JOURNAL OF MATHEMATICAL PHYSICS VOLUME 43, NUMBER 11 NOVEMBER 2002

Remarks on the connection between the additive
separation of the Hamilton—Jacobi equation and the
multiplicative separation of the Schrodinger equation.
Il. First integrals and symmetry operators

S. Benenti,? C. Chanu, and G. Rastelli
Department of Mathematics, University of Turin, 10123 Torino, Italy

(Received 1 March 2002; accepted 27 June 2002)

The commutation relations of the first-order and second-order operators associated
with the first integrals in involution of a Hamiltonian separable system are exam-
ined. It is shown that these operators commute if and only if a “pre-Robertson
condition” is satisfied. This condition involves the Ricci tensor of the configuration
manifold and it is implied by the Robertson condition, which is necessary and
sufficient for the separability of the Schrodinger equation. © 2002 American In-
stitute of Physics. [DOL: 10.1063/1.1506181]

I. INTRODUCTION

The connection between the additive separation of the Hamilton—Jacobi equation and the
multiplicative separation of the corresponding Schrodinger equation has been examined in paper
1.! Two different kinds of separation have been introduced for the Schrodinger equation, called
“free”” and “‘reduced separation,” respectively, related to two suitable completeness conditions for
a separated solution and geometrically characterized in terms of “Killing—Stackel algebras” and
of “separable Killing algebras.” These are linear spaces of Killing tensors and Killing vectors
which generate complete systems of first integrals in involution, and which characterize the sepa-
ration of the Hamilton—Jacobi equation in orthogonal and in standard coordinates, respectively.
The corresponding Schrodinger equation is then separable in the same coordinate system if and
only if a “Robertson condition” is satisfied. This condition involves the Ricci tensor of the
configuration manifold and it is fulfilled in the most common applications of the theory (for
instance, on Einstein manifolds).

In the present paper we revisit the matter relating the separation of the Schrodinger equation
to the existence of “symmetry operators,” 2 i.e., to the existence of linear second-order operators
on wave functions which commute with the Schrodinger operator. These operators are in one-to-
one correspondence with the quadratic first integrals associated with the separation. We shall show
that the “‘quantization problem,” i.e., the problem of defining a correspondence between classical
observables and linear operators preserving the commutation relations,’ is solvable for the invo-
Iutive algebra of first integrals associated with the separation of the Hamilton—Jacobi equation
provided a “‘pre-Robertson” condition is satisfied. This condition is implied by the Robertson
condition, so that the quantization problem for a classical natural Hamiltonian system is solvable
if the corresponding Schrodinger equation is separable. The main theorems and remarks are stated
in Secs. III and VI in the case of the orthogonal and general separation, respectively. The proofs
are given in Secs. V and VIII, after general considerations about Killing tensors in orthogonal and
standard form illustrated in Secs. IV and VII.
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Il. GENERAL COMMUTATION RELATIONS FOR SECOND-ORDER DIFFERENTIAL
LINEAR OPERATORS

By the “quantization problem” ® we mean the problem of defining a correspondence Fi—>F
between classical and quantum observables, i.e., between smooth real functions on the cotangent
bundle T*Q (the “phase space”) of the configuration manifold of a mechanical system and
self-adjoint linear operators on a suitable “state-space” of complex-valued functions (or distribu-
tions) on Q. This correspondence is required to be R-linear and preserving the Lie-algebra struc-
ture of classical and quantum observables:

(F+G)'=F+G, (cF)'=cF (ceR), {F.G}"=[F.G].
Here, {F,G} denotes the canonical Poisson bracket of functions, vy is a universal constant, and
[F.G1=FG-GF

is the commutator of linear operators.

The quantization problem is not solvable on the whole set of observables of a phase space.
(see Ref. 3 for details, comments, and references). In accordance with Schwinger (Ref. 7, Sec. 2.4)
we can say not only that “it is a convenient fiction to assert that every Hermitian operator
symbolizes a physical quantity [...]”” but also that it is a “‘convenient fiction” to assert that with
every classical observable we can associate an Hermitian operator (i.e., a quantum observable).
However, as we shall see, the quantization problem is solvable for the classical observables
involved in the separation of variables of a natural Hamiltonian system, which are polynomials of
second degree in the momenta (p;).

We consider as a starting point the following assumptions: (i) The universal constant vy is a

4-6

positive-imaginary number: y=i/h, e R . (ii) The operator f corresponding to a function f on
O, interpreted as a function on 7*Q constant on the fibers, is defined by

Jo=f-w.

As usual, the operator f will be simply denoted by f. (iii) The operator Py corresponding to a
first-degree homogeneous polynomial

Px=X'p,

associated with a vector field X on Q, is defined by

. 1
Pxy= ; (X,dyp)=—ih{X,dy)).

(iv) The operator P corresponding to a second-degree homogeneous polynomial
Px=K ijP iPj
associated with a symmetric contravariant two-tensor K on Q, is defined by
Pyp=—1>Axp=—>Vi(K'V;9p),
where Ak is the pseudo-Laplacian operator defined by
Axip=V(K"V; 1) (2.1)

(by V; we denote the covariant derivative with respect to the Levi-Civita connection). For K
=G (the contravariant metric tensor) we find the Laplace—Beltrami operator Ag=A,
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AY=g VY.

We shall use the co-differential or divergence operator 6 on contravariant skew-symmetric tensors
A, defined by

(8A) " *=V,AT

For a function (zero-tensor), 8f=0. It follows that 6>=0.

According to the notation used in Ref. 1, Remark 7.1, we shall identify a (contravariant)
two-tensor K= (K"/) with the corresponding linear endomorphisms on vectors and one-forms, so
that we shall denote by KV ¢ the vector field image of the gradient Vi (whose components are
K d;) and by Kdi the one-form image of the differential di (whose components are
gink" d;). With this notation, the coordinate independent definition of the pseudo-Laplacian
(2.1) is

Ax=S5(KV ).
We shall deal with quadratic classical observables of the kind
Hyx=3Px+Vk., Vk:0—R,

and with the corresponding second-order operators

L1 h?
Hy=5 Pt V== 5 A+ V. (2.2)

For K=G we find the Hamiltonian and the Schrodinger operator,

1 A h?

A classical observable F in involution with H, {F,H}=0, is a first integral (or constant of motion)
of the Hamiltonian system generated by H. A linear operator £ commuting with A,

[F,H]=0,

is called a symmetry operator of the Schrodinger equation. The following commutation rules hold
for these classical observables,

{HKl,HKz}:{PKI,PKZ}"'PKIVVKZ_PKZVVKI»

(2.3)
{Hk .H}={Pk.Pc}+ Pxvv— Pyy,-

We recall that a Killing tensor is a symmetric tensor (of any order) satisfying one of the
following two equivalent conditions:

{Pk.Ps}=0 & VUK P=q, (2.4)

where Px=K" *p.p j---Px and the brackets (---) denote the symmetrization of the indices. The
first equation (2.4) means that Py is a first integral of the godesic flow.

In the second equation (2.3) the term {Pg,Pg} is a third-degree homogeneous polynomial in
the momenta (p;), while the remaining term is of first degree. This shows that

Theorem 2.1: The quadratic function Hy is a first integral of the Hamiltonian flow generated
by H if and only if K is a Killing tensor and KdV=dVy i.e., the following conditions are
equivalent
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{Pk.,Pg}=0 (K Killing tensor),

{Hg,H}=0 VV=KVV. (2.5)
For the related operators we have
Theorem 2.2: The following conditions are equivalent
{Px,Gg}=0 (K Killing tensor), 42
Hye H]=0 & h? o {Hy H'=— —P s, 2.6
[Hy.H] KV TVt o 60=0, {Hx Hy=="¢Psc,  (2:6)
where
C=KR-RK, CY=K"R}-R"K|=K"g, R"—R"g, K", Cli=-C,
and R is the Ricci tensor:
Proof: In accordance with the above-given definitions we have
hZ 2 hZ
HAxy=— 7A< - Ayt Vg |+ V( — 5 Ayt VKz//)
4 2
= IAAKw_ T(A(VK'//) +VAgy)+VVk,
ﬁ4 2
HxH = IAKAlﬂ_ T(AK(V‘ﬂ)_’_ VKA )+ ViV,
Ax(Vip) = AV +2K(dV,dy) + VA,
A(Vgh)= AV +2G(dVi,di) + VA .
Hence,
4 2
[H Hx]¢p= 7 [A Ayt 5 (PAKV+2K(dV,dy) — pA V= 2G(dV,dy))
nt h?
= T[A,AK]szrfﬂ(KVV—VvK)-Vz,/mL T(AKV—AVK) . (2.7)

Now we use a formula due to Carter® which gives an explicit expression of the commutator of
a pseudo-Laplacian with the ordinary Laplacian,

[AAlY=2V"KN V.V, 4+ 3V, VKDV V) 0
+ V(3 g VVUK"™ = VIVUK"D) + 1KITRTM) Yy, (2.8)

where the brackets [---] denote the skew-symmetrization of the indices. Gathering together and
equating to zero the terms of third, first-, and zero-order derivatives of ¢ on the right-hand side of
(2.7) we get the following equations, respectively,

VUKiD=0 (K is a Killing tensor),

h2
KVV-VV+ = 5(KR-RK)=0, (2.9)

AKV_ AVK=O
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The second-order terms in (2.7) disappear because of the first equation (2.9). The last equation
(2.9) can be written S(KVV—V V) =0, so that it becomes a consequence of the second equation,
since C=KR—RK is skew-symmetric and 6>=0. This proves the first equivalence (2.6). The
second equivalence follows from the last equation (2.3), since {Pk,P¢} is a homogeneous poly-
nomial of third degree in (p;), while Pgyy—Pyy, and P ¢ are of first degree. |

The following three propositions are a consequence of Theorem 2.2 and of the Carter formula
(2.8).

