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The fundamental elements of the variable separation theory are revisited, including

the Eisenhart and Robertson theorems, Kalnins–Miller theory, and the intrinsic

characterization of the separation of the Hamilton–Jacobi equation, in a unitary and

geometrical perspective. The general notion of complete integrability of first-order

normal systems of PDEs leads in a natural way to completeness conditions for

separated solutions of the Schrödinger equation and to the Robertson condition.

Two general types of multiplicative separation for the Schrödinger equation are

defined and analyzed: they are called ‘‘free’’ and ‘‘reduced’’ separation, respec-

tively. In the free separation the coordinates are necessarily orthogonal, while the

reduced separation may occur in nonorthogonal coordinates, but only in the pres-

ence of symmetries ~Killing vectors!. © 2002 American Institute of Physics.

@DOI: 10.1063/1.1506180#

I. INTRODUCTION

With a smooth real function V ~potential energy! on a Riemannian manifold (Qn ,g) ~configu-

ration manifold! we associate two differential equations, the time-independent Hamilton–Jacobi

equation

1
2¹W•¹W1V5E , ~1.1!

and the corresponding steady-state Schrödinger equation

2
\2

2
Dc1~V2E !c50. ~1.2!

In these equations, E is a constant parameter ~the energy constant!, ¹ is the gradient operator

~¹W ! i
5g i j] jW ,

and D is the Laplace–Beltrami operator

Dc5g i j¹i¹jc ,

where ¹i is the covariant derivative with respect to the Levi-Civita connection. Besides the well-

known physical connection between these two equations ~we consider here the time-independent

case only!, there is an interesting mathematical connection due to the phenomenon of the sepa-

ration of variables.

It is well known that, in many interesting cases, these equations admit local separated solu-

tions of the form
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W~qI ,cI !5(
i51

n

W i~q i,cI ! ~1.3!

for the Hamilton–Jacobi equation, and of the form

c~qI ,cI !5)
i51

n

c i~q i,cI !, ~1.4!

or

c~qI ,cI !5eR~q
I
!)
i51

n

c i~q i,cI !, ~1.5!

for the Schrödinger equation, where qI 5(q i) is a suitable coordinate system on Q, and cI denotes

a set of constant parameters, whose number depends on an appropriate definition of separation.

Note that in ~1.5! the function R(qI ) does not depend on the constant parameters: this kind of

separation is called R-separation.

It happens that for solutions of this kind, Eqs. ~1.1! and ~1.2! become equivalent to a system

of ordinary differential separated equations, each one involving a single coordinate. The interest-

ing fact is that, in most cases, the separation of variables occurs simultaneously for both equations

and in the same coordinate system. Although this fact is easy to illustrate for basic important

examples, its general description and motivation is rather difficult and subtle to understand. Let us

consider, for instance, the particular case of the orthogonal separation, where g i j
50 for iÞ j . For

this kind of separation we usually refer to three classical theorems of Stäckel, Robertson, and

Eisenhart.1–3

Theorem 1.1: ~Stäckel, 1893! The Hamilton–Jacobi equation is separable in orthogonal

coordinates qI if and only if the diagonal components g ii of the metric tensor and the potential V

have the form

g ii
5w ~n !

i
, V5f ig

ii
5f iw ~n !

i
, ~1.6!

where w (n)
i

is the last row of the inverse @w ( j)
i

# of an n3n Stäckel matrix @w i
( j)# and f i are

functions of the coordinate corresponding to the index only.

A Stäckel matrix is a regular n3n matrix whose components w i
( j)(q i) are functions depending

on the coordinate corresponding to the lower index only. A function V of the kind ~1.6! is then

called a Stäckel multiplier.

Theorem 1.2: ~Robertson, 1927! The Schrödinger equation is separable in orthogonal coor-

dinates qI if and only if in these coordinates the Hamilton–Jacobi equation is separable (i.e., the

Stäckel requirements are satisfied) and moreover, the following condition is satisfied

A) i51
n g ii det~w i

~ j !!5) i51
n f i~q i!, ~1.7!

where f i(q i) are functions of the corresponding coordinate only.

This additional requirement is called the Robertson condition. It has a meaningful geometrical

interpretation:

Theorem 1.3: ~Eisenhart, 1934! The Robertson condition is satisfied if and only if the Ricci

tensor is diagonal:

R i j50, iÞ j .

However, while it can be easily seen that requirements ~1.6! and ~1.7! are sufficient for

reducing the Schrödinger equation to separated equations, the proof given by Robertson ~and
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accepted by Eisenhart! that they are also necessary for the separation is not satisfactory. This is

due to the fact that for the separability of the Schrödinger equation these authors assumed ~appar-

ently! the existence of a single solution of the kind

c~qI !5) i51
n c i~q i!,

without any reference to the presence and to the role of constant ~real or complex! parameters @as

is done in analytical mechanics for a complete solution of the Hamilton–Jacobi ~HJ! equation#.
Indeed, as we shall see in the following, the existence of a single separated solution of the

Schrödinger equation does not imply the separation of the HJ equation for the same reason that the

existence of a single solution of a first-order differential system does not imply, in general, its

complete integrability. In other words, while for the HJ equation one looks for a separated solution

~1.3! containing n constant parameters cI 5(c i) satisfying the completeness condition

detF ]2W

]q i]c j
G5detF]p i

]c j
GÞ0, p i5W i8 , ~1.8!

a similar requirement for a separated solution ~1.4! of the Schrödinger equation does not appear

explicitly either in the celebrated works cited previously or in many other standard reference

books.4,5 In fact, also for the Schrödinger equation we are not interested in a single separated

solution, but in a parametrized family of local solutions, in order to build up a global one satis-

fying suitable boundary or normalization conditions. In conclusion: the statements of Robertson

and Eisenhart ~Theorems 1.2 and 1.3! are meaningless without a proper definition of separation of

the Schrödinger equation.

A first ‘‘precise’’ definition of separation has been proposed by Koornwinder6 within a rather

general context, and strongly related to the basic properties of the Stäckel matrices. However, the

systematic use of these matrices hides many interesting intrinsic features of the separation con-

nected, for instance, with the existence of Killing tensors and of second-order symmetries of the

Schrödinger equation. Other definitions of separation have been introduced by Olevsky7 and more

recently by Zhdanov and Zhalij8 ~both for the case n53).

A crucial contribution to this matter is due to Kalnins and Miller.9,10 Their approach is based

on a definition of regular additive separation of a generalized Hamilton–Jacobi equation of any

order, which is equivalent to the complete integrability of a suitable first-order differential system.

In such a way they give an extension of the classical Levi-Civita separability conditions.11 As a

second step, they relate the definition of multiplicative separation of the Schrödinger equation to

the additive separation of a suitable second-order Hamilton–Jacobi equation. A similar approach

has been followed earlier by Agostinelli.12 Kalnins and Miller begin their analysis of the separa-

tion of the Schrödinger equation by assuming that the coordinates are orthogonal, while in Ago-

stinelli’s paper ~as well as in that of Koornwinder! it is shown that for the regular separation of the

Schrödinger equation ~in the sense of Kalnins and Miller! the coordinates are in fact necessarily

orthogonal. Furthermore, Agostinelli shows that the nonorthogonal separation occurs when some

of the separated factors c i in ~1.4! are of a special kind and the corresponding coordinates are

ignorable. However, Agostinelli’s approach is heavily coordinate dependent and somehow unsat-

isfactory, since at that time the geometrical theory of the variable separation of the Hamilton–

Jacobi equation was not yet developed.

These remarks show that a revisitation and a resetting of all this matter is needed, from the

very beginning, in light of the recent developments of the separability theory. The crucial question

for a correct definition of separation for the Schrödinger equation is, as we said previously, how

many constant parameters should enter a multiplicative separated solution and which conditions

should they satisfy; in other words, as well as for the Hamilton–Jacobi equation, we need a

completeness condition for a solution of the Schrödinger equation.

In the present paper it is shown that a completeness condition follows necessarily and in a

‘‘natural’’ way ~i.e., without any consideration concerning the particular kind of equation we are
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dealing with! from the general theory of the first-order normal differential systems ~recalled in

Sec. II, from a geometrical view point! applied to the general theory of the additive separation of

Kalnins and Miller. The resulting definition of separation is quite different from those previously

proposed in Refs. 6–8. First of all because it is not unique. Indeed, following our general approach

we are led, again in a ‘‘natural’’ way, to consider at least two types of separation for the Schrö-

dinger equation, which we have called free and constrained, respectively. These terms are moti-

vated by the fact that one can impose ‘‘constraints’’ on some of the factors c i(q i) of a separated

solution; in other words, one can assume that some of these factors have a special form or satisfy

a special kind of equations. One can, for instance, impose that n2m factors have the form ca

5exp(caqa), for a5m11,...,n , where ca are arbitrary constants ~see Refs. 12 and 13!. We call

reduced separation a constrained separation of this type. The remarkable fact is that, as a conse-

quence of these assumptions, in the free separation the coordinates are necessarily orthogonal and

the number of essential parameters entering the completeness condition is 2n , while the reduced

separation may occur in nonorthogonal coordinates and the number of the essential parameters

reduces to m1n,2n , including (ca). This is apparently in contrast to a common ‘‘ansatz’’ which

considers only n parameters in a separated solution.6,13,14 In fact, as we shall see, up to a trans-

formation of the 2n parameters entering the completeness condition for the free separation, half of

them are true ‘‘separation constants’’ corresponding to constants of motion ~first integrals!, while

the remaining n are integration constants. This is quite reasonable since we are dealing with

second-order equations. For a correct definition of ‘‘completeness’’ both groups of constant pa-

rameters are jointly involved, but in the process of integration by separation of variables all these

essential constants automatically find their own place. This explains the curious fact that, in spite

of the absence of the notion of ‘‘complete separable solution,’’ the method of separation of

variables in the Schrödinger equation has been applied with success, at least in the elementary

cases. Thus, the content of the present paper is essentially theoretical and propedeutical to a

further analysis of remaining topics on the separation: the relationship between first integrals and

symmetry operators, the R-separation, the extensions to the case in which a vector potential is

present, and to the case of a Lorentzian metric. As we shall see, a conspicuous and rich matter is

hidden behind the usual approach to the separation of the Schrödinger equation.

II. FIRST-ORDER DIFFERENTIAL SYSTEMS AND THE GENERAL DEFINITION OF
SEPARATION

Let us recall some classical basic facts concerning normal systems of first-order partial dif-

ferential equations, from a geometrical viewpoint and in a way suitable for our purposes.

Let us consider a trivial fibration p:M5Q3Z→Q , where Z is an N-dimensional linear space

~over C or R! with coordinates zI5(zA) ~capital indices A,B,... will run from 1 to N! and Q is an

n-dimensional real differentiable manifold, with local coordinates qI 5(q i) ~latin indices h,i,j,...

will run from 1 to n!. A connection over this fibration is a regular distribution C over the tangent

bundle TZ transversal and complementary to the fibers of p. This means that C is a subbundle of

TM such that at each point xPM the set Cx5CùTxM is an n-dimensional subspace transversal

to the fiber at the point z. A vector field D over M is horizontal if D(M ),C i.e., if D(x)PCx for

each xPM . A vector field V over M is vertical if it is tangent to the fibers. The only field which

is simultaneously vertical and horizontal is the zero-vector field. If we consider local coordinates

(qI ,zI )5(q i,zA) of M, then the distribution C is locally spanned by the following n horizontal

vector fields ~interpreted as derivations!:

D i5
]

]q i 1C iA

]

]zA

, ~2.1!

called generators of C. The functions C iA are the coefficients of the connection in these coordi-

nates. It can be seen that the Lie brackets of two generators ~as well as of any two horizontal

vector fields! are vertical. Hence, by the Frobenius theorem, the distribution C is completely

integrable ~i.e., the connection C is flat! if and only if the generators commute,
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@D i ,D j#50. ~2.2!

The complete integrability of C means that there exists a foliation of integral manifolds

transversal to the fibers and locally represented by equations of the kind

zA5 f A~qI ,cI !, ~2.3!

where the N functions f A depend on N constant parameters cI 5(cA) which must be uniquely

determined by assigning at any fixed point q0PQ ~belonging to the domain of the coordinates!
any arbitrary set of values of zI . This means that the functions ~2.3! satisfy the completeness

condition

detF ]zI

]cI
GÞ0. ~2.4!

Moreover, since the integral manifolds are tangent to the generators, equations

D i~zA2 f A~qI ,cI !!50

must be identically satisfied. Due to ~2.1!, these equations are equivalent to

] izA5C iA~qI ,zI !. ~2.5!

This proves that

Theorem 2.1: A first-order differential system in the normal form ~2.5! is completely inte-

grable, i.e., it admits a local complete solution ~2.3! satisfying the completeness condition ~2.4! if

and only if the generators D i commute, @D i ,D j#50.

