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The geometrical theory of the variable separation for the Hamilton–Jacobi equation

is applied to the classical three-body inverse-square Calogero system. It is proved

that this system is separable in infinitely many inequivalent ways, related to five

different kinds of separable webs in the Euclidean three-space, and the correspond-

ing systems of independent first integrals in involution are computed. © 2000

American Institute of Physics. @S0022-2488~00!05707-8#

I. INTRODUCTION

The three-body Calogero system consists of three identical particles moving on a line, with

coordinates ~x, y, z!, respectively, under interactive forces with potential energy

V5
g

~x2z !2 1
g

~y2x !2 1
g

~z2y !2 , gPR. ~1.1!

It is known that this dynamical system is super-integrable ~see Refs. 1–4 and papers cited therein!.
It is also known that it is separable in the cylindrical coordinates associated with the reduction to

a two-dimensional system.5,6 In the present paper we show that the three-body Calogero system is

in fact separable in infinitely many inequivalent ways thus, that it is super-separable. ~A Hamil-

tonian system is ‘‘super-separable’’ if it is separable in at least two inequivalent ways; ‘‘inequiva-

lent’’ means that the separation is related to distinct separable webs, i.e., to distinct algebras of

first integrals in involution.! For this purpose, the three particles on the line will be interpreted as

a single one moving in the Euclidean three-space E3.R
3, with rectangular Cartesian coordinates

~x, y, z!. Then, we shall apply to the Hamiltonian

H5
1
2~px

2
1py

2
1pz

2!1V , ~1.2!

the geometrical theory of the orthogonal separation based on the following theorem:7,8

Theorem 1.1: A natural Hamiltonian H5G1V on the cotangent bundle T*Q of a Riemannian

manifold Qn is separable in orthogonal coordinates iff on Q there exists a Killing two-tensor K

with simple eigenvalues and normal eigenvectors, such that

d~KdV !50. ~1.3!

Here, G is the geodesic Hamiltonian and V is a function on Q, canonically lifted to T*Q;

KdV denotes the one-form image of dV by K, interpreted as a linear endomorphism over one-

forms, whose components are g ihKh j] jV . Let G5(g i j)5(g i j)
21 be the contravariant metric

tensor. We recall that on a Riemannian manifold Q ~with coordinates (q i)! a contravariant sym-

metric tensor of any order, K5(K i¯ j), is a Killing tensor „K-tensor… if the functions on T*Q

~with canonical coordinates (q i,p i)!

PK5K i¯ jp i¯p j , PG5g i jp ip j , ~1.4!
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are in involution in the canonical Lie–Poisson brackets

$PK ,PG%50.

This means that PK is a first integral of the geodesic flow ~G5
1
2PG is the geodesic Hamiltonian!.

Two symmetric tensors of any order A and B are said to be in involution if $PA ,PB%50.

In Theorem 1.1, ‘‘normal’’ means orthogonally integrable or surface forming: the eigenvec-

tors of K are orthogonal to foliations of regular hypersurfaces. These foliations of submanifolds of

codimension 1 form an orthogonal web and any coordinate system qI 5(q i) adapted to this web

~i.e., whose coordinate surfaces belong to the web! is orthogonal and separable, i.e., in these

coordinates the metric tensor is diagonal and the corresponding Hamilton–Jacobi equation

1
2g i j~] iW !2

1V5h ,

admits a complete solution of the form

W~qI ,cI !5(
i51

n

W i~q i,cI !,

~cI 5(c i) is a complete set of integration constants!. For this reason, an orthogonal web is called

separable if it is made of hypersurfaces orthogonal to the eigenvectors of a Killing two-tensor K

with simple eigenvalues. The tensor K is said to be a characteristic tensor of the web ~notice that

it is not uniquely determined; for instance, K1aG is still a characteristic tensor, ;aPR!. The

existence of such a tensor characterizes the orthogonal separation of the pure geodesic Hamilton–

Jacobi equation ~case V50!, while Eq. ~1.3!, which we call the characteristic equation, charac-

terizes the separability of a potential V ~i.e., of the Hamiltonian H5G1V! in the web determined

by K. A separable orthogonal web is the geometrical object representing an equivalence class of

separable orthogonal coordinates: Two separable coordinate systems are equivalent if their coor-

dinate hypersurfaces belong to the same web.

