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1. Citations and comments

Van Hove (1950), p. 75:

”Dans la quantification des systèmes dynamiques de la Mécanique classique, on admet qu’aux grandeurs
les plus simples de la théorie classique correspondent des opérateurs vérifiant la propriété

(1.1) (a1f1 + a2f2 )̂ = a1f̂1 + a2f̂2, a1, a2 ∈ R

et on utilise celle-ci pour construire ces opérateurs en fonction des opérateurs fandamentaux Pi, Qi de
la théorie quantique (voir par example Dirac, 1935, p. 88-91). Il est bien connu que par ce procédé
on n’arrive pas à associer un opérateur bien déterminé à chaque grandeur classique de façon à ce que
(1.1) ait lieu sans exceptions. Des incertitudes apparaissent concernant l’order des facteurs dans les
produits et elles donnent lieu à des ambiguités qui semblent inévitables. Il faut signaler à ce propos un
résultat de Groenewold, 1945, p. 45) qui prouve q’une correspondance univoque f 7→ f̂ entre polynômes
en les grandeurs classiques pi, qi et polynômes en les opérateurs quantiques Pi, Qi ne peut vérifier sans
exceptions la relations

(1.2) h
2π
i {f1, f2}̂ = f̂1f̂2 − f̂2f̂1.

Schwinger (2000), Section 2.4:

”It is a convenient fiction to assert that every Hermitian operators symbolizes a physical quantity”.

Fock (1978), p. 22:

”A certain linear operator is related to each physical quantity”.

Comment 1. The quantization theory has reached a remarkable development in the case of a Euclidean
configuration space. Main references are Folland, 1989; Martinez, 2001; Robert, 1987; Taylor,
1996. However, in these monographs the ”quantization” is not an ”exact” homomorphism of Lie alge-
bras, but the commutator corresponds to the Poisson bracket up to higher orders of h̄. The compatibility
between the possible conditions to be imposed on a ”quantization mapping” is discussed in the intro-
ductory chapter of Folland and in Landsman, 1998. On the contrary, for a generic Riemannian
configuration manifold there are only preliminary results. The first attempt of quantizing the classical
observables on a generic symplectic manifold dates back to Segal, 1963. The main reference on this topic
is Woodhouse, 1991. For further references and comments on the ”geometric quantization problem”
see Caianiello, Marmo, Scarpetta, 1985.

Comment 2. We cannot deal with the variables qi and pi in the same way, unless the configuration
manifold is a Euclidean space.



On the correspondence between classical and quantum observables 2

2. Classical and quantum observables

Let Q be the n-dimensional configuration manifold of a classical mechanical system. Local coordinates
of Q will be denoted by q = (qi). A classical observable (C-observable) of this system is any smooth
real-valued function F on the cotangent bundle T ∗Q, the ”phase space” of the system. A classical

state of the system is then a point of T ∗Q. Canonical coordinates of T ∗Q corresponding to configuration
coordinates q will be denoted by (q, p) = (qi, pi). The space of classical observables is endowed with the
Lie-algebra structure given by the Poisson bracket defined by

(2.1) {F,G} = ∂iF∂iG− ∂iF∂
iG.

Notation:

∂i =
∂

∂qi
, ∂i =

∂

∂pi
.

As it is well known this definition does not depend on the choice of the canonical coordinates (q, p), since
it derives from the canonical symplectic structure of T ∗Q. Note that this definition is equivalent to the
following rules

(2.2) {qi, qj} = 0, {pi, q
j} = δj

i , {pi, pj} = 0.

To prove the equivalence of (2.1) and (2.2) we need to recall that a Poisson bracket is, by definition, a
bi-derivation hence, it is a ”local” operation i.e., invariant under restrictions to open subsets.

A quantum observable of the system is a linear operator F̂ on the quantum state space. This is a
linear space of complex-valued generalized functions (including distributions) ψ on Q. We have no need,
for the present, of special assumptions about this space and the space of operators. The space of quantum
observables has a natural Lie-algebra structure given by the commutator

(2.3) [F̂ , Ĝ] = F̂ Ĝ− ĜF̂ .

In dealing with quantum observables we are interested in the eigenstate equation

(2.4) F̂ ψ = λψ.

An eigenfunction ψ represents a stationary quantum state of the system. An eigenvalue λ repre-
sents the measured value of the quantity L in the state ψ. We are interested in real eigenvalues.