On the basis of these general considerations, we can reformulate the definition of separation of

Kalnins and Miller9,10 as follows. Let us consider a partial differential equation

H~qI ,u ,u i ,u i j , . . . ,u i j¯h!5E , ~2.6!

in the independent variables qI 5(q i) and in the unknown function u(qI ). Here u i j¯h denote the

partial derivatives of u with respect to these variables, E is a constant parameter, and H is a

smooth real function of the variables qI , u and its partial derivatives up to a degree l. A separable

solution of this equation is a solution of the form

u5(
i51

n

S i~q i,E !, ~2.7!

i.e., a sum of functions depending on a single variable. For separable solutions all the mixed

partial derivatives ~corresponding to distinct indices! vanish identically, so that Eq. ~2.6! gets the

simpler form

Hs~qI ,u ,uI ~1 !,uI ~2 !, . . . ,uI ~ l !!5E , ~2.8!

where uI (1)
5(u i

(1))5(u i), uI (2)
5(u i

(2))5(u ii), etc., and Hs is the function we get by replacing

u i¯ j50 in H, for at least two distinct indices. Note that Hs in ~2.8! is in general a function

different from H in ~2.6!. However, for the sake of simplicity, in the following discussion we shall

use the same symbol H. Since for any solution of this equation the left-hand side of ~2.8! reduces

to a constant, the total derivatives of H with respect to the coordinates must vanish identically,

]H

]q i 1
]H

]u
u i1

]H

]u i

u i
~2 !

1
]H

]u i
~2 ! u i

~3 !
1¯1

]H

]u i
~ l ! u i

~ l11 !
50. ~2.9!
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Hence, for

]H

]u i
~ l ! Þ0

we can define the function

R i~qI ,u ,uI ~1 !,uI ~2 !, . . . ,uI ~ l !!52S ]H

]u i
~ l !D 21

3S ]H

]q i 1
]H

]u
u i

~1 !
1

]H

]u i

u i
~2 !

1
]H

]u i
~2 ! u i

~3 !
1¯1

]H

]u i
~ l21 ! u i

~ l !D ,

~2.10!

so that Eq. ~2.9! becomes

u i
~ l11 !

5R i~qI ,u ,uI ~1 !,uI ~2 !, . . . ,uI ~ l !!.

Now, let us consider the following first-order differential system where jÞi and ] i5
]

]qi
:

] iu5u i
~1 !,

] iu i
~1 !

5u i
~2 ! , ] iu j

~1 !
50,

] iu i
~2 !

5u i
~3 ! , ] iu j

~2 !
50, ~2.11!

¯ ¯

] iu i
~ l !

5R i , ] iu j
~ l !

50.

This is a normal system of the kind ~2.5! in the unknown N5n•l11 functions

zI5~zA!5~u ,uI ~1 !,uI ~2 !, . . . ,uI ~ l !!.

The comparison with ~2.1! and ~2.5! shows that the corresponding generators are

D i5] i1u i
~1 !

]

]u
1u i

~2 !
]

]u i
~1 ! 1u i

~3 !
]

]u i
~2 ! 1¯1R i

]

]u i
~ l ! . ~2.12!

We remark that a separable solution ~2.7! corresponds to a solution of this system. Due to Theo-

rem 2.1 we can introduce the following

Definition 2.2: We say that Eq. ~2.6! is separable in the coordinates qI if it admits a complete

separable solution, i.e., a solution of the form

u5(
i51

n

S i~q i,cI ! ~2.13!

depending on N5nl11 constant parameters cI 5(cA) and satisfying the completeness condition

detF ]zI

]cI
G5detF ]u

]cA
U ]u i

]cA
U]u i

~2 !

]cA
U¯U]u i

~ l !

]cA
GÞ0. ~2.14!

It follows that
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Theorem 2.3: Equation (2.6) is separable (i.e., it admits a complete separable solution) in the

coordinates qI if and only if the first-order system (2.11) is completely integrable, i.e., if and only

if the separability conditions

@D i ,D j#50 ~2.15!

are identically satisfied for D i defined by (2.12) and R i defined by (2.10).

Remark 2.4: In the following applications we shall deal with equations of the kind ~2.6! or

~2.8! where H does not depend on u. In this case the dependent variables are

zI5~zA!5~uI ~1 !,uI ~2 !, . . . ,uI ~ l !!,

and the first line of system ~2.11! disappears, as well as the term ]/]u in the generators ~2.12!.
Moreover, the number of the constants cI 5(cA) entering a complete solution ~2.13! is n•l , and the

completeness condition ~2.14! reduces to

detF ]zI

]cI
G5detF ]u i

]cA
U]u i

~2 !

]cA
U¯u

]u i
~ l !

]cA
GÞ0. ~2.16!

Remark 2.5: The case in which the complete integrability conditions ~2.15! are identically

satisfied corresponds to the case of regular separation of Kalnins and Miller.9 They call non-

regular a type of separation in which these conditions are nonidentically satisfied and, conse-

quently, separable solutions may exist, but depending on a reduced number of constants. However,

the meaning of this non-regular separation is rather obscure. As we shall see ~Sec. V!, in dealing

with the Schrödinger equation we are led to introduce, in natural way, an alternative definition of

the regular separation: the reduced separation.

Remark 2.6: Definition 2.2 and Theorem 2.3 are the basic statements for the theory of variable

separation ~additive, multiplicative, or any other kind! provided the kind of separation we are

dealing with can be transformed, by a suitable transformation, into an additive separation. This is

in fact the case of the multiplicative separation: the transformation is u5ln c.

III. THE LEVI-CIVITA SEPARABILITY CONDITIONS AND THEIR CONSEQUENCES

Let us apply the general theory illustrated in Sec. II to the case of the Hamilton–Jacobi

equation corresponding to a Hamiltonian H:T*Q→R over a cotangent bundle T*Q . In this case

we deal with the cotangent fibration p:M5T*Q→Q of a configuration manifold Q. This is ~in
general! a nontrivial fibration, but our previous considerations can be applied, since they have a

local character.

The differential equation ~2.6! is now

H~qI ,uI ~1 !!5E , ~3.1!

with H5H and, according to the standard notation,

u5W , uI ~1 !
5~u i!5~p i!5~] iW !.

Now l51 and zI5(uI (1))5(p i). In a complete solution we have exactly n constants cI 5(c i)

and the completeness condition ~2.16! takes the form ~1.8!,

detF]p i

]c j
GÞ0. ~3.2!

The differential system ~2.11! reads

] ip i5R i , ] ip j50 ~ jÞi !, ~3.3!
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where the functions R i ~2.10! are

R i52
] iH

] iH
S ] i5

]

]q i ,] i
5

]

]p i
D .

Since the generators D i ~2.14! are

D i5] i1R i]
i,

the separability conditions @D i ,D j#50 ~2.15! are equivalent to the well-known Levi-Civita sepa-

rability conditions

] i] jH] iH] jH1] i] jH] iH] jH2] i] jH] iH] jH2] i]
jH] iH] jH50, iÞ j , n.s., ~3.4!

where ‘‘n.s.’’ means that there is no summation over the repeated indices. As a consequence,

Theorem 2.3 reduces to the celebrated Levi-Civita theorem,

Theorem 3.1: The Hamilton–Jacobi equation (3.1) is separable in the coordinates qI 5(q i)

i.e., it admits a solution of the kind (2.3) satisfying the completeness condition (3.2), if and only if

(3.4) are identically satisfied.

This theorem holds for any kind of Hamiltonian. We can apply it to a natural Hamiltonian

H5G1V5
1
2g i j~qI !p ip j1V~qI !,

where G is the geodesic Hamiltonian, V:Q→R a potential energy. The corresponding Hamilton–

Jacobi equation is now Eq. ~1.1!, which in any local canonical coordinate system becomes

1
2g i j] iW] jW1V5E .

Moreover, we can consider two special types of coordinates: orthogonal and standard coordinates

~Definition 3.3!. It is straightforward to prove that

Proposition 3.2: If the coordinates are orthogonal (g i j
50 for iÞ j) , then the Levi-Civita

separability conditions are equivalent to

g iig j j] i] jg
hh

2g ii] ig
j j] jg

hh
2g j j] jg

ii] ig
hh

50,

g iig j j] i] jV2g ii] ig
j j] jV2g j j] jg

ii] iV50,
iÞ j , n.s. ~3.5!

These equations do not involve the momenta pI . An equivalent form of these equations were first

established by Eisenhart.3 It can be shown that their general solutions have the Stäckel form

~1.6!.15 It follows that the Hamilton–Jacobi equations split into separated equations of the form

1
2p i

2
5w i

~ j !c j2f i ,

where cI 5(c j) are arbitrary constants satisfying the completeness condition. Equation ~3.5! can

also be written in the form

] i] jg
hh

2] i ln g j j] jg
hh

2] j ln g ii] ig
hh

50,

] i] jV2] i ln g j j] jV2] j ln g ii] iV50,
iÞ j , n.s. ~3.58!

Note that the first equations ~3.58! characterize the orthogonal separation of the pure geodesic

Hamiltonian.

Definition 3.3: A standard coordinate system is a coordinate system (q i)5(qa,qa) with a

51,...,m and a5m11,...,n , such that ~i! the metric tensor assumes the semidiagonal standard

form

G5gaa]a ^ ]a1gab]a ^ ]b , ~3.6!
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and ~ii! the coordinates (qa) are ignorable,

]ag i j
50, ]aV50. ~3.7!

We call essential the coordinates (qa).

It is straightforward to prove that

Proposition 3.4: In standard coordinates the Levi-Civita separability conditions are equiva-

lent to the following:

gaagbb]a]bgcc
2gaa]agbb]bgcc

2gbb]bgaa]agcc
50,

gaagbb]a]bgab
2gaa]agbb]bgab

2gbb]bgaa]agab
50, ~3.8!

gaagbb]a]bV2gaa]agbb]bV2gbb]bgaa]aV50,

with aÞb not summed.

These equations can be written in the equivalent form

]a]bgcc
2]a ln gbb]bgcc

2]b ln gaa]agcc
50,

]a]bgab
2]a ln gbb]bgab

2]b ln gaa]agab
50, ~3.88!

]a]bV2]a ln gbb]bV2]b ln gaa]aV50.

Their general solutions are still of Stäckel type, but involving an m3m Stäckel matrix @wa
(b)# of

functions depending on the essential coordinates only,

gaa
5w ~m !

a
, gab

5fa
abgaa, V5fagaa, ~3.9!

with functions (fa
ab ,fa) depending on the essential coordinate corresponding to the lower index

only. Then the Hamilton–Jacobi equation splits into separated equations of the kind

pa5ca , 1
2pa

2
5wa

~b !cb2fa
abcacb2fa ,

where c5(c i)5(ca ,ca) are n arbitrary constants.

Remark 3.5: The above-given definition of standard coordinates needs some comments. ~i! In

a given standard coordinate system (q i) the distinction between ‘‘ignorable’’ and ‘‘essential’’

coordinates is in general not univocal. Indeed, an ignorable coordinate may be orthogonal to the

other ones and considered as essential; conversely, an essential coordinate may be ignorable, i.e.,

it may satisfy ~3.7!. However, in the process of integration by separation of variables of the

Hamilton–Jacobi equation it is useless to consider an ignorable coordinate as ‘‘essential,’’ since it

corresponds to a linear homogeneous first integral and thus to a trivial separated equation. ~ii! The

distinction between ignorable and essential coordinates becomes univocal and assumes a full

meaning when related to a given separable Killing web,16,17 that is when related to the geometrical

characterization of the separation ~see Sec. VII!.
Remark 3.6: It is known that there is no loss of generality in considering separable standard

coordinates. Indeed, the analysis of the Levi-Civita separability conditions shows that any sepa-

rable coordinate system admits an equivalent standard system (qa,qa) where the number of

essential coordinates is minimalized, i.e., it coincides with the number of second-class coordinates,

according to the classification of Levi-Civita. This number is invariant within an equivalence class

of separable coordinates. A standard coordinate system in which the essential coordinates (qa) are

exactly those of second class has been called normal.17 For our present purposes we do not need

to take into account the classification of Levi-Civita and the subtle distinction between ‘‘normal’’

and ‘‘standard’’ coordinates. We need only to refer to the above-given definition of standard

coordinates and to the corresponding separability conditions ~3.8! or ~3.88!.
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Definition 3.7: We say that a symmetric two-tensor K5(K i j) has a standard form or that it is

a standard tensor with respect to a standard coordinate system if it assumes the form

K5Kaa]a ^ ]a1Kab]a ^ ]b5lagaa]a ^ ]a1Kab]a ^ ]b , ~3.10!

where (la) and Kab do not depend on the ignorable coordinates (qa). Then the matrix @K i j# has

a form similar to ~3.6!.
Note that a tensor may be simultaneously in standard form with respect to nonequivalent

separable standard coordinate systems.

IV. THE FREE SEPARATION OF THE SCHRÖDINGER EQUATION

In this section we shall show that a convenient and precise ‘‘ansatz’’ for the multiplicative

separation of the Schrödinger equation ~1.2! is given by the following

Definition 4.1: A complete separated solution of the Schrödinger equation is a solution of the

form c(qI ,cI )5P i
n c i(q i,cI ), depending on 2n parameters cI 5(c I) satisfying the completeness

condition

detF ]u i

]c I

]v i

]c I

GÞ0, u i5
c i8

c i

, v i5
c i9

c i

. ~4.1!

When such a solution exists we say that the Schrödinger equation is separable ~or freely sepa-

rable! in the coordinates qI 5(q i).

