
Variable separation for natural Hamiltonians with scalar
and vector potentials on Riemannian manifolds

S. Benenti,a) C. Chanu, and G. Rastelli
Department of Mathematics, University of Turin, 10123 Torino, Italy

~Received 9 October 2000; accepted for publication 6 November 2000!

The additive variable separation in the Hamilton–Jacobi equation is studied for a

natural Hamiltonian with scalar and vector potentials on a Riemannian manifold

with positive–definite metric. The separation of this Hamiltonian is related to the

separation of a suitable geodesic Hamiltonian over an extended Riemannian mani-

fold. Thus the geometrical theory of the geodesic separation is applied and the

geometrical characterization of the separation is given in terms of Killing webs,

Killing tensors, and Killing vectors. The results are applicable to the case of a

nondegenarate separation on a manifold with indefinite metric, where no null es-

sential separable coordinates occur. © 2001 American Institute of Physics.
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I. INTRODUCTION

A smooth real function V and a smooth vector field A on a Riemannian n-manifold (Q ,g)

define a Hamiltonian function on the cotangent bundle T*Q ,

H5
1
2 g i j~p i1A i!~p j1A j!1V5

1
2 g i jp ip j1A ip i1U , ~1.1!

where the function on Q

U5V1
1
2 A iA i5V1

1
2 A•A ~1.2!

is extended to T*Q as a function constant on the fibers. Hamiltonians of this kind appear in many

classical problems of analytical mechanics and physics, and for this reason they are called natural.

The Hamiltonian ~1.1! corresponds to a Lagrangian L:TQ→R of the form

L5
1
2 g i jq̇

iq̇ j
2A iq̇

i
2V , ~1.3!

where 1
2 g i jq̇

iq̇ j is the kinetic energy and V and A play the role of scalar and vector potentials,

respectively, generating Lagrangian forces

F i5~] jA i2] iA j!q̇ j
2] iV . ~1.4!

Here we denote by (qI ,pI )5(q i,p i) and by (qI , q̇I )5(q i, q̇ i) the coordinate systems on T*Q and TQ,

associated with a coordinate system qI 5(q i) on Q. We denote by ] i the partial derivative with

respect to the variable q i. In the following we shall use the symbol ] i for the partial derivative

with respect to p i .

A natural Hamiltonian is called separable if there are coordinates qI on Q such that the

Hamilton–Jacobi equation

H~qI ,pI !5h , p i5] iW ~1.5!
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admits a separated complete solution of the form

W~qI ,cI !5W1~q1,cI !1¯Wn~qn,cI !, ~1.6!

where cI 5(c i) is a set of n constants satisfying the completeness condition

detF ]2W

]q i]c j
GÞ0. ~1.7!

The interest of separable Hamiltonians lies essentially on two facts: ~1! in separable coordinates qI

the integration of the Hamilton–Jacobi equation is reduced to ~at most n! simple integrals ~i.e.,

involving single variables!; ~2! the separation of variables is characterized by the existence of n

first integrals in involution, quadratic or linear in the conjugate momenta pI . Hence, separable

Hamiltonians give rise to a particular but wide class of completely integrable Hamiltonian sys-

tems. In the theory of separation of variables a basic role is played by the geodesic Hamiltonian

G5
1
2 g i jp ip j . ~1.8!

Indeed, as pointed out by Levi-Civita,1 a necessary condition for the separability of a natural

Hamiltonian ~1.1! is the separability of the corresponding geodesic Hamiltonian ~1.8!. Moreover,

it is known that the separability of G is characterized by the existence of Killing vectors and

Killing 2-tensors on the Riemannian manifold Q ~which generate quadratic and linear first inte-

grals in involution! satisfying suitable properties.2–9 This shows that the separability is not simply

a local property concerning with coordinates but it is in fact related to the existence of intrinsic

objects satisfying coordinate-independent properties. As a consequence, the intrinsic characteriza-

tion of the separability ~by means of algebraic objects like Killing vectors and tensors4–8 and

geometrical objects like ‘‘Killing webs’’ 9,10! provide a useful and effective tool for finding and

constructing separable Hamiltonian systems. While the theory of the geodesic separability can be

easily extended to natural Hamiltonians of the kind

G5
1
2 g i jp ip j1V , ~1.9!

involving a scalar potential only, the extension to the general Hamiltonian ~1.1! with a vector

potential meets some difficulties, as explained below. However, several important results are

already present in the literature, but all concerning the general form of the functions (g i j,A i,V) in

separable coordinates11–14 ~also in the time-dependent case!. The aim of the present paper is to

revisit all this matter at the light of the more recent progress in the geometrical characterization of

the separation.10 As it has been done for a pure geodesic Hamiltonian G, for investigating on the

intrinsic properties of the objects (g,A,V) underlying the separation, a starting point could be the

fundamental Levi-Civita separability conditions1

] i] jH] iH] jH1] i] jH] iH] jH2] i] jH] iH] jH2] i]
jH] iH] jH50 ~1.10!

~no sum over the indices iÞ j! which yield second-order differential equations on the functions

(g i j,A i,V). But these equations turn out to be of such a complexity that this way seems to be

hopeless. An alternative method could be the analysis of the known expressions11,12 of the func-

tions (g i j,A i,V) in separable coordinates ~as done for instance in Ref. 15, for the orthogonal

separation, on the basis of previous results by Steigeberger13!. But also this method appears to be

rather difficult and, moreover, it does not provide a good and complete understanding of the

intrinsic meaning of the separation, where a basic and simplifying role is played by particular

classes of coordinates, called normal separable coordinates.7–10 Instead, we propose here a direct

and geometrical method which makes the problem clear and easily solvable from the very begin-

ning. The basic ~and very simple! idea of this method is the following: we replace the original

Hamiltonian ~1.1! by an ‘‘equivalent’’ geodesic Hamiltonian on the ‘‘extended manifold’’ Q
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3R endowed with a suitable ‘‘extended metric’’ ~Sec. IV!; then, we apply to this new Hamil-

tonian the well-known methods of the theory of the geodesic separability.7,8,10

In the present paper we consider, for simplicity, only the case of a positive–definite metric.

This makes the discussion considerably easier, since we avoid the cases of degenerate separation

where the so-called second-class null coordinates occur. However, all results hold for the nonde-

generate separation in a metric of any signature. The case of a Lorentzian metric will be consid-

ered in detail in a further paper.

II. NOTATION

We denote by ^X,w&5X iw i the evaluation between a vector field X and a 1-form w. In

particular, ^X,dV&5X i] iV is the derivative of the function V with respect to the vector X. We

denote by u•v the scalar product of two vectors, u•v5g(u,v)5g i ju
i
v

j. The canonical Poisson–

Lie brackets of functions over a cotangent bundle are defined by

$ f ,g%5] i f ] ig2] ig] i f . ~2.1!

We consider the natural identification between contravariant symmetric tensors K5(K i1¯ik) on Q

and the homogeneous polynomial functions on the cotangent bundle T*Q , defined by

P~K!5PK5K i1¯ikp i1
¯p ik

. ~2.2!

For a function f on Q ~tensor of order 0! P f is its natural extension to T*Q constant on the fibers.

Then the Poisson brackets induce Nijenhuis–Lie brackets between contravariant symmetric ten-

sors on Q by setting

$PK ,PL%5P @K,L# . ~2.3!

If K and L are of order k and l, respectively, then @K,L# is of order k1l21. In particular, for two

vector fields, @X,Y# are the ordinary Lie brackets, and @X,K# is the Lie derivative of the tensor

field K with respect to the vector field X. We say that two ~symmetric! tensors are in involution ~or

that they commute! if @K,L#50. This means that the corresponding polynomial functions are in

involution: $PK ,PL%50. Killing vectors and Killing tensors are defined by the Killing equations

@X,G#50, @K,G#50, ~2.4!

where

G5~g i j!

is the contravariant metric tensor. This means that the corresponding functions PX and PK are first

integrals of the geodesic flow. As for any symmetric 2-tensor on a Riemannian manifold, a Killing

tensor K can be interpreted as a linear operator over 1-forms or vector fields; we shall denote by

Kw and by KX, respectively, the images by K of a 1-form w and of a vector X, whose local

representations, in any coordinate system qI , are

Kw5g i jK
jhwh dq i, KX5K ihgh jX

j] i . ~2.5!