3. The exact quantization rule

An exact quantization rule or quantization mapping on a set of classical observables O is an
injective mapping F 7→ F̂ from O into the space of quantum observables satisfying the following two
rules

(3.1)
(aF + bG)̂ = aF̂ + bĜ, a, b ∈ C

{F,G}̂ = γ [F̂ , Ĝ]

Here γ ∈ C is a suitable universal constant.

To find an exact quantization rule for a sufficiently wide class of classical observables of a given mechanical
system means to solve the ”quantization problem” (Folland, p. 15) for that system.

4. Basic classical observables

We consider two special classes of classical observables, denoted by B0 and B1. Both correspond to
objects defined on the configuration manifold Q. B0 is the space of smooth functions constant on the
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fibers of T ∗Q. These observables, which we denote by small letters f, g, . . . are identified with smooth
real functions on Q. B1 is the space of linear homogenous functions on the fibers of T ∗Q in one-to-one
correspondence with smooth vector fields X on Q,

(4.1) P (X) = PX = Xi pi.

We call these observables basic observables for the following reason.

Proposition 4.1. The canonical PB {·, ·} on the phase space T ∗Q is characterized by the following
commutation relations

(4.2) {f, g} = 0, {PX, f} = 〈X, df〉, {PX, PY} = P[X,Y]

where 〈X, df〉 = Xi∂if is the derivative of f with respect to X, and [X,Y] is the Lie bracket of vector
fields,

[X,Y]k = Xi∂iY
k − Y i∂iX

k.

This means that these commutation relations define a unique PB which coincides with the canonical one.

Proof. Definition (2.1) obviously implies (4.2). Conversely, we consider local coordinates (qi) as functions
on Q and the partial derivatives ∂i as vector fields. Then from (4.2) we derive the rules (2.2).

An obvious consequence is

Proposition 4.2. The quantization problem is solved for the space B0 by setting

(4.3) f̂ψ = fψ.

A less obvious consequence is the following

Proposition 4.3. If we assume the rule (4.3) then any quantization rule on a subset of observables PX

which is closed with respect to the sum and the Lie bracket of vector fields is necessarily of the form

(4.4) P̂X(ψ) = 1
γ 〈X, dψ〉 + AX ψ

where A: X 7→ AX is a mapping from vector fields to functions on Q such that

(4.5) AX+Y = AX + AY

and

(4.6) 〈X, dAY〉 − 〈Y, dAX〉 = A[X,Y].

Proof. Definition (4.1) implies

PX+Y = PX + PY, PfX = f PX.

Because of (3.1)1, (PX + PY )̂ = P̂X + P̂Y. Then

(4.7) P̂X+Y = P̂X + P̂Y.

Because of (3.1)2, {PX, f }̂ = γ (P̂X f̂ − f̂ P̂X). From (4.2)2 it follows that

(4.8) P̂Xf̂ − f̂ P̂X = 1
γ 〈X, df 〉̂ .
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Due to (4.3), this is equivalent to

P̂X(fψ) − f P̂X(ψ) = 1
γ 〈X, df〉ψ.

By interchanging f with ψ we get

P̂X(ψf) − ψ P̂X(f) = 1
γ 〈X, dψ〉 f.

Subtracting term by term these last equations we get

ψ P̂X(f) − f P̂X(ψ) = 1
γ

(
〈X, df〉ψ − 〈X, dψ〉 f

)
.

By choosing f = 1 we obtain
ψ P̂X(1) − P̂X(ψ) = − 1

γ 〈X, dψ〉,
i.e.,

(4.9) P̂X(ψ) = 1
γ
〈X, dψ〉 + P̂X(1)ψ.

Because of (3.1)2, {PX, PY}̂ = γ(P̂XP̂Y − P̂YP̂X). From (4.2)3 it follows that

(4.10) P̂XP̂Y − P̂YP̂X = 1
γ
P̂[X,Y].

Let us set
AX = P̂X(1)

and re-write (4.9) in the form (4.4). Because of (4.4) we get

P̂X

(
P̂Y(ψ)

)
= 1

γ 〈X, d+ P̂Y(ψ)〉 +AX P̂y(ψ)

= 1
γ 〈X, d

(
1
γ 〈y, dψ〉 + AY ψ

)
〉 +AX

(
1
γ 〈Y, dψ〉 + AY ψ

)
.

and
(P̂XP̂Y − P̂YP̂X)(ψ) = 1

γ2 〈[X,Y], dψ〉+ 1
γ 〈X, d(AYψ)〉 − 1

γ 〈Y, d(AXψ)〉
+ 1

γ AX 〈Y, dψ〉 − 1
γ AY 〈X, dψ〉

= 1
γ2 〈[X,Y], dψ〉+ 1

γ 〈X, dAY〉ψ − 1
γ 〈Y, dAX〉ψ

Because of (4.10),

(P̂XP̂Y − P̂YP̂X)(ψ) = 1
γ P̂[X,Y](ψ)

= 1
γ2 〈[X,Y], dψ〉+ 1

γ A[X,Y] ψ.