The completeness condition ~4.1! means that the 2n constants (c I) can be uniquely deter-

mined by assigning arbitrary values to the 2n ratios (uI ,vI ), at any fixed point. Hence, no restric-

tion is imposed on the values that the functions (c i ,c i8 ,c i9) can assume at any given point of the

domain of the coordinates, for cÞ0. For this reason we call this kind of separation free. As we

shall see in Sec. V, we can in fact consider another kind of separation in which such a ‘‘freedom’’

is lost. As we shall see in the following ~Remark 4.8!, the 2n parameters appearing in a free

separated solution have a different role: in the process of integration n of them are related to

constants of motion in involution or, equivalently, to second-order commuting symmetries of the

Schrödinger operator, so that they can be interpreted as ‘‘separation constants,’’ while the remain-

ing n parameters arise as ‘‘integration constants.’’

By assuming Definition 4.1 we shall prove

Theorem 4.2: The Schrödinger equation is freely separable in a coordinate system qI if and

only if: (i) these coordinates are orthogonal, (ii) the corresponding Hamilton–Jacobi equation is

separable, (iii) the following conditions are satisfied:

] iG j50 ~ iÞ j !, ~4.2!

where

G i5gh jGh j ,i , Gh j ,i5
1
2~]hg j i1] jg ih2] igh j!. ~4.3!

Since Gh j ,i are the Christoffel symbols of the Levi-Civita connection, we call the functions G i the

contracted Christoffel symbols, associated with the coordinates qI . From their definition ~4.3! it

follows that

G i5
1
2] i ln det@gh j#2g ik]hghk. ~4.4!

We call the whole set of equations ~4.2! the Robertson condition for the free separation of the

Schrödinger equation. In this form the Robertson condition means that each contracted Christoffel
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symbol G i is a function of the corresponding coordinate q i only ~see Remark 4.7!. As we know, an

equivalent form of the Robertson condition is the diagonalization of the Ricci tensor. We shall

discuss this equivalence in Sec. VI.

In order to justify all the above-given statements, let us start from the local coordinate ex-

pression of the Schrödinger equation ~1.2!,

g i j] i] jc2Gk]kc1
2

\2 ~E2V !c50, Gk
5gkiG i . ~4.5!

Since the constant factor 2/\2 is inessential for our consideration, from now on we shall replace

(2/\2)V with V and (2/\2)E by E.

For a separated solution of the kind ~1.4! we have

] ic5
c i8

c i

c , ] i] jc5
c i8

c i

c j8

c j

c ~ iÞ j !, ] i] ic5
c i9

c i

c . ~4.6!

Here the prime denotes the derivative operator on a function of a single variable. We remark that

in these formulas the fraction c/c i is the product c1¯ĉ i¯cn , without the factor c i . Thus,

expressions ~4.6! also hold at the points where c i50. If we set u5ln c, then

u i5] iu5
] ic

c
5

c i8

c i

~4.7!

are functions of the corresponding variable q i and moreover,

] ic5cu i ,

] i] jc5cu iu j ~ iÞ j !,

] i] ic5c~u i
2
1u i

~2 !!, u i
~2 !

5u ii5] i] iu .

It follows that for a separated solution Eq. ~4.5! assumes the form

~g i ju iu j1g iiu i
~2 !

2G iu i1E2V !c50, ~4.8!

where the sum over the repeated indices is understood. Thus, for cÞ0 we get a partial differential

equation of the kind ~2.8! with l52,

S~qI ,uI ~1 !,uI ~2 !!52E ,

by setting ~see Ref. 12!

S~qI ,uI ~1 !,uI ~2 !!5g i ju iu j1g iiu i
~2 !

2G iu i2V ,

~4.9!

uI ~1 !
5~u i!, uI ~2 !

5~u ii!.

As a consequence, by applying Definition 2.2 to the present case and Theorem 2.3 related to

the general equation ~2.8!, taking into account Remark 2.4, the completeness condition ~2.16!, and

expression ~4.7!, we are led to the following definition and theorem.

Definition 4.3: A complete separated solution of the Schrödinger equation ~4.5! is a solution of

the form ~1.4! depending on 2n constant parameters cI 5(c I) satisfying the completeness condition
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detF ]u i

]c I

]u i
~2 !

]c I

GÞ0, u i5
c i8

c i

, u i
~2 !

5u ii5S c i8

c i
D 8

. ~4.10!

Theorem 4.4: The Schrödinger equation (4.5) is separable in the coordinates qI if and only if

the following first-order differential system is completely integrable

] iu i
~1 !

5u i
~2 ! ,

] iu i
~2 !

5R i ,

] iu j
~1 !

50,

] iu j
~2 !

50,
~ iÞ j !, ~4.11!

where

R i~qI ,uI ~1 !,uI ~2 !!52S ]S

]u i
~2 !D 21S ]S

]q i 1
]S

]u i

u i
~2 !D , ~4.12!

S being defined as in (4.9) i.e., if and only if the commutation relations

@D i ,D j#50, ~4.13!

are identically satisfied for

D i5] i1u i
~2 !

]

]u i

1R i

]

]u i
~2 ! .

Remark 4.5: If we replace the 2n variables (uI (1),uI (2)) with the variables

~uI ,vI !5~u i ,v i!

where

v i5u i
~2 !

1u i
2
5

c i9

c i

, ~4.14!

then the completeness condition ~4.10! becomes equivalent to ~4.1!, so that Definition 4.3 is

equivalent to Definition 4.1.

This transformation of dependent variables turns out to be convenient for the analysis of the

integrability ~or separability! conditions ~4.13!. We note first of all that

]S

]u i
~2 ! 5g ii,

so that the definition ~4.12! becomes

R i~qI ,uI ~1 !,uI ~2 !!52~g ii!21S ]S

]q i 1
]S

]u i

u i
~2 !D .

In the new variables we have

S~qI ,uI ,vI !5g i ju iu j1g ii~v i2u i
2!2G iu i2V ,

R i~qI ,uI ,vI !52
1

g ii S ]S

]q i 1~v i2u i
2!

]S

]u i
D , ~4.15!
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D i5] i1~v i2u i
2!

]

]u i

1R i

]

]v i

,

and system ~4.11! becomes equivalent to

] iu i5v i2u i
2,

] iv i5R i ,

] iu j50,

] iv j50,
~ iÞ j !. ~4.16!

Using ~4.15!, a straightforward calculation shows that

@D i ,D j#5S ~v i2u i
2!

]R j

]u i

1R i

]R j

]v i

1
]R j

]q i D ]

]v j

2S ~v j2u j
2!

]R i

]u j

1R j

]R i

]v j

1
]R i

]q j D ]

]v i

.

Hence, the integrability conditions ~4.13! become equivalent to

~v i2u i
2!

]R j

]u i

1R i

]R j

]v i

1
]R j

]q i 50 ~ iÞ j !. ~4.17!

Because of ~4.15!,

]R i

]q i 52
1

g j j ] ig
j jR j2

1

g j j F] i] jS1
]2

S

]q i]u j

~v j2u j
2!G

and, for iÞ j ,

]R j

]v i

52
1

g j j F ]2
S

]q j]v i

1
]2

S

]v i]u j

~v j2u j
2!G52

1

g j j ] jg
ii ~ iÞ j !.

Moreover,

]S

]u i

52g ikuk22g iiu i2G i.

Thus,

]2
S

]u i]u j

52g i j ~ iÞ j !.

It follows that

]R j

]u i

52
1

g j j F ]2
S

]u i]q j 12g i j~v j2u j
2!G ~ iÞ j !.

Due to these last equations, the integrability conditions ~4.17! become equivalent to

2g i j~v i2u i
2!~v j2u j

2!1
]2

S

]q i]u j

~v j2u j
2!1

]2
S

]q j]u i

~v i2u i
2!1] i] jS1R i] jg

ii
1R j] ig

j j
50

~ iÞ j !. ~4.18!

Note that in this form they are symmetric in the distinct indices ~i,j!. We remark that these are

algebraic equations in the variables (uI ,vI ) and that they must be identically satisfied for all values

of these variables, due to the completeness condition. A closer analysis of expressions ~4.15!
shows that ~4.18! are of second degree in vI , and that the corresponding second-degree homoge-

neous polynomial is given by the first term g i j
v iv j , with iÞ j not summed. This implies
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g i j
50 ~ iÞ j ! ~4.19!

and shows that

Proposition 4.6: In the free separation of the Schrödinger equation the coordinates are nec-

essarily orthogonal.

In orthogonal coordinates, Eqs. ~4.18! and ~4.15! assume the simpler form

]2
S

]q i]u j

~v j2u j
2!1

]2
S

]q j]u i

~v i2u i
2!1] i] jS1R i] jg

ii
1R j] ig

j j
50 ~ iÞ j ! ~4.20!

and

S5g ii
v i2G iu i2V , R i5

1

g ii @G i~v i2u i
2!2] iS# . ~4.21!

It follows that

R i5
1

2g ii @2G i~v i2u i
2!2] ig

kk
vk1] iG

kuk1] iV# .

By inserting this last expression of R i into ~4.20! we conclude that the integrability conditions of

system ~4.16! are equivalent to the orthogonality conditions ~4.19! and to the following:

2~u j
2
2v j!~] iG

j
2G j] i ln g j j!12~u i

2
2v i!~] jG

i
2G i] j ln g ii!

1vk~] i] jg
kk

2] i ln g j j] jg
kk

2] j ln g ii] ig
kk!2uk~] i] jG

k
2] i ln g j j] jG

k
2] j ln g ii] iG

k!

2~] i] jV2] i ln g j j] jV2] j ln g ii] iV !50 ~ iÞ j !. ~4.22!

Since these last equations are polynomial in the variables (uI ,vI ), they are identically satisfied if

and only if all the coefficients vanish, namely:

] i] jg
kk

2] i ln g j j] jg
kk

2] j ln g ii] ig
kk

50,

] i] jV2] i ln g j j] jV2] j ln g ii] iV50,

] jG
i
2G i] j ln g ii

50,

] i] jG
k
2] i ln g j j] jG

k
2] j ln g ii] iG

k
50.

~ iÞ j ! ~4.23!

These equations are in fact redundant. Indeed, it can be seen that due to the first and third

equations, the last equation is identically satisfied. Moreover, the third equation is equivalent to

] jG i50 ~ iÞ j !,

where, in orthogonal coordinates,

G i5g iiG
i
5

1
2 (kÞi] i ln gkk

2
1
2 ] i ln g ii

5] i ln~g iiA) kgkk!. ~4.24!

Finally, we recognize in the first two equations of ~4.23! the necessary and sufficient conditions

~3.5’! for the orthogonal separation of the Hamilton–Jacobi equation. Thus, due to Theorem 4.4,

Theorem 4.2 is proved.

Remark 4.7: After Theorem 4.2, the integration of the Schrödinger equation by separation of

variables is accomplished as follows. Due to the Stäckel form ~1.6! of the metric tensor compo-

nents and of the potential, the Schrödinger equation ~4.8! takes the form

w ~n !
i

~u i81u i
2
2G iu i2f i!52E , u i5

c i8

c i

.
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This equation is interpreted as the last one of a system of n equations involving all the remaining

rows of the matrix @w ( j)
i

# and n constants aI 5(a i),

w ~ j !
i

~u i81u i
2
2G iu i2f i!52a j , an5E , ~4.25!

which is equivalent to the following system of separated equations:

u i81u i
2
2G iu i2f i1w i

~ j !a j50. ~4.26!

These are first-order Riccati equations in the unknown functions u i(q i), depending on the n

constant parameters aI 5(a j). Their integration yields functions

u i5u i~q i,aI ,b i!, ~4.27!

each one depending on a further constant b i . The complete separated solution is then given, up to

an inessential constant factor, by

c5exp E u i dq i. ~4.28!

We note that ~as happens for any Riccati equation! ~4.26! are equivalent to the linear second-order

equations

c i92G ic i82~f i2w i
~ j !a j!c i50 ~4.29!

in the original unknown functions c i .

Remark 4.8: The 2n constants cI 5(c I)5(aI ,bI )5(a i ,b i), appearing in a separated solution

~4.28! as a result of the process of integration by separation of variables illustrated previously, play

a different role. While bI arise as integration constants from the integration of the first-order Riccati

equations ~4.26!, or of the second-order linear equations ~4.29!, the constants aI have two inter-

pretations. ~i! They are the constant values taken by the quadratic first integrals in involution

related to the separation of the Hamilton–Jacobi equation ~see Theorem 7.14!, whose expressions

in orthogonal separable coordinates are

H j5
1
2 w ~ j !

i
~p i

2
12f i!. ~4.30!

~ii! They are the eigenvalues of the second-order symmetry operators of the Schrödinger equation

corresponding to H j ,

Ĥ jc5c ~ j !
i

~2] i
2c1G i] ic1f ic !. ~4.31!

The link between H j and Ĥ j will be discussed in a following paper.18 If we apply these operators

to a separated solution ~1.4! then, due to ~4.6!, ~4.7! and ~4.14!, we get

Ĥ jc5w ~ j !
i

~G iu i2v i1f i!c , ~4.32!

which shows that the eigenvalues are

a j5w ~ j !
i

~G iu i2v i1f i!. ~4.33!

Remark 4.9: The values of the constants aI are determined through ~4.25!, which are equiva-

lent to ~4.33!, by the initial values at a point q0 of (u i ,u i8) i.e., by the initial values of

(c i ,c i8 ,c i9), for c i(q0)Þ0. The values of bI are then determined by reversing ~4.27! at the initial

point q0 : u i(q0)5u i(q0
i ,aI ,b i). If instead of the first-order equations ~4.26! we consider the

equivalent second-order equations ~4.29!, the resulting integration constants are 2n , but only half
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of them are essential, since the functions c i are determined up to a constant factor. Thus, also in

this case we reduce to n essential constants (b i). See Sec. IX for an example.