The contravariant metric tensor G corresponds to the identity mapping,

Gw5w , GX5X.

We denote by ♭ the bijective mapping from vector fields to 1-forms on Q, defined by the equiva-

lent equations
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^Y,X♭&5Y•X, G~X♭,w !5^X,w&. ~2.6!

III. AN OUTLINE ON THE GEODESIC SEPARATION

In order to make this paper self-contained we recall in this section, with suitable adaptations,

the basic definitions and results of the geometrical theory of the separation of the geodesic

Hamilton–Jacobi equation.

~A! An orthogonal web on a Riemannian manifold Qn is a set (Sa) (a51,...,m) of m<n

pairwise transversal and orthogonal foliations of leaves of codimension 1. In a positive–definite

metric the orthogonality implies the transversality, and moreover, the intersections of all the leaves

of (Sa) form a foliation O of submanifolds of dimension r5n2m . If these submanifolds are the

orbits of a r-dimensional space D of commuting Killing vectors, then we say that the set

~Sa,D !5~S1, . . . ,Sm,D ! ~3.1!

is a Killing web. The orbits of D are locally flat submanifolds.

~B! If the foliations (Sa) are, respectively, orthogonal to m eigenvectors (Xa) of a Killing

2-tensor K associated with m pointwise distinct eigenvalues (la), and if K is D-invariant

(@X,K#50, ;XPD! then we say that the set

~S1, . . . ,Sm,D ,K! ~3.2!

is a separable Killing web and that K is a characteristic Killing tensor of the web. Since only the

eigenvectors ~or eigenforms! orthogonal to the foliations (Sa) are relevant for the separation, we

call them main eigenvectors ~or main eigenforms! of K. Points of Q where these objects are not

defined or do not satisfy the above requirements are called singular points of the web. They form

the singular set of the web.

~C! From a purely algebraic point of view a separable Killing web is then completely deter-

mined by a pair

~D ,K! ~3.3!

which we call characteristic Killing pair, made of a r-dimensional linear space (r<n) D of

commuting Killing vectors and of a Killing 2-tensor K satisfying the following requirements: ~i!
the vectors of D span a regular distribution D of rank r ~i.e., a subbundle D#TQ such that

dim(D)5n1r); ~ii! K is D-invariant; ~iii! K has m5n2r normal ~i.e., orthogonally integrable!
eigenvectors (Xa) (a51,...,m) ~the main eigenvectors! orthogonal to D and associated with m

pointwise distinct eigenvalues (la).

~D! In a neighborhood of a nonsingular point a Killing web (Sa,D) generates coordinate

systems (qa,qa) ~a51,...,m; a5m11,...,n! such that each dqa is a characteristic 1-form of the

corresponding foliation S
a ~qa is constant on the leaves of S

a! and (qa) are the affine parameters

of the integral curves of r vector fields (Xa) forming a basis of D, with zero values on a chosen

submanifold Z of codimension r, transversal to the orbits of D. It follows that the coordinates (qa)

are orthogonal, gab
5G(dqa,dqb)50 for aÞb , and their coordinate hypersurfaces are open sub-

manifolds of the leaves of the web. Moreover, the coordinates (qa) are ignorable, ]ag i j
50, since

they are generated by Killing vectors. We say that such a coordinate system is adapted to or

generated by the Killing web, and based on the section Z ~Fig. 1!.
~E! It can be shown that10 the coordinates adapted to a Killing web are separable for the

geodesic Hamiltonian G if and only if there exists a Killing 2-tensor K satisfying conditions of

item ~B!, i.e., if and only if (Sa,D ,K) is a separable Killing web. This is equivalent to say that the

geodesic Hamiltonian G is separable if and only if there exists a characteristic Killing pair (D ,K)

@see item ~C!#.
~F! It can be proved that9,10 in a separable Killing web the distribution Dz orthogonal to D is

completely integrable, so that there exists a foliation of m-dimensional manifolds orthogonal to the
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orbits of D. The separable coordinates adapted to a separable Killing web and based on a section

Z orthogonal to D are called normal separable coordinates. In these coordinates the contravariant

metric assumes the semidiagonal standard form

@g i j#5F
g11

� 0

gaa 0

0 �

gmm

0 gab

G .

~3.4!

~G! There are two extreme cases of the above description: ~i! m5n , r50; in this case the

space of Killing vectors D vanishes, the Killing web is simply an orthogonal web of n foliations

of codimension 1; ~ii! m50, r5n; in this case the foliations S
a disappear, and only the

n-dimensional space D of commuting K-vectors is present; such a K-web is always separable, with

K50. There is a further particular case: ~iii! m51, r5n21; in this case we have a single

foliation of codimension 1 made of the orbits of n21 commuting K-vectors; such a K-web is

always separable, with K5G.

~H! Separable coordinate systems occur in equivalence classes: two separable systems are

equivalent if the corresponding complete integrals generate the same Lagrangian foliation in T*Q .

A separable Killing web is the geometrical counterpart of an equivalence class of separable

coordinates for the geodesic Hamiltonian. According to Levi-Civita,1 the coordinates (q i) of a

separable system are divided into two classes: a coordinate q i is of first class if the fraction

] iH/] iH is linear ~homogeneous! in the momenta (p j). Otherwise, it is of second class. Second-

class coordinates are also called essential separable coordinates. They are usually labeled by

indices a ,b , . . . running from 1 to m<n . The first-class coordinates are labeled by indices a, b,...

running from m11 to n. The numbers ~r, m! of coordinates of first and second class, respectively,

are the same for two equivalent separable systems and moreover, a separable systems is always

equivalent to a normal separable system, see item ~F!, in which the first-class coordinates are

ignorable and the metric tensor has the standard form ~2.1!.7,8 In the transformation from a generic

separable coordinate system to a normal one, the second-class coordinates remain essentially

unchanged ~they are related by a separated transformation, whose Jacobian is diagonal! so that

their coordinate surfaces are invariant; these surfaces span the foliations S
a of the underlying

FIG. 1. Illustration of the elements of a separable Killing web (Sa,D ,K) ~for a51,2!.
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separable Killing web. Moreover, the partial derivatives (]a) with respect to the first-class coor-

dinates ~ignorable or not!, interpreted as vector fields, span the space D of the underlying sepa-

rable Killing web.

~I! The nonvanishing metric components ~3.4! in normal separable coordinates have the form

gaa
5w ~m !

a
, gab

5gaafa
ab , ~3.5!

where fa
ab are functions of qa only and w (m)

a
is the mth row of the inverse of a m3m Stäckel

matrix @wa
(b)#: this is a matrix of functions depending only on the coordinate qa corresponding to

the lower index.

~J! A characteristic Killing pair (D ,K) generates an m-dimensional space K of Killing

2-tensors which are ~i! D-invariant, ~ii! in involution, and ~iii! with m eigenvectors in common

orthogonal to D ~the main eigenvectors of the characteristic tensor K!. The components of an

element of K in normal separable coordinates form a matrix similar to that of the metric ~3.4!. By

formulas similar to ~3.5!, the rows of the inverse Stäckel matrix generate the components of a

basis (Kb) of K, b51,...,m , with Km5G,

Kb
aa

5w ~b !
a

, Kb
ab

5w ~b !
a fa

ab . ~3.6!

This space includes K and the contravariant metric tensor G. We call K the separable Killing

algebra generated by (D ,K). If K0 is an element of K with distinct eigenvalues corresponding to

the main eigenvectors, then the pairs (D ,K0) and (D ,K) are said to be equivalent ~the define the

same K!. The m quadratic functions

Gb5
1
2 P~Kb!5

1
2 Kb

i jp ip j5
1
2 w ~b !

a
~pa

2
1fa

abpapb! ~3.7!

together with the r linear functions

Ga5P~Xa!5pa

associated with a basis (Xa) of D, form a system of n independent first integrals in involution of

the geodesic flow. Moreover, from the eigenform equations

Kb dqa
5lb

a dqa, ~3.8!

we derive the following relation between the main eigenvalues of Kb ~corresponding to the main

eigenvectors of the characteristic tensor K! and the inverse Stäckel matrix,

lb
a
5

w ~b !
a

w ~m !
a , ~3.9!

so that

Gb5
1
2 lb

agaa~pa
2
1fa

abpapb!. ~3.10!

