxv, v 1 n.

It follows that for all v # 0 orthogonal to n,

(8) sinf = L7§(v) - n, cosf =
v

v - R(v)

v2

Note that 6 is the angle of rotation i.e., the angle between v and R(v), for all
v 1L n. The unit vector n is the axis of rotation.

In the Minkowski metric i.e., for ¢ = —1, equation (6) shows that |1 — 3] > 1
and, because of equation (5), we put 1—§ = cosh x i.e., § = 1—cosh x. This choice
corresponds to the assumption that any time-like vector v L n is time-equioriented
with its image R(v) ie., v-R(v) < 0. In particular, x = 0 corresponds to
R(v) = v. Equation (6) implies o® = sinh®x. If we choose a = sinhy then we
obtain the Rodrigues formula for rotations in the Minkowski three-space with a
space-like axis n,

(9) Rnx) (V) =v+sinhyn x v+ (1—-coshy)(n-vn-v)

It follows that for all non-light-like v orthogonal to n,

(10) sinhy = — LG(V) - n, coshy = viTz'(v)
v v
The choice a = sinh y (instead of @« = —sinh x) is in accordance with the condition

R(cy x)(€2) = coshx s + sinh x 3.
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B.2.5 Standard symplectic structure of an orientable surface. Let us
consider a surface S C R? described by a parametric equation

x = x(u',u?) = x(u®).

The tangent vectors
en = 0aX

are assumed to be pointwise independent, so that they form a tangent frame.
With this frame we associate the coefficients of the first fundamental form

Aap =eq « €g.
The dual frame is defined by
e® = A% e, e“ -eg =03.
The covariant components of a tangent vector p are
Pa =P - €a-

The Christoffel symbols and the coefficient of the second fundamental vector
valued form are defined by:

8(165 = Fgg ey + B.s, B,s - e, =0.

A regular surface S C R? is orientable if it admits a global orthogonal vector field
n # 0. We assume that n is a unit vector, n? = +1.
Let us consider the two-form ¢ on tangent vectors defined by

o(u,v)=n-uxv, u,veTS.

This is the area two-form. Its integral over a compact subset U C S gives, by
definition, the area of U. By setting

Oap = 0(€q,€3) =N+ e, X €g,

we get

o, v) =n-e, x egu®v? =o,puv? = opp(ulv? —u?vb).

Since

v* =({v,du®) = v . e
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it follows that
o= %0,15 du® A du® = o1 du A du?.

The area two-form is non degenerate thus, it is a symplectic form (a two-form
on a two-dimensional surface is obviously closed).

The Hamiltonian vector field X associated with a function f(r) = f(u®) is
defined by equations

Xfoap= —0sf X¢n-equxeg= —0sf
n-Xyxeg= —0gf
Xrregxn= —0gf
X;-nxeg=0zf

X nxegAP? = AP g, f
Xy -nxe*=(Vf)®
X;xn-e*=(Vf*
Xxn=Vf,

SRR R N

where V is the gradient operator on the surface. This shows that the Hamiltonian
vector field X is defined by the implicit equation

(1) X;xn=Vf.
We have
Vixn=(X;xn)xn=¢(X;-nn-n-nX;)= —en® Xy,
since X¢ - n =0, being X tangent to the sphere. It follows that
(2) X;=en’nx Vf.
This gives the explicit definition of X ;. The PB is defined by
{fi9}e =Xy, X)) =n-Xy x X, =n-:(nx Vf) x (nxVg).

Thus,

(3) {f,9}s =en’n-(VfxVyg)

Assume that f(x) is the restriction to x € S of a function F(x) on R®. Since
the gradient V£ of a function f on a submanifold S of a Riemannian manifold R
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is simply the orthogonal projection to the tangent space of S of the gradient V.F
of any (local) extension F of f, we have

VF)=Vf+hx)n
It follows that on the surface
n-(VfxVg)=n-(VF x VG)

and

(4) {f.9}s =en’n . (VF x VG)

This formula gives the PB of functions f(x) on the surface in terms of local ex-
tensions F(x).