V. THE REDUCED SEPARATION OF THE SCHRÖDINGER EQUATION

In Sec. IV we have considered a kind of multiplicative separation of the Schrödinger equation

involving 2n constant parameters cI which can be uniquely determined by assigning the values, at

any chosen point, of the functions u i5c i8/c i and v i5c i9/c i . This means that we have no restric-

tion on the values that the functions (c i ,c i8 ,c i9) can assume at any given point of the domain of

the coordinates, for cÞ0. As we have seen, this freedom implies the orthogonality of the sepa-

rable coordinates.

However, we can think of a kind of separation in which constraints are ‘‘a priori’’ imposed on

some of the factors c i .

Although it is not interpreted in this sense, a usual constraint appearing in the literature is

represented by the following supplementary conditions ~see for instance Refs. 9, 10, and 12!:

ca85kaca , a5m11,...,n , ~5.1!

where (ka) are arbitrary ~real or complex! constants. This means that, up to an inessential mul-

tiplicative constant,

ca~qa!5exp~kaqa!. ~5.2!

In this way we define a kind of constrained separation, which we call reduced separation. As we

shall see, for this separation the coordinates are not necessarily orthogonal and the number of

essential constants appearing in a separated solution is n1m,2n ~the case m5n corresponds to

the free separation!. We base our approach on a definition similar to Definition 4.1.

Definition 5.1: A reduced separated solution of the Schrödinger equation is a solution ~1.4!
where the factors ca are of the type ~5.2! for a5m11,...,n and where all factors ca depend on

further 2m parameters cI 5(cA) (A51,...,2m) satisfying the completeness condition

detF ]ua

]cA

]va

]cA

GÞ0, ua5
ca8

ca

, va5
ca9

ca

~a51,...,m !. ~5.3!

When such a solution exists we say that the Schrödinger equation is reductively separable in the

coordinates (qa,qa). The coordinates (qa) and (qa) are called constrained and free coordinates,

respectively.

The completeness condition ~5.3! means that the 2m constant parameters (cA) can be

uniquely determined by assigning arbitrary values of the 2m ratios (ua ,va) at any given point.

Hence, we have no restriction on the values that the functions (ca ,ca8 ,ca9) can assume at any

given point of the domain of the coordinates, for cÞ0. Moreover, we remark that the total number

of constant parameters in a reduced separated solution is m1n . Indeed, besides the 2m constants

(cA), also the n2m constants (ka) are present, although they are not involved in the complete-

ness condition.

In this section we shall prove the following theorem ~analogous to Theorem 4.2!.
Theorem 5.2: The Schrödinger equation is reductively separable in a coordinate system qI

5(qa,qa) if and only if: (i) the constrained coordinates (qa) are ignorable,

]ag i j
50, ]aV50,

(ii) the free coordinates (qa) are orthogonal,
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gab
50, aÞb ,

(iii) there exists a coordinate transformation leaving the coordinates (qa) invariant, preserving the

constraints and the separation, in which the metric tensor assumes the standard form (3.6) and

such that (iv) the Hamilton–Jacobi equation is separable and (v) the following conditions are

satisfied:

]aGb50 ~aÞb !, Ga5g i jG i j ,a . ~5.4!

We call Eq. ~5.4! the Robertson condition for the reduced separation of the Schrödinger

equation. As will be discussed in Sec. VI, this is in fact equivalent to Rab50 for aÞb .

In order to justify Definition 5.1 and prove Theorem 5.2 we begin by observing that the

constraints ~5.1! imply that the functions u i , defined as in ~4.7! and labeled with Greek indices

~running from m11 to n! are constant

ua5
ca8

ca
5ka , ua

~2 !
50,

so that, for such a separated solution, Eq. ~4.8! becomes equivalent ~for cÞ0) to

gabuaub1gaaua
~2 !

12gaauaka1gabkakb2Gaua2Gaka2V1E50,

with summation over the repeated indices a, b51,.. . ,m and a, b5m11,...,n . This equation can

be written in the form

S~qI ,uI ~1 !,uI ~2 !,ka!52E , ~5.5!

by setting

S~qI ,uI ~1 !,uI ~2 !,ka!5gabuaub1gaaua
~2 !

12gaauaka1gabkakb2Gaua2Gaka2V ,

~5.6!

uI ~1 !
5~ua!, uI ~2 !

5~uaa!.

Equation ~5.5! is of the type ~2.8!. The constants (ka) play the role of independent constant

parameters and the relevant dependent variables are zI5(uI (1),uI (2))5(ua ,uaa). Their number is

2m . By applying the method of Sec. II, we have for a solution of this equation

(
a51

m S ]S

]q i 1
]S

]ua
~1 !

]ua
~1 !

]q i 1
]S

]ua
~2 !

]ua
~2 !

]q i D 50,

thus ~no sum over the index a!

]S

]qa 1
]S

]ua
~1 !

]ua
~2 !

]qa 1
]S

]ua
~2 !

]ua
~2 !

]qa 50,
]S

]qa 50.

As a consequence, by adapting Definition 2.2 to the present case, we are led to the following

Definition 5.3: A reduced separable solution of the Schrödinger equation is a solution of the

form ~1.4!–~5.2!, depending on 2m parameters cI 5(cA) (A51,...,2m) satisfying the completeness

condition
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detF ]ua

]cA

]ua
~2 !

]cA

GÞ0, ua5
ca8

ca

, ua
~2 !

5uaa5S ca8

ca
D 8

. ~5.7!

Hence, by applying Theorem 2.3 and recalling ~2.5! and ~2.2!, we get

Proposition 5.4: The Schrödinger equation is reductively separable in the coordinates qI

5(qa,qa) if and only if

]aS50, ~5.8!

S being defined as in (5.6), and the first-order differential system

]aua
~ i !

5ua
~2 ! ,

]aua
~2 !

5Ra ,

] iua
~1 !

50,

] iua
~2 !

50,
~ iÞa ! ~5.9!

is completely integrable for

Ra~qI ,uI ~1 !,uI ~2 !!52S ]S

]ua
~2 !D 21S ]S

]qa 1
]S

]ua

ua
~2 !D .

The complete integrability conditions for this system are

@D i ,D j#50, H Da5]a1ua
~2 !

]

]ua

1Ra

]

]ua
~2 ! ,

Da5]a .

~5.10!

From ~5.8! and ~5.6! it follows that

]ag i j
50, ]aG i

50, ]aV50,

since S is a polynomial function in the variables (uI ,uI (2),ka) assuming arbitrary values. This

proves that

Proposition 5.5: In the reduced separation of the Schrödinger equation the constrained coor-

dinates (qa) are ignorable.

It follows that the significant part of the integrability conditions ~5.10! is that related to the

free ~and nonignorable! coordinates, @Da ,Db#50 ~for aÞb). For examining these conditions, as

in the case of the free separation, it is convenient to deal with the new 2m variables

~uI ,vI !5~ua ,va!, va5uaa1ua
2
5

ca9

ca
.

Remark 5.6: Under such a transformation the completeness condition ~5.7! is equivalent to

~5.3!, so that Definition 5.3 is equivalent to Definition 5.1.

Furthermore, the differential system ~5.9! becomes equivalent to

] iua50,

] iva50,

]aua5va2ua
2,

]ava5Ra ,

~ iÞa51,...,m !, ~5.11!

where
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Ra52
1

gaa S ]S

]qa 1
]S

]ua

~va2ua
2! D ,

S~qI ,uI ,vI !5gaa~va2ua
2!1gabuaub12gaauaka1gabkakb2Gaua2Gaka2V ,

Da5]a1~va2ua
2!

]

]ua

1Ra

]

]va

,

Da5]a .

The complete integrability conditions @Da ,Db#50 of system ~5.11! are then equivalent to equa-

tions similar to ~4.17!,

~va2ua
2!

]Rb

]ua

1Ra

]Rb

]va

1
]Rb

]qa 50 ~aÞb !.

A calculation similar to that of Sec. IV shows that

Proposition 5.7: In a reduced separation the free coordinates are orthogonal,

gab
50, aÞb ,

and the integrability conditions of system (5.11) are equivalent to

]2
S

]qa]ub

~vb2ub
2!1

]2
S

]qb]ua

~va2ua
2!1]a]bS1Ra]bgaa

1Rb]agbb
50 ~aÞb !, ~5.12!

where

S5gaa
va12gaauaka1gabkakb2Gaua2Gaka2V ,

~5.13!

Ra5
1

gaa ~~Ga
22gaaka!~va2ua

2!2]aS !.

From these last equations we can derive the following

Proposition 5.8: The reduced separation of the Schrödinger equation always occurs in a

standard coordinate system (q i)5(qa,qa), for which (3.6) and (3.7) hold, and such that the

following equations are satisfied for aÞb:

]a]bgcc
2]b ln gaa]agcc

2]a ln gbb]bgcc
50,

]a]bgab
2]b ln gaa]agab

2]a ln gbb]bgab
50,

~5.14!
]a]bV2]b ln gaa]aV2]a ln gbb]bV50,

]bGa50,

where

Ga5gaaGa
5

1

2 (
cÞa

]c ln gcc
2

1

2
]a ln gaa

1
1

2
]a ln det@gab# . ~5.15!

Proof: By setting

Ĝa
5Ga

22gaaka , V̂5V1Gaka2gabkakb ,
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~5.13! assume the form

S5gaa
va2Ĝaua2V̂ , Ra5

1

gaa ~~ Ĝa~va2ua
2!2]aS!, ~5.16!

so that the integrability conditions ~5.12! become

2~ub
2
2vb!~]aĜb

2Ĝb]a ln gbb!12~ua
2
2va!~]bĜa

2Ĝa]b ln gaa!1vc~]a]bgcc
2]a ln gbb]bgcc

2]b ln gaa]agcc!2uc~]a]bĜc
2]a ln gbb]bĜc

2]b ln gaa]aĜc!

2~]a]bV̂2]a ln gbb]bV̂2]b ln gaa]aV̂ !50. ~5.17!

We remark that ~5.12! and ~5.16! are similar to ~4.20! and ~4.21!, so that ~5.17! are similar to

~4.22! and, since (ua ,va) can assume arbitrary values, we get equations similar to ~4.23!,

]a]bgcc
2]a ln gbb]bgcc

2]b ln gaa]agcc
50,

]a]bV̂2]a ln gbb]bV̂2]b ln gaa]aV̂50,

~5.18!

]aĜb
2Ĝb]a ln gbb

50,

]a]bĜc
2]a ln gbb]bĜc

2]b ln gaa]aĜc
50.

The first equations are just the first equations in ~5.14!. Since also the constant parameters (ka)

assume arbitrary values, the fourth equations ~5.18! are equivalent to

]a]bGc
2]a ln gbb]bGc

2]b ln gaa]aGc
50,

~5.19!
]a]bgca

2]a ln gbb]bgca
2]b ln gaa]agca

50,

while the second equations ~5.18! are equivalent to the second and third equations of ~5.14! and

]a]bGa
2]a ln gbb]bGa

2]b ln gaa]aGa
50. ~5.20!

Finally, the third equations ~5.18! are equivalent to

]aGb
2Gb]a ln gbb

50, ]agba
2gba]a ln gbb

50,

which can be written in the form

]aS Gb

gbbD50, ]aS gba

gbb D50, aÞb . ~5.21!

These last equations show that

Ga
5gaa f a , gaa

5gaa f a
a , ~5.22!

where ( f a , f a
a) are functions of the coordinate corresponding to the lower index only. As a con-

sequence, due to the first equations ~5.18!, ~5.19! are identically satisfied and do not add further

information. But ~5.22! have another important consequence which allows a remarkable simplifi-

cation of our analysis ~a similar argument has been used in Refs. 15, 17 in the discussion of the

separation of the HJ equations!. Indeed, let us consider a coordinate transformation of the kind

dxa
5dqa, dxa

5dqa
2 f a

a dqa. ~5.23!
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For the components gx
i j

5dx i
•dx j of the metric tensor in the new coordinates (x i)5(xa,xa) we

have gx
ab

5gab and

gx
aa

5dxa
•dxa

5dqa
•~dqa

2 f b
adqb!5gaa

2 f b
agab

5gaa
2 f a

agaa
50.

This coordinate transformation is compatible with the separation, in the sense that in the new

coordinates the solution of the Schrödinger equation is still separable and the constraint equations

~5.1! hold ~with the same constants ka). Indeed, the essential coordinates remain unchanged

(xa
5qa up to inessential additive constants! and moreover,

dca

dxa 5
]ca

]qb

]qb

]xa 5
dca

dqa

dqa

dxa 5
dca

dqa .

Hence, without loss of generality we can assume

gaa
50, ~5.24!

so that the metric tensor takes the standard form ~3.6!, with ignorable coordinates (qa). For a

metric of this kind,

Ga5gaiG
i
5gaaGa

5~gaa!21Ga.

Thus, the first equations ~5.21! are equivalent to the fourth equations ~5.14!. Moreover, Ga
50 ~see

Sec. VI! so that ~5.20! are identically satisfied. We conclude that the integrability conditions ~5.12!
of system ~5.11!, up to a coordinate transformation preserving the separation and reducing the

metric tensor in the standard form, are equivalent to ~5.14!. j

We recognize in the first three lines of system ~5.14! the necessary and sufficient conditions

~3.88! for the separation of the Hamilton–Jacobi equation in standard coordinates. Hence, we have

proved the following

Proposition 5.9: Up to a coordinate transformation of the kind (5.23), the reduced separation

of the Schrödinger equation always occurs in standard separable coordinates qI 5(qa,qa) (a

51,...,m ,a5m11,...,n) for which ]bGa50 for aÞb .