The meaning of the characteristic equation @Eq. ~1.3!# is given by the following general

property:7,8 Let K be a contravariant symmetric two-tensor, PK be defined as in ~1.4! and VK be

a smooth function on Q ~canonically extended to T*Q!. Then the function

HK5
1
2PK1VK ~1.5!

is in involution with the natural Hamiltonian

H5HG5
1
2PG1VG5G1V ,

if and only if K is a Killing two-tensor and

dVK5KdV . ~1.6!

Thus, the characteristic equation @Eq. ~1.3!# is locally equivalent to the existence of a quadratic

first integral of the kind ~1.5!.
It can be shown7 that the existence of a characteristic K-tensor ~i.e., of a K-tensor with simple

eigenvalues and normal eigenvectors! K implies the existence of a n-dimensional linear space K

of Killing two-tensors, including K and the metric tensor G, all in involution and with common

eigenvectors. We shall call this space the Killing–Stäckel involutive algebra ~briefly, KS-

algebra! generated by ~or associated with! the characteristic tensor K. It can be proved that if the

characteristic equation @Eq. ~1.3!# is satisfied by K, then it is satisfied by all elements of the

KS-algebra K generated by K, and that the corresponding functions ~1.5! form a n-dimensional

space H of first integrals in involution. Actually, the orthogonal separation can be characterized by

a system of n independent K-tensors in involution and commuting as linear operators, according to

the celebrated Eisenhart theorem,9 see also Kalnins and Miller10 for a deeper discussion. However,
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in our approach to the separation of the Calogero system it turns out to be more convenient to

relate the separation to a single characteristic K-tensor. In any separable coordinate system adapted

to the web, all these tensors are diagonalized and for any basis (Kj) of K, the diagonal compo-

nents

K j
ii

5w ~ j !
i

form a regular n3n matrix @w ( j)
i # whose inverse @w i

( j)# is a Stäckel matrix: Each element w i
( j) is

a function of the coordinate q i corresponding to the lower index only. The functions V j , such that

dV j5KjdV ,

have the form

V j5w ~ j !
i f i5K j

iif i , ~1.7!

where f i is a function of the corresponding coordinate q i only. If G is an element of the basis, say

G5Kn , then

g ii
5w ~n !

i
, V5Vn5g iif i . ~1.8!

It follows that the quadratic first integrals in involution (H j) generated by the basis have the form:

H j5
1
2w ~ j !

i ~p i
2
12f i!. ~1.9!

Furthermore, by setting c j52H j and reversing the system of equations ~1.9!, we can see that the

Lagrangian foliation of T*Q generated by equations

p i5] iW

is locally represented by equations of the kind

p i
2
5F i~q i,cI !5w i

~ j !c j22f i . ~1.10!

This means that each p i is a function of the corresponding coordinate q i only, but in general of all

the integration constants cI . It follows that a separated solution W of the H – J equation is the sum

of the integrals:

W i56E AF idq i,

for any suitable choice of the signs. Moreover, the inequalities

F i>0, ~1.11!

following from ~1.10! define regions of the space, depending on the constants of motion cI , where

the orbits are confined. By the Jacobi theorem, the orbits are locally determined by the n21

equations

ak5
]W

]ck

, k51,...,n21, ~1.12!

if we choose ~as it is customary! cn5h ~the energy constant!, while the time-dependence is given

by the last equation
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t2t05
]W

]h
, ~1.13!

representing a moving hypersurface.

In the present paper, we shall solve the characteristic equation ~1.3! for the Calogero potential

~1.1! and find all possible characteristic tensors K. They form a five-dimensional space and

generates five different kinds of separable orthogonal webs. Furthermore, by solving Eqs. ~1.6!,
we shall compute all the quadratic first integrals associated with the corresponding five KS-

algebras, leaving to a further work the analysis of their expressions in separable coordinates and

the discussion of the related equations ~1.10!–~1.13!.

II. KILLING VECTORS AND TENSORS IN THE EUCLIDEAN THREE-SPACE

It is known that in the Euclidean space E3 , as in all manifolds of constant curvature, any

K-tensor is reducible, i.e., a linear combination with constant coefficients of symmetric tensor

products of K-vectors.11 The symmetric tensor product ( of two vectors is defined by

A(B5
1
2~A^ B1B^ A!. ~2.1!