Proposition 2.3: If K=(K") is a symmetric tensor, then [ Px,Ps]=0 if and only if K is a
Killing tensor and

6C=6(KR—RK)=0. (2.10)

Proof: This is a special case of the first equivalence (2.6), for V=0 and V¢=0. |

We call (2.10) the Carter condition. Note that [ Px,Pg]=0 is equivalent to [Ag,A]=0.
Proposition 2.4: If K is a Killing tensor, then

h4
{H.H}=0 = [H.Hg]y= < 9CVy. (2.11)

Proof: For a Killing tensor the Carter formula (2.8) reduces to
[A,Ag]yp=36C-Vy

so that (2.7) becomes

. f4 72
[A.Aly= g 6C-Vy+ h*(KVV =V V) + = S(KVV =V Vy).

Because of the equivalence (2.5), we get the second equation (2.11). |
Proposition 2.5: Let Hgx=31Px+ Vg be a quadratic first integral i.e., {Hg ,Hy=0. Then,
[Ax.H]=0 if and only if the Carter condition (2.10) is satisfied.
Proof: If (2.10) holds, then [Hg,H]=0 because of the implication (2.11). Conversely, the

simultaneous conditions [ Ay ,H]=0 and {Hg,H}=0 imply §C=0 because of the equivalence
(2.6) |
As a corollary of Theorem 2.2 we have
Theorem 2.6: If R= kG, then

{Hg ,H}=0 < [Hg . H]=0.

This shows that on Einstein manifolds (in particular, on manifolds with constant curvature, on flat
manifolds, on Ricci-flat manifolds, etc.) a quadratic function Hgx=3Px+ Vi is a first integral if

and only if the corresponding operator Hy, defined according to (2.1) and (2.2), is a symmetry of
the Schrodinger equation.

For a first-order operator Py we have a similar equivalence, but without any condition (like
the Carter condition) involving the Ricci tensor:

Theorem 2.7: The operator Px commutes with the Laplacian if and only if X is a Killing
vector,

[Px.A]=0 & {Px,Pg}=0.
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Proof: This follows from three basic facts. (i) A vector field is a Killing vector if and only if
its covariant components satisfy equation

V.X;+V,X;=0. (2.12)
This is in accordance with (2.4). (ii) If X=(X") is a Killing vector, then’

AX'+RiX/=0, (2.13)
where R;; is the Ricci tensor. This follows from the general commutation rule

VViX;—Vi\VX;=X,R".,, (2.14)
where R",, are the components of the Riemann tensor. Indeed, by setting g"’R”,,=R]', we get
(VX = ViVX)=R{X,,.
For a Killing vector, V,X; is skew-symmetric due to (2.12) thus,
—¢"ViViX =R['X,,

and this equation is equivalent to (2.13). (iii) For any vector field X, the general commutation
relation

[X,Aly=—(AX'+ X'R)V,p—2V"X'V, V. 4f, (2.15)
holds, where X()=X'V;. Indeed,
[X,Aly=[X'V,,¢"V,Vi ]y

=X'g"VV,Veh— "V Vi (X'V;p)

=" (XN = XV Vi — VN X V= VXV V= VX V) (2.16)
However, because of (2.14),

ViViViky=V, V.V, b= leﬂR'{khi: ViVi Vi + leﬂR'{khi ,
since V;V, ¢ is symmetric. Thus, the last expression (2.16) becomes
[X.AJg=g"X'R. V= AXVip=2V"X'V, Vi

and (2.15) is proved. Assume that X is a Killing vector. Then the first term on the right-hand side

of (2.15) vanishes because of (2.13), as well as the second term, since Vixis skew-symmetric

because of (2.12). Conversely, assume that (2.15) is satisfied for all functions . Then the coeffi-

cients of the first and second derivatives of ¢ must vanish separately. The coefficients of the

second derivatives yield equation V"X'd,d;44=0, which shows that V"X’ is skew-symmetric.

Thus, X is a Killing vector according to (2.12), and the first-order terms vanish due to (2.13). H
From Theorem 2.7 it follows that

Theorem 2.8: The operator Px commutes with the Schridinger operator H if and only if X
is a Killing vector and (X,dV)=0 i.e.,

[Px.H]=0={Px,H}=0. (2.17)

Proof: Since

[Px.3Pc+ V]y=3 Px.Pcly+ Px(Vip) — VPxip= 3 Px . Pcly+ Px(V) i,
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the first commutation relation (2.17) is equivalent to
[Px,A]=0, Px(V)=0.
Moreover,
{Px’%P(ﬁ‘ V}:%{PX’PG}—'—{PX’V}:%{PX’PG}+<X’dV>,
and the second commutation relation (2.17) is equivalent to
{Px,Pg}=0, (X,dV)=0.

Thus, the two commutation relations are equivalent due to Theorem 2.7. |

lll. SYMMETRY OPERATORS ASSOCIATED WITH THE ORTHOGONAL SEPARATION OF
THE HAMILTON-JACOBI EQUATION

A Killing—Stackel algebra is an n-dimensional linear space K of Killing two-tensors with
common normal eigenvectors.1 It can be proved that G e K and that all functions Pk, Ke K, are
in involution. The Hamilton—Jacobi equation associated with a natural Hamiltonian

H=3Pg+V=18"(q)pip;+V(q)

is separable (i.e., integrable by separation of variables) in orthogonal coordinates if and only if
there exists a Killing—Stackel algebra such that equation d(K dV)=0 is satisfied for all Ke K, or
for a single Killing tensor K with simple eigenvalues (such a tensor is called a characteristic
tensor of IC). Then: (i) The separation occurs in any coordinate system (g') such that dg’ are
(common) eigenforms of the elements of K. In these coordinates all elements of K are diagonal-
ized,

K=K"9,®9,=\'g""9,®0,, (3.1)

\' being the eigenvalues of K (for K=G we have N\'=1). (ii) There are local functions Vg on Q
such that dVg=KdV or

VVg=KVV 3.2)
for all Ke K. It follows that the functions
Hg=31Px+Vx, Kek,
are first integrals in involution,
{HKl ’HKz} =0, VK,,K,eK.
We denote by
H=(K,V)

the n-dimensional space of these first integrals determined by a Killing-Stackel algebra K and by
a potential V satisfying (3.2).

In general, the linear operators Hy (2.2) corresponding to these quadratic first integrals do not
commute, as shown by the following

Theorem 3.1: Let H=(/C,V) be the space of first integrals in involution associated with the
orthogonal separation of the Hamilton—Jacobi equation. Then the following conditions are
equivalent
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(a) [Ax,H]=0, VKeKk,
(b) S(KR—RK)=0, VKeKk,

(C) &IRIJ_FlR 0, l#], l n.s., (33)

ij=
(d) [HKI’I:IKZ]:O’ VK]’KZ’E,C,

(e) 5(K1RK2_K2RK1):O, VK],Kz,E,C,

where R is the Ricci tensor, R;; are its components in any orthogonal separable coordinate system
and T'; are the contracted Christoffel symbols, F,:ghjl“hj,,-.

The proof will be given in Sec. V. In Sec. VI, a theorem analogous to Theorem 3.1 will be
stated for the general nonorthogonal separation of the Hamilton—Jacobi equation, where the Kill-
ing tensors involved are in ‘““standard form.” For the proofs of these theorems we need preliminary
general results about Killing tensors and second-order operators. Indeed, since we do not know
how to extend the Carter formula to two arbitrary symmetric tensors, we are able to study the
commutator [ H KI,I:I K,] only for Killing tensors in orthogonal form (Secs. IV and V) or in stan-
dard form (Secs. VII and VIII).

Remark 3.2: Note that conditions (b), (c), and (e) in (3.3) do not involve the potentials V.