As a conclusion, from Propositions 5.5, 5.7, 5.8, and 5.9, we derive Theorem 5.2.

Remark 5.10: Let us see how the integration by separation of variables is performed when the

items in Theorem 5.2 are satisfied ~this will give a further proof of the sufficiency of these items

for the separation! and how the m1n constants arise in a reduced separated solution. Due to the

factorization

c5)a51
m ca•)a5m11

n ca ,

and to the constraints ~5.1!, since Ga
50, the Schrödinger equation ~4.5! becomes equivalent to the

following reduced Schrödinger equation:

gaa]a
2c̃1Ga]ac̃1~E2V1gabkakb!c̃50, c̃5)a51

m ca . ~5.25!

The additional condition ]bGa50 for aÞb means that the contracted Christoffel symbols Ga

~with indices a51,...,m) are functions of the corresponding coordinate qa only. By a method

similar to that illustrated in Remark 4.7, due to expressions ~3.9!, the integration of the Schrö-

dinger equation is reduced to the integration of m separated Riccati equations,

ua81ua
2
2Gaua2fa1fa

abkakb1wa
~b !ãb50 ~5.26!

parametrized by n constants ( ãb ,ka), with ãm5E . Its solutions ua5ua(qa; ãb ,ka , b̃a) give rise,

separately, to other m constants ( b̃a) and generate, by a further integration, the reduced separated

solution ~summation over the indices!
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c5expS kaqa
1E ua dqa D5)a51

m ca•)a5m11
n ca .

Equations ~5.26! are equivalent to the m linear second-order equations

ca92Gaca81~fa
abkakb1wa

~b !ãb2fa!ca50 ~5.27!

in the functions ca . In the reduced separation the number of the constants appearing in a complete

solution ~1.4!, as a result of this process of integration, is m1n,2n , but only the 2m constants

( ãa , b̃a) are involved in the completeness condition.

Remark 5.11: A coordinate transformation of the kind

qa
5 q̄a, qa

5(
i

F i
a~ q̄ i!5(

a
Fa

a~qa!1(
b

Fb
a~ q̄b!,

with

det@ f b
a#Þ0, f b

a
5~Fb

a!8,

composed by any transformation over single coordinates, is the most general transformation lead-

ing to nonstandard separable coordinates ( q̄a, q̄a) for the Hamilton–Jacobi equation.15,17 The same

transformation applied to standard separable coordinates, in general, does not preserve ~5.24!,
gaaÞ0, and the coordinates ( q̄a) are no longer ignorable. However, this transformation preserves

the multiplicative separation of the Schrödinger equation. Indeed, the factors ca(qa) remain

unchanged, while the factors ca(qa) are transformed as follows:

ca~qa!5exp~kaqa!5exp~kaFb
a~ q̄b!!• exp~kaFa

a~qa!!5)
b

c̃b~ q̄b!•)
a

c̃a~qa!,

where

c̃b~ q̄b!5exp~kaFb
a~ q̄b!!, c̃a~qa!5exp~kaFa

a~qa!!,

and we finally get a solution of the kind

c5)
b

c̃b~ q̄b!)
a

ca~qa!c̃a~qa!.

We observe that

c̃b85ka f b
a~ q̄b!c̃b ,

where f 5F8. This shows that a constraint of the kind ~5.1! is still satisfied if and only if f b
a

5db
acb8 with arbitrary constants (cb8 ). It shows also that a constraint of the kind

cb85ka f b
a~qb!cb , det@ f b

a#Þ0

could be considered, but that it is equivalent to ~5.1!.
Remark 5.12: A remark analogous to Remark 4.8 is in order. The constants ãb have two

interpretations: ~i! They are the constant values taken by the quadratic first integrals in involution

related to the nonorthogonal separation of the Hamilton–Jacobi equation in standard coordinates

~cf. Theorem 7.25! whose expressions are

Ha5
1
2w ~a !

b
~pb

2
1fa

abpapb1fa!. ~5.28!
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~ii! They are the eigenvalues of the second-order symmetry operators corresponding to Ha of the

reduced Schrödinger equation ~5.25!:

Ĥbc̃5w ~b !
a

~2]a
2c̃1Ga]ac̃1~fa2fa

abkakb!c !. ~5.29!

About the constants ka introduced in the constraint equations ~5.1!, we observe that they

correspond to the eigenvalues of the first-order symmetry operators of the Schrödinger equation

Ĥac52i\]ac . ~5.30!

Indeed, from ~5.1! it follows that

]ac5kac .

Thus,

Ĥac52i\kac . ~5.31!

As will be shown in Ref. 18, these operators are related to the linear first integrals

Ha5pa ~5.32!

corresponding to the ignorable coordinates and thus to the Killing vectors characterizing the

separation in standard coordinates ~see Sec. VII!. From ~5.31! we observe that ka must be pure

imaginary, since the operators Ĥa are self-adjoint. This is in agreement with the fact that the

choice of the constraint equations ~5.2! does not change the state represented by c.

VI. THE ROBERTSON CONDITION

In this section we analyze the Robertson condition in a standard separable coordinate system.

We shall extend to the reduced separation the analysis on the Robertson condition done by

Eisenhart3 in the case of the orthogonal separation. This extension has already been discussed in

Ref. 19; here we give an improved and simplified version.

For a metric tensor in the standard form ~3.6!, where (qa) are ignorable, the nonvanishing

Christoffel symbols are

Gaba52
1
2]agab , Gab

a
52

1
2gaa]a]ab ,

Gaab5
1
2]agab , Gaa

b
5

1
2(

g
gbg]agag ,

~6.1!
Gaba5

1
2]bgaa , Gac

a
5

1
2gaa]cgaa ,

Gaab52
1
2]bgaa ~aÞb !, Gaa

b
52

1
2gbb]bgaa ~aÞb !.

It follows that

Ga
5g i jG i j

a
50, G ia

i
50, ~6.2!

and from ~4.3!,

Ga5gaaGa
52]a ln gaa

1
1
2]a ln det@g i j#52]a ln gaa

1
1
2]a ln det@gab#1

1
2 (

c51

m

]a ln gcc.

~6.3!
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Moreover,

G ia
i

5Gba
b

1Gaa
a

5
1
2gbb]agbb1

1
2gab]agab ,

so that

G ia
i

52
1
2]a ln det@g i j#52Ga2]a ln gaa. ~6.4!

Let us consider the Riemann tensor and the Ricci tensor defined as follows:

R i jk
l

5] iG jk
l

2] jG ik
l

1G jk
r G ir

l
2G ik

r G jr
l , R jk5R l jk

l .

By a straightforward calculation it can be seen that the Riemann tensor components which are

needed for the computation of the nondiagonal Ricci tensor components, Rab , aÞb , have the

following expressions:

Rcab
c

5
3
4]a]b ln gcc

2
1
4gcc~]a]bgcc

2]b ln gaa]agcc
2]a ln gbb]bgcc! ~cÞa ,b;c n.s.!,

Raab
a

50, ~6.5!

Raab
a

5
3
4]a~gab]bgab!2

1
4gab~]a]bgab

2]b ln gaa]agab
2]a ln gbb]bgab! ~a n.s.!

and that

Raa50. ~6.6!

A remarkable fact is that, due to the separability conditions ~3.88!, expressions ~6.5! reduce to

Rcab
c

5
3
4]a]b ln gcc, Raab

a
5

3
4]a~gab]bgab!,

so that

Rab5
3

4
]a]bS (

cÞa ,b
ln gcc

1ln det@gab# D ~aÞb !. ~6.7!

For the case m5n the second term on the right-hand side of ~6.7! disappears and we find a

formula first stated by Eisenhart20 and related to the orthogonal separation.

Another remarkable fact is that for c5a the first equation ~3.88! is equivalent to

]a]b ln gaa
5]a ln gbb]b ln gaa ~aÞb !,

so that, due to the symmetry in the indices of the right-hand side of this equation, we can write

]a]b ln gaa
5

1
2~]a]b ln gaa

1]a]b ln gbb!,

and from ~6.3! we get

]bGa5
1

2
]a]bS (

cÞa ,b
ln gcc

1ln det@gab# D . ~6.8!

Formula ~6.6! and the comparison between ~6.8! and ~6.7! show that

Theorem 6.1: (i) In standard separable coordinates (qa,qa),

Rab5
3
2]bGa ~aÞb !, Raa50. ~6.9!

(ii) In orthogonal separable coordinates,
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R i j5
3
2] jG i , iÞ j . ~6.10!

This last equation is simply the reduction of ~6.9! to the case m5n ~no greek indices!. Thus,

Theorem 6.2: The Robertson condition in orthogonal separable coordinates ] iG j50 (iÞ j) is

equivalent to

R i j50 ~ iÞ j !.

The Robertson condition in standard separable coordinates ]aGb50 (aÞb) is equivalent to

Rab50 ~aÞb !.

Remark 6.3: Theorem 6.2 gives a geometrical meaning of the Robertson condition for the free

and the reduced separation. For the reduced separation we take the standard coordinates as re-

quired by Proposition 5.8.

Since Raa50, it is proved that

Theorem 6.4: The Robertson condition in standard coordinates is fulfilled if and only if the

Ricci tensor assumes the standard form.

Remark 6.5: The Robertson condition is identically satisfied, so that there is a simultaneous

separation of the Schrödinger and Hamilton–Jacobi equations, for Einstein manifolds, where the

Ricci tensor is proportional to the metric tensor, R5aG ~thus, in particular, for constant curvature

manifolds and Ricci-flat manifolds!.

VII. THE EISENHART–KILLING EQUATIONS AND THE INTRINSIC CHARACTERIZATION
OF THE SEPARATION

As has been illustrated in the preceding sections, the separation of variables is apparently a

strictly ‘‘coordinate dependent’’ matter. This is perhaps the reason why for long it has not been

recognized as a ‘‘modern’’ theory. However, as we know today, the existence of separable coor-

dinates for the Hamilton–Jacobi and Schrödinger equations requires the presence on the underly-

ing Riemannian manifold of a rich intrinsic ~coordinate independent! structure, described by

algebraic or geometrical objects: Killing vectors, Killing tensors, and webs ~sets of foliations!.
The first fundamental contibution to the intrinsic theory of the variable separation dates back

to Levi-Civita.11 He pointed out first, that the separation of the geodesic Hamiltonian is a neces-

sary condition for the separation of all the associated natural Hamiltonians with scalar and vector

potentials.21 This gives a prominent role to the separation of the geodesic Hamilton–Jacobi equa-

tion. Second, he proposed a classification of the separable coordinates into two classes and, by

using his methods of ‘‘calcolo differenziale assoluto,’’ developed together with Ricci22 a few years

earlier, he proved that when all the coordinates are of first class then the manifold is necessarily

locally flat. This result was later extended to the general case by Agostinelli,23 who proved that the

separation associated with r first-class coordinates corresponds to the existence of a foliation of

r-dimensional locally flat submanifolds. These pioneering results have recently been incorporated

within a general geometrical framework of the geodesic separation, based on the notion of sepa-

rable Killing web.16 However, a milestone in this way is represented by the contribution of

Eisenhart,3 which we shall revisit in the present section, with suitable modifications and exten-

sions.

We recall that a contravariant symmetric tensor K5(K i¯ j) is said to be a Killing tensor if its

components satisfy the Killing equation

¹ (hK i¯ j)
50,

where ¹ denotes the covariant derivative with respect to the Levi-Civita connection and the

parentheses ~...! denote the symmetrization of the indices. There is however an alternative equiva-

lent definition of Killing tensor, which is not related to the covariant derivative but to the canonical
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symplectic structure of a cotangent bundle. This definition is based on the one-to-one correspon-

dence between the contravariant symmetric tensors and the homogeneous polynomial functions on

T*Q ,

P~K!5PK5K i¯ jp i¯p j .

We say that two tensors K and K8 are in involution if the corresponding polynomial functions

are in involution, i.e., if their Poisson bracket vanishes identically:

$P~K!,P~K8!%50.

Then a tensor K is a Killing tensor if and only if P(K) is a first integral of the geodesic flow, i.e.,

it is in involution with the geodesic Hamiltonian G5
1
2PG :

$PK ,G%50. ~7.1!

Also this definition does not depend on the choice of the coordinates. Let us call ~7.1! the

Poisson–Killing equation.

In the theory of the separation of variables a fundamental role is played by Killing vectors,

corresponding to linear first integrals and to one-parameter groups of isometries, and by Killing

two-tensors, interpreted as symmetric linear operators on one-forms or vector fields. Thus, in the

following discussion by ‘‘Killing tensor’’ we mean ‘‘Killing two-tensor.’’

Remark 7.1: We shall use the following notation. If K5(K i j) is a contravariant two-tensor

and X5(X i) a vector field, then by KX we denote the vector field image of X by K ~as linear

operator! whose components are

~KX! i
5K i jg jhXh

5K
• j
i•X j,

and by Kw the one-form image by K of the one-form w5w idq i whose components are

~Kw ! i5g ihKh jw j5K i•
• jw j .