B.2.6 The PB of functions of a special kind. With any (smooth) function
F(x) on R* we associate a function F(q,p) on T*R® defined by

(1) F(q,p) =F(x), x=qxp.
Let us compute the PB of functions of this kind. In the canonical basis, we have

q=¢'c;, p=7p'c;, and o
zt = Vik 4j Pk

Hence,
ox? g oz
= —yuk g, z]l
a¢ V% g1 p, o =V
0G _ 06 9z’ _ 0G L or _ OF Ox' 8}'V ‘
o Ozt o¢! Ozt 931 P Op 0 Op,  Ox Lg;.
OF 8G  OF _..., 0G ..
opag " aw | G P
_OF 0
= O 8gr P Vigs VIS
8}' oG . Ny
= ox 0z g™ (6507 — 6704) ¢’ i
=c(p-VFq-VG—q-pVF-VG).
OF 0G  0G OF

FGY} = VFq-VG—q-VFp-V§
{F.G} = om 9d O od e(p-VFq- q-VFp-VG).
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Since

(axp) - (VFxVG =q-px{(VFxVG =eq-(VG-pVF-VF-pVG)
=e(VG-pVF-q-VF -pVG-q),

we have proved that

(2) {F,G} = —(axp) - (VF x VG)

This formula gives the PB of functions F(q,p) on T*R® of the type (1).

B.3 The Hamilton principal function of S,.

The basic objects are: (i) the space R* endowed with the Euclidean metric; (ii) the
configuration manifold Q = Sy = (q) C R?, defined by 2 = 1; (iii) the cotangent
bundle T*@Q) = T*Ss: it consists of pairs (q, p), where p is interpreted as a vector
tangent to S, at the point q, by setting (v,p) = v - p for each vector v tangent
to Se at q; (iv) the eikonal equation (coisotropic submanifold) C' C T*Q defined
by equation p? = 1.

The oriented geodesics on Sy are in one-to-one correspondence with the unit
vectors n. The geodesic corresponding to n is the intersection of §) = Sy with the
plane II,, orthogonal to n and passing through the origin. The orientation of this
maximal circle is determined by the formula p = n x q, equivalent to n = q X p,
where q € @ and p is the unit vector tangent to the oriented circle. Since the
oriented geodesics are in one-to-one correspondence with the characteristics of C,
we have
Theorem 1. The set & of the characteristics of C' is a differentiable manifold
diffeomorphic to the unit sphere So. The one-to-one correspondence between char-
acteristics y(n) of C' and the unit vectors n € Sy is given by

=1 (qeQ=5y)

p’=1 (pe0)
1) @pientm = 307 o

n=qxp

It follows that two pairs (qo, po) and (qi,p1) of 7% Q belong to a same charac-
teristics y(n) if and only if the above equations are satisfied with n = qy X pg =
q1 X p1 or equivalently, if and only if pp = n X qp and p; = n x q;. Since qg
and q; are both orthogonal to n, we can consider the rotation with axis n which
maps qo to q;. The axis n is determined (even in the case qo = q1) by setting
n=gqp X po (or n =q; x p1). This proves



B.3 The Hamilton principal function of S, 193

Theorem 2. A pair ((qo,po), (ql,pl)) belongs to the characteristic relation D¢
if and only if qo € So and there exists a pair (n,0) € So x R such that

A1 = Rn,0)(q0)
P1 = R(n,0) (Po)
Qo-n=q;-n=0

P1 =nXq,

2)

where R(n,g) is the rotation of axis n and angle 6,
(3) Rmo)(v) =v+sindnx v+ (1—-cosf)(n-vn-v).

Then we can prove
Theorem 3. The characteristic relation D¢ is generated by the family

S:(SyxSs) x (RxR xSy x R?) — R,

defined by

S(qlaqo;)‘vavnvv) =0+ ((qO * 11)2 + (ql ¢ Il)2 + (V—l’l X Q1)2)

4
(4) +v - (a1 = Rn,0)(q0))

The critical set = of S is described by equations

(5) Q- -n=q -n=0, v=nXxqi, q1 = R{qo).

This generating family is not a Morse family.
Proof. The equations generated by S are

oS
0=
9s oS
0= — Po:—a—
(6) 8V 90
095 _ o8
~ 9 L
oS
\0_@_11’

The first four equations describe the critical set =. For all n € S, we have

a5
(7) 5o = VS|, (I-n®n) = Pa(VxS|,_,),
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where
Po=I—-n®n.

Similar equations hold for qp and q;. The first two equations (6) of the critical
set read oy

Oza:

(qo 1)’ + (a1 - )’ +(v—nxq)’

and
95
0=, =2Av-nxa)+a —R(q)
v
These are equivalent to equations (5). We shall see below that the remaining
equations (6) of = are identically satistied. Due to equations (5), on the critical

set we have

oS 0 0
Po= — % = qu(v . R(qo)) = %(QO 'RT(V))
=R'V)I-qo@aq)=R"(v) =R"(v) a0 qo =R (v) = v - R(qo)

=R'(V)-v-qu=R'(v)-nxaq-q=R"()

and oy
P1 dan v ( QoOq)=v
Thus, being R" = R1,
po =R (p1).