Then (4.6) follows. On the other hand, from (4.4) it follows that

P̂X+Y(ψ) = AX+Y ψ + 1
γ
〈X + Y, dψ〉

= AX+Y ψ − AX ψ −AY ψ + P̂X(ψ) + P̂Y(ψ),

i.e., (
P̂X+Y − P̂X − P̂X

)
(ψ) =

(
AX+Y −AX −AY

)
ψ.

Due to (4.7) the left hand side vanishes, so that we get (4.5).

Now we have to put together the observables B0 and B1. We have two ”natural” possible definitions of
the operators (fPX )̂ . Since fPX = PfX we can take

(4.11) (fPX )̂ = P̂fX = f̂ P̂X.
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Otherwise we can consider the ”symmetrization rule”

(4.12) (fPX )̂ = 1
2

(f̂ P̂X + P̂X f̂).

Proposition 4.4. If we assume the rule (4.11) then the mapping A: X 7→ AX is a closed 2-form.

Proof. Due to (4.11),

(4.13) AfX = P̂fX(1) = f̂ P̂X(1) = f AX.

This formula together with (4.5) shows that we can consider AX as the evaluation of a 1-form A over a
vector field X,

AX = 〈A,X〉.
For two commuting vector fields, equation (4.6) yields

(4.14) 〈X, dAY〉 = 〈Y, dAX〉

since
A[X,Y] = 〈A, 0〉 = 0.

This means that A is closed. Indeed, let us consider the commuting vectors ∂i = ∂/∂qi associated with
any local coordinate system and set

A∂i
= Ai.

These are the components of the 1-form A = Ai dq
i in these coordinates. Then (4.14) is equivalent to

∂iAj = ∂jAi,

i.e., to dA = 0.

Proposition 4.5. If we assume the rule (4.12), then

(4.15) AfX = f AX + 1
2γ 〈X, df〉.

Proof.

(4.16)

AfX = P̂fX(1) = (fPX )̂ (1) = 1
2

(
f̂ P̂X(1) + P̂X f̂(1)

)

= 1
2

(
f P̂X(1) + P̂X(f)

)
= 1

2

(
f AX + 1

γ
〈X, df〉 +AX f

)

= f AX + 1
2γ 〈X, df〉.

Remark 4.1. In this case the mapping X 7→ AX is not a 1-form, unless we consider subspaces of vector
fields and functions such that

(4.17) 〈X, df〉 = {PX, f} = 0.

Remark 4.2. The two rules (4.11) and (4.12) are compatible (equivalent) if and only if restricted to a

subspace of B0 + B1 for which (4.17) holds. Indeed, from (4.11) and (4.12) it follows that 1
2

(
fP̂X(ψ) +

P̂X(fψ)
)

= f P̂X(ψ), so that

P̂X(fψ) = f P̂X(ψ).

Due to (4.4) this is equivalent to 〈X, df〉 = 0 whatever A. Hence, if we want these two rules to be
simultaneously satisfied, then the quantization rule on the observables f + PK ∈ B0 + B1 can be defined
only on subspaces for which (4.17) holds. Note that (4.17) means that f is a first integral of the dynamical
system X. As a consequence, if these subspaces are such that the vector fields X span the at each point
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q ∈ Q the tangent space TqQ, then the functions f must be constant. So, in this case the observables
are of the kind c + PX and the space of vector fields X must be invariant under the mapping X 7→ cX
with c ∈ R. Vector fields of these kind are, for instance, (i) the left or right-invariant vector fields on a
Lie group, and (ii) the Killing vector fields on a Riemannian manifold.

Remark 4.3. The rule (4.4) for A = 0 implies the rule

Xipi 7→ 1
γ X

i∂i

and in particular
pi 7→ 1

γ
∂i.

5. Quadratic observables

Let us denote by B2 the space quadratic observables associated with symmetric two tensors on Q:

PK = P (K) = Kij pi pj .