Remark 3.3: Since G € K, equation (3.3a) is an obvious consequence of (3.3d), while (3.3b) is
a consequence of (3.3e). Moreover, the equivalence of (3.3a) and (3.3b) follows from Theorems
2.1 and 2.2. We call condition (3.3b),

S(KR-RK)=0, VKeK

the pre-Robertson condition. It means that the Carter condition (2.10) is satisfied by all elements
of the Killing—Stackel algebra. Theorem 3.1 shows that Eq. (3.3c),

&,R,j—FlRIJZO (l;t], i n.s.)

is the coordinate expression of the pre-Robertson condition. The pre-Robertson condition (3.3b) is
an obvious consequence of the Robertson condition'

KR—RK=0, VKeKk,
whose coordinate expression is
R;=0, i#]. (3.4)

Note that both conditions are fulfilled when R=«G. We know' that in separable orthogonal
coordinates

and that the Schrodinger equation is freely separable if and only if the Hamilton—Jacobi equation
is orthogonally separable and the Robertson condition holds. Hence,

Theorem 3.4: [f the Schrodinger equation associated with an orthogonal separable Hamil-
tonian system is freely separable, then all the operators Hy corresponding to the quadratic first
integrals in involution Hgx € H commute.

In particular, they commute with the Schrodinger operator A= H . From Theorem 3.1 we
derive an extension of Theorem 2.6,

Theorem 3.5: On Einstein manifolds all operators H k> Ke K, associated with the quadratic
first integrals of an orthogonal separable system commute.
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Remark 3.6: In orthogonal separable coordinates the components of the Killing tensors and
the potential functions assume the Stackel form
g'= ¢l V=0Vl Ki=ely. Vi=dild)e)).
where (Kj) is a local basis of I, with K, = G. Thus, in terms of Stackel matrices, a local basis of
‘H is given by

H;=5¢(;)(pi +2¢).
As it will be shown (Remark 5.2), the corresponding operators assume the form

. h*o. 2
Hjlﬂ:_?@zj) ﬁ?lﬂ_riailﬂ_pd’i‘ﬂ . (3.6)

The Robertson condition is equivalent to d;I';=0 for i#j. This means that the contracted Christ-
offel symbols I'; are functions of the corresponding coordinate ¢' only.

IV. KILLING TENSORS DIAGONALIZED IN ORTHOGONAL COORDINATES

In the next section we shall analyze the commutation relations of the second-order operators
assuming that all the tensors K involved, including the metric tensor G, are simultaneously
diagonalized in orthogonal coordinates (g'), so that they assume the orthogonal form (3.1). This
is equivalent to assume that all these tensors have common normal eigenvectors (or closed eigen-
forms). For this purpose we need some preliminary theorems about Killing tensors diagonalized in
orthogonal coordinates. For such a Killing tensor the following equations hold:

N =(N"=N)3;In g
IN'=0 o
g (Mgihy=Niggii (i ns)
&?()\jgjj)z)\ié’,-zgjj.

4.1)

We call Eisenhart—Killing equations the first equations (4.1).!° They characterize a Killing
tensor and imply the remaining equations.
In orthogonal coordinates, the nonvanishing Christoffel symbols are

o T
F{j—F§i——5&ilng/f, i n.s.,

o (42)
F}j:_fg”(gigjj, i#].
It follows that
1 y
Fizzﬁiz lngkk—é‘ilng”, (4.3)
k
and
> Ii=—T,—3d,Ing"" (4.4)

Proposition 4.1: If (¢") are orthogonal coordinates in which a Killing tensor K is diagonal-
ized, then

(N=M)(9,T;=9;T)=0 (i,j ns.). (4.5)
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Proof: For N'=\/ Eq. (4.5) is obviously satisfied. Assume \'# \/. Because of (4.3) and (4.1),
9l'j=9,I'i'==09;0;Ing"”+3;9;Ing"

=9.9.-In2¢""—9.9. In jj:o').ﬂ_om&i_w
ivj 8 JjYi 8 l)\j_)\i j)\i_)\j

since d;\'=0. [ |
Proposition 4.2: Let K;, I=1, 2, be two Killing tensors simultaneously diagonalized in
orthogonal coordinates. Then,
(NN =NMAD(T;=9,T)=0 (i#j ns.). (4.6)
Proof: Because of (4.5),
(N =M(@T;=9,T)=0, (\y=M)(d,T;=a;T;)=0. (4.7)

Assume M# 0. If we multiply the first equation (4.7) by A4, the second one by )\{ and subtract the
two resulting equations, then we get (4.6). If \5=0, then the second equation (4.7) becomes
N5y (9;1;=0,I';)=0 and (4.6) is satisfied. Similarly for A =0. |
Proposition 4.3: Let K;= (KY), I=1, 2, be two Killing tensors simultaneously diagonalized in
orthogonal coordinates. Let us define
C=K,DK,-K,DK,, CV=K"D, KY-KD, K", (4.8)
where D= (D;;) is a geometrical object. Then,

Cl=g g (NN =MD, Cl=C! =g (NN —NN)D; (4.9)

and
i Gy i \ixi 1 i
Vicj:Z g (NN —A5M) 9iDi=TiDij+ 5 9;Ing”(Dji=Dy;) |. (4.10)

Proof: In orthogonal coordinates
CY=K\D;K¥y—KiD;K}
and (4.9) follow from K§i= )\ﬁg” . Moreover, by definition of covariant derivative,
i_ o i TP h_h i
ViCj—aiCj-l—Fith—FijCh. (4.11)
We compute these three terms separately by using Egs. (4.1). For the first term,
aicj': 5'igii()\li)\é_ )\é)\ji)Dij+giiDij()\a‘9i)\é_ )\3‘71‘7\{) + g”()\’iwz'_ )\é)\{)az‘Dlj
=g " (NN = NIN)(D;0; In g+ 9D y) + gDy (Nj(Ny = M) = Ny(N = M) 4 In g7
=g " (NN =MNAD[(9i In g = d;Ing) D+ 9Dy . (4.12)
To compute the second term we use formula (4.4),

[},Cl= =g " (MM =NA)(T+3;Ing")D; . (4.13)
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To compute the third term we use formulas (4.2),
i h o~ heoi L,
[E; F"fch_,;j Fjjcf,+§j ; rici=:--.
Since C!=0 (i n.s.),

=2 TG+ 2 TCi+ 20 ) TG,
h i#] i#j h#i
=Z r;.jc;.+§j Irici
- 12 O N — NN ji ji
Y - 8 ()\17\2_)\2)\1)[_31‘8,']‘8 Dji+(9i1ng‘Dij]
! O N — NN ji

Thus, (4.10) follows from (4.12) +(4.13) —(4.14). [ |
Remark 4.4: From the first equations (4.9), it follows that: (i) C''=0, (ii) the diagonal com-
ponents D;; are not involved in the definition (4.8) of C, (iii) if D is symmetric, D;;=D;, then
CY+ (C’"=0 and C is skew-symmetric.
Remark 4.5: For D;;=4,I';, due to (4.6), Eq. (4.10) becomes

ViCi=2 g (NN NN)(4T = Ta,T)), (4.15)

and, due to the first equations (4.9), C/+ C/'=0. Hence, C is skew-symmetric and (4.15) gives the
components of SC. It follows that

8C=0 < 2 g" (NN =N (97T, —T,0,T ) =0. (4.16)
Remark 4.6: For K, =K and K, =G, the definition (4.8) and equations (4.9) become

C=KD-DK, C=gligli(\;=\;)D;;, Ci=g"(N'=N)D;

ij

and (4.10) reduces to
ViC;: 21 g\ )\j)(aiDij_ U':Dj;+ 30; lngjj(Dji_Dij))-
For D;;=4d,I';, because of (4.5), we have
ViCi=2 g"(N=N) (3T, =TaT)). (4.17)

C is skew-symmetric and (4.17) gives the components of SC. Thus,

8C=0 & X, g"(N'=N)(aiT,—T,,T,)=0. (4.18)
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Remark 4.7: If the Killing tensor K in Proposition 4.1 has simple eigenvalues, \'# \/ for i
#j, then (4.5) implies

This is the case of a characteristic Killing tensor associated with the orthogonal separation. This
proves
Proposition 4.8: Equation (4.19) holds for any separable orthogonal coordinate system.
This property has some interesting consequences. First, from (4.19) and (4.3) it follows that
Proposition 4.9: In any orthogonal separable coordinate system

9;0;Ing""=0;0;Ing”, i#].