All equations (2) have been found. We show that the last two equations (6) of the
critical set are identically satisfied. On the critical set the vector qg X v is parallel
to n,

(8) WXV=qoXMXq)=qo-qn—go- nqg; =qo - q 0.
so that Py 5
8_n = 8_n(v : R(Qo))
—sin 02 (n - qo x v) + (1 — cosf) )
= sSin 811 n q() v COS 811 n qon v

=sinéP,(qo x v) = 0.
Finally, since on the critical set n - v =0,
25 _

(9) 0f

=1—cosfv .nxqy+sinfv-qg.

1—-v- (cos@nxqo—i—sinﬁ(n-qo n—q0)>
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Because of (8); of § 2.4,
(10)  v-.nxqo=(nxR(q))-(nxqy)=R(q) - qo=qj cosf = cosb,

being qo orthogonal to n. Moreover, because of (8); of §B.2.4 for v =1,

(11) veqo=nxR(q)-qo=n-R(q) X qo = —qj sinf = —siné.
Thus,
%:1—(:0329—31199:0.
Since 83
Sy= a:(QO'n)z‘F(Oh ‘n)’ +(v-nxaq)?

on the critical set we have dSy = 0. This shows that S is not a Morse family. m
Theorem 4. An equivalent reduced generating family of Do is

SI:(SQXS2)X(RXRXSQ)—>R

(12) | S'ar a0 2, 6,m) =0+ X ((do - 0)° + (a1 - 0)?) =1 X 1+ Reng) ()

Proof. By means of equations v = n x q; of the critical set we can remove the
supplementary variable v of S. Thus, we get the reduced generating family S’. m
Remark 1. On the critical set the generating family reduces to S = 8. This
function is obviously symmetric in (qp,q1), in accordance with the symmetry of
the characteristic relation. Also the reduced generating family S’ is not a Morse
family.

Remark 2. We consider the inclusion relation

RCS: xR’ = {(q,x) | a = x}.

The canonical lift RCT*S;xT*R’is a symplectic reduction whose inverse image
R' o (T*S,) is the coisotropic submanifold Ig R? of the covectors p € R® based

2
at points of S;. The fibres of this reduction are the equivalence classes of the
equivalence relation

p~pP <= p,p based at the same point q € Ss, p—p' L Ss,

ie.,

(13) p~p' <= p,p based at the same point q € Sa, (p—p') xq=0.
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A second symplectic reduction we have to consider is the characteristic reduction
associated with the coisotropic submanifold C,

Re € 8 x T*Q.

This is the graph of the surjective submersion which maps a point of C' to the char-
acteristic which contains this point. This reduction defines a reduced symplectic
form w on the space S of the characteristics. We prove that

Theorem 5. The reduced symplectic form w is the opposite of the standard sym-
plectic form o on Sy defined by

(14) o(u,v)=n-uxv,

where n € So and (u,v) are vectors tangent to So al the point n.
Proof. (I) With any arbitrary (smooth) function F(x) on R® we associate a
function F(q,p) on T*R?,

(15) Fla,p) = Flaxp),
and a function f(n) on § = Ss,
(16) f(n) = F(n)

(this is simply the restriction of F to the sphere).

(II) The functions F on T*R® are constant on the fibres of the first reduction
E, since on a fibre we have q x p = q X p’ and q € S, cf. (13). Hence, these
functions reduces to functions on T*Ss by taking q> =1 and p - q = 0.

(ITI) When restricted to the submanifold C, by taking p> = 1, a function
F(q,p) of the kind (15) is constant on each characteristic v(n) because of (1), so
that it reduces to a function f(n) = F(n), with n = q x p (note that n? = 1,
since q and p are orthogonal unit vectors).

(IV) Let us consider on the sphere & = Sy the standard symplectic form (14).
By formula (3) of §B.2.5 we get the PB

(17) {f,9}e =mn - (Vf xVy).

(V) We recall that, according to the general theory of the symplectic reductions,
the PB of two functions f(n) on the reduced symplectic manifold (S,w) is defined
by

(18) {/,9}o(n) = {F,G}(q, p),

where (q,p) € v(n) C C C T*S; and where F and G are any two functions
on T*R® constant on the characteristics v of C'. Because of (III) the functions
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F and f defined by (15) and (16) by means of any function F, fit with this
scheme. Hence, (q,p) € v(n) means in particular that n = q x p, see (1). Then,
by applying formulae (18), (2) of § 2.6 and (4) of § 2.5 for ¢ = 1, which reads
{f,9}s =n-VF x VG, we get

{f,9}o(n) ={F,G}(q,p) = —gqxp - (VF xVG)

(19) = —n-VFxVG=—{f g}.(n).