In this last formula, the quadratic first integrals in involution are expressed in terms of the main

eigenvalues of the Killing tensors forming a basis of K, without any reference to the Stäckel

matrix.

~K! It can be shown that10 a natural Hamiltonian H5G1V is separable if and only if there

exists a characteristic Killing pair (D ,K) such that

D~V !50, d~K dV !50. ~3.11!
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The first of these two conditions means that V is D-invariant, ^X,dV&50, ;XPD , the second one

that the 1-form K dV ~image of dV by K! is closed, hence locally exact. We call the second

equation ~3.11! the characteristic equation of a separable potential. Moreover,7,8 a function V

satisfies conditions ~3.11! if and only if in a normal separable coordinate system is of the form

V5gaafa5w ~m !
a fa , ~3.12!

where each fa is a function of qa only. Functions of this kind are called Stäckel multipliers.6 We

observe that the first-class metric components gab ~3.5! are Stäckel multipliers. It is remarkable

that if V satisfies equations ~3.11! then the characteristic equation holds for all elements of the

algebra K generated by the characteristic Killing pair (D ,K). Hence, with a basis (Kb) of K, we

can associate ~at least locally! m D-invariant functions (Vb) such that

Kb dV5dVb . ~3.13!

These associated potentials have a form similar to ~3.12!,

Vb5Kb
aafa5w ~b !

a fa . ~3.14!

The n functions

Hb5Gb1Vb5
1
2 w ~b !

a
~pa

2
1fa

abpapb12fa!5
1
2 lb

agaa~pa
2
1fa

abpapb12fa!,

~3.15!
Ha5P~Xa!5pa

are independent first integrals in involution.

~L! It is useful to remark that, from an intrinsic point of view, a Stäckel multiplier is always

the sum of scalar products of gradients of functions constant on the leaves of the web.

IV. THE EXTENDED METRIC

Let Q be a differentiable manifold with local coordinates (q i) and let Q̂5Q3R be the

extended manifold with local coordinates (qA)5(q i,q0) ~q0 is the natural coordinate over the real

line!. Let us consider on Q a positive–definite contravariant metric tensor G5(g i j), a vector field

A5(A i), and a function U. The triple

Ĝ5~G,A,U !

generates a contravariant symmetric 2-tensor Ĝ on Q̂ by setting

ĜAB
5F Ĝ i j Ĝ i0

Ĝ0 j Ĝ00G5Fg i j A i

A j 2U
G . ~4.1!

In matrix notation,

Ĝ5F G A

A{ 2U
G . ~4.2!

If det Ĝ.0, then Ĝ is a positive–definite metric tensor, which we call extended metric tensor.

Since det G.0 and the determinant of the matrix ~4.2! is a sum containing the term 2U• det G,

the regularity condition det Ĝ.0 can be locally satisfied by adding to the function U a suitable

positive constant. Because of the physical meaning of the function U ~1.2! any additional constant
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is inessential. If the function U has a lower bound, then this process of regularization is global.

However, the local definition of the extended metric when U has no lower bound is not an

obstruction to our purposes, since we shall use it as a local device.

Remark 4.1: In order to get a globally regular metric we could extend the manifold Q by two

real axes, Q̂5Q3R3R, and consider the contravariant metric

Ĝ5F G A 0

A{ 2U 1

0 1 0
G ~4.3!

for which det Ĝ52det G. However, this metric is Lorentzian. Both the extensions ~4.2! and ~4.3!
are contravariant. The metric ~4.2! is a sort of Kaluza–Klein metric. Metrics similar to ~4.2! and

~4.3!, with A50, have been considered by Eisenhart16 in his interpretation of the dynamical

trajectories of a holonomic system, with time-dependent constraints and potentials, as geodesics

on a Riemannian manifold.

Remark 4.2: Any real function f on Q has a natural extension to Q̂5Q3R ~constant along the

fiber R!. For the sake of simplicity we denote this extension by the same symbol f. From the

definition ~4.2! it follows that the extended metric is characterized by the following equations,

where ~f, g! are arbitrary functions on Q:

Ĝ~d f ,dg !5G~d f ,dg !,

Ĝ~d f ,dq0!5^A,d f & , ~4.4!

Ĝ~dq0,dq0!52U .

Remark 4.3: The extended geodesic Hamiltonian is

Ĝ5
1
2 P~Ĝ!5

1
2 ĜABpApB5

1
2 g i jp ip j1A ip ip01Up0

2 ~4.5!

~with indices A50,1,...,n; i, j51,...,n!. Since q0 is ignorable, the corresponding momentum p0 is

a first integral. As a consequence, the integral curves with p051 of the Hamilton equations of Ĝ

reduce to the integral curves of the Hamilton equations of H ~1.1!. In other words, the geodesic

flow of the extended metric is projectable onto the Hamiltonian flow of H.

Remark 4.4: Let W(qI ,cI ) be a complete solution of the Hamilton–Jacobi equation ~1.5!. Then

the function

Ŵ~qI ,q0,cI ,c0!5c0~W~qI ,cI !1q0! ~4.6!

is a complete solution of the Hamilton–Jacobi equation associated with Ĝ:

1
2 g i j] iŴ] jŴ1A i] iŴ]0Ŵ1U~]0Ŵ !2

5k .

Indeed, this equation reduces to

c0
2~ 1

2 g i j] iW] jW1A i] iW1U !5k ,

i.e., to Eq. ~1.5! with h5k/c0
2. Furthermore,
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F ]2Ŵ

]q i]c j

]2Ŵ

]q i]c0

]2Ŵ

]q0]c j

]2Ŵ

]q0]c0

G5F c0

]2W

]q i]c j

]W

]q i

0 1
G

and the completeness condition, i.e., the regularity of this matrix, is satisfied for c0Þ0. By ~4.6!

we observe that if W is a separated complete solution of the form ~1.6!, then also Ŵ is separated.

In other words, if (q i) are separable coordinates for the Hamiltonian H, then (q i,q0) are also

separable for the geodesic extended Hamiltonian Ĝ . This shows that the separation of Ĝ is a

necessary condition for the separation of H, and this is the reason why we shall analyze the

separation in the extended space ~Sec. V!. However, as we shall see, the converse is not always

true: the separation of Ĝ does not imply the separation of H, unless we consider a more general

kind of separation, the gauge separation ~see Definition 5.9 below!.
Let us look at some properties of the fundamental objects defined on the extended manifold:

vectors, 1-forms and 2-tensors. A vector field on Q̂ is represented by a pair

X̂5~X,j !, ~4.7!

where X is a q0-dependent vector field on Q and j a function on Q̂ . Its components are

~ X̂A!5~X i,j !, X̂ i
5X i, X̂0

5j ,

so that, as a derivation,

X̂5X i
]

]q i 1j
]

]q0 5X i] i1j]0 .

A vector field X̂ is horizontal if j50, vertical if X50. If we introduce the fundamental vertical

vector field

X̂05~0,1!5]0 ~4.8!

then the expression ~4.7! can be replaced with

X̂5X1jX̂0 . ~4.9!

We say that a vector field X̂ on Q̂ is vertically invariant if @X̂,X̂0#50. A vector field is vertically

invariant iff both components (X,j) are q0-independent. In this case, X is a vector field on Q and

j is a function on Q. We call X the basic component of X̂ and j the vertical component.

Proposition 4.5: Two vertically invariant vector fields X̂5(X,j) and Ŷ5(Y,h) commute,

@X̂,Ŷ#50, iff

^X,dh&5^Y,dj&,

~4.10!
@X,Y#50.

Proof: Since all components do not depend on q0, we have

@X̂,Ŷ# i
5X̂A]AY i

2Ŷ A]AX i
5X̂ j] jY

i
2Ŷ j] jX

i
5@X,Y# i.

@X̂,Ŷ#0
5X̂A]AŶ 0

2Ŷ A]AX̂0
5X j] jŶ

0
2Y j] jX̂

0
5^X,dh&2^Y,dj&.

j

2073J. Math. Phys., Vol. 42, No. 5, May 2001 Variable separation for natural Hamiltonians



Proposition 4.6: A vertically invariant vector field X̂5(X,j) is a Killing vector iff

^A,dj&5^X,dU&,

@X,A#5¹j , ~4.11!