If K and L are two such tensors then by LK we mean their composition as linear operators. It is

a contravariant two-tensor whose components are

~LK! i j
5L ihghkKk j

5L
•k
i• Kk j

5L ihKh•

• j .

We begin by considering the orthogonal separation. The link between the orthogonal separation

and the existence of Killing tensors is based on the following statement due to Eisenhart:20

Proposition 7.2: Let K be a symmetric tensor on a Riemannian manifold (Q ,g) which is

diagonalized in an orthogonal coordinate system qI 5(q i). Then K is a Killing tensor if and only

if its eigenvalues (l i) satisfy

] il
j
5~l i

2l j!] i ln g j j. ~7.2!

Proof: In the coordinates qI the components of K are

K ii
5l ig ii, K i j

50 ~ iÞ j !,

so that P(K)5l ig iip i
2. A straightforward calculation shows that ~7.1! are equivalent to ~7.2!. j

We call ~7.2! the Eisenhart–Killing equations. These equations can be interpreted as a linear

normal first-order differential system in the unknown functions (l i), of the kind considered in

Sec. II. It is a crucial fact that its complete integrability conditions ~as shown by a straightforward

calculation! are

~l i
2l j!S i j

k
50 ~ iÞ j , n.s.!, ~7.3!
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where

S i j
k

5] i] jg
kk

2] i ln g j j] jg
kk

2] j ln g ii] ig
kk

are just the left-hand sides of the first separability conditions ~3.5!.
Remark 7.3: The orthogonal separability theory lies in the following rather surprising circum-

stance: there are three ‘‘different’’ first-order differential systems with the ‘‘same’’ complete inte-

grability conditions, S i j
k

50 (iÞ j). They are: ~i! system ~3.3!, with

R i~qI ,pI !52
] iG

] iG
, G5

1

2
g iip i

2,

related to the orthogonal separation of the geodesic Hamilton–Jacobi equation; ~ii! system ~4.11!
with

R i~qI ,uI ~1 !,uI ~2 !!52S ]S

]u i
~2 !D 21S ]S

]q i 1
]S

]u i

u i
~2 !D , S~qI ,uI ~1 !,uI ~2 !!5g i ju iu j1g iiu i

~2 !
2G iu i ,

related to the free ~thus, orthogonal! separation of the geodesic Schrödinger equation (V50); ~iii!
system ~7.2! related to the existence of Killing tensors diagonalized in orthogonal coordinates.

Actually, as we have seen, the complete integrability of the second system requires an additional

condition: the Robertson condition R i j50 for iÞ j . The same remarkable property holds for a

nonconstant potential V .

According to this remark, it is convenient to introduce the following

Definition 7.4: We call Killing–Stäckel algebra an n-dimensional linear space K of Killing

tensors which are ~i! simultaneously diagonalized in orthogonal coordinates, or equivalently, ~ii!
with n common normal ~i.e., orthogonally integrable or surface forming! eigenvectors.

Item ~ii! in this definition is a coordinate-free translation of item ~i!. Thus, we can affirm that

Theorem 7.5: The orthogonal separation of the geodesic Hamilton–Jacobi equation is

equivalent to the complete integrability of the Eisenhart–Killing equations i.e., to the existence of

a Killing–Stäckel algebra.

This is a synthetic and simplified version of the classical theorem of Eisenhart on ‘‘separable

systems of Stäckel.’’3

Remark 7.6: The submanifolds of codimension 1 orthogonal to the normal eigenvectors of a

Killing–Stäckel algebra form an orthogonal separable web. A coordinate system qI is called

adapted to this web if the corresponding coordinate hypersurfaces belong to the web. Any coor-

dinate system adapted to a separable web is orthogonal and separable. It follows that: an orthogo-

nal web is separable if and only if its leaves are orthogonal to the eigenvectors of a Killing–

Stäckel algebra.

Remark 7.7: A Killing–Stäckel algebra, as well as a separable orthogonal web, may not be

defined on the whole configuration manifold Q. The points of Q where the requirements of

Definition 7.4 are not fulfilled ~or where the manifolds orthogonal to the normal eigenvectors are

not defined! form the singular set of the algebra ~or of the web!.
Due to Theorem 7.5, the analysis of the orthogonal separation is now related to the analysis of

the Killing–Stäckel algebras. Going back to Definition 7.4, we observe that: ~i! when the

Eisenhart–Killing equations are completely integrable, we can always find, locally, a solution such

that l iÞl j for iÞ j ; ~ii! as shown by a straightforward calculation, two functions P(K) and

P(K8) corresponding to two solutions of system ~7.2! are in involution; ~iii! l i
51 is a trivial

solution. Thus,

Theorem 7.8: (i) A Killing–Stäckel algebra admits locally a Killing tensor with pointwise

distinct eigenvalues. (ii) All Killing tensors in a Killing–Stäckel algebra are in involution. (iii) The

metric tensor G belongs to any Killing–Stäckel algebra.

Furthermore, the presence of the term l i
2l j in ~7.3! implies that if there exists a Killing

tensor which is diagonalized in orthogonal coordinates and with pointwise simple eigenvalues,
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l iÞl j, then all S i j
k (iÞ j) vanish identically ~these are functions of the coordinates only!, so that

the Eisenhart–Killing equations are completely integrable.24 This proves that

Theorem 7.9: A Killing–Stäckel algebra is uniquely determined by a Killing tensor with

normal eigenvectors and pointwise simple eigenvalues.

Remark 7.10: The ‘‘uniqueness’’ in this last statement has a local meaning. It means that if K

and K8 are two Killing–Stäckel algebras both containing a Killing tensor K with simple eigen-

values, then K5K8 at least in the domain of definition of K. Then we say that K is a character-

istic tensor of the Killing–Stäckel algebra K. Note that it is not uniquely determined in K. We also

remark that there are cases in which a Killing–Stäckel algebra does not admit a ‘‘global’’ char-

acteristic Killing tensor. An example is the parabolic translational web in the Euclidean three-

space ~see Ref. 25 for a description of this web!.
Remark 7.11: As a consequence of the preceding remarks and statements, we have at least two

ways for characterizing intrinsically the orthogonal separation of a geodesic Hamilton–Jacobi

equation: ~A! by means of a Killing–Stäckel algebra K, or ~B! by means of a characteristic Killing

tensor K, i.e., a Killing tensor with simple eigenvalues and normal eigenvectors. This second

characterization seems to be more effective that the first one, since it involves only one Killing

tensor K.24 But difficulties could arise in checking if first, this tensor has simple eigenvalues ~via

the analysis of the discriminant of the corresponding characteristic equation! and second, if its

eigenvectors are normal. Of course, analogous problems arise in dealing with a whole Killing–

Stäckel algebra ~i.e., with n independent Killing tensors! at least as it is defined in Definition 7.4,

item ~ii!: we still have the algebraic problem of checking if n independent tensors have common

eigenvectors, and the differential problem of checking if these eigenvectors are normal. However,

these problems can be simultaneously solved by using the following characterization of a Killing–

Stäckel algebra:

Theorem 7.12: An n-dimensional space K of Killing tensors is a Killing–Stäckel algebra if

and only if its elements (i) commute as linear operators,

K1K22K2K150, ;K1 ,K2PK, ~7.4!

and (ii) are in involution,

$P~K1!,P~K2!%50, ;K1 ,K2PK. ~7.5!

We postpone the proof of this theorem to Sec. VIII. What is important in this characterization is

that, ~i! as first pointed out by Kalnins and Miller,26 if n independent Killing tensors have n

common eigenvectors and are in involution, then the eigenvectors are necessarily normal; ~ii! if

they commute as linear operators, then they have necessarily the same eigenvectors ~this holds,

however, only in a positive-definite metric!; ~iii! both conditions ~7.4! and ~7.5! require simple

calculations, of algebraic and differential character, respectively.

Going back to Remark 7.11, we emphasize the advantage of dealing with a single character-

istic tensor in the nongeodesic case, i.e., when a potential V is present. Indeed, it can be proved24

that

Theorem 7.13: The Hamilton–Jacobi equation associated with a natural Hamiltonian H

5G1V is orthogonally separable if and only if (i) there exists a first integral

HK5
1
2PK1U5

1
2K i jp ip j1U ,

where K is a tensor with pointwise simple eigenvalues and normal eigenvectors, or equivalently,

(ii) if and only if there exists a Killing tensor K with pointwise simple eigenvalues and normal

eigenvectors such that the one-form image of dV by K is closed:

d~KdV !50. ~7.6!

In fact, the equivalence of items ~i! and ~ii! is only ‘‘local.’’ Indeed, a function HK is in

involution with H5G1V if and only if
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$G ,PK%50, dU5K dV .

The first equation is the Poisson–Killing equation, while the second one implies ~7.6! and is

implied by ~7.6! only locally. However, in most of the applications this equivalence turns out to be

global ~that is, the closed one-form K dV is exact! at least on the manifold Q deprived of the

singular set of the Killing tensor K ~where the eigenvalues are not simple!.
Equation ~7.6! has been called the characteristic equation of a separable potential. Indeed, for

checking if a potential V is separable in an orthogonal separable web ~thus, in any orthogonal

coordinate system adapted to this web! it is sufficient to apply this equation to a single character-

istic Killing tensor, and not to all elements of a basis of the corresponding Killing–Stäckel

algebra. In fact, it can be proved that24

Theorem 7.14: If the characteristic equation is satisfied by a characteristic Killing tensor K,

then it is satisfied by all elements of the Killing–Stäckel algebra K generated by K, and the

functions on T*Q ,

HK5
1
2PK1VK , dVK5K dV , ;KPK, ~7.7!

form an n-dimensional space of quadratic first integrals in involution. A basis (H j) of this space

is expressed in terms of Stäckel matrices by formula (4.30).

By combining Theorem 7.12 and Theorems 7.13, 7.14, we get a further characterization of the

separation, which uses n Killing tensors ~the metric tensor G may be included! but which avoids

the use of eigenvectors and their normality conditions:

Theorem 7.15: The Hamilton–Jacobi equation associated with a natural Hamiltonian H

5G1V is orthogonally separable if and only if there exist n pointwise independent Killing

tensors (Kj) one other (i) commuting as linear operators, (ii) in involution and such that (iii)

d~KjdV !50

or equivalently, such that (iii8)

d~KdV !50

for a suitable linear combination K5c jKj , c j
PR, with simple eigenvalues.

After Theorem 7.13, we can give an intrinsic translation of Theorem 4.2 by applying Theorem

6.2:

Theorem 7.16: The Schrödinger equation is freely separable if and only if there exists a

Killing tensor K with simple eigenvalues and normal eigenvectors, satisfying the characteristic

equation (7.6) and commuting with the Ricci tensor

KR2RK50. ~7.8!

Indeed, since K has simple eigenvalues, the commutation relation ~7.8! means that R has the same

eigenvectors of K.

For a general treatment of the separation ~orthogonal or nonorthogonal! we follow a similar

way, starting from a suitable extension of the Eisenhart equations, that is from the following

extension of Proposition 7.1, which can be easily proved by using the Poisson–Killing equations

~7.1!:
Theorem 7.17: Let K be a symmetric tensor on a Riemannian manifold. Assume that in a

coordinate system (qa,qa) both the contravariant metric tensor G and K assume the standard

form (3.6) and (3.10), with (qa) ignorable for both tensors, so that

G5gaa]a ^ ]a1gab]a ^ ]b , K5lagaa]a ^ ]a1Kab]a ^ ]b ,

where (la) are the eigenvalues of K corresponding to the eigenforms (dqa). Then K is a Killing

tensor if and only if
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]alb
5~la

2lb!]a ln gbb, ]aKab
5la]agab. ~7.9!

These equations can be interpreted as a linear normal first-order differential system in the un-

known functions (la,Kab). The complete integrability conditions assume the form

~la
2lb!Sab

cc
50, ~la

2lb!Sab
ab

50 ~aÞb , n.s!,

where

Sab
hk

5]a]bghk
2]a ln gbb]bghk

2]b ln gaa]aghk ~aÞb , n.s.!

are just the left-hand sides of the first two separability conditions ~3.88!.
Thus, remarks and theorems similar to those illustrated for the orthogonal separation are in

order. The only difference is that now Eqs. ~7.9!, when completely integrable, generates a space K

of Killing tensors of dimension m,n . The lost dimensions are replaced by a linear space D of

Killing vectors. The resulting structure is a pair (D ,K) having the properties listed in the follow-

ing

Definition 7.18: We call separable Killing algebra a pair (D ,K) where ~I! D is an

r-dimensional linear space of commuting Killing vectors, ~II! K is a D-invariant n2r-dimensional

linear space of Killing two-tensors with m5n2r normal eigenvectors in common and orthogonal

to D. We call these eigenvectors essential.

As has been proved in Ref. 16,

Theorem 7.19: The separation of the geodesic Hamilton–Jacobi equation is equivalent to the

existence of a separable Killing algebra.

Remark 7.20: The m orthogonal foliations S
a of the one-codimensional submanifolds orthogo-

nal to the essential eigenvectors of K ~thus tangent to D and containing the orbits of D! form a

geometrical structure called separable Killing web. A standard coordinate system (qa,qa) is re-

lated to such a structure in the following way: ~i! (dqa) are common ~local! eigenforms of all

elements of K corresponding to the common essential eigenvectors, or equivalently, their coordi-

nate hypersurfaces belong to the web S
a, ~ii! the partial derivatives (]a), interpreted as vector

fields, are commuting Killing vectors and form a local basis of D.