A second consequence is concerned with the eigenvalues of a characteristic Killing tensor.
Proposition 4.10: For the eigenvalues (\') of a characteristic Killing tensor of a Killing—
Stackel algebra the following equations hold:

NI\

AT

i+, (4.20)

Proof: For N'# \/, the first equations (4.1) can be written

i aj}‘i
d; Ing Zm

If we apply the partial derivative J; to this formula, and use again (4.1), then we get Eq. (4.20).H
A third consequence is concerned with the Robertson and the pre-Roberston conditions.
Proposition 4.11: For any orthogonal separable coordinate system q=(q') there are local

functions F (c_]) such that
I';=0,F.
The Robertson condition (3.3c) is equivalent to
90, F=0, i#], 4.21)
and the pre-Robertson condition (3.4) is equivalent to
AT F—5(9;F)*]1=0, i#j. (4.22)

Equation (4.21) means that the function F is a sum of functions depending on a single coordinate
i.e., of functions constant on the leaves of the web: F=X, F;(¢'). Equation (4.22) means that each
function &,»ZF —1/2(9;F)? is a function of the coordinate corresponding to the index only. A further
interpretation of the pre-Robertson condition is expressed by the following

Proposition 4.12: The pre-Robertson condition is equivalent to

ﬂiQijZO, l;éj n.s.,
where

0,=e 'Ry. (4.23)

)

PVOOf' &,-Qij=€7p(&,-Rij—(9,~FR,~J-). |
Remark 4.13: Let c_]z(qi) and (_]’Z(qi’) be two equivalent and equioriented orthogonal
separable coordinate systems. Let us set
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. (7 . i’ i’
Al=—=, A,=—3, A=defa]]=]] A},
aqz i
(4.24)

G=defg"]=]] &". G'=deg"]=I] ¢"".

Note that A{ '=0 for i# J and that A>0. The link between functions F and F' corresponding to
these coordinates is

F'=F—1InA+ const.
ie.,
e F'=cAeF. (4.25)
Indeed, the relationship between the contracted Christoffel symbols is

I=Al([;—d;InA)=A!(;—d;InA). (4.26)

To prove (4.26) we observe that, since Afl is a function of ¢’ only,
&i lnA = &i ln H Aj’ = 51‘ lnAi:’ .
J

Moreover, since A>0, from (4.24) it follows that
VG=A\G,
g InJG'=AL(9;InA+9;InG), (4.27)
g Ing!"' =A% (20, InAl +9;In g').
By (4.3) and (4.27) we get
[;=0,In\G' —3d; Ing'"
=A!(3;InA+3,InJG—2d;In Al —5,In g
=A!(T;+;,InA—24;InA!),
which implies both equations (4.26). Finally, we observe that the object Q;; is defined by (4.23) up
to a multiplicative constant, since F is defined up to an additive constant. From (4.23), (4.25) and
the first equation (4.27) it follows that
Quy=e "'Ryj=cAe TA,ALR;=cAALALQ,.

Thus,

1 co
AI.,AJ.,Q,-j.

\/?Qi'j/:\/_a
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V. COMMUTATION RELATIONS IN ORTHOGONAL COORDINATES
Proposition 5.1: If a symmetric tensor K=(K") is diagonalized in orthogonal coordinates,
then the corresponding pseudo-Laplacian assumes the form
Agp=A'07p+B'a;p, A'=K'=Ng" B'=g(d\'=\T)). (5.1)

Proof: By definition (2.1) and formula (4.4),

Agih=Vi(K9;4h)
=9(K79;4)+ T, K" 0,
= 9K ;) + T K" 3y
=K'+ (9, K"+ T K" o,
=\ig" a7+ (9, (\"g") = N"g" (T}, + 3, In g")) 3,6
=N'g" i+ " (N = N'T ) .

Remark 5.2: For the ordinary Laplacian, K'"=g", N'=1, and B'=—g¢'T’;, so that
Ay=g"[a7p—T,9:].
A second-order operator (2.12) assumes the form
(A A o S
Hyp= 5 (A'G}4+ B'oh) + Viep= o 8" (NG g (ON = NT)a) + V. (5.2)
For a Killing tensor K Egs. (4.1) hold, so that
Axp=g"N'[3; =T d,4].

igll (Remark 3.6) and we find

For a basis (K;) of a Killing—Stackel algebra we have <pfj)=)\ j

expressions (3.6) of the corresponding operators Flj.
Proposition 5.3: The commutator of two second-order operators of the kind (5.2) has the
following expression:

R R
[Hg,.Hg, 1= 7(A’1(9iA’z—A’z(9iA’1)ﬂ,-ﬂf¢+ 7(AE&?A’Z—AW?A{+B’1(9iAJz—B’zﬁiA’1)af-w

At ht S S
+ 5 (AL0BL= AL B 3,0, | (AL BY+ Bla,BL = AL B] — B39,BY)
A , h?
_ﬁz(A]lC?]VKZ_AjzaJVKI))L;']lp_T(AKIVKZ_AKZVKI)IJ/ (53)

Proof: For two second-order operators (2.2),
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PN 1. 1.
[Hx, Hx,]=| 5 Px,+ Vk;» 5 Px,t Vi,

| A 1. 1
= [Pk P, 1+ [Pk, Vi, 1= 5 [Pk, Vi ]
ht h? h?
= I[AKI’AKZJ_ T[AKI’VKZJ—’— T[AKZ,VKI:'.

Since
O(fX)=X-Vf+foX,
we have
[Ax.V]g=Ax(V)— VA

=8(KV(Vy))— VA
=6((KVV) ¢+ (KV i) V)= VAgy
=yAgV+2K(V,VV)
=AgVi+2A9.V.4p.

Hence,

R R ﬁ4 2
[Hx Hy, =7 [Ak, A, 14+ 5 (A, Vi, = Ak Vi, ¥+ h*(K,V Vi, — K VV,)- Vi,

(5.4)
Because of (5.1),
Ak, Ak, =A10; (AL97 4+ BL9;h) + By ,(ALd} i+ B O;4)
= AV ALT Y+ 20,4007+ ALd; 07+ 07 BE O i+ 20,BL0,04p+ BL3; 04)
+BY(AL 07+ AL0; 07+ 0:BL 0+ BL04p)
=AlALG; T+ (2A10,AL+ BIAL+A{BY) 0,07+ (A\ 97 AL+ B 9,A5) 07
+(2A19;BL+ B BY) 3,06+ (A 9;BL+ B} 9,B}) 3,
so that,
[Ax,, Ak, 1¥=Ak Ak, —Ax Ak, ¢
=2(A}9,A4—A50,A1) 0,07+ (A} 3] AL — A5 37 AL + B 9,AL — B3 3:AY) 0}
+2(A}9;BL—A59,B])3,0,4+ (A} 9; B+ B\ 9,BL— A5 9} B| — B59,B{) 9.

Thus, from (5.4) we derive (5.3). [ |
Proposition 5.4: Let K| and K, be symmetric tensors simultaneously diagonalized in orthogo-

nal coordinates. Then, [I:IKI,FIKZ]ZO if and only if

Al9AL—AL9A =0 (i ns.), (5.52)
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> (A97AL—ALGIAL+ B 9,AL— Bha,AL) +2(A]0,B}— ALaB]) =0, (5.5b)
1

A} 9;BL—AL9;B]+A{9;BY—ALd;B{=0 (i#j ns.), (5.5¢)

h? S .
TEi (A}0; B+ B0;B}— A3, B} — By9;B}) —Al9; Vg +AL0,Vk =0 (j ns.), (5.5d)

AKviz_AKZVK] =0. (556)

Proof: (i) Assume that (5.3) vanishes identically for all functions . For /=1 we get (5.5¢)
and the last term in (5.3) disappears. For ¥=q’ we get (5.5d), so that also the fourth term in (5.3)
disappears. As a consequence, for = (g’)> we get (5.5b) and we reduce the vanishing of (5.3) to

2, (A10AL= AR AD ST Ut 2, (A10BL—A598])9:0,=0. (5.6)
Ly Ly

For =¢q'q*, we have 9;0;4= 5} 5?-%— 51! 5]2., thus we get (5.5¢) for distinct indices and moreover,
(5.6) reduces to

> (AlaAL—AL9,A7) 9,57 4=0. (5.7)
L

Finally, for ¢=g¢'(¢")> we have dJ;0,=0:(5(g*)>+2q'¢*5,)=25,5,+45,5:5;
=25i] 512. Thus, we get (5.5a) for distinct indices (and no summation), so that (5.7) reduces to

; (A}a,AL—AL0,A)) 3} p=0.