@X,G#50.

Proof: The Killing equation @X̂,Ĝ#50 is equivalent to

$jp01X ip i , 1
2 g i jp ip j1A ip ip01Up0

2%50,

that is to

X i~ 1
2 ] ig

hkphpk1] iA
hphp01] iUp0

2!2~] ijp01] iX
hph!~g ikpk1A ip0!50.

The coefficients of p0
2, p0pk , and phpk generate equations

X i] iU2A i] ij50,

X i] iA
k
2g ik] ij2A i] iX

k
50,

~ 1
2 X i] ig

hk
2g ik] iX

h!phpk50,

which are the coordinate representations of Eqs. ~4.11!.
j

The last equation ~4.11! means that the basic component X of X̂ is a Killing vector. We notice

that the fundamental vertical vector X̂0 is a Killing vector. As for the contravariant metric, a

contravariant symmetric 2-tensor on Q̂ is represented by a triple

K̂5~K,C,F !, ~4.12!

where K5(K i j) is a contravariant symmetric 2-tensor, C5(C i) is a vector field, and F is a

function on Q ~all these objects may be q0-dependent!. In components,

K̂AB
5F K i j K i0

K0 j K00G5FK i j C i

C j 2F
G . ~4.13!

In matrix notation,

K̂5F K C

C{ 2F
G . ~4.14!

With this tensor we associate the Hamiltonian

1
2 P~K̂!5

1
2 K̂ABpApB5

1
2 K i jp ip j1C ip ip01Fp0

2. ~4.15!

This tensor is vertically invariant, @X̂0 ,K̂#50, iff all components are q0-independent. In this case

K, C, and F are objects on Q.

Proposition 4.7: A vertically invariant 2-tensor K̂5(K,C,F) is a Killing tensor iff
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@G,K#50,

@C,G#5@A,K# ,

~4.16!
@C,A#5¹F2K¹U ,

^C,dU&5^A,dF&.

Proof: The Killing equation @K̂,Ĝ#50 is equivalent to $PĜ ,PK̂%50,

~g ilp l1A ip0!~ 1
2 ] iK

hkphpk1] iC
kpkp01] iFp0

2!

2~K ilp l1C ip0!~ 1
2 ] ig

hkphpk1] iA
kpkp01] iUp0

2!50.

The first equation ~4.16! is determined by the coefficient of (phpkp l). The coefficients of p0phpk ,

pkp0
2, and p0

3 give rise, respectively, to equations

~g ih] iC
k
1

1
2 A i] iK

hk
2K ih] iA

k
2

1
2 C i] ig

hk!phpk50,

g ik] iF1A i] iC
k
2K ik] iU2C i] iA

k
50,

A i] iF2C i] iU50,

which are the coordinate representations of the last three equations ~4.16!.
j

We notice that the first equation ~4.16! means that the basic component K is a Killing tensor.

Remark 4.8: As for any Riemannian manifold, the bijective mapping ♭ from 1-forms to vector

fields on Q̂ is defined by, see ~2.6!,

^X̂,d f &5Ĝ~d f ,X̂♭!, ~4.17!

where f is a function on Q̂ . Since

d f 5
] f

]q i dq i
1

] f

]q0 dq0,

it follows that

Ĝ~d f ,dq0!5
] f

]q i Ĝ i0
1

] f

]q0 Ĝ00
5A i

] f

]q i 12U
] f

]q0 .

This shows that

dq0
5~A,2U !♭. ~4.18!

Remark 4.9: A 1-form ŵ on Q̂ is represented by a pair (w ,w0), where w is a q0-dependent

1-form on Q and w0 is a function on Q̂ . In local coordinates (q i,q0) we have ŵ5ŵA dqA

5w i dq i
1w0 dq0, where w5w i dq i. For any vector field X̂5(X,j),

^X̂,ŵ&5^X,w&1jw0 . ~4.19!

We say that ŵ is a basic 1-form if

w05^X̂0 ,ŵ&50. ~4.20!
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The contravariant components of the image of a 1-form ŵ by a symmetric 2-tensor K̂ are

K̂ABŵB5~K̂ i jw j1K̂ i0w0 ,K̂0iw i1K̂00w0!

5~K̂ i jw j1C iw0 ,C iw i12Fw0!. ~4.21!

This shows that the eigenform equation K̂ŵ5lŵ is equivalent to equations

Kw1w0C♭
5l~w1w0A♭!,

~4.22!

^C,w&12Fw05l~^A,w&12Uw0!.

For a basic eigenform these equations become

Kw5lw ,

~4.23!

^C,w&5l^A,w&.

V. SEPARABLE KILLING WEBS IN THE EXTENDED METRIC

Assume that the extended geodesic Hamiltonian Ĝ is separable. According to the general

theory of the geodesic separability, this fact is characterized by the existence of a separable Killing

web,

~ Ŝa,D̂ ,K̂!, ~5.1!

where ~I! Ŝ
a is a set of m orthogonal foliations of submanifolds of codimension 1 (a51,...,m); ~II!

D̂ is a r11-dimensional linear space of commuting Killing vectors (m1r5n). These Killing

vectors are tangent to the orbits of D̂ , and these orbits coincide with the complete intersections of

the leaves of the foliations Ŝ
a; ~III! K̂ is a Killing tensor of order 2. ~III.a! K̂ is D̂-invariant ~it

commutes with all elements of D̂!; ~III.b! K̂ has m main eigenvectors orthogonal to the leaves of

Ŝ
a, corresponding to distinct eigenvalues. It follows that locally on Q̂ there are m independent

functions ( q̂a) such that (dq̂a) are characteristic 1-forms of the web, so that

K̂ dqa
5la dqa, ^X̂,dq̂a&50, ;X̂PD̂ , ~5.2!

and

Ĝ~dq̂a,dq̂b!50, aÞb . ~5.3!

As it will be justified below, it is interesting to consider the particular case in which the funda-

mental vertical vector field X̂0 is an element of D̂ .

Proposition 5.1: A separable Killing web (Ŝa,D̂ ,K̂) on the extended manifold Q̂ , such that

X̂0PD̂ , is reducible to a separable Killing web on Q,

~Sa,D ,K!. ~5.4!

The meaning of the term ‘‘reducible’’ is explained in the following proof.

Proof: Since the second equation ~5.2! implies in particular

^X̂0 ,dq̂a&50, ~5.5!
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the functions ( q̂a) are vertically invariant and reduce to functions (qa) on Q, so that, according to

Remark 4.2, we can use the simplified notation q̂a
5qa. As a consequence, the web (Ŝa) reduces

to a web (Sa) with characteristic 1-forms (dqa). Because of ~4.4! and ~5.3!,

G~dqa,dqb!5Ĝ~dqa,dqb!50 ~aÞb ! ~5.6!

and the reduced web is orthogonal. According to Propositions 4.5 and 4.6, the Killing vectors X̂

5(X,j)PD̂ reduce to commuting Killing vectors X on Q and form a space D of dimension r

5n2m ~one dimension is lost by the vertical vector X̂0PD̂ , which projects onto the zero vector

field of Q!. Since (dqa) are basic 1-forms, from ~4.19! it follows that

^X,dqa&5^X̂,dqa&50. ~5.7!

Thus, the reduced Killing vectors are tangent to the leaves of the reduced web. The Killing tensor

K̂ reduces to a Killing tensor K on Q ~Proposition 4.7!. The reduced Killing tensor commutes with

all the reduced Killing vectors of D; the proof that @X̂,K̂#50 implies @X,K#50 is similar to that

in the proof of Proposition 4.6. Finally, because of ~4.23!, the eigenform equation ~5.2! reduces to

equation

K dqa
5la dqa,

and this shows that the reduced characteristic 1-forms (dqa) are eigenforms of K corresponding to

the distinct eigenvalues (la). Since these eigenvalues are vertically invariant, they reduce to

functions on Q.

j

Remark 5.2: If we choose a local basis (X̂a ,X̂0) of D̂ including the fundamental vertical

vector field and a local section Ẑ orthogonal to the orbits of D̂ , then normal separable coordinates

( q̂A)5( q̂a, q̂a, q̂0) are defined on Q̂ such that q̂a
5qa,

]

] q̂a 5X̂a ,
]

] q̂0 5X̂0 , ~5.8!

and

^X̂0 ,dq̂0&51, ^X̂0 ,dq̂a&50, ^X̂a ,dq̂0&50, ^X̂a ,dq̂b&5da
b . ~5.9!

