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1. About the definition of separation

A Hamiltonian function H on a symplectic 2n-dimensional manifold (M, w)
is separable if there exists a canonical coordinate system (g, p) = (¢, pi),
w = dp; A dq" such that the H-J equation H(q, p) = E, where p; = 0W/dq'

has a complete solution of the form W(q,c) =3, Wi(qt, ), where ¢ =
(c;) are n constant parameters satisfying the completeness condition

W
dq0c

det | 5oge] # 0

If we assume this as a basic definition, then the theory of the separation of
variables in the Hamilton-Jacobi equation has only two basic theorems:

Theorem 1.1. The Hamiltonian H is separable in the canonical coordi-
nates (q,p) if and only if the Levi-Civita separability conditions are
satisfied (no summation over the indices i # j; 0; = 8/9q", 8" = 9/0p;) 12

O'0'HO;HO;H+0,0;HOHPH—-90;HOHIH—0,0’HIHOI;H =0.

Theorem 1.2. FEvery Hamiltonian is separable.

Proof. This is aconsequence of the Jacobi theorem. There exists a local
canonical transformation (¢,p) — (@, b) such that (a) are ignorable: H =
h(b). The Levi-Civita conditions w.r.to (a, b) are obviously satisfied. |

The true problem is in fact to find such a canonical transformation, and
this is just done by solving the Hamilton-Jacobi equation, in any manner,
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by separation or not. As a consequence, if we want an effective theory (with
a larger number of theorems) we must specify special classes of

(i) symplectic manifolds,
(ii) canonical coordinates and canonical transformations,
(iii) Hamiltonians.

A convenient choice is the following:

(i) cotangent bundles T*Q of Riemannian manifolds (Q, g/),
(ii) canonical fibered coordinates and canonical point transformations,
(iii) natural Hamiltonians, H = G+ V = 1 g"p;p; + V.

In item (iii) we can consider, as a special but fundamental case, the geodesic
Hamiltonian H = G = § g”p;p; and the general natural Hamiltonian with
vector potential H = G+A+V = % g7 pipj+A'p;+V.? Coordinates on Q for
which the geodesic Hamiltonian G is separable are called separable. The
separation of G is a necessary condition for the separation of H = G+A+V.

2. Separable webs

In accordance with the choices above it is convenient to think of ”equiva-
lence classes” of separable coordinates and consquently, of ”coordinate sur-
faces” and "webs” (families of foliations). Indeed, if the separation occurs
in a coordinate system ¢, it occurs also in a class of ”equivalent” separable
coordinate systems, each other related by suitable point-transformations.
Indeed, the separation is not a property of a particular coordinate system,
but a property of an equivalence class. Hence, what we need at the be-
ginning of our theory is to solve two problems: (i) to give a definition of
”equivalent separable coordinates” and (ii) to find ”geometrical” (or ”in-
trinsic” or ”coordinate-independent”) objects representing such an equiva-
lence class. Problem (i) can be solved by the symplectic interpretation of a
complete solution of the H-J equation: it is a (local) Lagrangian foliation
of T*(@ transversal to the fibers such that the Hamiltonian is constant on
each leaf, and it is described by equations p; = 9;W. Then we say that
two separable systems ¢ and ¢’ are equivalent! if the corresponding com-
plete solutions W and W’ describe the same foliation (in the intersection
of their domains of definition). Problem (ii) can be solved by the analysis
of the Levi-Civita separability conditions. In the case of the orthogonal
separation, where we deal with diagonalized metric tensors, g%/ = 0 for
i # j, it is clear that an orthogonal separable coordinate system q is equiv-
alent to any other coordinate system ¢’ which is related to g by a rescaling
i.e., by a point-transformation whose Jacobian matrix is c_iiagonal. Such



a transformation leaves invariant the coordinate hypersurfaces ¢* = const.
Hence, the notion of equivalence class of orthogonal separable cordinates is
replaced by the geometrical and more general notion of separable orthog-
onal web, consisting of n pairwise orthogonal foliations of submanifolds of
codimension 1, (8%) = (S!,...,8™), such that any adapted local coordinate
system ¢ is separable. It can be proved that3

Theorem 2.1. An orthogonal web is separable if and only if there exists
a Killing two-tensor K with simple eigenvalues and eigenvectors orhogonal
to the leaves of the web. A potential V is separable in this web (i.e., the
Hamiltonian H = G4V is separable) if and only if the one-form KdV, the
image of AV by K, is closed,

d(KdV) = 0. (1)
As a corollary we have

Theorem 2.2. A natural Hamiltonian H = G+ V is separable if and only
if there exists a Killing two-tensor K with pointwise simple eigenvalues and
normal (i.e., orthogonally integrable or surface forming) eigenvectors, such
that equation (1) is satisfied.

