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1. About the definition of separation

A Hamiltonian function H on a symplectic 2n-dimensional manifold (M,ω)

is separable if there exists a canonical coordinate system (q, p) = (qi, pi),

ω = dpi ∧ dq
i such that the H-J equation H(q, p) = E, where pi = ∂W/∂qi

has a complete solution of the form W (q, c) =
∑

i Wi(q
i, c), where c =

(ci) are n constant parameters satisfying the completeness condition

det

[
∂2W

∂q∂c

]
6= 0.

If we assume this as a basic definition, then the theory of the separation of

variables in the Hamilton-Jacobi equation has only two basic theorems:

Theorem 1.1. The Hamiltonian H is separable in the canonical coordi-

nates (q, p) if and only if the Levi-Civita separability conditions are

satisfied (no summation over the indices i 6= j; ∂i = ∂/∂qi, ∂i = ∂/∂pi)
12

∂i∂jH ∂iH ∂jH+∂i∂jH ∂iH ∂jH−∂i∂jH ∂iH ∂jH−∂i∂
jH ∂iH ∂jH = 0.

Theorem 1.2. Every Hamiltonian is separable.

Proof. This is aconsequence of the Jacobi theorem. There exists a local

canonical transformation (q, p) → (a, b) such that (a) are ignorable: H =

h(b). The Levi-Civita conditions w.r.to (a, b) are obviously satisfied.

The true problem is in fact to find such a canonical transformation, and

this is just done by solving the Hamilton-Jacobi equation, in any manner,
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by separation or not. As a consequence, if we want an effective theory (with

a larger number of theorems) we must specify special classes of

(i) symplectic manifolds,

(ii) canonical coordinates and canonical transformations,

(iii) Hamiltonians.

A convenient choice is the following:

(i) cotangent bundles T ∗Q of Riemannian manifolds (Q, gij),

(ii) canonical fibered coordinates and canonical point transformations,

(iii) natural Hamiltonians, H = G+ V = 1

2
gijpipj + V.

In item (iii) we can consider, as a special but fundamental case, the geodesic

Hamiltonian H = G = 1

2
gijpipj and the general natural Hamiltonian with

vector potentialH = G+A+V = 1

2
gijpipj+A

ipi+V .5 Coordinates onQ for

which the geodesic Hamiltonian G is separable are called separable. The

separation ofG is a necessary condition for the separation ofH = G+A+V .

2. Separable webs

In accordance with the choices above it is convenient to think of ”equiva-

lence classes” of separable coordinates and consquently, of ”coordinate sur-

faces” and ”webs” (families of foliations). Indeed, if the separation occurs

in a coordinate system q, it occurs also in a class of ”equivalent” separable

coordinate systems, each other related by suitable point-transformations.

Indeed, the separation is not a property of a particular coordinate system,

but a property of an equivalence class. Hence, what we need at the be-

ginning of our theory is to solve two problems: (i) to give a definition of

”equivalent separable coordinates” and (ii) to find ”geometrical” (or ”in-

trinsic” or ”coordinate-independent”) objects representing such an equiva-

lence class. Problem (i) can be solved by the symplectic interpretation of a

complete solution of the H-J equation: it is a (local) Lagrangian foliation

of T ∗Q transversal to the fibers such that the Hamiltonian is constant on

each leaf, and it is described by equations pi = ∂iW . Then we say that

two separable systems q and q′ are equivalent1 if the corresponding com-

plete solutions W and W ′ describe the same foliation (in the intersection

of their domains of definition). Problem (ii) can be solved by the analysis

of the Levi-Civita separability conditions. In the case of the orthogonal

separation, where we deal with diagonalized metric tensors, gij = 0 for

i 6= j, it is clear that an orthogonal separable coordinate system q is equiv-

alent to any other coordinate system q′ which is related to q by a rescaling

i.e., by a point-transformation whose Jacobian matrix is diagonal. Such
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a transformation leaves invariant the coordinate hypersurfaces qi = const.

Hence, the notion of equivalence class of orthogonal separable cordinates is

replaced by the geometrical and more general notion of separable orthog-

onal web, consisting of n pairwise orthogonal foliations of submanifolds of

codimension 1, (Si) = (S1, . . . ,Sn), such that any adapted local coordinate

system q is separable. It can be proved that3

Theorem 2.1. An orthogonal web is separable if and only if there exists

a Killing two-tensor K with simple eigenvalues and eigenvectors orhogonal

to the leaves of the web. A potential V is separable in this web (i.e., the

Hamiltonian H = G+V is separable) if and only if the one-form KdV , the

image of dV by K, is closed,

d(KdV ) = 0. (1)

As a corollary we have

Theorem 2.2. A natural Hamiltonian H = G+V is separable if and only

if there exists a Killing two-tensor K with pointwise simple eigenvalues and

normal (i.e., orthogonally integrable or surface forming) eigenvectors, such

that equation (1) is satisfied.

Such a tensor K has been called charactreristic tensor and equation (1)

characteristic equation.