Let us use the notation
〈K, A〉 = (KijAj), K(A,B) = KijAiBj

for two 1-forms A and B.

Proposition 5.1. If we assume the rule (4.4) where A is a 1-form, then a quantization rule on the
observables of the kind f + PK is necessarily of the form

(5.1) P̂K(ψ) = 2
γ K(A, dψ) + P̂K(1)ψ.

Proof. From {PK, f} = 2Kijpj∂if = 2PK∇f and {PK, f }̂ = γ(P̂Kf̂ − f̂ P̂K) it follows that

γ(P̂Kf̂ − f̂ P̂K) = 2 P̂〈K,df〉

and, because of (4.4),

(5.2) γ
(
P̂K(fψ) − f P̂K(ψ)

)
= 2

γ K(df, dψ) + 2K(df, A)ψ.

By interchanging f with ψ we get

(5.3) γ
(
P̂K(fψ) − ψ P̂K(f)

)
= 2

γ K(dψ, df) + 2K(dψ, A) f,

and subtracting term by term,

ψ P̂K(f) − f P̂K(ψ) = 2
γ
KijAj(ψ∂if − f∂iψ).

For f = 1 we get formula (5.1).

Remark 5.1. Formula (5.1) shows that P̂K is a first-order operator on ψ for A 6= 0 or a zero-order

operator for A = 0. This is not acceptable, if we require the operator P̂G associated with a metric
tensor to be of second order (more precisely, to be equal to the Laplace operator, up to a constant
factor). However, if in the proof above we consider f = c (constant), then all the equalities involved are
identically satisfied (0 = 0) and we cannot derive formula (5.1). A second possibility is to consider only
tensors and functions such that

(5.4) {PK, f} = 0, i.e. K∇f = 0.
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Then (5.2) implies

(5.5) P̂K(fψ) = f P̂K(ψ) = ψ P̂K(f) = P̂K(ψf).

From (5.3) it follows that
K(dψ, df) = γKij∂iψAj f,

thus, for f 6= 0,
Kij∂iψAj = 0.

This formula is not acceptable except for A = 0. But for A = 0 we cannot derive formula (5.1).

Thus,

Proposition 5.2. A quantization rule can be defined only on special subsets of the observables f + PK.
If we choose A = 0, then we are forced to consider only tensors K and functions f such that Kdf = 0. If
we choose A 6= 0, then we are forced to consider only f = c.

Let us consider on Q a symmetric connection with covariant derivative ∇i. Then with any symmetric
contravariant 2-tensor K we associate the pseudo-Laplacian operator

∆
K
ψ = ∇i(K

ij∂iψ).

We denote by
δX = ∇iX

i

the divergence of any vector field. We shall use the same symbol δ for the co-differential operator on
contravariant skew-symmetric tensors.

Let us consider the homogeneous observables PK in the special case where K is the symmetric product
of two vector fields,

K = X�Y = 1
2

(X⊗ Y + Y ⊗X), Kij = X(iY j) = 1
2

(XiY j + Y iXj ).

Proposition 5.3. If for the observables PX and PY we assume the quantization rule (4.4) with A = 0
i.e.,

(5.6) P̂Xψ = 1
γ 〈X, dψ〉,

and the symmetrization rule

(5.7) (PXPY )̂ = 1
2

(P̂XP̂Y + P̂YP̂X),

then

(5.8) P̂K = 1
γ2 ∆

K
− 1

2γ (δX P̂Y + δY P̂X), K = X� Y

where ∆
K

and δ are associated with any symmetric connection.

Proof.

(PXPY )̂ψ = 1
2

(P̂XP̂Y + P̂YP̂X)ψ

= 1
2γ2

(
Xk∂k(Y i∂iψ) + Y k∂k(Xi∂iψ)

)
= . . .

If we introduce any symmetric connection, then

. . . = 1
2γ2

(
Xk∇k(Y i∇iψ) + Y k∇k(Xi∇iψ)

)

= 1
2γ2

(
∇k(XkY i∇iψ + Y kXi∇iψ) −∇kX

k Y i∇iψ −∇kY
k Xi∇iψ

)

= 1
γ2

(
∇k(X(kY i)∇iψ − 1

2

(
δX 〈Y, dψ〉 + δY 〈X, dψ〉

))

= 1
γ2

(
∇k(X(kY i)∇iψ − 1

2

(
δX 〈Y, dψ〉 + δY 〈X, dψ〉

))

= 1
γ2

(
∆

K
ψ − γ

2

(
δX P̂Yψ + δY P̂Xψ

))
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Remark 5.2. The quantization rule (5.8) is not invariant under the transformation

X 7→ fX, Y 7→ 1

f
Y,

which leaves K invariant, unless f = constant.