Furthermore, by a straightforward analysis of system ~7.9! we can prove the following two

statements:16

Theorem 7.21: In a separable Killing algebra: (i) there are Killing tensors with distinct

eigenvalues corresponding to the essential eigenvectors, (ii) all Killing tensors are in involution,

(iii) the metric tensor is included, (iv) D is normal (i.e., orthogonally integrable).

Theorem 7.22: A separable Killing algebra is uniquely determined by a characteristic Killing

pair (D ,K) where D is an r-dimensional space of Killing vectors in involution and K is a

D-invariant Killing tensor with m5n2r normal eigenvectors orthogonal to D and corresponding

to pointwise distinct eigenvalues.

Remark 7.23: Also for the general separation we have two equivalent intrinsic characteriza-

tions: ~A! by means of a separable Killing algebra (D ,K) or, ~B! by a characteristic Killing pair

(D ,K), and what has been said in Remark 7.11 can be adapted to this case.

The use of a separable Killing algebra is made more effective by the following theorem

analogous to Theorem 7.12 ~see Sec. VIII for the proof!.
Theorem 7.24: A pair (D ,K), where D is an r-dimensional space of Killing vectors in

involution and K is an m-dimensional space of D-invariant Killing tensors, is a separable Killing

algebra if and only if: (i) the distribution D' orthogonal to D is invariant under the elements of

K interpreted as linear operators, (ii) the restrictions to D' of the elements of K form at each

point an m-dimensional space and commute; (iii) the elements of K are in involution.

Finally, it can be proved16 that

Theorem 7.25: The Hamilton–Jacobi equation associated with a natural Hamiltonian H

5G1V is separable if and only if there exists a characteristic Killing pair (D ,K) such that V is

D-invariant and the characteristic equation (7.6) is satisfied. In this case the functions
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HK5
1
2PK1VK , dVK5K dV , KPK,

HX5PX , XPD ,

form an n-dimensional space of first integrals in involution. A basis (Ha ,Ha) of this space is

expressed in terms of Stäckel matrices by formulas (5.28) and (5.32).

Hence, the corresponding Hamiltonian system is integrable in the Arnold–Liouville sense.

This theorem shows that the existence of m quadratic and n2m linear first integrals in involution

is a necessary condition for the separation.

Remark 7.26: It is important to remark that the use of a characteristic Killing pair (D ,K)

provides a finer classification of the orthogonal separation. Indeed, an orthogonal web could admit

two ~or more! different characteristic Killing pairs, thus two ~or more! different classes of sepa-

rable potentials. This is the case, for instance, of the translational or rotational webs in the

Euclidean three-space, as described in Ref. 25, where an orthogonal coordinate system may be

interpreted in more than one way as a standard separable coordinate system ~see the examples in

Ref. 21!.
As a consequence of Theorem 7.25, we get the following intrinsic translation of Theorems 5.2

and 6.4 related to the reduced separation of the Schrödinger equation. We observe that, K and R

being in standard form, the tangent subspaces orthogonal to D are invariant subspaces for both.

Theorem 7.27: The Schrödinger equation is reductively separable if and only if there exists a

characteristic Killing pair (D ,K) such that: (i) the potential V is D-invariant; (ii) the character-

istic equation (7.6) is satisfied; (iii) the spaces orthogonal to D are invariant under the Ricci

tensor R, interpreted as a linear operator, and the restrictions to these spaces of R and K

commute or equivalently, (iii8) the essential eigenvectors are eigenvectors of the Ricci tensor R

(i.e., ‘‘Ricci principal directions’’).

Remark 7.28: Let Q̃ be the quotient of the manifold Q by the orbits of D ~that is the set of the

orbits of D!. At least locally, it is an m-dimensional reduced Riemannian manifold, whose reduced

metric tensor G̃5(gab) is the result of the projection of G by the (n2m)-dimensional group of

isometries associated with D. Due to the D-invariance, the separable Killing algebra (D ,K) is

projectable onto an m-dimensional reduced Killing–Stäckel algebra K̃, and a characteristic Killing

tensor K5(K i j) onto a reduced characteristic Killing tensor K̃5(Kab). Then, the reduced Schrö-

dinger equation ~5.25! is just the Schrödinger equation written on the reduced manifold, but with

respect to the reduced potential

Ṽ5V2gabkakb .

For this reduced equation we have a free separation.

Remark 7.29: All the preceding discussion and statements hold for pseudo-Riemannian mani-

folds, by excluding the case of null ~or isotropic! coordinates, i.e., under the assumption g iiÞ0 for

the free separation and gaaÞ0 for the reduced separation.

VIII. INTEGRABILITY OF FRAMES

As mentioned in Sec. VII, n independent Killing tensors in involution and commuting as

linear operators have common and normal eigenvectors. This remarkable fact, discovered by

Kalnins and Miller,27 reduces the number of sufficient conditions for the geodesic separation listed

in the original version of the Eisenhart theorem,3 as well as in the version given by Woodhouse.28

We illustrate in this section a detailed proof of this property, showing that in fact it lies in basic

properties of frames in pure differential manifolds, apart from any Riemannian structure, which

plays a role only at the very end.

A frame ~a ‘‘moving frame’’ in the classical literature! on a differentiable manifold Qn is a set

of n pointwise independent vector fields (Xi). In general, frames exist only locally. A manifold Q
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admits global frames if and only if it is parallelizable, that is TQ5Q3R
n. Two frames (Xi) and

(Xi8) are said to be equivalent if there are ~nowhere vanishing! functions ( f i) such that Xi8

5 f iXi .

Definition 8.1: A frame is integrable if for each index i51,...,n the distribution D ı̂ of rank

n21 spanned by all vectors of the frame with the exception of Xi is completely integrable.

Remark 8.2: The integrability is an invariant property within a class of equivalent frames.

We have two equivalent definitions of integrability, illustrated in the two following proposi-

tions.

Proposition 8.3: A frame is integrable if and only if there exist local coordinate systems (q i)

such that the frame is equivalent to (] i),

] i5 f iXi .

Proof: ~i! Assume that the frame is integrable. Let us consider the distribution D1
ˆ spanned by

(X2 , . . . ,Xn). The corresponding foliation can be locally parametrized by a regular function q1;

dq1Þ0 is a characteristic one-form, so that ^Xi ,dq1&50 for iÞ1. Moreover, ^X1 ,dq1&5g1Þ0,

otherwise dq1
50. Thus, ^ f 1X1 ,dq1&51, with f 151/g1 . By the same procedure applied to all

distributions D ı̂ we get a system of functions (q i) such that ^ f iXi ,dq j&5d i
j . Hence, (q i) are

independent functions forming a coordinate system such that ] i5 f iXi . ~ii!. The natural frame (] i)

associated with coordinates is obviously integrable; hence the equivalent frame (Xi) is integrable

~Remark 8.2!. j

Proposition 8.4: A frame is integrable if and only if for each pair of indices iÞ j the distri-

bution D i j spanned by the two vectors (Xi ,Xj) is completely integrable.

Proof: With each frame (Xi) we can always associate a co-frame (j i) made of independent

one-forms such that ^Xi ,j j&5d i
j . Then j i is a characteristic form of the distribution D ı̂ , that is

^D ı̂ ,j
i&50. As we know, this distribution is completely integrable if and only if dj i∧j i

50.

Moreover, each distribution D i j is characterized by the n22 forms (ja), aÞi , j , and for instance,

D12 is completely integrable if and only if (†)dja∧j3∧¯∧jn
50 for a53,...,n . ~i! Assume that

the frame (Xi) is integrable: all D ı̂ are completely integrable, thus dj i∧j i
50 for all i. Then ~†! is

satisfied, as well as the similar equations associated with all pairs of distinct indices. ~ii! Assume

that all D i j are completely integrable. Then, by the Frobenius theorem each Lie bracket @Xi ,Xj# is

a linear combination of the same vectors (Xi ,Xj). This is enough for the complete integrability of

any distribution ~of any rank! spanned by any choice of the vectors of the frame. j

Remark 8.5: There is a geometrical ~and intuitive! proof of this proposition. ~i! If the frame is

integrable, let us consider the integral foliations Sı̂ of D ı̂ . They are made of submanifolds of

codimension 1. Submanifolds belonging to different foliations are transversal. For any choice of

iÞ j the foliation given by the intersection of all Sk̂ with kÞi , j is made of submanifolds of

dimension 2 which are tangent to (Xi ,Xj). Hence, D i j is integrable. ~ii! Conversely, assume that

all D i j are integrable and let us consider the corresponding foliations Si j made of submanifolds of

dimension 2. For any fixed i, let us consider the foliation Sı̂ given by the union of the foliations

Sjk with j ,kÞi . This is a foliation of submanifolds of codimension 1 tangent to D ı̂; then this

distribution is integrable.

We base our discussion on the following general considerations. As we have seen in Sec. VII,

we have a one-to-one correspondence between contravariant symmetric tensors of any order K

5(K i¯ j) on Q and homogeneous polynomial functions P(K)5K i¯ jp i¯p j on T*Q . For a func-

tion f ~zero-order tensor! on Q, P( f ) is by definition the canonical lift to T*Q ~constant along the

fibers!, which we denote by the same symbol f, so that

P~ f !5 f .

By this correspondence we define two operations over symmetric tensors. ~i! The symmetric

tensor product (,

P~K(L!5P~K!P~L!.
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This product is comutative and associative. In particular, for vector fields X and Y,

X(Y5
1
2~X^ Y1Y^ X!.

~ii! The Lie–Nijenhuis bracket @•,•#,

P~@K,L# !5$P~K!,P~L!%,

where $,% is the canonical Poisson–Lie bracket of functions on T*Q , defined in local canonical

coordinates (q i,p i) by

$E ,F%5] iE] iF2] iF] iE , ] i5
]

]q i , ] i
5

]

]p i

.

In particular, for vector fields X and Y,

$P~X!,P~Y!%5P~@X,Y# !,

where @,# is the ordinary Lie bracket, and

$P~X!,P~ f !%5@X, f #5^X,df & .

This bracket is anticommutative, bilinear, and obeys the Jacobi rule. Since the Poisson bracket is

a bi-derivation, the Leibnitz rule holds,

@K,L(M#5@K,L#(M1@K,M#(L.

Moreover, two tensors are said to be in involution if @K,L#50, i.e., $P(K),P(L)%50.

Let (Xi) be a frame on Q. Let us set

@Xi ,Xj#5V i j
hXh , V i j

h
52V j i

h,

and use the notation

P~Xi!5x i , ~8.1!

so that

$x i , f %5^Xi ,df &, $x i ,x j%5P~@Xi ,Xj# !5V i j
hxh .

Let us consider two contravariant symmetric two-tensors K and L. Suppose that they are

diagonalized in the frame, i.e.,

K5K iXi(Xi , L5L iXi(Xi .

By using the previous formulas, it is straightforward to compute the Poisson bracket of the

corresponding quadratic functions:

$P~K!,P~L!%5$P~K iXi(Xi!,P~LhXh(Xh!%

5$K ix i
2,Lhxh

2%

5K iLh$x i
2,xh

2%1K i$x i
2,Lh%xh

2
1Lh$K i,xh

2%x i
2

54K iLhV ih
jx ixhx j12~K i^Xi ,dLh&2L i^Xi ,dKh& !x ixh

2

52~2K iLhV ih
j
1~K i^Xi ,dLk&2L i^Xi ,dKk& !dk

hdk
j !x ixhx j . ~8.2!

By using this formula we can prove
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Theorem 8.6: Suppose that n contravariant two-tensors (Ka) are (i) pointwise independent,

(ii) in involution, and (iii) simultaneously diagonalized in a frame (Xi). Then the distributions D i j

spanned by pairs of vectors (Xi ,Xj) are completely integrable.

Proof: By assumption ~iii!, Ka5Ka
i Xi(Xi , and the independence of the tensors is equivalent

to

det@Ka
i #Þ0.

Due to ~8.2!, equation $P(Ka),P(Kb)%50 is equivalent to

~2Ka
i Kb

hV ih
j
1~Ka

i ^Xi ,dKb
k&2Kb

i ^Xi ,dKa
k& !dk

hdk
j !x ixhx j50.

This is a homogeneous polynomial equation which must be identically satisfied for all values of

the variables (pk), thus for all values of the variables (x i), since x i5P(Xi)5X i
kpk , and det@Xi

k#

Þ0. Thus, all coefficients vanish. In particular, the coefficient of x1 x2 x3 ~as well as for all

possible choice of three distinct indices! gives rise to

Ka
1Kb

2V12
3
1Ka

1Kb
3V13

2
1Ka

2Kb
3V23

1
1Ka

2Kb
1V21

3
1Ka

3Kb
1V31

2
1Ka

3Kb
2V32

1
50,

i.e., due to the skew-symmetry of V,

V12
3~Ka

1Kb
2
2Ka

2Kb
1!1V23

1~Ka
2Kb

3
2Ka

3Kb
2!1V31

2~Ka
3Kb

1
2Ka

1Kb
3!50.