According to the general theory of the geodesic separation, the m separable coordinates (qa) are

essential, the r11 coordinates ( q̂a, q̂0) are ignorable, and the contravariant components of the

extended metric

ĜAB
5Ĝ~dq̂A,dq̂B!, ~5.10!

have a form similar to ~3.4! and ~3.5!, with one additional line and row with index 0 ~index of

first-class!,

Ĝab
50 ~aÞb !, Ĝaa

50, Ĝa0
50,

~5.11!

Ĝaa
5w ~m !

a
, Ĝ00

5faĜaa, Ĝa0
5fa

aĜaa, Ĝab
5fa

abĜaa,

where fa , fa
a , fa

ab are functions of the coordinate corresponding to the lower index only.

Furthermore, since all the elements of D̂ commute, we have in particular @X̂0 ,X̂a#50, and, due to

~5.9!, also the coordinates ( q̂a) reduce to coordinates (qa) on Q, so that we can use the simpler

notation qa instead of q̂a. It follows that (qa,qa) is a normal separable coordinate system asso-
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ciated with the reduced separable Killing web ~5.4!. However, as we shall see below, these

coordinates are not separable with respect to the complete Hamiltonian H ~1.1!. For the separa-

bility of H further conditions are required. From the first characteristic equation of the extended

metric ~4.4! it follows that

Ĝab
5Ĝ~dqa,dqb!5G~dqa,dqb!5gab,

Ĝaa
5Ĝ~dqa,dqa!5G~dqa,dqa!5gaa, ~5.12!

Ĝab
5Ĝ~dqa,dqb!5G~dqa,dqb!5gab.

Hence, the comparison with ~5.11! shows that the metric components (g i j) maintain the same

expressions ~3.4! and ~3.5!,

gab
50 ~aÞb !, gaa

5w ~m !
a

,

~5.13!
gaa

50, gab
5gaafa

ab
5w ~m !

a fa
ab .

Remark 5.3: The natural coordinate q0 of Q̂ does not coincide with the separable coordinate

q̂0 determined by X̂0 in the basis of D̂ . As for any function of Q̂ , we can consider the differential

of q0 in the coordinates ( q̂A)5(qa,qa, q̂0), written in the form

dq0
5 f dq̂0

1 f a dqa
1ja dqa.

Since we have ^X̂0 ,dq0&51 because of the definition of X̂0 , from ~5.9! and ~5.5! ~where q̂a

5qa, q̂a
5qa! it follows that f 51. Moreover, by applying to both sides of this equation the

Killing vector X̂a5(Xa ,ja), due again to ~5.9! and to ~5.2! we get

^X̂a ,dq̂0
1 f a dqa

1ja dqa&5 f a , ^X̂a ,dq0&5^Xa1jaX̂0 ,dq0&5ja ,

so that f a5ja . Hence,

dq0
5dq̂0

1ja dqa
1ja dqa, ~5.14!

where (ja) are just the vertical components of the Killing vectors (X̂a). Since the Killing vectors

commute with X̂0 , these components reduce to functions on Q. By developing the commutation

relations

05F ]

] q̂a ,
]

] q̂aG5F ]

] q̂a ,X̂aG
5F ]

] q̂a ,Xa1jaX̂0G5F ]

]qa ,XaG1
]ja

]qa X̂0

5]ajaX̂0 ,

we find that

]aja50. ~5.15!

By differentiating Eq. ~5.14!, we find equation

dja∧dqa
1dja∧dqa

50.

Due to ~5.15! and the q0-independence of ja , we obtain
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]bja dqb`dqa
1]aja dqa`dqa

1]bja dqb`dqa
1]0ja dq0`dqa

50.

It follows that

]ajb5]bja , ]aja50, ]ajb5]bja , ]0ja50. ~5.16!

The last equation ~5.16! shows that also the functions (ja) appearing in ~5.14! are q0-independent.

The remaining equations show that on Q there exist local functions S1(qa) and S2(qa) depending

on the essential coordinates (qa) and on the ignorable coordinates (qa), respectively, such that

ja5]aS1 , ja5]aS2 . ~5.17!

Thus, the link ~5.14! between q0 and q̂0 takes the form

dq̂0
5dq0

2d~S11S2!, S15S1~qa!, S25S2~qa!. ~5.18!

Remark 5.4: From Eqs. ~4.4! it follows that

Ĝ~dqa,dq0!5^A,dqa&5Aa,

Ĝ~dqa,dq0!5^A,dqa&5Aa, ~5.19!

Ĝ~dq0,dq0!52U .

On the other hand, from ~5.14!, using ~5.11! and ~5.12!, and recalling that q̂a
5qa, q̂a

5qa, we

derive

Ĝ~dqa,dq0!5Ĝ~dqa,dq̂0!1Ĝ~dqa,dqa!ja1Ĝ~dqa,dqb!jb

5Ĝa0
1Ĝaaja1Ĝabjb5Ĝaaja5gaaja ,

Ĝ~dqa,dq0!5Ĝ~dqa,dq̂0!1Ĝ~dqa,dqb!jb1Ĝ~dqa,dqb!jb

5Ĝa0
1Ĝabjb1Ĝabjb5Ĝaafa

a
1Ĝabjb5gaafa

a
1gabjb , ~5.20!

Ĝ~dq0,dq0!5Ĝ~dq̂0,dq̂0!1Ĝ~dqa,dqb!jajb1Ĝ~dqa,dqb!jajb

12Ĝ~dq̂0,dqa!ja12Ĝ~dq̂0,dqa!ja12Ĝ~dqa,dqa!jaja

5Ĝ00
1Ĝabjajb1Ĝabjajb12Ĝa0ja5gaa~fa1fa

abjajb1ja
2
12fa

aja!.

The comparison of Eqs. ~5.19! and ~5.20! shows that

Aa
5gaaja ,

Aa
5gaafa

a
1gabjb5gaa~fa

a
1fa

abjb!, ~5.21!

2U5gaa~fa1fa
abjajb1ja

2
12fa

aja!.

We can summarize the preceding remarks in the following.

Proposition 5.5: If the extended metric admits a separable Killing web (Ŝa,D̂ ,K̂) with X̂0

PD̂ , then on Q there exists a coordinate system (qa,qa) such that the components of G and A and

the function U assume the form ~5.13!, ~5.21!, with (fa
a ,fa

ab ,fa) functions of the coordinate

corresponding to the lower index only, and j i5] i(S11S2), with S1(qa) and S2(qa) functions of

the essential coordinates (qa) and of the ignorable coordinates (qa), respectively.
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Remark 5.6: From Eqs. ~5.21! we observe that the vector field A is a sum of three vectors:

A5A~1 !1A~2 !1A~3 ! ,

A~1 !5gaajaXa5¹S1 , A~2 !5gabjbXa5¹S25gaafa
abjbXa , ~5.22!

A~3 !5gaafa
aXa ,

where

Xa5]a5
]

]qa , Xa5]a5
]

]qa . ~5.23!

Since Xa•Xa50, both vectors A(2) and A(3) are orthogonal to A(1) :

A~1 !•A~2 !50, A~1 !•A~3 !50. ~5.24!

From the last equation ~5.21! we get the following decomposition for the function U:

U5
1
2 A~1 !•A~1 !1

1
2 A~2 !•A~2 !1A~2 !•A~3 !1V0, ~5.25!

where

V0
5gaafa ~5.26!

is a Stäckel multiplier. From ~1.2!, ~5.22!, ~5.24!, and ~5.25! we derive the following expression

for the ~physical! scalar potential:

V5U2
1
2 A•A5V0

2
1
2 A~3 !•A~3 ! . ~5.27!

Remark 5.7: Let us consider the reduced separable Killing web (Sa,D ,K) of Proposition 5.1.