Such a tensor K has been called charactreristic tensor and equation (1)
characteristic equation.

For the general separation (also called ”"non-orthogonal” separation) a
basic property is the existence, within an equivalence calss, of standard

coordinates (¢%,¢%), a = 1,...,m, « = m + 1,...,n, where (¢%) are
ignorable and (¢%) are called essential, for which the metric tensor assume
the standard form !:24
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Then it can be proved that an equivalence class of separable coordinates is
geometrically represented by a separable Killing web (S%, D, K) made



of the following objects:*

S = (81,82%,...,8™) = m orthogonal foliations of hypersurfaces

D = r-dimensional (r = m — n) space of commuting Killing vectors
tangent to the foliations S¢

K = D-invariant Killing 2-tensor with m eigenvectors (X,)
orthogonal to §% and corresponding to distinct eigenvalues A®.

The eigenvectors X, and the eigenvalues \* are called essential. It is
remarkable the fact that, under these conditions, D is normal i.e., the
distribution orthogonal to D is completely integrable; this means that there
exists a foliation of m-dimensional manifolds orthogonal to the orbits of D.
Any coordinate system (¢%, ¢) such that (i) equation ¢* = const. describes
(locally) the foliation &%, and (ii) (9,) form a basis of D and equations
q® = 0 describe a submanifold Z orthogonal to D, is a standard separable
coordinate system. The following picture illustrates the case m = 2.

Killing vectors X, = 0o € D
orbits of D,

>
S~

foliation S2,
q2 = const.

> essential eigenvectors of K
(X1, X2) =~ (d¢', dg°)

\ essential eigenforms

foliation S*,
g~ = const.

section Z
of the orbitso(l)f D,

q =

jen}

A separable Killing web is fully represented by a pair (D, K), which has
been called characteristic Killing pair,* where D is a r-dimensional
space of commuting Killing vectors and K is a D-invariant Killing 2-tensor
with m = n — r normal eigenvectors corresponding to distinct eigenvalues.
Then a geometrical characterization of the general separation for a natural
Hamiltonian is given by the following *

Theorem 2.3. The Hamiltonian H = G +V is separable if and only if
there exists a characteristic Killing pair (D, K) such that

DV =0, d(KdV)=0



3. First integrals

The separation is related to the existence of a complete system of first
integrals in involution. Thus, separable Hamiltonian systems form a special
class of integrable system.

Definition 3.1. A Killing-Stéckel algebra on a Riemannian manifold
@, is an n-dimensional space KC of Killing 2-tensors with n common and
normal eigenvectors.

It follows that the elements of a KS-algebra commute as linear operators

KiK; - KK, =0, VKi, K € K, (2)
and are in involution,

{P(K1), P(K2)} =0, VK, Ks € K. (3)
Here we use the notation Px = P(K) = K%p;p;. This second property
follows from the so-called Killing-Eisenhart equations®-®

N = (N = N)9;Ing?? (4)

which characterize the Killing tensors diagonalized in orthogonal coordi-

nates. It is a remarkable fact (firstly pointed out by Kalnins and Miller!?)
that, conversely,

Theorem 3.1. An n-dimensional space K of Killing tensors is a KS-
algebra if and only if its elements commute and are in involution (equatons

(2) and (3) hold).®
The analysis of the Killing-Eisenhart equations (4) shows that

Theorem 3.2. Any KS-algebra contains the metric tensor G = (g*) and
it is uniquely determined by a characteristic Killing tensor K i.e., by
a Killing tensor with simple eigenvalues and normal eigenvectors.®

Theorem 3.3. If the characteristic equation d(KdV') = 0 is satisfied by
a characteristic Killing tensor K, then it is satisfied by all elements of the
KS-algebra IC generated by K, and the functions

Hk = § Px + Vk, dVk = KdV, VK e K, (5)

form an n-dimensional space H(KC,V) of quadratic first integrals in
involution.%

For the general separation we have similar definitions and results: the space
of quadratic first integrals, whose dimension is m, is implemented by the
r-dimensional space of linear first integrals Px = X’p; associated with the
Killing vectors X € D.6



4. The separation of the Schrodinger equation

On the space of smooth (real or complex-valued) functions 1 on @ we
consider the following second-order linear differential operators,

Ay =g V,;V;y=06Vy (Laplacian operator)

éKU) = Vi(KYV;9) = 06(KVy) (pseudo-Laplacian operator)
Pxip= =P A Y= —Vi(K7V;9)

Hyy) = %ﬁKi/)-l-VK )= —§AK¢+VK'¢-

ﬁw = ﬁgw = - % A+ V -y (Schrédinger operator).