Remark 5.3. If δX = δY = 0, then the quantization rule reduces to

(5.9) P̂K = 1
γ2 ∆

K
, K = X� Y.

This formula can be extended to any linear combination with constant coefficients of symmetric products
of ”solenoidal” vector fields. We recall that all these conclusions come from the assumptions (5.6) and
(5.7).

Remark 5.4. The very restrictive conditions imposed by of the above remarks are fulfilled by a Killing
tensor K on a space of constant curvature and of the Levi-Civita connection. Indeed, in these spaces
any Killing tensor is reducible to a linear combination of symmetric products of Killing vectors, and any
Killing tensor satisfies δX = 0.

6. Separable systems

Let us consider a natural Hamiltonian system

H = G+ V = 1
2 g

ij(q) pipj + V (q),

where gij are the contravariant components of a metric tensor G. It is known that such a system is
orthogonally separable i.e., the corresponding Hamilton-Jacobi equations admits a complete additive
separated complete solution is some orthogonal coordinate system q (see below) if and only if it admits
an involutive n-dimensional space H of quadratic first integrals in involution of the kind

HK = 1
2 PK + VK,

where K are Killing 2-tensors forming a Killing-Stäckel algebra and VK are functions on the n-
dimensional configuration manifold Q (canonically extended to the cotangent bundle T ∗Q. This space
include the Hamiltonian itself, HG = H . A Killing-Stäckel algebra K is a n-dimensional linear space
of Killing 2-tensors in involution with n eigenvectors in common (thus, commuting as linear operators).
Then, it can be proved that (see Benenti, Chanu, Rastelli for details)

Proposition 6.1. An exact quantization mapping is defined on the space H by setting

(6.1) P̂Kψ = − 1
γ2 ∆

K
ψ = − 1

γ2 δ(K∇ψ) = − 1
γ2 ∇i(K

ij∂jψ),

where ∇i is the covariant derivative with respect to the Levi-Civita connection, provided that

(6.2) δ(KR −RK) = 0, ∀K ∈ K,

where R is the Ricci tensor.

In (6.2) KR − RK is the commutator of K and R interpreted as linear operators on vector fields
or 1-forms. The obstruction (6.2) has been called the pre-Robertson condition. In any separable
orthogonal coordinate system this condition is equivalent to

(6.3) ∂iRij − ΓiRij = 0, i 6= j (no sum over the indices)

where Γi are the contracted Christoffel symbols,

Γi = gijg
hkΓj

hk.
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The pre-Robertson condition is obviously satisfied if

(6.4) Rij = 0, i 6= j.

This is the well known Robertson condition, found by Eisenhart. Indeed, following a precise defini-
tion of multiplicative separation of the Schrödinger equation,

(6.5) − 1
γ2 ∆ψ + (V − E)ψ = 0,

corresponding to a suitable completeness condition it can be shown that

Proposition 6.2. The Schödinger equation admits a solution of the form

ψ =

n∏

i=1

ψi(q
i, cA),

where (cA) are 2n constant parameters such that

(6.6) det




ψi

∂ψ′
i

∂cA
− ψ′

i

∂ψi

∂cA

ψi
∂ψ′′

i

∂cA
− ψ′′

i

∂ψi

∂cA



 6= 0

if and only if the corresponding Hamilton-Jacobi equation is (additively) separable i.e., it admits a solution
of the kind

(6.7) W =

n∑

i=1

Wi(q
i; aj)

where (aj) are n constant parameters such that

(6.8) det

[
∂W ′

i

∂aj

]
6= 0.

and moreover Rij = 0 for i 6= j.

It follows that a separable natural Hamiltonian system whose Schrödinger equation is separable is ”exactly
quantizable” in the sense that there exists a quantization rule on the whole space H of the first integrals
in involution PK. In this case the corresponding operators commute,

[
P̂K1

, P̂K2

]
= 0.

When R = κG (Einstein spaces) both Robertson and pre-Robertson conditions are satisfied. Then we
can assert that

Proposition 6.2. On Einstein spaces any orthogonally separable Hamiltonian system is exactly quanti-
zable.