Each foliation S
a is locally represented by equation qa

5const, the vectors Xa5]a form a local

basis of D, and the vectors Xa5]a are eigenvectors of K orthogonal to D. Then the function S1 is

constant on the orbits of D, since it depends on the coordinates (qa) only, while the function S2

is constant on the submanifolds orthogonal to the orbits of D, since ^Xa ,dS2&5]aS250. Hence,

the vectors of the decomposition ~5.22! are completely characterized by the following properties:

A~1 ! is a gradient of the orbits of D ,

A~2 ! is a gradient of the foliation orthogonal to the orbits of D ,

~5.28!
A~3 ! is tangent to the orbits of D and its components in any

basis of D are Stäckel multipliers.

Here, by gradient of a foliation we mean a vector field which is the gradient of a function constant

on the leaves of the foliation ~i.e., the corresponding 1-form is the differential of a function

constant on the leaves!. It follows in particular that A(1) and A(3) are D-invariant.

Remark 5.8: As a consequence of the expressions ~5.13! and ~5.21!, the Hamilton–Jacobi

equation ~1.5! can be written in the form

1
2 w ~m !

a
~ p̄a

2
1fa

ab p̄a p̄b12fa
a p̄a1fa!5h , ~5.29!

by setting
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p̄ i5p i1j i5p i1] i~S11S2!⇔ H p̄a5pa1ja5pa1]aS1 ,

p̄a5pa1ja5pa1]aS2 .
~5.30!

We can consider this equation as the last one of the following system of m equations:

w ~b !
a

~ p̄a
2
1fa

ab p̄a p̄b12fa
a p̄a1fa!5cb , ~5.31!

where (cb) are m arbitrary constants, and cm52h . By applying the Stäckel matrix @wa
(b)# we get

the equivalent system

p̄a
2
1fa

ab p̄a p̄b12fa
a p̄a1fa5wa

~b !cb . ~5.32!

By setting p̄a5ca5const, this system splits into m separated equations:

~pa1]aS1!2
5Fa~qa,cI !, pa5ca2]aS2 , ~5.33!

where

Fa~qa,cI !5wa
~b !cb2fa

abcacb22fa
aca2fa ~5.34!

are functions of the coordinate corresponding to the index only, and ~in general! of all the n

constants cI 5(cb ,ca). If we consider the integrals ~with any choice of the signs!

Wa~qa,cI !56E AFa~qa,cI !dqa, ~5.35!

then we build a complete solution of the Hamilton–Jacobi equation of the form

W5caqa
1(

a
Wa2S , S5S11S2 . ~5.36!

We observe that this is not a separated complete solution, due to the presence of the function S,

which is not in general a sum of functions of single coordinates. However, this function does not

contain the constants cI .

Hence, we are led to consider a more general kind of separation.

Definition 5.9: A Hamiltonian is gauge-separable if the corresponding Hamilton–Jacobi

equation admits a complete solution of the form

W~qI ,cI !5(
i51

n

W i~q i,cI !2S~qI !. ~5.37!

The gauge-separation is also called R-separation in connection with the multiplicative separation

of the Helmholtz equation.17

Thus, we have proved

Proposition 5.10: If the extended metric admits a separable Killing web with X̂0PD̂ , then the

Hamiltonian H ~1.1! is gauge separable.

Remark 5.11: We have the ordinary separation of the Hamiltonian H if and only if (ja) and

(ja) are functions of the coordinate corresponding to the index only, i.e.,

]bja50 ~aÞb !, ]bja50 ~aÞb !. ~5.38!

Since these functions are the covariant components of the vectors A(1) and A(2) , it follows that the

first equation ~5.38! and the second equation ~5.38! are, respectively, equivalent to the following

two conditions:
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~1 ! A~1 ! is the sum of gradients of the foliations Sa,

~5.39!
~2 ! there is a basis ~Xa! of D such that ^Xa ,d~A~2 !•Xb!&50 for aÞb .

Furthermore, going back to ~5.14!, we remark that conditions ~5.38! are necessary and sufficient

for the separability of the coordinate system (qa,qa,q0), which in this case is equivalent to the

coordinate system (qa,qa, q̂0) associated with the separable Killing web on the extended manifold.

VI. FINAL STATEMENTS AND REMARKS

From the discussion in the preceding section we can derive the following theorem on the

intrinsic characterization of the separation of a natural Hamiltonian with scalar and vector poten-

tial.

Theorem 6.1: The Hamiltonian ~1.1! is separable if and only if ~i! on Q there exists a

separable Killing web (Sa,D ,K); ~ii! the vector field A is a sum of three vectors,

A5A~1 !1A~2 !1A~3 ! ,

where ~ii.1! A(1) is locally the sum of gradients of the foliations S
a, ~ii.2! A(2) is locally a gradient

of the foliation orthogonal to the orbits of D, and there exists a basis (Xa) of D (a5m

11,...,n) such that

^Xa ,d~A~2 !•Xb!&50 for aÞb;

~ii.3! A(3) is tangent to the orbits of D and its components A (3)
a

with respect to any basis (Xa) of

D are Stäckel multipliers,

^X,dA ~3 !
a &50, ;XPD , d~K dA ~3 !

a !50;

~iii! the function V is a sum

V5V0
2

1
2 A~3 !•A~3 ! ,

where V0 is a Stäckel multiplier,

^X,dV0&50, ;XPD , d~K dV0!50.

Proof: Assume that the Hamiltonian ~1.1! is separable in a coordinate system (q i). Then

~Remark 4.4! the extended metric is separable in the coordinate system (q i,q0), with q0 ignorable.

As a consequence, on Q̂ there exists a separable Killing web ~5.1!. Since q0 is ignorable, the

vector field ]0 belongs to D̂ . But this vector coincides with the fundamental vector field X̂0 . Thus,

we are in the situation considered in Sec. V, and because of Proposition 5.5, Remarks 5.6–5.7,

Proposition 5.10, and Remark 5.11, the conditions ~i!–~iii! are fulfilled. Conversely, assume that

these conditions are satisfied. Then, because of Remarks 5.7, 5.8, and 5.11, the Hamilton–Jacobi

equation admits a separated solution.

j

Remark 6.2: The separable coordinates (qa) are ignorable ~hence, of first class! with respect

to both the geodesic Hamiltonians Ĝ and G but in general they could be nonignorable and of

second class for the Hamiltonian H, due to the presence of the functions ja in the components of

the vector potential. More precisely, an ignorable coordinate qa is also of first class and ignorable

in the whole Hamiltonian H if and only if the corresponding function ja is constant. To see this,

we consider the Hamiltonian written in the form

H5
1
2 gab~pa1Aa!~pb1Ab!1

1
2 gaa~pa1Aa!2

1V .

The coordinates (qa) appear only in the components (Aa). Because of ~5.21!,
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Aa5ja1gaagabfa
b ,

so that ]aAb5]ajb5dabja
0 , where ja

0
5]aja . Thus,

]aH

]aH
5

gbg~pb1Ab!]ajg

gab~pb1Ab!
5ja

0 ,

and this fraction becomes a linear ~homogeneous! function in the momenta if and only if ja
0

50; in this case, ]aH50.

Remark 6.3: The only physically interesting component of the vector potential A is A(3) ,

since the other two components are gradients and do not influence the motion of the system in the

configuration space. Since the orbits in the configuration space are determined, via the Jacobi

method, by the partial derivatives of W with respect to the constants cI , the independence of the

motions from the gradient components can also be observed by the expressions of the separated

solution ~5.34!–~5.36!, where the covariant components (ja) and (ja) of A(1) and A(2) do not

appear explicitly. It follows, in particular, that there are no physically interesting separable sys-

tems with a vector potential A, without the occurrence of symmetries ~Killing vectors!, since in

this case A(3) vanishes.

After this last remark we can confine our interest to the case A(1)5A(2)50, that is A

5A(3) , and consider the following simplified version of Theorem 6.1.

Theorem 6.4: The Hamiltonian ~1.1! is separable if and only if ~i! on Q there exists a

characteristic Killing pair (D ,K), ~ii! up to a gauge transformation the vector potential A is D-

invariant, tangent to the orbits of D and its components (Aa) with respect to any basis (Xa) of D

are Stäckel multipliers,

^X,dAa&50, ;XPD , d~K dAa!50; ~6.1!

~iii! the scalar potential V is a sum

V5U2
1
2 A•A ~6.2!

where U is a Stäckel multiplier,

^X,dU&50, ;XPD , d~K dU !50. ~6.3!