With the rectangular Cartesian coordinates (x i)5(x1 ,x2 ,x3)5(x ,y ,z) we associate the basic

translational unit K-vectors (Xi)5(X1 ,X2 ,X3)5(X,Y,Z)

X5F 1

0

0
G , Y5F 0

1

0
G , Z5F 0

0

1
G ,

and the basic rotational K-vectors (Ri)5(R1 ,R2 ,R3)5(Rx ,Ry ,Rz), defined by

Rx5X3r5F 0

2z

y
G , Ry5Y3r5F z

0

2x
G , Rz5Z3r5F2y

x

0
G , ~2.2!

where

r5F x

y

z
G

is the position vector r5OP of the generic point PPE3 with respect to the origin O. Here, we

denote by u3v the skew-symmetric cross product of two vectors, whose Cartesian components

are e i jku j
v

k, where e i jk is the Levi-Civita symbol. We denote by u•v the symmetric scalar product

of two vectors. The following identities hold

S iXi(Xi5G, S iXi(Ri50, S iRi(Ri5r2G2r^ r, ~2.3!

where

G5F 1 0 0

0 1 0

0 0 1
G .

Let K2(E3) be the space of Killing two-tensors on E3 . Any element of K2(E3) is represented

as a linear combination of symmetric products of the basic K-vectors

K5A1B1C5a i jXi(Xj1b i jXi(Rj1c i jRi(Rj . ~2.4!
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The components of the K-tensors

A5@A i j# , B5@B i j# , C5@C i j#

are constant, linear-homogeneous in the Cartesian coordinates and quadratic-homogeneous, re-

spectively, and the constant coefficients appearing in ~2.4! form matrices of the kind

@a i j#5@A i j#5F a1 a3 a2

a3 a2 a1

a2 a1 a3

G , @b i j#5F b11 b12 b13

b21 b22 b23

b31 b32 b33
G , @c i j#5F c1 g3 g2

g3 c2 g1

g2 g1 c3

G
~2.5!

~the first and the third one are symmetric!, for a total amount of 21 constant coefficients. However,

the dimension of K2(E3) is 20, since only the differences of the diagonal coefficients (b11,b22,b33)

are involved ~see below!

b15b22
2b33, b25b33

2b11, b35b11
2b22,

and these three parameters b are constrained by the equation

b11b21b350.

We can compute the components of the matrices B and C starting from the relations

Ri•Xj5e ik jxk52e i jkxk

B i j
5b lmXi•~Xl(Rm!Xj5

1
2~b ihe jhk1b jhe ihk!xk

C i j
5c lmXi•~Rl(Rm!Xj5c lme lihem jkxhxk.

We obtain

B11
5b12x32b13x25b12z2b13y

B22
5b23x12b21x35b23x2b21z

B33
5b31x22b32x15b31y2b32x

B12
5

1
2~b22

2b11!x31
1
2b13x12

1
2b23x25

1
2~b13x2b23y2b3z !

B23
5

1
2~b33

2b22!x11
1
2b21x22

1
2b31x35

1
2~b21y2b31z2b1x !

B31
5

1
2~b11

2b33!x21
1
2b32x32

1
2b12x15

1
2~b32z2b12x2b2y !

C11
5c22x3

2
1c33x2

2
22c23x2x35c2z2

1c3y2
22g1yz

C22
5c33x1

2
1c11x3

2
22c31x3x15c3x2

1c1z2
22g2zx

C33
5c11x2

2
1c22x1

2
22c12x1x25c1y2

1c2x2
22g3xy

C12
5~c13x21c23x12c12x3!x32c33x1x25~g2y1g1x2g3z !z2c3xy

C23
5~c21x31c31x22c23x1!x12c11x2x35~g3z1g2y2g1x !x2c1yz

C31
5~c32x11c12x32c31x2!x22c22x3x15~g1x1g3z2g2y !y2c2zx .

~2.6!

III. THE FIRST SEPARABILITY CONDITION

According to Theorem 1.1, a first condition for the separability is the existence of a K-tensor

K solution of the characteristic equation ~1.3! for the Calogero potential V ~1.1! ~there is no loss

of generality in assuming g51!. By inserting into this equation the expression ~2.4! of a general

K-tensor of E3 , we get a system of algebraic equations in the variables ~x,y,z!, to be identically

satisfied. This provides a system of linear equations on the constant coefficients. With the help of

a computer algebra system ~we used Maple V®—an alternative method which avoids this calcu-

lation is illustrated in Ref. 12! it can be shown that these linear equations are
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a15a25a35a

a15a25a35a

b13
5b21

5b32
52b23

52b31
52b12

5b

b15b25b350

c15c25c35c

g15g25g35g .