This shows that (5.5a) also holds for i=j. (ii) Conversely, assume that (5.5) hold. Then, due to
(5.5a,d,e), Eq. (5.3) reduces to

. . Bt . . . . ) . . /A . ) )
A, Fr, 0= 7 (AL AL= ALRAL+ BL0 AL~ BLoAT) 2+ - (AL9,BL~ AL,BY)d,0,0

and, because of (5.5b), we obtain
r4 o
[k, B )= 2 (AL0iBL=A59B]) 3,0,
ij

But this last expression vanishes identically because of the skew-symmetry of Eq. (5.5¢). |
Remark 5.5: Since

{Px,. Pk} ={Aip; Abp7t=2pipj(A10,A4— AL0,AY), (5.8)
Eq. (5.5a) is equivalent to {Pg ,Pg,}=0. Thus,
[Hx,.Hx,]=0 = {Pk,.Pg,}=0. (5.9)

Theorem 5.6: Let K be a symmetric tensor diagonalized in orthogonal coordinates. Then the
following conditions are equivalent:
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{Pk.Pg}=0 (K Killing tensor) 5
Ag A]=0 h? e {Hg Hy=——Ps. (510

where
C=KD-DK, D=(D;)=(q,l)).
Proof: We use (5.5) of Proposition 5.4 for the case
K=K A=\ Al=Ng", Bi=g"(o\ =\'T)
O By=—¢'T;

Assume [ Hy ,Hg]=0. From (5.9) it follows that K is a Killing tensor. Then we use (4.1) and in
(5.5) we consider

B'=—g"\'T;, By=-g"T,;, (5.11)
and

dAL=0;¢", 9;Bb=~ (8"l )=—0:8"T;=g"o,T;,

o . o . (5.12)
JAI=Na7gl,  9B|=—N37gT;—2N9,8/9,T ;= g\ 37T,

GAY=dig/,  GiBh=—3i¢/T;~20,8"0.T ;— g/l d;T,

Equations (5.5a) and (5.5b) are then identically satisfied, while the remaining three equations
become

(N=M) (4T ,—9,T)=0 (i#j ns.),
hZ
T2 "N NG =TaT ) +NaV=a;Vg=0 (j ns.), (5.13)

S(KVV—VVg)=0.

Due to (4.5), the first equation is identically satisfied. According to Remark 4.6 and Eq. (4.17),
the second equation (5.13) is equivalent to

hZ
- SC+KVV=V V=0,

where C is skew-symmetric. Since 6°C=0, the last equation (5.13) is a consequence of the second
equation (5.13). The above-given reasoning is reversible, and the first equivalence (5.10) is
proved. The second equivalence follows from last equation (2.3). |

Remark 5.7: The comparison between Theorem 2.2, proved by using the Carter formula (2.8)
without any special assumption on K, and Theorem 5.6, proved under the assumption that K is
diagonalized in orthogonal coordinates, shows that for such a Killing tensor the following equation
holds:

S(KD—DK)=%5(KR—RK), (5.14)
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where D=(4d,I';). Note that the components D;; are not involved in the definition of C=KD
—DK (Remark 4.4). This is in accordance with formula (3.5), which holds in separable orthogonal
coordinates.
Now we apply Proposition 5.4 to the case of two Killing tensors.

Theorem 5.8: Let K| and K, be Killing tensors simultaneously diagonalized in orthogonal
coordinates. Then {PKI»PKz}:O and the following conditions are equivalent:

A h? h?
[HKI’HKZ]:O d T5C+K1VVK2_K2VVK1:0 =~ {HKI’HKZ}:_IP‘sC’ (515)

where
C=K,DK,~K,DK,, D=(47T,). (5.16)
Proof: The components of C defined in (5.16) are [recall (4.8) and (4.9)]
CI= g NN - NADAT;. Cl=C= g A~ AM) AT

The involutivity condition {PKl,PK2}=0 follows from (5.8), (5.1), and (4.1). We use (5.5). Ac-
cording to (5.1), (5.11), and (5.12), for a Killing tensor K; (I=1,2) we have

Aj=Njg". Bi=—All,
FAI=AL0,87=N\19,g7],
IAI=A1d; 8" =N\j; gV (5.17)
9;B)=— (AT ))=—9,AJl ;= A9 T;,
J;Bj=— ;AL ;—20,A}0,0 ;= A} ;.

Because of the first two equations (5.17), Eq. (5.5a) is identically satisfied and the sum of the first
two terms in Eq. (5.5b) vanishes, so that this equation reduces to

> T[AL9,AL—AL9,A{]+2[A]0,(ALT ) —ALa,(AIT ) ]=0.

But all the terms in this sum vanish because of (5.5a). Thus, also (5.5b) is identically satisfied.
Equation (5.5¢) becomes
Aliai(A]ﬁrj) _Agai(A{Fj) +A) aj(A;Fi) _Ajiaj(AiFi) =0.
Because of (5.5a) it reduces to
(AJA—=ALAD (AT ;=9 T)=0 (i#]. ns),
that is (up to a factor g'’g’/) to (4.6), which is identically satisfied. Due to the last two equations
(5.17), Eq. (5.5d) becomes

#? ) . ) . ) ) ) ) ) )
TZ [A}37(A4T )~ AT 0,(ALT ;) = AL97 (AT ) + AT 19,(AT )1+ A9,V —A49;V =0,

thus,
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i

1 o 7 . . o o
T2 [(AAL=ASAD T 1+ - X [AT 07 AL — AST 974G+ 2A410,A59,1 = 2A39,414.T )]
1 o . . .

Because of the second equation (5.17) and (5.5a), the second sum vanishes identically and this
equation reduces to

K2 o o #? o o . .
T2 LA A5AD AT 1= 3 2 [Ti(ALAL=AR{)OT 1+ A0, Vi, — AL9; Vi, =0,
which is equivalent to
#? DU o ) .
IZ [g”()\’l)\é—)\’ZAJI)(é’fFj—Fiail"j)]+)\11&jVK2—)\’2(9jVK]=0. (5.18)

Due to (4.15) this equation is equivalent to the second equation in (5.15). So, the first com-
mutation relation (5.15) is equivalent to the second equation (5.15) plus the last equation (5.5).
However, C is skew-symmetric (Remark 4.5), so that the second equation (5.15) implies equation
(K VVg,—K,VVk )=0, that is (5.5¢). This proves the first equivalence (5.15). The second
equivalence follows from the first equation (2.3), which now reads {HKI,HKZ}=P(K1VVK2
~K,V V).

Proposition 5.9: Let K| and K, be Killing tensors simultaneously diagonalized in orthogonal
coordinates. Then

[I:IK],I:I]:O, [HKZ’FI]Zo:[FIK|9HK2]:O' (5]9)

Proof: Since {PKI,PG}=O, due to Theorem 5.6 the first two conditions (5.19) are equivalent
to

ﬁZ
ZéC+KIVV_VVK1:0’ 1= 1,2

Because of (4.17), Remark 4.6, these equations are equivalent to

h? o .
T2 & N =Tl )+ M0,V =0,V =0,
(5.20)

h? Lo . .

As we have done above, if we multiply the first equation by x’é# 0, the second one by )\{ #0 and
subtract the two resulting equations, then we get (5.18), which is equivalent to the first equation
(5.15). For 7\/2‘:0, Eq. (5.18) follows from the first equation (5.20) multiplied by )\{ #0. For )\{
=\,=0, (5.18) is obviously satisfied. [ ]

Now we are able to prove Theorem 3.1 by applying the preceding results to the space H
=(/KC,V) of the first integrals in involution associated with the orthogonal separation of the

Hamilton—Jacobi equation (Sec. III). First, we prove the equivalence of the first three conditions
(3.3).
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Proposition 5.10: Let H=(K,V) be the space of quadratic first integrals in involution asso-
ciated with the orthogonal separation of the Hamilton—Jacobi equation. Then the following con-
ditions are equivalent:

[Ax.H]=0, VKeKk,
S(KR-RK)=0, VKecKk. (5.21)
&iRij_Fl'Rij:O’ (l;bj l’l.S.).

Proof: Let us use Theorem 5.6. Since {Hg,H}=0, the first equation (5.21), coinciding with
the first equation (5.10), is equivalent to §C=0 for C=KD—DK and D;;=d,I";. However, since
the components D;; are not involved in this definition of C (Remark 4.4), we can replace D with
%R, in agreement with (5.14). This proves the equivalence of the first two conditions (5.21). From
the equivalence (4.18) it follows that the coordinate expression of the second equation (5.21) is

2 gii()\[_)\j)(aiRij_FiRij):O’ (522)

where only the nondiagonal covariant components of R are involved. If we introduce the vectors
X;=(X))=(g"(diR;;=T'iR;;)), Y;=(Y;)=(N'=N),
then equation (5.22) can be written

Let us consider a basis (K,)=(K")=(\'g") of K, a=1,...n, with K,=G. We have
det[)\Z]aﬁO and )\;: 1. Let us chose a value of the index j, say j=1. Then the n—1 vectors Y,
Z(AZ—)\;), a=1,2,..,n—1, are independent vectors in the (n—1)-space II; orthogonal to the
vector (1, 0,..., 0). Indeed, the rank of the nX(n— 1) matrix [)\i— )\}1] is maximal. According to
the second equation (5.21), Eq. (5.23) must be satisfied by all these vectors:

X]'Y]azo.