For the general separation (also called ”non-orthogonal” separation) a

basic property is the existence, within an equivalence calss, of standard

coordinates (qa, qα), a = 1, . . . , m, α = m + 1, . . . , n, where (qα) are

ignorable and (qa) are called essential, for which the metric tensor assume

the standard form 1,2,4

g11

. . .
gaa

. . .
gmm

0

0

0

0 gαβ

......................................................................................................................................................................................................................

......................................................................................................................................................................................................................

................................................................................................................................................................................................................................

................................................................................................................................................................................................................................

[
gij

]
=

Then it can be proved that an equivalence class of separable coordinates is

geometrically represented by a separable Killing web (Sa, D,K) made
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of the following objects:4

Sa = (S1,S2, . . . ,Sm) = m orthogonal foliations of hypersurfaces

D = r-dimensional (r = m− n) space of commuting Killing vectors

tangent to the foliations Sa

K = D-invariant Killing 2-tensor with m eigenvectors (Xa)

orthogonal to Sa and corresponding to distinct eigenvalues λa.

The eigenvectors Xa and the eigenvalues λa are called essential. It is

remarkable the fact that, under these conditions, D is normal i.e., the

distribution orthogonal to D is completely integrable; this means that there

exists a foliation of m-dimensional manifolds orthogonal to the orbits of D.

Any coordinate system (qa, qα) such that (i) equation qa = const. describes

(locally) the foliation Sa, and (ii) (∂α) form a basis of D and equations

qα = 0 describe a submanifold Z orthogonal to D, is a standard separable

coordinate system. The following picture illustrates the case m = 2.
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(X1,X2) ≃ (dq1, dq2)
essential eigenforms

A separable Killing web is fully represented by a pair (D,K), which has

been called characteristic Killing pair,4 where D is a r-dimensional

space of commuting Killing vectors and K is a D-invariant Killing 2-tensor

with m = n− r normal eigenvectors corresponding to distinct eigenvalues.

Then a geometrical characterization of the general separation for a natural

Hamiltonian is given by the following 4

Theorem 2.3. The Hamiltonian H = G + V is separable if and only if

there exists a characteristic Killing pair (D,K) such that

DV = 0, d(KdV ) = 0
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3. First integrals

The separation is related to the existence of a complete system of first

integrals in involution. Thus, separable Hamiltonian systems form a special

class of integrable system.

Definition 3.1. A Killing-Stäckel algebra on a Riemannian manifold

Qn is an n-dimensional space K of Killing 2-tensors with n common and

normal eigenvectors.

It follows that the elements of a KS-algebra commute as linear operators

K1K2 − K2K1 = 0, ∀K1,K2 ∈ K, (2)

and are in involution,

{P (K1), P (K2)} = 0, ∀K1,K2 ∈ K. (3)

Here we use the notation PK = P (K) = Kijpipj . This second property

follows from the so-called Killing-Eisenhart equations9,6

∂iλ
j = (λi − λj)∂i lngjj (4)

which characterize the Killing tensors diagonalized in orthogonal coordi-

nates. It is a remarkable fact (firstly pointed out by Kalnins and Miller10)

that, conversely,

Theorem 3.1. An n-dimensional space K of Killing tensors is a KS-

algebra if and only if its elements commute and are in involution (equatons

(2) and (3) hold).6

The analysis of the Killing-Eisenhart equations (4) shows that

Theorem 3.2. Any KS-algebra contains the metric tensor G = (gij) and

it is uniquely determined by a characteristic Killing tensor K i.e., by

a Killing tensor with simple eigenvalues and normal eigenvectors.6

Theorem 3.3. If the characteristic equation d(KdV ) = 0 is satisfied by

a characteristic Killing tensor K, then it is satisfied by all elements of the

KS-algebra K generated by K, and the functions

HK = 1

2
PK + VK, dVK = K dV, ∀K ∈ K, (5)

form an n-dimensional space H(K, V ) of quadratic first integrals in

involution.6

For the general separation we have similar definitions and results: the space

of quadratic first integrals, whose dimension is m, is implemented by the

r-dimensional space of linear first integrals PX = Xipi associated with the

Killing vectors X ∈ D.6
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4. The separation of the Schrödinger equation

On the space of smooth (real or complex-valued) functions ψ on Q we

consider the following second-order linear differential operators,

∆ψ = gij ∇i∇j ψ = δ∇ψ (Laplacian operator)

∆
K
ψ = ∇i(K

ij∇jψ) = δ(K∇ψ) (pseudo-Laplacian operator)

P̂Kψ = − ~
2 ∆

K
ψ = −∇i(K

ij∇jψ)

ĤKψ = 1

2
P̂Kψ + VK · ψ = − ~

2

2
∆

K
ψ + VK · ψ.

Ĥψ = ĤGψ = − ~
2

2
∆ψ + V · ψ (Schrödinger operator).