This equation can be represented in the form

detFV23
1 V31

2 V12
3

Ka
1 Ka

2 Ka
3

Kb
1 Kb

2 Kb
3
G50.

This means that the three vectors of R3,

v5~V23
1,V31

2,V12
3!, ka5~Ka

1,Ka
2,Ka

3!, kb5~Kb
1,Kb

2,Kb
3!

are linearly dependent ~i.e., coplanar!. Assume that vÞ0. It follows that all vectors (k1 , . . . ,kn)

belong to a same three-plane ~containing v!. This means that, for any choice of three distinct

indices (a ,b ,c), we have

detF Ka
1 Ka

2 Ka
3

Kb
1 Kb

2 Kb
3

Kc
1 Kc

2 Kc
3
G50.

As a consequence, by applying the Laplace rule to the lines ~1,2,3! of the matrix @Ka
i # for the

calculus of its determinant, we get det@Ka
i #50: absurd. Thus v50. This means that V23

1
5V31

2

5V12
3
50. So, we have proved that V i j

h
50 for any choice of distinct indices. This means that

@Xi ,Xj# is a linear combination of Xi and Xj only. Due to Frobenius’ theorem, the statement is

proved. j

Due to Propositions 8.3 and 8.4 it follows that

Theorem 8.7: Under the same assumptions of Theorem 8.6, the frame (Xi) is integrable and

there are coordinates (q i) in which all tensors are simultaneously diagonalized: Ka
i j

50 for

iÞ j .

We remark that the preceding statements hold in a pure differential framework; they do not

involve a metric at all. When a metric tensor G is present, we can consider the case in which the

frame is orthogonal and made of common eigenvectors of n independent symmetric two-tensors

~not necessarily Killing tensors! (Ka). Then we can write
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Ka5la
i « iXi(Xi , Xi•Xj50, iÞ j ,

where la
i is the eigenvalue of Ka corresponding to the eigenvector Xi ,

KaXi5la
i Xi ,

and

« i
5« i

21, « i5Xi•Xi .

Thus, we can assert that

Theorem 8.8: An orthogonal frame made of common eigenvectors of n independent symmet-

ric two-tensors in involution is integrable and the tensors are simultaneously diagonalzed in an

orthogonal coordinate system.

Note that the metric tensor G may be one of the tensors considered in this statement ~as it

happens in a Killing–Stäckel algebra!. Then all the two-tensors are Killing tensors. This proves

Theorem 7.12, by remarking that item ~i! is equivalent to the existence of common eigenvectors,

according to the following

Proposition 8.9: Let (Ka) be a set of n pointwise independent symmetric two-tensors on a

Riemannian manifold. If they commute as linear operators then they generate locally a unique

orthogonal frame (up to an equivalence) made of common eigenvectors.

This is a pure algebraic property, which follows from the spectral theorem of self-adjoint

linear operators ~see for instance Ref. 29, Secs. 79, 84!. However, for the sake of completeness,

here we give direct proof based on the following

Proposition 8.10: Let K and L be two symmetric linear operators over an n-dimensional real

Euclidean vector space En . If they commute, then they have n common eigenvectors.

Proof: Let us denote by u"v5g(u,v) the scalar product of vectors of En , defined by a

positive-definite metric tensor g. A linear operator K:En→En is, by definition, symmetric if

v"Ku5u"Kv for each pair of vectors. It is well known that, for a metric tensor of any signature,

~i! eigenvectors corresponding to distinct eigenvalues are orthogonal:

Ku5lu, Ku85l8u8, lÞl8⇔u"u850.

~ii! An eigenvalue l determines a maximal invariant linear subspace S(l)#En of eigenvectors; if

l is complex, then also the conjugate l* is an eigenvalue ~with the same multiplicity! and the

dimension of S(l) is even. ~iii! am(l)>gm(l), where am~l! is the algebraic multiplicity of l as

root of the characteristic equation, and gm~l! is its geometric multiplicity, which is the dimension

of S(l), if l is real, or half of this dimension if complex. However, in a positive definite metric

the eigenvalues are real and am(l)5gm(l)5dim S(l). It follows that if all the eigenvalues are

simple, dim S(l)51 and the eigenvectors form ~up to factors! a canonical basis. Let L be a linear

operator commuting with K. Then

vPS~l !⇔Kv5lv⇒LKv5lLv⇒KLv5lLv⇒LvPS~l !.

This means that S(l) is an invariant space of L. If l is a simple root of K, then v is also an

eigenvector of L. It follows that the space En is decomposed into a direct sum

En5V1 % ¯ % Vk % W1 % ¯ % W l ,

of mutually orthogonal subspaces, where (V1 , . . . ,Vk) are one-dimensional subspaces of common

eigenvectors generated by simple eigenvalues of K and L, and (W1 , . . . ,Wk) are subspaces of

dimension >2 made of simultaneous eigevectors of K and L. By choosing an orthogonal basis on

each of these subspaces we find a basis made of orthogonal common eigenvectors. j

If, instead of two operators, we consider a set of n commuting symmetric operators (Ka) we

find again a direct-sum decomposition as previously and an orthogonal basis made of common
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eigenvectors. But if these operators are independent, the spaces W are not present and the basis is

uniquely determined up to constant factors. Indeed, if (Xi) is a basis of common eigenvectors,

then KaXi5la
i Xi and the independence of (Ka) is equivalent to det@la

i #Þ0. It follows that we can

always find a linear combination of (Ka) which has all distinct eigenvalues. This proves Propo-

sition 8.9.

Finally, we prove Theorem 7.24.

Proof: Conditions ~i!–~ii!–~iii! are obviously necessary. To prove that they are also sufficient,

let us apply Proposition 8.9 to the restrictions K
' of K to the orthogonal distribution D'; it

follows that they define, in a unique way up to an equivalence, a subframe (Xa) (a51,...,m) of

eigenvectors of K. Since K is D-invariant, this subframe can be chosen to be D-invariant. If (Xa)

(a5m11,...,n) is a ~local! basis of D, then (Xa ,Xa) form a frame such that @Xa ,Xa#50, and

two elements of K can be written in the form

K5KaXa(Xa1KabXa(Xb , L5LaXa(Xa1LabXa(Xb ,

where all the components are D-invariant. Recalling notation ~8.1! we have

$xa ,xa%50, $xa ,xb%50, $xa ,xb%5Vab
c xc1Vab

a ,xa ,

where V’s are D-invariant. A calculation similar to that in the proof of Theorem 8.6, shows that the

involutivity of a basis (Ka) of K implies that all V’s with distinct indices vanish. Then we apply

Proposition 8.4. j

The second part of this proof can be replaced by the following geometrical ~and intuitive!

reasoning. We can consider ~at least locally! the reduced manifold Q̃ ~see Remark 7.28!. Due to

the D-invariance of K, the vector fields Xa can be chosen ~up to factors! to be projectable onto an

orthogonal frame X̃a of Q̃ and the orthogonal components of the elements of K onto the

m-dimensional reduced Killing–Stäckel algebra K̃. Then we can apply to this algebra the above-

given results related to Killing–Stäckel algebras, remarking that the involutivity of K implies the

involutivity of K̃. It follows that the frame (X̃a) is integrable. Pulling back the integral orthogonal

manifolds, we get submanifolds of dimension m21 whose unions with the orbits of D are mani-

folds of dimension n21 orthogonal to the (Xa). Thus, these vectors are normal.

IX. AN ILLUSTRATIVE EXAMPLE: THE COMPARISON BETWEEN THE FREE AND THE
REDUCED SEPARATION

Let us consider in the Euclidean three-space Q5E3 the Hamilton–Jacobi equation of the

Kepler problem, V52k/r ,

1

2
upu2

2
k

r
2E50,

where r is the distance from the origin, and the corresponding Schrödinger equation of the ‘‘hy-

drogen atom’’ ~as usual, see Sec. IV, we replace (2/\2)V and (2/\2)E with V and E!

Dc1S E1
k

r
Dc50.

It is known that the Kepler problem is separable with respect to four separable webs: spherical,

spherical conical, parabolic, all centered at the origin, and prolate spheroidal centered at any point

with focus at the origin ~see Ref. 30 for a group-theoretical approach and Ref. 31 for a geometrical

and tensorial approach!. Since R50, the Schrödinger equation is separable in all possible coor-

dinate systems associated with these webs. In order to analyze the different features between the

free and the reduced separation, let us consider the spherical web, which is orthogonal ~thus
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allowing the free separation! and rotational ~thus allowing the reduced separation!. This web can

be parametrized by the usual spherical coordinates (q1,q2,q3)5(r ,u ,w).

Free separation. The Killing–Stäckel algebra K3 associated with the spherical web has the

following basis:

K15]u ^ ]u1
1

sin2 u
]w ^ ]w ,

K25]w ^ ]w , ~9.1!

G5]r ^ ]r1
1

r2 ]u ^ ]u1
1

r2 sin2 u
]w ^ ]w .

The ~diagonal! components of these tensors form the inverse matrix

@w ~ j !
i

#5F 0 1
1

sin2 u

0 0 1

1
1

r2

1

r2 sin2 u

G ~9.2!

of the Stäckel matrix

@w i
~ j !#5F 2

1

r2
1 0

0 2
1

sin2 u
1

1 0 0

G .

The last line of matrix ~9.2! represents the diagonal components g ii of the metric tensor. The

contracted Christoffel symbols ~4.3! are

G152
2

r
, G252

1

tan u
, G350. ~9.3!

Looking at the expression of the Newtonian potential energy, written as a Stäckel multiplier ~1.6!,

V52
k

r
5f ig

ii
5f iw ~3 !

i
5f1~r !1f2~u !

1

r2 1f3~w !
1

r2 sin2 u
,

we get ~at least! two solutions,

f152
k

r
2

c

r2 , f25cPR, f350,

or

f152
k

r
, f252

c

sin2 u
, f35cPR.

However, for our purposes, there is no loss of generality in choosing c50, so that they coincide:
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f152
k

r
, f250, f350. ~9.4!

In the free separation the Killing tensors of the spherical Killing–Stäckel algebra correspond to the

constants of motion a5(a j) entering Eqs. ~4.32!,

w ~ j !
i S c i9

c i

2G i

c i8

c i

2f iD 1a j50.

Due to ~9.3! and ~9.4!, these equations are equivalent to the well-known separated ordinary

differential equations of the kind ~4.29!,

c191
2

r
c181S a32

1

r2 a11
k

r
Dc150 ~a35E !,

c291cot uc281S a12
1

sin2 u
a2Dc250, ~9.5!

c391a2c350,

in the unknown functions c1(r), c2(u), c3(w). The general solution of the first equation ~9.5!
can be written

c15c1F11c2F2

where F1(a1 ,a3 ;r) and F2(a1 ,a3 ;r) are two independent confluent hypergeometric functions32

and (c1 ,c2) arbitrary constants. Since any c i can be determined up to an inessential multiplicative

constant, we can choose the solution

c15F11b1F2 , b1PR.

In a similar way, for the second equation ~9.5! we consider the solution

c25S1~a1 ,a2 ;u !1b2S2~a1 ,a2 ;u !,

where S1 and S2 are independent spherical harmonics.32 For the last equation ~9.5! we can con-

sider the solution

c35e2A2a2w
1b3eA2a2w.

Thus, the resulting separated solution c5c1c2c3 depends on 2n56 constants (a i ,b i). However,

in order to get solutions c5c1c2c3 with a physical meaning, the constant parameters

(a1 ,a2 ,a3), corresponding to the constants of motion, must verify further well known ~quantiza-

tion! conditions, assuring for instance, the summability of c1 and c2 , and the periodicity of c3 .

These are the results of the free separation, as explained in Remarks 4.7, 4.8, and 4.9.

Reduced separation. Since the spherical web is rotational, so that w is ignorable, we can

consider the reduced separation according to Definition 5.1 and Theorem 5.2, by setting ~being

a53)

c35ek3w. ~9.6!

Now the Stäckel matrix and its inverse are the 232 matrices
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@wb
~a !#5F 2

1

r2
1

1 0
G , @w ~a !

b
#5F 0 1

1
1

r2
G ,

respectively. The other two functions c1(r) and c2(u) must satisfy the separated equations ~5.27!.
In the present case, from the general expressions ~3.9!, where a5b53, we derive

g33
5

1

r2 sin2 u
5f1

33
1f2

33
1

r2 ,

thus,

f1
33

5
c

r2 , f2
33

5
1

sin2 u
2c , cPR,

and f1 , f2 , G1 , and G2 are as above. For c50 ~5.27! become

c191
2

r
c181S ã22

1

r2 ã11
k

r
Dc150 ~ ã25E !,

c291cot uc281S ã11
1

sin2 u
k3

2Dc250.

Up to the transformation of the constant parameters,

ã15a1 , ã25a3 , k3
2
52a2 ,

these equations coincide with the first two equations ~9.5!, and c3 given by the constraint ~9.1! is

a solution of the third equation ~9.5!. Finally, we observe that the Killing–Stäckel algebra K3

associated with the free separation in the spherical web is determined by the Killing tensors

(G,K1 ,K2) given in ~9.1!. With the same web we associate the separable Killing algebra

(D1 ,K2), with K25span(G,K1) and D5span(]w). This geometrical structure can be interpreted

in two different ways. ~i! We can use ]w for constructing K25]w ^ ]w , by interpreting w as an

essential coordinate ~this is possible since the web is orthogonal!. In this way we reconstruct the

Killing–Stäckel algebra K3 , associated with the free separation. ~ii! We can associate with D the

solution ~9.6!, by interpreting w as an ignorable coordinate, and we reduce the problem of the

separation to the remaining two essential coordinates: this is the reduced separation.
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