It follows from ~2.5! that

@a i j#5F a a a

a a a

a a a
G , @b i j#5F t 2b b

b t 2b

2b b t
G , @c i j#5F c g g

g c g

g g c
G , ~3.1!

for any arbitrary tPR. However, the value of t is irrelevant, due to the second identity ~2.3!. We

can choose t50, so that the matrix @b i j# becomes skew-symmetric

@b i j#5F 0 2b b

b 0 2b

2b b 0
G . ~3.2!

The conclusion is

Proposition 3.1: The solutions of the characteristic equation d~KdV!50 for the Calogero

potential ~1.1! form a five-dimensional linear space C of K-tensors of the kind K5A1B1C,

where

A5@a i j#5F a a a

9 a a

9 9 a
G , ~3.3!

B5bF 2~y1z ! 1
2~x1y ! 1

2~x1z !

9 2~x1z ! 1
2~y1z !

9 9 2~x1y !

G , ~3.4!

C5F c~y2
1z2!22gyz 2cxy1gz~x1y2z ! 2czx1gy~z1x2y !

9 c~z2
1x2!22gzx 2cyz1gx~y1z2x !

9 9 c~x2
1y2!22gxy

G . ~3.5!

The elements of C are determined by the values of the five parameters (a ,a ,b ,c ,g). An

equivalent decomposition of KPC is

K5~a2a !G1aT1bS1cI1gJ, ~3.6!

where

T5F 1 1 1

1 1 1

1 1 1
G , ~3.7!
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S5
1

b
B5F 2~y1z ! 1

2~x1y ! 1
2~x1z !

9 2~x1z ! 1
2~y1z !

9 9 2~x1y !

G , ~3.8!

I5F y2
1z2

2xy 2zx

9 z2
1x2

2yz

9 9 x2
1y2

G , J5F 22yz z~x1y2z ! y~z1x2y !

9 22zx x~y1z2x !

9 9 22xy
G . ~3.9!

However, as far as the separation is concerned, the first component G in the expression ~3.6! is

irrelevant, so that we can consider only K-tensors of the kind

K5aT1bS1cI1gJ. ~3.10!

Furthermore, as it will be shown in the next section, it is convenient to introduce the K-tensor

Q5I1J5F ~z2y !2 ~z2y !~x2z ! ~z2y !~y2x !

9 ~x2z !2 ~x2z !~y2x !

9 9 ~y2x !2
G , ~3.11!

so that ~3.10! becomes equivalent to

K5aT1bS1~c2g !I1gQ. ~3.12!

IV. THE SECOND SEPARABILITY CONDITION

According to Theorem 1.1, we have to look for elements of C with normal eigenvectors and

simple eigenvalues. In our analysis, the following objects will play a basic role ~see Fig. 1!: the

constant vector

v5X1Y1Z5F 1

1

1
G , ~4.1!

and its unit vector ~the director!

FIG. 1. The basic geometrical objects.
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d5
v

uvu
5

1

)
v, ~4.2!

the line v passing through the origin O of the coordinates and parallel to v ~called the polar axis!;
the rotational K-vector around v

R5v3r5Rx1Ry1Rz5F z2y

x2z

y2x
G ; ~4.3!

the plane V through O and orthogonal to v ~the equatorial plane!, and the half-planes issued

from v ~the meridian half-planes!.
Remark 4.1: The Calogero potential ~1.1! is not defined on the meridian planes containing the

axes, whose equations are z5y , x5z and x5y . d

Remark 4.2: With any smooth real function f (u) we associate a potential energy

V f5 f ~x2z !1 f ~y2x !1 f ~z2y !. ~4.4!

For f (u)5gu22 we find the Calogero potential ~1.1!. For all f, the function V f is v-invariant,

v•¹V f50. This means that the function

pv5v•p5px1py1pz ~4.5!

is a ~linear! first integral of the Hamiltonian H5G1V f ; for the three-body system on a line, this

is precisely the mass-center first integral ~or the linear momentum integral!. Indeed, from

]xV f5 f 8~x2z !2 f 8~y2x !

]yV f5 f 8~y2x !2 f 8~z2y !

]zV f5 f 8~z2y !2 f 8~x2z !,

~4.6!

it follows that:

v•¹V f5~]x1]y1]z!V f50. d

Proposition 4.3: The K-vector R is an eigenvector of all elements of C.

Proof: We observe that the following intrinsic expressions hold for the basic K-tensors of C

defined in ~3.7!–~3.9! and ~3.11!:

Q5R^ R

T5v^ v

I5r2G2r^ r

S5v(r2sG,

~4.7!

where

r2
5r•r5x2

1y2
1z2, s5v•r5x1y1z . ~4.8!