Remark 6.5: In ~ii! the condition that A is D-invariant is redundant, since it follows from the

other requirements. However, in view of the applications, it is convenient to mention it explicitly

in the statement. We also observe that the Stäckel multiplier U in ~6.2! is just the scalar part of the

Hamiltonian ~1.1!. The expression ~6.2! exhibits a relation of the ‘‘physical’’ potential energy V

with the vector potential A. This represents a very strong restriction for the separability of a

physical system with AÞ0.

Remark 6.6: According to Theorem 6.4, the separation of a Hamilton–Jacobi equation always

occurs in coordinates (qa,qa) for which ~i! the metric tensor components assume the form ~3.4!–

~3.5!; ~ii! up to a gauge transformation the components of the vector potential have the form

Aa
50, Aa

5gaafa
a ; ~6.4!

~iii! the scalar potentials have the form

U5gaafa , V5U2
1
2 gaagbbfa

afb
bgab , ~6.5!

where fa
a and fa are functions depending on the coordinate corresponding to the lower index

only. All these expressions are derived from ~5.21!, with ja50 and ja50. From ~1.4! it follows

that the Lagrangian forces are
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Fa52]aV2]aAaq̇a, Fa5]aAaq̇a. ~6.6!

In the case of a vanishing scalar potential, V50, also the scalar product

A•A5gaagbbfa
afb

bgab ~6.7!

must be a Stäckel multiplier. This is a further very strong restriction for the separability, which,

however, disappears in the case m51.

Remark 6.7: Theorem 6.4 has another interesting consequence. Let (Kb) (b51,...,m) be a

basis of the Killing algebra K generated by the characteristic Killing pair (D ,K), with K15K and

Km5G @see item ~J! of Sec. III#. Then, besides the r5n2m linear first integrals Ha5P(Xa)

associated with a basis of D, we have m independent quadratic ~nonhomogeneous! first integrals in

involution of the form

Hb5
1
2 PKb

1PAb
1Ub , ~6.8!

where Ab5Ab
aXa are m vector fields and Ub are m functions such that

Kb dAa
5dAb

a , Kb dU5dUb . ~6.9!

Note that Am5A and Um5U . In the separable coordinates (qa,qa), these objects have the

following expressions, involving the inverse Stäckel matrix @w (b)
a

#:

Ab
a
5w ~b !

a fa
a , Ub5w ~b !

a fa , ~6.10!

so that the final coordinate expressions of the first integrals are

Ha5pa ,

~6.11!

Hb5
1
2 w ~b !

a
~pa

2
1fa

abpapb12fa
apa12fa!

5
1
2 l ~b !

a
gaa~pa

2
1fa

abpapb12fa
apa12fa!,

where lb
a are the eigenvalues of the Killing tensors @see ~3.9!#. For the case A50 they reduce to

the expressions ~3.15!. These first integrals correspond to the constants of integration (cb ,ca) of

the separated Hamilton–Jacobi equations of the kind ~5.31! ~in the present case p̄a5pa5ca!.
Thus, due to the Jacobi theorem, they are certainly first integrals in involution. However, it is

interesting to prove that functions ~6.8! are first integrals in involution, in a direct and intrinsic

way, from their defining equations ~6.8! and ~6.9! and from the D-invariance, by analyzing their

Poisson brackets with the Hamiltonian

H5Hm5
1
2 PG1PA1U .

We get

$Hb ,H%5
1
4 $PKb

,PG%1
1
2 $PKb

,PA%1
1
2 $PAb

,PG%1
1
2 $PKb

,U%

1$PAb
,PA%1

1
2 $Ub ,PG%1$PAb

,U%1$Ub ,PA%. ~6.12!

The terms in ~6.12! are, in the order, polynomials of third, second, first, and 0th degree in the

momenta. Thus, the Poisson brackets vanish iff these polynomials vanish separately. This gives

rise to equations similar to ~4.16!,
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@G,Kb#50,

@Ab ,G#5@A,Kb# ,

~6.13!
@Ab ,A#5¹Ub2Kb¹U ,

^Ab ,dU&5^A,dUb&.

This shows, in other words, that the fact that (Hb) are first integrals in involution is equivalent to

the fact that the 2-tensors K̂b5(Kb ,Ab ,Ub) in the extended manifold are Killing tensors in

involution and form the Killing algebra K̂ associated with the characteristic Killing pair (D̂ ,K̂),

where D̂ is spanned by the vectors X̂a5(Xa,0) and by X̂0 . The first equation ~6.13! is just the

Killing equation for Kb . If we assume that all these objects, in particular the functions Ub

~including Um5U!, are D-invariant ~which is equivalent to assume that Hb and Ha are in invo-

lution! and that the vector fields Ab are tangent to D, then both terms on the right-hand side of the

third equation ~6.13! are orthogonal to D, while the Lie bracket at the left one is tangent to D.

Hence, both sides vanish identically and we get the second equation ~6.9! together with @Ab ,A#
50. Under the same assumptions, both sides of the fourth equation ~6.13! vanish identically. The

second remaining equation ~6.13! is equivalent to the first equation ~6.9!. The fact that all (Hb) are

in involution can be proved in a similar way. We remark that all the vector potentials commute,

@Ab ,Aa#50.

VII. ILLUSTRATIVE EXAMPLES

Let us apply the above results to the Euclidean three-space Q5E3 . In the following examples

we give only the expressions of separable scalar and vectors potentials, without entering in the

details of the integration of the corresponding Hamilton–Jacobi equations. In E3 the Lagrangian

forces ~1.4! are the components of the Lorentz force

F5B3v2¹V , B5¹3A,

where v is the velocity of the particle, ¹ is the gradient operator, ¹3 is the curl operator, and 3

is the cross product of vectors. We shall use the well-known formula

¹3~ f V!5¹ f 3V1 f ¹3V,

for any smooth function f and vector field V. We consider on E3 Cartesian rectangular coordinates

~x, y, z! with origin at a point O and denote by ~X, Y, Z! the corresponding unit vectors. Due to

Remark 6.3, only the cases of separable webs with symmetries ~rotational or translational! are

interesting for the separation of a vector potential. We consider for brevity and simplicity the

cylindrical and the spherical web only ~although the remaining two rotational webs, the prolate

and oblate spheroidal ones, could be of some interest for the applications!.
Example 1. The cylindrical web. In this first example we consider the cylindrical web around

the z axis, made of cylinders around the axis, half-planes issued from the axis ~the meridian

planes! and planes orthogonal to the axis ~the equatorial planes!. These surfaces are, respectively,

orthogonal to the vectors

~uz ,Rz ,Z!,

where

uz5
rz

urzu

is the unit vector determined by the radius vector orthogonal to the z axis,
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rz5r2zZ, r5xX1yY1zZ5ru,

and

Rz5Z3r

is the rotational vector around the z axis. The standard cylindrical coordinates are ~r, u, z!, where

r is the distance from the z axis, r5urzu, and u is the rotation angle around it, oriented as Rz and

starting ~for instance! from the ~x, z! plane. Thus we have

¹r5uz , uuzu51,

¹u5r22Rz , uRzu5r5urzu,

¹z5Z, uZu51,

and from

p5v5pr¹r1pu¹u1pz¹z5pruz1pur22Rz1pzZ,

we get the well-known expression of the geodesic Hamiltonian

G5
1
2 p•p5

1
2 ~pr

2
1r22pu

2
1pz

2!.

The curls of all vectors above are zero, with the exception of

¹3Rz52Z.

We have three inequivalent characteristic Killing pairs (D ,K) associated with this web.

Case 1. r5dim(D)52:

D5span~Z,Rz!, K5G.

With respect to this Killing pair, ~u, z! are first-class ~ignorable!, and r is the essential ~second-

class! coordinate, so that a Stäckel multiplier is any function U(r). Thus in this case the most

general separable vector potential has the form

A5f~r !Z1c~r !Rz .