Notation: V is the gradient operator, Vi) = (¢9;1)); V; is the covariant
derivative w.r.to the Levi-Civita connection; ¢ is the divergence (or co-
differential) operator on vector fields or on skew-symmetric contravariant
tensors, §A = (V;A%F); on functions §f = 0; it follows that 62 = 0.

A general definition of separation of variables for partial differential equa-
tions of any order is due to Kalnins and Miller.!! This theory has been revis-
ited and implemented by two definitions® of separation for the Shrodinger
equation

Hi = Ev.

Definition 4.1. The Schrédinger equation is freely separable if it admits
a complete separated solution of the form

U(q,c) = Hwi(qi,g)

depending on 2n parameters ¢ = (c¢y) satisfying the completeness condi-
tion

8’[1,1'
80[

o, U,
80[]#0, Ul_wi, U’L_wi-

det [

Theorem 4.1. The Schrédinger equation is freely separable if and only if
there exists a characteristic Killing tensor K (with simple eigenvalues and
normal eigenvectors) such that d(KdV) = 0 and KR = RK, where R is
the Ricci tensor.S

The commutation condition KR = RK is called Robertson condition.
In other words, the Schrodinger equation is freely separable if and only if
the corresponding HJ-equation is orthogonally separable and the Robertson
condition, whose coordinate expression is® R;; = 0 for i # j, is satisfied.



It is known that the multiplicative separation of the Schrodinger equation
is related to the existence of symmetry operators.!® The commutation re-
lations between the second-order operators associated with the orthogonal

separation are considered in the following theorem:”

Theorem 4.2. If K is a KS-algebra and V is a separable potential, then
the following five conditions are equivalent

[Hx,H] =0, VKek
JKR-RK)=0, YKek (%)
[ﬁKl,ﬁK2] =0, VKK ek
5(K1RK2—K2RK1) :0, VKl,KQ,GK

where Hg are the first integrals in involution defined in (5), R;; are the
components of R in any orthogonal separable coordinate system and I'; are
the contracted Christoffel symbols, T'; = g™ T'p; ;.7

Remark 4.1. The potential V' is involved only in the first and fourth com-
mutation relation. Condition (*) < (**) has been called pre-Robertson
condition. It is implied by the Robertson condition. Hence, if the
Schrédinger equation is freely separable, then the second-order operators
ﬁK associated with the first integrals in involution Hkx commute. The
converse is not true in general. It is true if R = kG (Einstein spaces).

Definition 4.2. A reduced separated solution of the Schrédinger equa-
tion is a solution of the form

m

(g, 0) =[] vala® 0 - T tale®)

a=1 a=m-+1

where ¢, = exp(kq ¢%), being k,, constant parameters, and where all the re-
maining factors depend on further 2m parameters ¢ = (c4) (A =1,...,2m)
satisfying the completeness condition

Oy | 0o YV,
det[acA ’80Ai|$£0, UG_E, 'Ua-% (a—l,...,m),

When such a solution exists we say that the Schrodinger equation is re-
ductively separable in the coordinates (¢%,¢%*). The coordinates (¢%)
and (¢*) are called constrained and free coordinates respectively.

Theorem 4.3. The Schrodinger equation is reductively separable if and
only if there exists a characteristic Killing pair (D, K) such that: (i) the
potential V is D-invariant, DV = 0; (ii) the characteristic equation is



satisfied, d(KdV = 0; (iii) the spaces orthogonal to D are invariant under
the Ricci tensor R, interpreted as a linear operator, and the restrictions
to these spaces of R and K commute or equivalently, (iii’) the essential
eigenvectors are eigenvectors of the Ricci tensor R (i.e., "Ricci principal
directions”).

This means that the reduced separation always occurs in standard separa-
ble coordinates (g%, ¢®) (possibly non-orthogonal) for the HJ-equation; the
additional condition (iii), or (iii’), is equivalent to R4, = 0 for a # b.

Theorem 4.4. If (D, K) is a separable Killing algebra and V' is a separable
potential, then the following five conditions are equivalent

[Ax,H] =0, VKek

J(KR —RK) =0, VKeKk

OuRap — o Rap =0, a#b, in.s. (7)
[ﬁKl,ﬁK2] =0, VKl,KQ,GK

5(K1RK2 —KQRKl) =0, VKl,KQ,GK

where Hg are the quadratic first integrals defined in (5), Rap are the covari-
ant components of the Ricci tensor corresponding to the essential separable
coordinates (¢%) and Ty = g% Fij,a.7

Conditions (7) are similar to (6). A remark similar to Remark 4.1 holds.
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