Moreover,

R2
5R•R53r2

2s2
53rv

2 , R•v5R•r50, ~4.9!

where rv is the distance from the axis v. From these expressions it follows that
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QR5R2R

TR50

IR5r2R

SB52sR.

~4.10!

j

Remark 4.4: We recall that a Lie algebra structure is defined on the contravariant symmetric

tensor fields of a manifold, by equation @see ~1.4!#

$PA ,PB%5P @A,B# , ~4.11!

where $•,•% are the Poisson–Lie brackets on functions over T*Q

PA5P~A!5A i¯ jp i¯p j ,

and for a function ~symmetric tensor of rank 0! f over Q,

P f5 f ,

where we denote by the same symbol f its natural extension to T*Q ~constant on the fibers!. The

corresponding Lie-brackets @•,•# are known as Schouten–Nijenhuis brackets ~for symmetric ten-

sors!, 13,14 whose expression in any local coordinate system is

@A,B# i1•••ip1q215pA i~ i1¯ip21] iB
ip¯ip1q21)2qB i~ i1¯iq21] iA

iq¯iq1p21, ~4.12!

where ~p,q! are the ranks of A and B, respectively, and round brackets ~ ! around indices denote

symmetrization over those indices. We remark that the rank of @A, B# is p1q21. In particular, for

vector fields X and Y, @X, Y# are the ordinary Lie-brackets

@X, f #5^X,d f &,

is the derivative of the function f with respect to the vector X, and

dXA5@X,A# ,

is the Lie-derivative of the tensor A with respect to the vector X. Thus, the tensor A is invariant

with respect to ~the flow generated by! the vector field X iff @X,A#50. In particular, X is a Killing

vector iff @X,G#50. The Leibniz rule holds

@A,B(C#5@A,B#(C1@A,C#(B, ~4.13!

where the symmetric tensor product ( is defined by

PA(B5PAPB .

For two vectors we find ~2.1!. d

Proposition 4.5: C is invariant with respect to R: @R,K#50, ;KPC.

Proof: By the Leibniz rule

@R,T#5@R,v(v#52@R,v#(v50,

@R,Q#5@R,R(R#52@R,R#(R50,

@R,I#5@R,r2#G1r2@R,G#22@R,r#(r50,

@R,S#5@R,v#(r1@R,r#(v2@R,s#G2s@R,G#50,
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since R is a K-vector and v and r are invariant with respect to R ~i.e., under any rotation around

v!:

@R,G#50, @R,v#5@R,r#50, @R,r2#5@R,s#50. j

From this invariance it follows that:

Proposition 4.6: All elements of C have normal eigenvectors.

Proof: The common eigenvector R is normal: The orthogonal surfaces are the meridian

half-planes. Let (E1 ,E2) be other two orthogonal eigenvectors of an element KPC. These vectors

are tangent to the half-planes. Since K is R-invariant, we can choose these vectors to be

R-invariant. Let us consider the integral curves of E1 on a half-plane. They are orthogonal to E2 .

By rotating the half-plane we get surfaces of revolution orthogonal to E2 . Thus E2 is normal. The

same for E1 . j

It remains to look for the elements of C with simple eigenvalues: these elements will be

characteristic K-tensors of separable orthogonal webs. Since R is a common eigenvector of C, all

these webs will be of revolution around v and include the foliation of the meridian half-planes.

We know five possible separable webs of this kind:

Wcyl5circular cylindrical web,

Wpar5circular parabolic web,

Wsph5spherical web,

Wpro5prolate spheroidal web,

Wobl5oblate spheroidal web.

We shall show that in fact there exists in C a characteristic K-tensor K
*

for any web W
*

of this

kind. For a graphical and coordinate representation of these webs see Ref. 15.

Remark 4.7: For each web W
*

, a basis of the corresponding KS-algebra K
*

is given by the

triple (K
*

,Q,G), where K
*

is a characteristic tensor. Indeed, the tensor Q is a common element

of all these subalgebras, since any vector orthogonal to R is an eigenvector of Q ~with zero

eigenvalues! and, moreover, Q is in involution with all elements of C, due to the R-invariance

@K,Q#5@K,R(R#52@K,R#(R50. d

Remark 4.8: The axially symmetric orthogonal webs listed above, with the exception of the

first one, are centered: They refer to a distinguished point on the polar axis v, which in our case

is the origin O of the coordinates. However, due to the invariance with respect to v, any arbitrary

translation along the line v ~which produces a translation of the center! leads to webs which are

still separable for the Calogero system. d

In the following discussion, among the eigevectors we shall find the vector fields

r3R5F y2
1z2

2x~y1z !

z2
1x2

2y~z1x !

x2
1y2

2z~x1y !
G5r2

v2sr, v3R5F y1z22x

z1x22y

x1y22z
G5sv23r. ~4.14!