It can be shown that the same property holds for non-orthogonal separable systems (Benenti, Chanu,

Rastelli, 2002), where also linear first integrals (i.e., Killing vectors) are involved. Open questions are:
(i) Assume that a Hamiltonian system is integrable with quadratic and linear first integrals in involution;
under which conditions it is exactly quantizable i.e., the linear operators corresponding to these first
integrals commute? (ii) Conversely, if it is exactly quantizable, when it is separable?
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7. The normalization conditions

Since an eigenfunction is determined up to a constant factor, we impose a normalization condition.
This condition depends on the kind of the spectrum of the linear operator and it requires the presence
on Q of a volume n-form η, so that Q is required to be orientable.

Let us write the eigenstate equation of a linear operator L in the form

(7.1) Lψ(q, λ) = λψ(q, λ),

pointing out the fact that ψ depends not only on the point q ∈ Q, but also on the eigenvalue λ. Then we
can consider two cases: (i) If the eigenvalue λ belongs to a discrete spectrum (i.e., to a denumerable
set of eigenvalues), the normalization condition is

(7.2)

∫

Q

|ψ|2η = 1, |ψ|2 = ψ∗ψ,

(ii) If the eigenvalue λ belongs to a continuous spectrum i.e., to an interval I ⊂ R of eigenvalues, the
normalization condition is

(7.3) lim
∆λ→0

1

∆λ

∫

Q

|∆Ψ|2 η = 1,

where, by definition,

(7.4) ∆Ψ(q, λ,∆λ) =

∫ λ+∆λ

λ

ψ(q, x)dx.

Such a function is called proper differential (cf. Fock, p. 36). These normalization conditions can be
extended to the case of simultaneous eigenfunctions of commuting operators and to the case where ψ is
defined through a distribution (namely, a Dirac delta). Thus, the only assumption we need is that the
eigenfunctions and the operators belong to suitable linear spaces, to be specified later on, for which the
above equations and integrals exist.

From these normalization conditions it follows that an eigenfunction ψ is determined up to a unitary
constant factor eiθ. Thus a stationary state is represented by a class of equivalence of normalized eigen-
functions, being equivalent two functions ψ and ψ′ such that ψ′ = eiθ ψ.

8. The universal constant γ

Proposition 8.1. Assume that (i) on the space of linear operators a linear endomorphism †:L 7→ L† is
defined such that

(8.1) (LM)† = M †L†, z† = z∗,

and that (ii) we give a physical meaning only to those operators such that

(8.2) L† = L,

then γ is pure imaginary (cf. Fock, p. 44).

Proof. If we assume that [L,M ]† = [L,M ] for two operators such that L† = L and M † = M , then (3.1)
and (8.1) imply γ∗ = −γ.
This proposition is rather vague, since we have not defined such an operator † (for this, we need a
definition of a ”Hermitian bilinear form” on the space of linear operators; an operator satisfying (8.2)
is ”self-adjoint” or ”Hermitian”), but it gives a first formal reason for the universal constant γ to be an
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imaginary number. However, it does not show that it must be imaginary-positive (or negative). To the
same conclusion we are led by the following two remarks.

Remark 8.1. If A is exact, A = dS, then

(8.3) P̂X(ψ) = 1
γ 〈X, dψ〉 + 〈X, dS〉 ψ

and the eigenstate equation
P̂X(ψ) = λψ

reads

(8.4) 〈X, dψ〉 = γ (λ − 〈X, dS〉)ψ.

This shows that

(8.5) ψ′ = eγS ψ

is an eigenfunction corresponding to the operator P̂X for A = 0,

(8.6) 〈X, dψ′〉 = γ λψ′.

We conclude that if the universal constant γ is pure imaginary, then ψ and ψ′ are equivalent and possibly
simultaneously normalizable.

Remark 8.2. A linear operator L is selfadjoint when (Born, 1960, p. 497)

(8.7)

∫

Q

φ∗ (Lψ) η =

∫

Q

(Lφ)∗ ψ η.

Let us consider the operator
Lψ = c 〈X, dψ〉 = cXi∂iψ, c ∈ C,

defined by a real vector field X. Then from equation (8.7) we get

c

∫

Q

φ∗ (Xi∂iψ) η =

∫

Q

(cXi∂iφ)∗ ψ η,

c

∫

Q

Xi∂i(φ
∗ψ) η − c

∫

Q

Xi∂iφ
∗ψ η = c∗

∫

Q

Xi∂iφ
∗ψ η.

(8.8) c

∫

Q

Xi∂i(φ
∗ψ) η = (c+ c∗)

∫

Q

Xi∂iφ
∗ ψ η.