This holds for all functions F(x). We remark that any function f(n) on the sphere
S admits an extension F(x) to R?, such that F(n) = f(n). We can for instance
extend the function f by constant values along the half lines issued from the origin
of R?® (the origin must be excluded, but this exclusion is irrelevant). Thus, the
equality

{fvg}o'(n> = - {f,g}w(n)

holds for all f and g on &. This shows that w = —0. =

Note that in definition (14) of ¢ the normal vector n is oriented outside the
sphere. If we choose it pointing to the center, then we get 0 = w.

B.4 The Hamilton principal function of H,

The basic objects are: (i) The space R*® endowed with the Minkowskian metric,
with z time-like. (ii) The configuration manifold Q = Hs = (q) C R?, defined by

2= -1 24y —224+1=0
{q — { y 2+
q-c3<0 z > 0.

The Minkowskian metric induces on Hs a positive-definite metric and q € Hsy
implies q 1L Hy. Indeed, for any curve q(t) € Hy we have q - q = 0 thus, q (tangent
to Hs) is space-like (every non-zero vector orthogonal to a time-like vector is space-
like). (iii) The cotangent bundle T*Q) = T*H, = (q, p), where p is a vector tangent
to Hy at q. (iv) The eikonal equation (coisotropic submanifold) C' C T*Q defined
by equation p? = 1. Note that the covectors (q,p) € T*H, can be interpreted as
vectors p tangent to Hs by setting (v,p) = v - p for each vector v tangent to Hy
at the point q. (v) The hyperboloid Kz of the unit space-like vectors n, n? = 1.
The metric induced on K5 is Lorentzian.
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H,

Theorem 1. The set & of the characteristics of C' is a differentiable manifold
diffeomorphic to Ko. The one-to-one correspondence between characteristics y(n)
of C' and the unit vectors n € § is given by

=1 (qeQ=H,)
p’=1 (pe0)

(1) (a,p) Ev(n) & a-p=0 (peT*Q)
n=gqxp.

Proof. The geodesics of () are the orbits of spontaneous motions (no active
force). These motions admit the first integral

(2) n=qxaq.

Indeed,
n=qxq=qxR,

where R is the reaction force orthogonal to Hs. Since also q(¢) L Hs, it follows
that n = 0. From (2) it follows that: (i) q L n, so that, for any fixed n, the
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corresponding geodesic has velocity ¢ orthogonal to n; (ii) n is space-like since it
is orthogonal to the time-like vector q (n # 0, since q cannot be parallel to q unless
q = 0. We can consider only geodesic motions with unit velocity, ¢ = 1. Due to
(2), this is equivalent to assume n? = 1, that is n € K». Since the characteristics
are in one-to-one correspondence with the oriented geodesics, the set S is identified
with Ky and equations (1) follow by replacing q with p. m
As a consequence of Theorem 1 we have

Theorem 2. A pair ((qo,po), (ql,pl)) belongs to the characteristic relation D¢
if and only if qo € Hy and there exists a pair (n,x) € Ko X R such that

q4 = R(n,x) (qO)
P1 = R(n,x) (pO)
qo-n=q; -n=>0

P1=1nXq,

3)

where Ry ) s the rotation of axis n and pseudo-angle x,
4) Rny)(v) =v+sinhyn x v+ (1-coshy)(n-:vn-v).

Then we can prove
Theorem 3. The characteristic relation D¢ is generated by the family

S:(Hy x Hy) x (R x R x Ky x R*) — R,

defined by

S{qo,q1; A, x,m,v) = x + A ((qo ‘n)’ 4+ (q1 -n)° + (v-nx ql)i)

(5) +v- (Oh — Ry (qo))

The critical set 2= of S is described by equations
(6) Q- -n=q -n=0, v=nXxqi, q1 = R{qo).

This generating family is not a Morse family.

Note that in the definition (5) by the symbol (u)% we mean the scalar product
u - u in the Euclidean metric.