Besides ~4.10!, we shall use the following formulas, derived from ~4.7!:

Qr50

Tr5sv

Ir50

Sr5
1
2r2

v2
1
2sr,

~4.15!
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Qv50

Tv53v

Iv5r2
v2sr

Sv5
3
2r2

1
2sv,

~4.16!

Q~r3R!50

T~r3R!5R2
v

I~r3R!5r2r3R

S~r3R!5
1
2R2r2sr3R,

~4.17!

Q~v3R!50

T~v3R!50

I~v3R!5r2
v3R1R2r

S~v3R!52
1
2R2

v2sv3R.

~4.18!

V. THE CIRCULAR CYLINDRICAL WEB Wcyl

This web is determined by a single geometrical element: A line v ~the polar axis!. It is made

of the half-planes issued from v ~the meridian half-planes!, the planes orthogonal to v, and the

circular cylinders with axis v. The singular set ~where the web is not defined! is v. These surfaces

are, respectively, orthogonal to the vector fields

~R,v,v3R!, ~5.1!

where: v is a ~constant! vector parallel to v, R5v3r, and r5OP is the position vector of the

generic point PPE3 with respect a point OPv .

We can see from ~4.10!, ~4.16!, and ~4.18! that the vectors ~5.1!, where v and R are just the

vectors defined in ~4.1! and ~4.3!, are eigenvectors of the K-tensor Q2TPC, with eigenvalues

~R2,23,0!. ~5.2!

These eigeivalues are simple on E3\v , since R2
50 on v. Thus, we have proved

Proposition 5.1: The Calogero system is separable in the circular cylindrical web Wcyl with

axis v and characteristic tensor

Kcyl5Q2T5R^ R2v^ v. ~5.3!

We observe that also Q1T is a characteristic tensor everywhere, with the exclusion of the

polar axis and of the circular cylinder R2
53. Indeed, the eigenvalues of this tensor are (R2,3,0).

VI. THE PARABOLIC WEB Wpar

This web is determined by two geometrical elements (v ,O): A line v ~the axis! and a point

OPv ~the focus or center!. It is made of the meridian half-planes and of the two families of

paraboloids of revolution around v with focus O. The singular set is v. It can be shown that a

triple of vector fields orthogonal to these surfaces is

~R,u1d,u2d!, ~6.1!

where d is a director of the axis v, u is the unit vector determined by the radius vector r referred

to the center O

u5
r

r
, ~6.2!
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and R is any rotation vector around v. From ~4.7!, ~4.10!, ~4.15!, and ~4.16! we can see that the

vectors ~6.1!, where d and R are defined in ~4.2! and ~4.3!, are eigenvectors of

KO5S5v(r2v•rGPC, ~6.3!

with eigenvalues

~2s , 1
2~)r2s !,2 1

2~)r1s !!. ~6.4!

These eigenvalues are simple on E3\v . Indeed, on v they assume the values (2s ,0,2s), since

r5rd and s5v•r5)d•r5)r .

Let us consider the position vector rC with respect to a point CPv

rC5r2td5r2
1

)
tv, ~6.5!

where

uOCu2
5t2. ~6.6!

Then

KC5v(rC2v•rCG ~6.7!

is a characteristic tensor of the parabolic web centered at CPv . By inserting ~6.5! in ~6.7!, we can

see that also this tensor is an element of C, in agreement with Remark 4.8

KC5S2
1

)
tT1)tG. ~6.8!

Hence, we have proved @the last term in ~6.8! can be disregarded#
Proposition 6.1: The Calogero system is separable in any parabolic web with axis v and

focus CPv , and with characteristic tensor

Kpar5S2
1

)
tT5v(r2v•rG2

1

)
tv^ v ~ t2

5uOCu2!. ~6.9!

VII. THE SPHERICAL WEB Wsph

This web is determined by two geometrical elements ~v, O!: A line v ~the polar axis! and a

point OPv ~the center!. It is made of the half-planes issued from v ~the meridian half-planes!, the

spheres centered at O and the circular cones with axis v and vertex O. The singular set is the axis

v. A triple of vectors orthogonal to these surfaces is

~R,r,r3R!. ~7.1!