Let us consider a Riemannian structure on Q and the corresponding volume element η. Then,

Lψ = cXi∂iψ = cXi∇iψ = c∇i(ψX
i) − cψ∇iX

i,

and from (8.8) it follows that

c

∫

Q

∇i(X
iφ∗ψ) η − c

∫

Q

ψφ∗ ∇iX
i η = (c + c∗)

( ∫

Q

∇i(φ
∗Xi)ψ η −

∫

Q

ψφ∗ ∇iX
i η.

Thus, (8.8) becomes equivalent to

(8.9) c

∫

Q

∇i(φ
∗ψXi)η = (c + c∗)

∫

Q

∇i(φ
∗Xi)ψη.
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Let us consider a function φ∗ with compact support D ⊂ Q and vanishing on the boundary ∂D. Define
X̄ = φ∗X. By Gauss’ theorem, ∫

D

δX̄ =

∫

∂D

flow of X̄,

we get

(c+ c∗)

∫

D

∇i(φ
∗Xi)ψ η + c∗

∫

D

ψφ∗ ∇iX
i η = 0.

Let us consider the case δX = 0, i.e.,
∇iX

i = 0.

Then we get

(c+ c∗)

∫

D

∇i(φ
∗Xi)ψ η = 0.

This proves

Proposition 8.2. The linear operator L = cXi∇i, for a vector field X = (Xi) such that δX = 0, is
selfadjoint if and only if c+ c∗ = 0.

In other words, the operator P̂X, at least for A = 0 and for a solenoidal vector field, is selfadjoint only if
the constant γ = c−1 is pure imaginary.

Let us call quantum-observable (Q-observable) a classical observable F which admits a well defined

linear operator F̂ with normalized eigenfunctions and real eigenvalues.

From the following elementary examples we conclude that

Proposition 8.3. If we want that the basic observables PX on the real line Q = R be Q-observable, then
the universal constant must be positive-imaginary, that is of the form

(8.7) γ = i
h̄ , h̄ > 0.

Example 8.1. For Q = R = (x), and X = ∂x, the eigenstate equation becomes (we consider A = 0)

dψ

dx
= γ λψ.

Thus, the eigenfunctions are
ψ(x, λ) = c eγλx, c ∈ C.

We are in the case of a continuous spectrum and we apply the normalization condition (7.3), in order to
find the constant c. The proper differential is given by:

∆Ψ = c

∫ λ+∆λ

λ

eγtx dt = c 1
γx

[
eγtx

]λ+∆λ

λ
= c

γx e
γλx

(
eγ∆λx − 1

)
.

If we set
γ = a + ib,

then

∆ψ∗∆ψ = |∆ψ|2 =
|c|2

|γ|2 x2
e2aλx

[
e2ax∆λ + 1 − 2 eax∆λ cos(bx∆λ)

]
.

The last term is of the kind

f(x) =
1

x2
eαx cosβx,

with α, β ∈ R. Its integral for x→ +∞ does not have a limit, thus if we want a normalization the integral
must converge. If we set β = 0 (b = 0) the situation is even worst, so we must have α = 0 i.e., a = 0: the
universal constant γ must be pure imaginary. Hence (in this case η = dx),

|∆Ψ|2 dx =
2 |c|2
b2x2

(
1 − cos(bx∆λ)

)
dx = 4

|c|2
b2x2

sin2 bx∆λ

2
dx,
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and ∫

R

|∆Ψ|2 dx = 2
|c|2
b

∆λ

∫ +∞

−∞

sin2 ξ

ξ2
dξ, ξ = 1

2 b∆λx.

Since ∫ +∞

−∞

sin2 ξ

ξ2
dξ = π,

we conclude that (cf. Fock, p. 50),

1

∆λ

∫

R

|∆Ψ|2 dx = 2
|c|2
b
π,

and the normalization condition gives

|c|2 =
b

2π
,

thus,

c =

√
b

2π
eiθ, θ ∈ R.

The factor eiθ is inessential (since eiθψ is equivalent to ψ). We conclude first, that b (the imaginary
components of γ) is positive, so that the universal constant has the form (1); second, that the normalized
eigenfunction is (cf. Fock, p. 51)

ψ(x, λ) = (2πh̄)−
1
2 eixλ/h̄. •

From Example 8.1 we derive the following

Proposition 8.3. A necessary and sufficient condition for the basic C-observable px on the real line
R = (x) be Q-observable is that the universal constant be of the kind (8.7).