Notation: ∇ is the gradient operator, ∇ψ = (gij∂jψ); ∇i is the covariant

derivative w.r.to the Levi-Civita connection; δ is the divergence (or co-

differential) operator on vector fields or on skew-symmetric contravariant

tensors, δA = (∇iA
ij...k); on functions δf = 0; it follows that δ2 = 0.

A general definition of separation of variables for partial differential equa-

tions of any order is due to Kalnins and Miller.11 This theory has been revis-

ited and implemented by two definitions6 of separation for the Shrödinger

equation

Ĥψ = Eψ.

Definition 4.1. The Schrödinger equation is freely separable if it admits

a complete separated solution of the form

ψ(q, c) =

n∏

i=1

ψi(q
i, c)

depending on 2n parameters c = (cI) satisfying the completeness condi-

tion

det

[
∂ui

∂cI

∣∣∣∣
∂vi

∂cI

]
6= 0, ui =

ψ′

i

ψi

, vi =
ψ′′

i

ψi

.

Theorem 4.1. The Schrödinger equation is freely separable if and only if

there exists a characteristic Killing tensor K (with simple eigenvalues and

normal eigenvectors) such that d(KdV ) = 0 and KR = RK, where R is

the Ricci tensor.6

The commutation condition KR = RK is called Robertson condition.

In other words, the Schrödinger equation is freely separable if and only if

the corresponding HJ-equation is orthogonally separable and the Robertson

condition, whose coordinate expression is8 Rij = 0 for i 6= j, is satisfied.
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It is known that the multiplicative separation of the Schrödinger equation

is related to the existence of symmetry operators.13 The commutation re-

lations between the second-order operators associated with the orthogonal

separation are considered in the following theorem:7

Theorem 4.2. If K is a KS-algebra and V is a separable potential, then

the following five conditions are equivalent
[
ĤK, Ĥ

]
= 0, ∀K ∈ K

δ(KR −RK) = 0, ∀K ∈ K (∗)

∂iRij − Γi Rij = 0, i 6= j, i n.s. (∗∗)[
ĤK1

, ĤK2

]
= 0, ∀ K1,K2,∈ K

δ(K1RK2 − K2RK1) = 0, ∀ K1,K2,∈ K

(6)

where HK are the first integrals in involution defined in (5), Rij are the

components of R in any orthogonal separable coordinate system and Γi are

the contracted Christoffel symbols, Γi = ghj Γhj,i.
7

Remark 4.1. The potential V is involved only in the first and fourth com-

mutation relation. Condition (∗) ⇔ (∗∗) has been called pre-Robertson

condition. It is implied by the Robertson condition. Hence, if the

Schrödinger equation is freely separable, then the second-order operators

ĤK associated with the first integrals in involution HK commute. The

converse is not true in general. It is true if R = κG (Einstein spaces).

Definition 4.2. A reduced separated solution of the Schrödinger equa-

tion is a solution of the form

ψ(q, c) =
m∏

a=1

ψa(qa, c) ·
n∏

α=m+1

ψα(qα)

where ψα = exp(κα q
α), being κα constant parameters, and where all the re-

maining factors depend on further 2m parameters c = (cA) (A = 1, . . . , 2m)

satisfying the completeness condition

det

[
∂ua

∂cA

∣∣∣∣
∂va

∂cA

]
6= 0, ua =

ψ′

a

ψa

, va =
ψ′′

a

ψa

(a = 1, . . . , m).

When such a solution exists we say that the Schrödinger equation is re-

ductively separable in the coordinates (qa, qα). The coordinates (qα)

and (qa) are called constrained and free coordinates respectively.

Theorem 4.3. The Schrödinger equation is reductively separable if and

only if there exists a characteristic Killing pair (D,K) such that: (i) the

potential V is D-invariant, DV = 0; (ii) the characteristic equation is
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satisfied, d(KdV = 0; (iii) the spaces orthogonal to D are invariant under

the Ricci tensor R, interpreted as a linear operator, and the restrictions

to these spaces of R and K commute or equivalently, (iii’) the essential

eigenvectors are eigenvectors of the Ricci tensor R (i.e., ”Ricci principal

directions”).

This means that the reduced separation always occurs in standard separa-

ble coordinates (qa, qα) (possibly non-orthogonal) for the HJ-equation; the

additional condition (iii), or (iii’), is equivalent to Rab = 0 for a 6= b.

Theorem 4.4. If (D,K) is a separable Killing algebra and V is a separable

potential, then the following five conditions are equivalent
[
ĤK, Ĥ

]
= 0, ∀K ∈ K

δ(KR −RK) = 0, ∀K ∈ K

∂aRab − ΓaRab = 0, a 6= b, i n.s.[
ĤK1

, ĤK2

]
= 0, ∀ K1,K2,∈ K

δ(K1RK2 −K2RK1) = 0, ∀ K1,K2,∈ K

(7)

where HK are the quadratic first integrals defined in (5), Rab are the covari-

ant components of the Ricci tensor corresponding to the essential separable

coordinates (qa) and Γa = gij Γij,a.
7

Conditions (7) are similar to (6). A remark similar to Remark 4.1 holds.
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