Proof. The proof follows the same pattern of that concerning S, with the
following variants. (i) In (8) of §B.3 we used the double cross product formula,
thus the second and the last terms should be multiplied by ¢; in fact, this has no
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consequence and we get again 95/0n = 0; (ii) formula (9) of § 3 is replaced by the
analogous formula with cosh x and — sinh y instead of cos# and sin 8,

a5

— =1—coshy v nxqy—sinhyv-qg;
dx

(iii) formula (10) involves the scalar product of two cross products, so that the
second equality is multiplied by ¢ = —1; we get

venxqo= —R(q) - q = —qj coshy = coshy,
being v=mn x q; = n X R(qp). In the present case
v.qo=mn"R(q) X qo = qj sinhy = —sinh x.
As a consequence,

ﬁzl—coshzx+sinh2)(:0. L]
ox

We have theorems similar to Theorems 4 and 5 for the sphere:
Theorem 4. An equivalent reduced generating family is

S (Hy x Hy) x (R x R x Kp) — R,

defined by

(7) |8 (q0, a5 A xom) = x + A ((Go - 0)? + (@ +1)*) =1 X a1 Ry ()

Proof. The proof is similar to that of S;. m
Note that, in (7),

(7) nxqi«Rm,y(do) =coshxn-qy xqo+sinhx(n-qon-q—qo-q).

Theorem 5. The reduced symplectic manifold is (Ka,w), where the reduced sym-
plectic form w coincides with the standard symplectic form o of Ky defined by

(8) o(,v) =n-uxv.

Proof. The proof is similar, mutatis mutandis, to that of Ss till equations (19),
§B.3, which now gives

{f,9}o(m) ={F,G}(q,p) = —qxp - (VF x VG)
= -—n-:VFx vg{fag}tr(n)v
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being, fore = -1, {f, 9}, = —n - VF xVG. n

Note that in the case of the eikonal equation of Hs the reduced symplectic
form coincides with the standard area two-form on K» associated with the normal
vector n. Moreover, the symplectic manifold (Ks, o) is now symplectomorphic to
a cotangent bundle, as shown by the following
Theorem 6. Let Dy be the cylinder in the Minkowski space R®, with azis z and
intersecting the (z,y)-plane in the unit circle S1, x? +y?> = 1. Then the mapping
¢: Ko — Dy defined by
n—+mn-cscs

1+ (n-cg)?

is a symplectomorphism from (Ko, o) to the cotangent bundle T*S; ~ S; x R.
Remark 1. The mapping ¢ is the radial orthogonal projection, with respect to the
z-axis, from Ky to Do. Note that the vector n + n - ¢3 ¢3 is the (2, y)-component
of n, being orthogonal to ¢3, and that its square is

¢(n) =

m+n-c3e3)’=n’—(n-c3)? +2(n-c3)? =1+ (n-c3)”

Proof. Let Dy ~ §; x R be described by the parametric equation

r =u(f) + 2t = cosf ¢; +sinf c3 + z c3, (u',u?) = (2,0).
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The associated tangent frame is
e =t, ey = Jyu = s.

We choose the orthogonal unit vector n = u. Then, in accordance with the
definition of §B.2.5,
gl =n+e; Xes=u-txs

In the Minkowskian metric i.e., for ¢ = —1,
urtxs=cy-c3xco=1.
Thus, 012 = 1 and the standard symplectic form on D5 is
o, = 012 dut A du?® = dz A dB.

If we consider T*S; ~ S; x R with canonical coordinates (6, z), then the Liouville
form is ‘981 = zdf and the symplectic form dﬁgl = dz A df coincides with the area
2-form. Let Ky ~ S; x R be described by the parametric equation

r = cosh&u(f) + sinh & t, (u,u?) = (&,6).
The associated frame is
e; = sinh&u + coshét, es = cosh {0y u = cosh & s.
We choose the orthogonal unit vector n = r. It follows that
o12=n-e; Xey=r-(sinhu+ coshét) x (cosh¢s)
= (coshfu +sinh&t) « (sinh&u 4+ cosh&t) x (cosh§s)
cosh & (cosh? €u « t x s 4+ sinh? £t - u x s)

=coshéu+t xs =cosh€.

Then, according with the above choices, the standard symplectic form is
og, = 012 du' A du® = cosh&dg A df = dsinh x A df.
We look for a diffeomorphism ¢: Ky — Dy described by equation

p=20)  (0=0)

such that

¢*0K2 = J]D)2.
This last condition is equivalent to equation

dz(§) A df = dsinh £ A d6.

Then we can choose

z(&) = sinh &.
The diffeomorphism ¢ so defined is the radial orthogonal projection w.r.to the
z-axis restricted to Ks. m
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