It follows that

B5¹3~fZ1cRz!5¹f3Z1¹c3Rz12cZ

5f8uz3Z1c8uz3Rz12cZ

5f8r21r3Z1c8rZ12cZ,

that is

B52r21f8Rz1~rc812c !Z5 f ~r !Rz1h~r !Z,

where f 52r21f8, h5rc812c are two independent functions. Since

A•A5f2~r !1r2c~r !

is a function of r only, the most general separable scalar potential ~6.2! is any function V(r). Thus

the Hamiltonian is
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H5
1
2 p2

1A•p1U5
1
2 ~pr

2
1r22pu

2
1pz

2!1f~r !pz1r22c~r !pu1U~r !.

Note that the Coriolis and centrifugal forces, appearing in a frame rotating around the z axis with

constant angular velocity v5vZ with respect to an inertial one, fits with this scheme, being

V5
1
2 v2r2, A52vRz , vPR,

so that

F522vZ3v1v2ruz .

Case 2. r51:

D5span~Z!, K5Rz ^ Rz .

Note that K has eigenvectors (uz ,Rz) orthogonal to D, with distinct eigenvalues (0,r2) ~they

coincide on the z axis, which is the singular set of the web!. In this case only z is ignorable, while

~r, u! are essential coordinates, so that any Stäckel multiplier is of the kind

U5 f ~r !1r22h~u !,

where f (r) is any smooth function and h(u) is any periodic smooth function ~the same is under-

stood for any function of u considered below!. Thus, a separable vector potential has the form

A5~f~r !1r22c~u !!Z,

and consequently

B5r21~2c~u !r23
2f8~r !!Rz1c8~u !r23uz .

The corresponding Hamiltonian is

H5
1
2 p2

1A•p1U5
1
2 ~pr

2
1r22pu

2
1pz

2!1~f~r !1r22c~u !!pz1 f ~r !1r22c~u !.

Since

A•A5f2~r !1r24c2~u !22r22c~r !c~u !,

the separable scalar potential ~6.2! has the form

V5 f ~r !1r22h~u !2
1
2 f2~r !2

1
2 r24c2~u !2r22f~r !c~u !,

i.e.,

V5 f ~r !1r22~h~u !2f~r !c~u !!2
1
2 r24c2~u !,

where f (r) and h(u) are arbitrary functions, while f~r! and c~u! are the functions entering in the

expressions of A and B. In this case we have a quadratic first integral

H15
1
2 PK1

1PA1
1U1 , K15K.

We compute its elements U1 and A1 as follows: for any Stäckel multiplier U

¹U5~ f 8~r !22r23h~u !!uz1r24h8~u !Rz

and

K¹U5r22h8~u !Rz ,
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since Rz•uz50 and Rz
2
5r2. It follows that

U15h~u !,

since ¹U15h8(u)¹u5h8(u)r22Rz . By applying the same method to the component of A

~which is a Stäckel multiplier! we find

A15c~u !Z.

Thus the quadratic first integral is

H15
1
2 ~Rz•p!2

1A1•p1U15
1
2 pu

2
1c~u !pz1h~u !.

Case 3. r51:

D5span~Rz!, K5Z^ Z.

The Killing tensor K5Z^ Z has eigenvectors (Z,uz) orthogonal to D, with distinct eigenvalues

~1, 0!. In this case u is ignorable, while (r ,z) are essential coordinates. Thus any Stäckel multi-

plier has the form

U5 f ~r !1h~z !,

and the most general separable vector potential is

A5~f~r !1c~z !!Rz .

As a consequence,

B5~rf8~r !12f~r !12c~z !!Z2c8~z !ruz .

The corresponding Hamiltonian is

H5
1
2 p2

1A•p1U5
1
2 ~pr

2
1r22pu

2
1pz

2!1~f~r !1c~z !!pu1 f ~r !1h~z !.

Since

A•A5r2~f2~r !1c2~z !12f~r !c~z !!,

the separable scalar potential ~6.2! has the form

V5 f ~r !1h~z !2
1
2 r2~f2~r !1c2~z !12f~r !c~z !!,

i.e.,

V5 f ~r !1h~z !2r2~ 1
2 c2~z !1f~r !c~z !!,

where f (r), h(z) are arbitrary functions, while c(z), f~r! are the functions entering in the

expressions of A and B. Also in this case we have a quadratic first integral H1 . Since

¹U5 f 8~r !uz1h8~z !Z, K¹U5h8~z !Z,

we find U15h(z), and in a similar way, A15c(z)Rz . Thus the quadratic first integral is

H15
1
2 ~Z•p!2

1A1•p1U15
1
2 pz

2
1c~z !pu1h~z !.
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Example 2. The spherical web. This web is made of spheres around the origin, meridian

half-planes ~issued from the z axis!, and circular cones around the axis with vertex at the origin.

These surfaces are, respectively, orthogonal to the vectors

~r,Rz,l!,

where l is the unit vector

l5
r3Rz

ur3Rzu
5

r3Rz

rr

tangent to the meridian planes and to the spheres. The standard spherical coordinates are (r ,u ,f),

where f is the latitude, so that

¹r5u, ¹u5r22Rz , p5pru1pur22Rz1r21pfl, ¹f5r21l,

with r5r cos f, and the geodesic Hamiltonian assumes the standard form

G5
1
2 ~pr

2
1r22pu

2
1r22pf

2 !.

Up to equivalences, there is only one characteristic Killing pair characterizing this web, with r

51:

D5span~Rz!, K5r2G2r^ r.

The vectors ~r, l! are eigenvectors of K orthogonal to Rz , with distinct eigenvalues (0,r2). The

coordinates (r ,c) are essential, u is ignorable, and a Stäckel multiplier is a function

U5 f ~r !1r22h~f !.

Thus the separable vector potential is

A5~a~r !1r22b~f !!Rz ,

and

B5~a822br23!rl2b8r23ru12~a1br22!Z.

The Hamiltonian is

H5
1
2 ~pr

2
1r22pf

2 !1~a~r !1r22b~f !!pu1 f ~r !1r22h~f !.

Since

¹U5~ f 822r23h !u1r23h8l, K¹U5h8~f !¹f5¹h ,

we find U15h(f) and, in a similar way, A15b(f)Rz . It follows that the associated quadratic

first integral is

H15r2G2
1
2 ~p•r!2

1A1•p1U15
1
2 r2~r22pu

2
1r22pf

2 !1b~f !pu1h~f !.

Example 3. Rotational surfaces in E3 . For a particle moving on a regular surface S in E3 only

the restriction of the scalar potential V to S and the tangent component of the vector potential A

have influence on the motion, as well as the orthogonal part of B. Only the case of a surface with

symmetry ~translational or rotational! is relevant for the separation of a vector potential. Let us

consider the case of a rotational surface around the z axis. Then the dynamics of the point on this
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surface is separable for any scalar and vector potential in E3 invariant under the rotation Rz .

Indeed, let us consider the cylindrical web of Example 1 and the cylindrical coordinates (r ,u ,z).

Let us consider the decomposition of the vector potential,

A5auz1bRz1gZ,

where, due to the rotational invariance, the functions ~a, b, g! do not depend on the rotation angle

u. It follows that

B5¹a3uz1¹b3Rz12bZ1¹g3Z.

But the first and the last terms are vectors parallel to Rz , since the gradients of u-invariant

functions are tangent to the meridian half-planes, thus they are tangent to the surface and can be

disregarded. The relevant potential is then

A5b~r ,z !Rz ,

which is tangent to the surface and orthogonal to the meridian planes. On the surface (r ,z) can be

represented as functions of a parameter u, so that the scalar and vector potentials are

V5 f ~u !, A5f~u !Rz .

The coordinates on the surfaces are then (u ,u), with u ignorable and u essential coordinate.

Example 4. The Euclidean plane E2 . We consider E2 as the ~x,y! plane in the three-

dimensional Euclidean space E3 . In the rectangular Cartesian web the only interesting case is m

51, D5span(X), K5G, so that

A5A~y !X, V5V~y !.

It follows that

B5A8~y !Y3X52A8~y !Z, F52A8~y !Z3v2V8~y !Y.

For the polar web we have r51, D5span(Rz), K5G, and

A5A~r !Rz , V5V~r !.

It follows that

B5¹3~ARz!5¹A3R12AZ

5A8~r !“r3R12AZ

5A8~r !r21r3~Z3r!12AZ

5~rA812A !Z,

and the corresponding separable force is

F5B~r !Z3v2V8~r !u, B~r !5rA812A , r5ru.
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