This means that X, is orthogonal to I, i.e., that X '1 =0 for i# 1. In a similar way we prove that
X ;:O for j#i. Thus, the second equation (5.21) implies the third one. The converse is obvious.Hl

Proposition 5.11: Let H=(IC,V) be the space of quadratic first integrals in involution asso-
ciated with the orthogonal separation of the Hamilton—Jacobi equation. Then the following con-
ditions are equivalent,

[I:IKIaFIKz]:O? VKlyK2,€IC,
5(K1RK2_K2RK1):O, VKI ,Kz, S IC, (524)
&iRl'j_FiRij:O’ li].

Proof: The first condition is equivalent to SC=0, because of the second equivalence (5.15)
(Theorem 5.8), with C defined in (5.16). However, in definition (5.16) D can be replaced by R,
due to (5.14) and Remark 4.4(ii). Thus, the first two conditions (5.24) are equivalent. The second
equation (5.24) implies the second equation (5.21), since Ge K, and the last equation (5.24)
because of Proposition 5.10. The last condition (5.24) implies the second condition (5.24) because
of (4.16). [ |

The last condition (5.24) appears also in (5.21). Thus, all the conditions (5.24) and (5.21) are
equivalent. This proves Theorem 3.1.



J. Math. Phys., Vol. 43, No. 11, November 2002 Remarks on the connection . . . II. 5243

VL. SYMMETRY OPERATORS ASSOCIATED WITH THE GENERAL SEPARATION OF
THE HAMILTON-JACOBI EQUATION

A separable Killing algebra' is a pair (D,KC) where D is an r-dimensional linear space of
commuting Killing vectors and K is a D-invariant (n—r)-dimensional linear space of Killing
two-tensors with m=n—r normal eigenvectors orthogonal to D. These eigenvectors are called
essential eigenvectors. The eigenvalues of a Ke I corresponding to essential eigenvectors are
called essential eigenvalues. It can be proved that: (i) D is normal, i.e., the distribution A+
orthogonal to the vectors of D is completely integrable, (ii) K contains the metric tensor G and
Killing tensors with distinct essential eigenvalues (called characteristic Killing tensors); (iii) all
functions Py and Pk, with Xe D and Ke K are in involution; (iv) there exist standard coordi-
nates (g“,q%) such that dg are eigenforms of C corresponding to the essential eigenvectors and
d, form a local basis of D, so that (¢%) are ignorable; (v) these coordinates are separable for the
geodesic flow; (vi) in these coordinates all elements of K assume the standard form

K=K"9,89,+K%9,8d5=\"g"9,8,+K*3,8d,, (6.1)

where N\ are the essential eigenvalues of K and the coordinates (¢®) are ignorable; (vii) the
natural Hamiltonian H= 5P+ V is separable if and only if there exists a separable Killing algebra
such that DV =0 and the characteristic equation d(KdV)=0 is satisfied for a single characteristic
Killing tensor of K. It follows that (viii) the characteristic equation is satisfied for all Ke K and
that there are local D-invariant functions Vi such that dVg=KdV, i.e.,

VVk=KVV, DVg=0;
(ix) the functions
Px, XeD,
Hx=3Px+Vk, Kek
are first integrals in involution. We denote by
H=(K,V)

the m-dimensional linear space of the quadratic first integrals Hy .
For the first- and second-order operators corresponding to these first integrals in involution the
commutation relations

[ﬁxl,ﬁxz]zo, [Px,I:IK]:O, VXI ,Xz,XED, VKEIC,

hold. This follows from the fact that X e D are commuting Killing vectors and the elements of H
are D-invariant. However, in general the operators H k do not commute one other. Indeed, we have
a theorem similar to Theorem 3.1,

Theorem 6.1: Let H=(IC,V) be the space of quadratic first integrals in involution associated
with the separation of the Hamilton—Jacobi equation. Then the following conditions are equiva-
lent:

[Ax.H]=0, VKeK, (6.2a)
S(KR—RK)=0, VKek, (6.2b)
aaRab_FaRabzoa a#b ns., (62C)

[Ax,.Hk,]1=0, VKK, ek, (6.2d)
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5(K1RK2_K2RK1):O, VKI ,Kz, EIC, (626)

where R,,=R(4d,,d,) are the essential covariant components of the Ricci tensor R (correspond-
ing to essential separable coordinates (¢°)) and I’ ,=g"T; j.a are the essential contracted Christ-
offel symbols.

The proof of this theorem will be given in Sec. VIII.

Remark 6.2: Formulas (6.2) are formally identical to formulas (3.3) concerning the orthogonal
separation, and a remark similar to Remark 3.2 also holds in the present case. The only difference
is that now the coordinate expression of the pre-Robertson condition (6.2c) involves only the
essential components R ,;, of the Ricci tensor. In standard separable coordinates the Ricci tensor R
assume the form (cf. Ref. 1, Sec. VI)

R=R"9,8d,+R*P3,2dg, (6.3)
and moreover,
d,L,=3%R,,, a#b. (6.4)
It assumes the standard form, i.e.,
R.,,=0, a#b, (6.5)

if and only if the Schrodinger equation is separable in the reduced sense (Robertson condition).
The Robertson condition (6.5) obviously implies the pre-Robertson condition (6.3). Hence,
Theorem 6.3: If the Schrodinger equation associated with a separable Hamiltonian is reduc-

tively separable, then all operators Px and Hx corresponding to the linear and quadratic first
integrals in involution commute.

In particular they commute with the Schrodinger operator H=H . The Robertson and pre-
Robertson conditions are obviously satisfied for R= «G. Hence,

Theorem 6.4: On Einstein manifolds all operators Py and Hy corresponding to the first
integrals in involution of a separable Hamiltonian system commute.

Remark 6.5: An algebraic form of the Robertson condition is expressed by the commutability
of the Ricci tensor R with a characteristic tensor (thus, with all the Killing tensors) Ke K,
interpreted as linear operators, when restricted to the distribution A* orthogonal to D,

(KR—RK)|A'=0, VKeK. (6.6)

Indeed, this distribution is invariant with respect to these linear operators. If we denote by R” and
K’ the restrictions to A*, cf. (7.1), then (6.6) is equivalent to

K'R—RK’ =0, (6.7)
or to KR'—R'K=K'R’'—R’K’=0. Condition (6.7) obviously implies
S(K'R—RK')=0. (6.8)

As we shall see in Sec. VIII, the fact that (6.8) is equivalent to (6.2b) is remarkable.
Remark 6.6: In standard separable coordinates the components of the elements of /C and the
potential functions assume the form
8=l . 8P=¢P(q) el . V=0uq) el
K= @?b) > K§B= ¢Z’ﬁ(q“)¢f'b) > VKb: (ﬁa(qa)ﬁozlb) >

where (K,) is a local basis of K, with K,,=G. Then, a local basis of H is
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Hy,= 500, (pat d3Ppapst26,).
The corresponding operators assume the form (see Remark 8.2 and Ref. 1, Sec. V).

AT & ~ _
Hyp=— 7‘P?b)( Goh=T 0,0+

2 ~
d)gBKaKB_ ﬁgba) (/f),

where =i Hae"w"a, J=11,4,(q"). The Robertson condition in standard separable coordinates
is equivalent to d,I",=0 for a #b. This means that I',=T",(¢%).

VII. KILLING TENSORS IN STANDARD FORM

In the next section we shall analyze the commutation relations of the second-order operators
assuming that all the tensors K involved, including the metric tensor G, are simultaneously in
standard form (6.1) with respect to a given standard coordinate system (¢")= (g% q). We shall
use the decomposition

K=K'+K’,
K'=K*9,24d,=\g"3,84,, (7.1)
K'=K*3,005.

In analogy with Sec. IV, in this section we state some general properties concerning Killing
tensors. For a Killing tensor in standard form the following equations hold:

INP=(N"—=\P)d,1ng?®
9,KP=\,8°"

I N=0

Io(N"8"") =N\9,8""
aZ()\hgbh) _ )\aaigbh
TK* =N\ "7,g"F

(a,b ns.). (7.2)

We call the two first equations (7.2) the extended Eisenhart—Killing equations. They characterize
the Killing tensors in standard form and imply the remaining equations.