Example 8.2. For Q = R = (x), and f(x) = x, the eigenstate equation f̂ψ = λψ becomes

(8.8) xψ(x, λ) = λψ(x, λ).

This equation cannot be solved by an ”ordinary” function, but by a Dirac delta:

(8.9) ψ(x, λ) = δ(x− λ).

Let us apply the normalization procedure (for a continuum spectrum) to this case. The proper differential
is

∆Ψ =

∫ λ+∆λ

λ

δ(x − s) ds =

{
1 if x ∈ [λ, λ+ ∆λ],

0 if x /∈ [λ, λ+ ∆λ].

Then, ∫

R

|∆Ψ|2 dx = ∆λ,

and the normalization condition (7.3) is trivially satisfied. Thus, the generalized function (8.9) is a
normalized eigenfunction of the operator x̂ over the real line. We also conclude that the basic C-observable
f(x) = x on the real line is Q-observable.

Now we extend the analysis of Example 8.1 to a general basic observable PX = Xipi.

Proposition 8.4. If F and τ are two real functions on the manifold Q such that

(8.10) 〈X, dF 〉 = 0, 〈X, dτ 〉 = 1,
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then

(8.11) ψ = F eγλτ

is a solution of the eigenstate equation

(8.12) P̂X(ψ) = λψ

with A = 0.

Proof. The eigenstate equation (34) reads

〈X, dψ〉 = γλψ.

If ψ has the form (8.11), then

〈X, dF 〉 eγλτ + F γ λ 〈X, dτ 〉 eγλτ = F γ λ eγλτ .

Remark 8.3. A function F such that 〈X, dF 〉 = 0 is a first integral of the dynamical system X. A
function τ such that 〈X, dτ 〉 = 1 when restricted to an orbit of X coincides, up to an additive constant,
with the affine parameter over the integral curves of X (the affine parameter is the ”proper time” measured
by a point running along that orbit, making its velocity equal to X). Note that this result does not depend
on the presence of any metric on Q. However, if Q is Riemannian and X is a Killing vector, then the
scalar I = XiXi is a first integral (it is constant along the integral curves) and the affine parameter τ is
the length of the integral curves (starting from a fixed hypersurface, transversal to X) divided by

√
I.

Remark 8.4. Assume that all orbits of X are closed. Let us denote by T (q) the period of the orbit
passing through q ∈ Q. This means that if cq: R → Q is the integral curve of X based on q, then
cq(T ) = cq(0), and T is the minimal positive number for which this equation is satisfied. From (8.11) we
see that, in order to have a ”single valued” function ψ, the exponent γλT must be an imaginary number
and a multiple of iπ. Since λ and T are real, once more we conclude that the universal constant must be
an imaginary number. It follows that

λ
h̄
T = 2mπ, m ∈ Z = {0,±1,±2, . . .}.

This shows that T must be a constant independent on the orbit, so that the eigenvalues are

(8.13) λ = mh̄
2π

T
= mhν h = 2πh̄, ν = 1

T
,

where m ∈ Z (integer number). It remains to look at the normalization of the eigenfunctions. From
(8.11) and γ = i/h̄ it follows that |ψ|2 = F 2. Hence, the normalization condition (7.3) is equivalent to

(8.14)

∫

Q

F 2 η = 1.

This leads to

Proposition 8.5. A basic classical observable PX corresponding to a vector field X with all closed orbits
is a Q-observable if all orbits have the same period and there exists a first integral F such that (8.14)
holds. Then, the spectrum is discrete and given by (8.13).

Remark 8.5. The Killing vectors generating rotations in Euclidean spaces fulfill the above conditions.
Are there other special vector fields satisfying these conditions (for instance, invariant vector fields on
Lie groups) ?

Remark 8.6. Let X be a complete vector field whose flow ϕ:Q × R → Q defines a diffeomorphism
Φ:U ×R → Q, where U is a n− 1-dimensional submanifold of Q transversal to the orbits of X. We have
by definition,

Φ(u, τ ) = ϕ(u, τ ).
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No orbit of X is closed. Then an eigenfunction of P̂X is, cf. (8.11),

ψ = F eiλτ/h̄

where τ is interpreted as a coordinate on Q, assuming values on all R with τ = 0 on U . The first integral
F can be defined by

F (q) = f(u),

where f is any function on U and q = ϕ(u, τ ). This is the case, for instance, of the Killing vectors
generating translations in Euclidean spaces.
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