From ~4.7!, ~4.15!, and ~4.17! we can see that these vectors are eigenvectors of the K-tensor

KO5I1Q5r2G2r^ r1R^ RPC, ~7.2!

with eigenvalues

~R2
1r2,0,r2!. ~7.3!
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These eigenvalues are simple on E3\v , since R2
50 on v. By applying again the transformation

~6.5!, we can see that also the tensor

KC5rC
2 G2rC ^ rC1R^ R5I1Q1

2

)
tS2

1

3
t2T1t2G ~7.4!

is an element of C ~Remark 4.8!. Thus we have proved

Proposition 7.1: The Calogero system is separable in any spherical web with polar axis v and

center CPv , and with characteristic tensor

Ksph5I1Q1
2

)
tS2

1

3
t2T5r2G2r^ r1R^ R1

2

)
tv(r2v•rG2

1

3
t2

v^ v ~ t2
5uOCu2!.

~7.5!

VIII. THE PROLATE SPHEROIDAL WEB Wpro

This web is determined by three elements ~v,O,c!: A line v ~the polar axis!, a point OPv ~the

center! and a positive constant c ~the parameter!. The parameter c defines on v two points ~foci!
(F1 ,F2), whose distance from O is c and whose position vectors are

r15r2cd, r25r1cd, ~8.1!

where d is a unit vector parallel to v ~the director!. This web is made of the meridian half-planes

and of the quadrics of revolution, ellipsoids and two-folded hyperboloids, obtained by rotating

around v the confocal conics ~ellipses and hyperbolae! with foci (F1 ,F2) over the meridian

planes. The singular set is v. It can be shown ~see for details Ref. 12! that the vectors

~Rd,u11u2 ,u12u2!, ~8.2!

where

Rd5d3r, u15r1/r1 , u25r2 /r2 ~8.3!

are orthogonal to these three families of surfaces, and that they are eigenvectors of the tensor

KO5r2G2r^ r1c2d^ d, ~8.4!

with eigenvalues

~r2, 1
4~r12r2!2, 1

4~r11r2!2!. ~8.5!

These eigevalues are simple on E3\v . We recognize the tensor KO as an element of C

KO5I1
c2

3
T5r2G2r^ r1

c2

3
v^ v. ~8.6!

By applying the transformation ~6.5!, we can see that

KC5rC
2 G2rC ^ rC1c2d^ d5I1

2

)
tS1

1

3
~c2

2t2!T1t2G. ~8.7!

Thus,

Proposition 8.1: The Calogero system is separable in any prolate spheroidal web with polar

axis v and center CPv , with any value of the parameter c, and with characteristic tensor
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Kpro5I1
2

)
tS1

1

3
~c2

2t2!T

5r2G2r^ r1
2

)
t~v(r2v•rG!1

1

3
~c2

2t2!v^ v ~ t2
5uOCu2!. ~8.8!

IX. THE OBLATE SPHEROIDAL WEB Wobl

This web is again determined by three elements ~v,O,c!. The positive constant c defines on the

equatorial plane V a circle G of radius c and center O. On each meridian plane we consider the

confocal conics with foci (F1 ,F2) belonging to G. The web is made by the ellipsoids and one-

folded hyperboloids of revolution generated by these confocal conics, and by the meridian half-

planes. The singular set of this web is Gøv . With each position vector r ~for points ¹v! we

associate its projection c onto the equatorial plane, renormalized in such a way that c•c5c2. This

vector is defined by

c5
c

rv
~r2r•dd!.

Then we define the position vectors with respect to the foci F1 and F2

r15r2c, r25r1c,

and the corresponding unit vectors

u15r1 /r1 , u25r2 /r2 .

It can be shown12 that the vectors

~Rd,u11u2 ,u12u2!

are orthogonal to the surfaces of the web, and that they are eigevectors of the tensor

KO5r2G2r^ r2c2d^ d, ~9.1!

with eigenvalues

~r2, 1
2~a21 !r1r2 , 1

2~a11 !r1r2!, a5u1•u2 . ~9.2!

These eigenvalues are simple on E3\(Gøv), so that the tensor ~9.1! is a characteristic tensor of

the oblate spheroidal web with axis v and center O, determined by the triple (O ,d,c). We

recognize the tensor K as an element of C

KO5I2
c2

3
T5r2G2r^ r2

c2

3
v^ v. ~9.3!

By the transformation ~6.5! we can see that

KC5rC
2 G2rC ^ rC2c2d^ d5I1

2

)
tS2

1

3
~c2

1t2!T1t2G. ~9.4!