Proposition 7.1: If (¢“,q%) are standard coordinates in which a Killing tensor K assumes the
standard form (6.1), then

(N =\")(9,T,—0,T,)=0 (a,b ns.). (7.3)
Proof: The proof follows the same pattern of the proof of Proposition 4.1. The only difference
is that (4.3) is replaced by (cf. Ref. 1, Sec. VI)

[,=19,> Ing®“—a,lng"+ %9, ndet g**],
c

but the last term does not give any contribution to the difference d,I",—d,I", . |
In a similar way we can prove
Proposition 7.2: Let K;, I=1,2, be two Killing tensors in standard form (6.1). Then
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NN =AY (9, —3,T)=0 (a#b ns.). (7.4)
Proposition 7.3: Let K;, I=1,2, be two Killing tensors in standard form (6.1). If
C=K|DK,-K;DK[, CY=(K{)"Dy(K)"=(K;)"Dy(K)¥, (7.5)
where D=(D;) is a geometrical object, then
Cab:gaagbb()\7)\127_)\g)\ll7)l)ah’ Cua:Caa:CaBZO’
(7.6)
Ci=Ct, =g (NN AINDD, . €= Co=CE=0,

and
ViCL=0, ViChi=2 g NN =N (0,D =T D gyt 39,10 " (Dyyy—Dyy)).  (7.7)

Proof: Equations (7.6) are a direct consequence of definitions (7.5) and (7.1). In standard
coordinates (cf. Ref. 1, Sec. VI)

ri,=0, I'i,=-3d,(Indefg"])=-d,Ing*~T,, (7.8)
and formula (4.11) reduces to
i__ a i ~a_ h ~i
ViCj—&aCj +FiaCj FijCh.
It follows that V,C! =0 and
V,C,=3,C4—(T',+d,Ing")Ci—T¢,C*.
The development of this last expression follows the same pattern of the proof of Proposition 4.3.1
Remark 7.4: From (7.6) it follows that: (i) C"'=0, (ii) only the nondiagonal components D, ,
a#b, are involved in the definition (7.5) of C, (iii) if the essential components of D are symmet-
ric, D,,= Dy, , then C is skew-symmetric.
Remark 7.5: Let us apply Proposition 7.3 to the cases D;;=d;I';. In standard coordinates
I',=0 and 3,I',=0. Thus, D ,5=D,,=D,,=0 and C defined in (7.5) is equal to
C:KIDKZ_KzDKl, D:(&ZF])
Equations (7.6) hold with D, replaced by 4,I';,
Cl=g g " (NN~ NAD ALy, Ch=g ““(NNI= AN I, T, (7.9)

and, due to (7.4), equations (7.7) become
ViCL=0, ViCu=2 g“(NN=NAD(02T, =T 4d,T). (7.10)
a

From (7.4) and (7.9) it follows that C/+ C/*=0. Hence, C is skew-symmetric and (7.10) give the
components of §C. Thus,

8C=0&2 g“(NAN3=NAD(3,T,—T,d,I)=0.

Remark 7.6: For K,=G and K; =K, definition (7.5) and equations (7.6) become
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C=K'D-DK’, Cab:gaaghh()\a_)\b)Dub’ CZ:gaa()\a_)\h)Dab,

the remaining components being identically zero. Equations (7.7) become
Viciy: 0’ VICZZ 2 gaa()\a_ )\b)(aaDab_FaDab+ %aa lngbb(Dba_Dab))~

For D;;=d,I; the definition (7.11) is equivalent to
C=KD—-DK

and
V,Cl=0, VCi=2 g“(\"—\")(*T,—T,d,[,).
C is skew-symmetric and (7.12) give the components of SC. Thus,

8C=0 & >, g“(N=\")(3*T,—T,,T,)=0.
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(7.11)

(7.12)

(7.13)

Remarks and propositions similar to Remarks 4.6, 4.7, 4.13, 4.14 and Propositions 4.8—12 hold in

the present case, with obvious modifications.

VilIl. COMMUTATION RELATIONS IN STANDARD COORDINATES

Proposition 8.1: If K is a symmetric tensor in standard form (6.1), then the corresponding

pseudo-Laplacian assumes the form
Agp=A"Tp+ B3, p+K*Pd,04p,
Aa:Kaa:)\agaa
B4=g%(d N —\T,).
Proof:

Aghp= (KT 9,p)+ T, K" 9 ,p=9,K 0+ KV 9,0,4p+ T KV 94p

= 0K 3,4+ K“Toih+ KPAo0gp+ T K9 1p.

Then (8.1) follow from (7.8) and K““=\“g"“.
Remark 8.2: For a pseudo-Laplacian we use the decomposition

Ag=Ax+Ak,
Agip=AGop+ B9,ih=g “ (N I+ (AN = NT ) d ).
ARp=K*P9,0 ).
Note that, in accordance with the decomposition (7.1), we have
Ag=Ag .

For a Killing tensor,

(8.1)
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Ag=Ng2p—T ,3,1).

For a second-order operator (2.12) we use the decomposition
h? h?
Hy=Hy+Hy, Hip=- 7Al’(+ Vk, Hy=- TA” ,
so that
2
Hyg=— T(Af("‘Ai’()'r/f‘F Vky
ﬁZ
=— 7(A“agw B3, p+ KB40 gp) + Ve

2
== S [ NG+ (AN =NT )3, ) + K*P3odg1+ Vi (82)

For a Killing tensor,

. n?
Hyp= =5 INg (0= T 19u1h) + KPd 0]+ Vich.

In all the above-given expressions the coordinates (g“) are ignorable.
Proposition 8.3: The commutator of two second-order operators of the kind (8.2) has the
following expression:

PN A h
(A, A, J=[Hy, Hi T+ 5 (AT,KS —AS0.K TP+ B9, K3P = B33, KP)d0pty

+hH(A]9,K5F—A39,KF) 3,040, (8.3)
where
h4 2
[I_II’(l ’Hi(z]l//: I[AI,(1 ’AI’(Z] lp—hz(AlllaaVKz_Ag(?aVK])aalp_ 7 (AI,(] VKz_ AI,(2VK|)¢'
(8.4)

Proof: Since
A A, = ALTAS2 U+ B3I, 0) + B0y (AST s+ B3O )
= ATAST 0o+ ATGAS 0L+ 2AT9,A 50,05 Y+ AT 0, B30, Y+ ATB3 3,0,
+2A70,B50,3y 1+ BIAS, 0L+ BY9,AS 05+ BB3 3,0, 4+ BY9,BS 0, 1h,
we have
[Ak, Ak 1=2(A19,A5—A39,A0) 0,050+ (A{02AS — ASAT + BY9,A5— B33, AD)
+2(A]0,B3—A39,BY) dudyp+ (A{0;B3+ B3B3 — A39,B—B53,B}) b
Since

Ail(l ’A/Il(zlp:K?ﬁngaaﬁ,uvwv



J. Math. Phys., Vol. 43, No. 11, November 2002 Remarks on the connection . . . II. 5249
we have
[Ak,.Ak,]=0, [A, .Hg,]=0.
Thus,
[Ax, Fix,)=[ Ak, Hi )+ A Ay )+ Hg A ).
A straightforward calculation shows that

o i
LAk, A, = 5 (AT0.KSP+ B10,K5P)d 0 b+ A0, K5P 0,040 3.

These two last equations prove (8.3) and (8.4). [ |
Proposition 8.4: Let K| and K, be symmetric tensors in standard form. Then [I:IKI,I:IKZ]
=0 if and only if

A%9,A5—A%9,A=0 (a, ns.), (8.5a)
> (AY92AL—ASPAL+BY9,AL—BS3,AL) +2(AYa,BE—AL9,BY) =0, (8.5b)
A%9,B5—A%9,B)+AL5,B5—A59,B=0 (a#b ns.), (8.5¢)

hZ
IE (A{92BS+B{d,B5—AS,B} — B3d,B})— A0,V +A%3,Vik =0 (b ns),
a

(8.5d)
Ak, Vk,~ Ak, Vk, =0, (8.5e)

and
AYPKSE—AS2K P+ BY9,KSP— B9, K{P=0, (8.6a)
A%9,K5P—A50,KTP=0. (8.6b)

Proof: Equations (8.6) follow from the second and third term in (8.3) i.e., from the vanishing
of the coefficients of d,dg¢y and of 9,d,dz1. The first term (8.3) involves only the partial
derivatives d, and a factor of ¢, and it is similar (with an obvious change of indices) to (5.3).
Thus, (8.5) are similar to (5.5).

Remark 8.5: Since,

{Pk,.Px,}=2(A{H{AS—AS3,ANpapy+2(A19,K5P ~ASIKP)pupap s (8.7)
Egs. (8.5a) and (8.6a) are equivalent to {Pg ,Px,}=0. Thus,
[I:IKI’I:IKZ]:O = {PKI’PK2}:0' (88)

Theorem 8.6: Let K be a symmetric tensor in standard form. Then the following conditions
are equivalent:
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{Px.,Pg}=0 (K Killing tensor), s

A H]=0 & h? < {Hg ,H'=— —Pye, 8.9
[Hg.H] R 6C+KYY- VY0 {Hg.H} 1 Poc (8.9)

where
C=KD-DK=K'D-DK’, D=(z9l~1"j). (8.10)

Proof: The equivalence of the two definitions (8.10) of C follows from Remarks 7.5 and 7.6.

We use (8.5), Proposition 8.4, for K, =K and K, =G. Assume [ Hg,H]=0. From (8.8) it follows
that K is a Killing tensor. For a Killing tensor in standard form we have formulas similar to (5.11)
and (5.12), with indices (a,b). Equations (8.5a, b) and (8.6b) are then identically satisfied. The
remaining equations are similar to (5.13),

()\a_)\b)(aarb_abru):(),
ﬁZ
TE g\ =\ (0T, —T 3, ) +N23,V—3,Vg=0 (b ns.), (8.11)

S(KVV—VVg)=0.

Due to (7.3), the first equation is identically satisfied. According to Remark 7.6 and Eq. (7.12),
the second equation (8.11) is equivalent to

h2

4 OCHKVV-V V=0,

where C is skew-symmetric. Since 5°C=0, the last equation (8.11) is a consequence of the second
equation (8.11). The above-noted reasoning is reversible, and the first equivalence (8.9) is proved.
The second equivalence follows from the last equation (2.3). |

Theorem 8.7: Let K| and K, be Killing tensors in standard form. Then {PKI,PKZ}IO, and

the following conditions are equivalent:

) ) ﬁZ 2
[HKI’HKZ]:O g T5C+K1VVK2_K2VVK1:0 = {HKI’HKZ}:_ IP&(:, (812)

where
C=K,DK,- K,DK, =K|DK}~K,DK|, D=(4.T). (8.13)
Proof: The equivalence of the two definitions of C in (8.13) follows from Remark 7.5. The
components of C are given in (7.9). The involutivity condition {PKI,PKZ}IO follow from (8.7),
(8.5a), (8.6b), and (7.2). We use Eqgs. (8.5) and (8.6). For Killing tensors K, (/=1,2) in standard
form we have, cf. (8.1) and (7.2),
AT=Njg", Bi=—g“Nl,
9, KP=N\9,8%F, PKP=\052g%F.

Thus, (8.6) are identically satisfied. Moreover, formulas similar to (5.17) hold with indices (a,b),
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Aj=N\jg", Bj=-Al,,

9 AT=A10,8" =N{3,8"
TAT=ALd.8" =\{d8",
9,B]=—d,(A]T)=—3,AT,~A}3,T.
9*Bb=—g’A'T,—29,A%9,T,—AL6T,.

Since the coordinates g are ignorable and no greek index is involved in (8.5) the proof of the first

equivalence (8.12) is similar to that of the first equivalence (5.15) in Theorem 5.8. The second

equivalence (8.12) follows from the first equation (2.3) (cf. the end of the proof of Theorem

5.8). m
Proposition 8.8: Let K, and K, be Killing tensors in standard form. Then

[HKI’H]:O’ [[:IKZ’I:I]:O = [I:IK17FIK2]:0~

Proof: This implication is similar to (5.19) of Proposition 5.9. The proof follows the same
pattern. |

Propositions similar to Propositions 5.10 and 5.11 hold.

Proposition 8.9: Let H=(IC,V) be the space of quadratic first integrals in involution associ-
ated with the separation of the Hamilton—Jacobi equation. Then the following conditions are
equivalent:

[Hgx.H]=0, VKek,
S(K'R—RK')=0, VKek, (8.14)
dR.p—T ,R,,=0, (a#b ns.).

Proof: We apply the equivalence of the first and last conditions (8.9) in Theorem 8.6. Since
Hy are first integrals, the commutation relation [Hx,H]=0 is equivalent to SC=0 with C
=KD—DK=K'D—-DK’ and D=(g,I';). If we consider C=K'D—DK’ then only the compo-
nents D ,,=d,I", with a # b are involved and, since the coordinates are separable, we can replace
D by 3R, because of (8.13) and (6.4). This proves the equivalence of the first two conditions
(8.14). On the other hand, due to Remark 7.5 and (6.4), in the equivalence (7.13) we can replace
d. ", by R,,, since only the indices a# b are involved. This proves the equivalence between
SC=0 and the last condition (8.14). [ |

Proposition 8.10: Let H=(K,V) be the space of quadratic first integrals in involution asso-
ciated with the separation of the Hamilton—Jacobi equation. Then the following conditions are
equivalent:

[IA{KI,I:IKz]:O, VKI’K27 EIC,
S(K|RK,~K,RK!)=0, VK,.K,, ek, (8.15)
ﬁaRab—FaRab=O, a#b.

The proof is similar to that of Proposition 5.11. The last condition (8.15) also appears in (8.14).
Thus all these conditions are equivalent. For proving Theorem 6.1 it remains to prove that

S(K'R—RK')= 5(KR—RK) (8.16)
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and
S(K{RK; - K;RK|)=8(K;RK, - K,RK)). (8.17)

These equalities can be proved by the following general considerations on the tensors in prestan-
dard form. We say that a contravariant two-tensor T=(7"/) has a prestandard form with respect to
a standard coordinate system (¢’)=(g%,q%) if T**=T**=0 and all the remaining components do
not depend on the ignorable coordinates (g“).

Proposition 8.11: For a tensor in prestandard form V.T'“=0.

Proof: Since (g“) are ignorable, J,7'*=9,T*“=0 and we have

V,T'%=g,T"*+ T} T"*+ T T =T} ,TA*+ T T".

However, in standard coordinates FﬁﬁIO and I'{} are all vanishing except for (i,/)=(a,B) or
(B,a). |
Proposition 8.12: If T, and T, are in prestandard form, then also the commutator C
=T,T,—T,T, is in prestandard form.
Proof: By definition of commutator,

.. il . il . . di . . . di . .
C/= Tll glngU - T’2glmT’1nj = TlICngTZJ + Tllﬂg/.ngj - TlZCgchlj - Tl2ﬂg,uvT]1}j s
so that
Cub = Ttlwgchgb - thlchthlib = Ttlwgcchb - TLngﬂcTTb B
Caa=Ca=(), (8.18)

C*P=Tirg, T3P —T5 g, T1P.

For a tensor in a prestandard form let us use the decomposition
T=T' +T'=T"9,89,+T*?9,2d,.
By setting 77#=0 or T$#=0 in (8.18) we get
T,T,-T,T;=T,T,—T,T,=T,T,-T,T|=C".

Proposition 8.13: If C is a skew-symmetric tensor in prestandard form then 5C= 5C'.
Proof: Since also C' is in prestandard form, due to Proposition 8.11 we have V.C'®
=V,C'"*=0. Moreover, V,C'“=g,C'“+T"},C'*+T¢C"'=9,C"*+T,C", since I'},=0, I'=T",
and C'=—C". In this last expression the components C*? are not involved. Thus, V.C“
— VlC ’ ia‘ [ ]
Proposition 8.14: If T, and T, are symmetric tensors in prestandard form, then

S(T{T,—T,T})= (T, T,—T,T)).

Proof: The commutator C=T; T,—T,T, is skew-symmetric and in prestandard form (Propo-
sition 8.12). The same for T;T,—T,T|=C'. Then we apply Proposition 8.13. |

For T;=K (which is in standard form) and T,=R (which is in prestandard form) we get
(8.16).

Proposition 8.15: If T, Ty, and T, are symmetric tensors in prestandard form, then
S(T;TT;,—T,TT;)=&(T,TT,—T,TT)).

Proof: The components of C=T;TT,—T,TT; are
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Cl= TillTlmTiznj - TélTlmTrlnj: TlicTchgj + Til'uT,ungj_ T;CTL'(JTGIU - TéMTMVTTj s
so that
= T[fCTch;lh - TgCTch?b >
Caa — Caa — O
CP=Tr T, THP—T5 T, TP,

This shows that C is skew-symmetric and in prestandard form. By setting T?B = Tgﬁ =0 we get
C*P=0. This shows that T;{TT,—T,TT;=C’. Then we apply Proposition 8.13. [ |
For T,=K;, T,=K,, and T=R we get (8.17). This completes the proof of Theorem 6.1.

IX. FINAL REMARKS

In this paper we have considered the symmetry operators corresponding to the separation of
the Schrodinger equation, but deeper and wider research on this topic still has to be done. Indeed,
we have not included here a revisitation of the R-separation, leading to a different development of
the separation of variables for both Schrodinger and Hamilton—Jacobi equations. This will be the
subject of a future paper. A further topic to be investigated is the link between the commutation
relations of second-order polynomial observables Hk and the associated second-order operators

Hy., for generic two-tensors K on Riemannian manifolds. This matter is concerned mainly with
integrability of systems with quadratic first integrals, and the separability appears only as a special
case.
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