Hence, we have proved

Proposition 9.1: The Calogero system is separable in any oblate spheroidal web with polar

axis v and center CPv , with any value of the parameter c, and with characteristic tensor
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Kobl5I1
2

)
tS2

1

3
~c2

1t2!T

5r2G2r^ r1
2

)
t~v(r2v"rG!2

1

3
~c2

1t2!v^ v ~ t2
5uOCu2!. ~9.5!

X. THE FIRST INTEGRALS ASSOCIATED WITH THE SEPARATION

As it was mentioned in in the Introduction and in Sec. IV, each separable web W
*

generates

a three-dimensional KS-algebra K
*

,C , including the characteristic tensor K
*

, the tensor Q and

the metric tensor G. This subalgebra is also commutative, interpreting the K-tensors as linear

operators. Indeed, all tensors of K
*

have common eigenvectors and at least one of them ~the

characteristic tensor! has simple eigenvalues. Furthermore, K
*

generates a three-dimensional

involutive algebra H
*

of first integrals defined by Eq. ~1.5! and ~1.6!. For computing all these first

integrals, one should integrate Eq. ~1.6! ~i.e., the closed one-form KdV! for each one of the basic

elements ~4.7! of C. However, this cumbersome process of integration can be avoided, due to a

remarkable property of the inverse-square Calogero potential. To show this, we recall a general

property of the orthogonal separable systems, expressed by formula ~1.8! in the Introduction:

Proposition 10.1: Let (q i) be orthogonal separable coordinates and let

V5g iif i , g ii
5G~dq i,dq i!, ] jf i50 ~ iÞ j ! ~10.1!

be the expression of a separable potential in these coordinates (each f i is a function of the

corresponding coordinate q i only). Then, for each element K of the KS-algebra K corresponding

to these coordinates, a solution VK of Eq. (1.6) is

VK5l ig
iif i5K iif i , ~10.2!

where l i are the eigenvalues of K corresponding to the eigenforms dq i.

Proof: Equation ~1.6! is equivalent to

] jVk5l j] jV , ~10.3!

while the Killing equation @K,G#50 is equivalent to

K j j] jg
ii

5g j j] jK
ii

~no sum over the repeated indices! that is to

l j] jg
ii

5] jK
ii.

It follows that:

] j~K iif i!5] jK
iif i1K ii] jf i5l j] jg

iif i1l jg
ii] jf i5l j] j~g iif i!5l j] jV .

This shows that ~10.2! is a solution of Eq. ~10.3!. j

For the Calogero system, all separable webs are of revolution around v and the rotation angle

c, mesured from a fixed meridian half-plane, can be chosen as a coordinate ~say q3
5c! in any

separable coordinate system (q i) ~see Fig. 1!. Its gradient ¹c is proportional to the rotational

vector R, and the orientation of c can be chosen in such a way that

¹c5
d3r

rv
2 5

R

)rv
2

. ~10.4!

Moreover,
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g33
5¹c•¹c5

1

rv
2 , ~10.5!

where rv is the distance from the axis v.

Proposition 10.2: In any separable coordinate system (q i) with q3
5c , the Calogero potential

has the form

V5g33f35
1

rv
2 f~c !, ~10.6!

where f35f(c) is a function of the rotation angle only.

This means that in the expression ~10.1! of the Calogero potential, f15f250.

Proof: Let us consider the function

f5rv
2 V .

This function is obviously invariant with respect to v, i.e., v•¹f50, since both functions rv and

V are invariant. The function f is also invariant with respect to r. To show this we introduce the

vector

rv5r2
1
3v•rv, ~10.7!

representing the component of r orthogonal to the axis v, and such that rv•rv5rv
2 . Because of the

meaning of rv ~the distance from the axis v!, ¹rv5(rv)21rv , so that

r•¹rv
2

52rvr•¹rv52rv
2 .

For the Calogero potential ~see Remark 10.3 below!

r•¹V522V , ~10.8!

so that r•¹f5r•¹(rv
2 V)5r•¹rv

2 V1r•¹Vrv
2

50. A function which is invariant with respect to

v and r is invariant with respect to v and rv , thus it is a function of the angle c only. j

Remark 10.3: For a potential V f ~4.4!,

r•¹V f5~x]x1y]y1z]z!V f5~x2z ! f 8~x2z !1~y2x ! f 8~y2x !1~z2y ! f 8~z2y !.

If f (u)5up, then r•¹V f5pV f . Therefore, the crucial condition ~10.8! holds only for the inverse

square potential (p522). d

From Propositions 10.1 and 10.2 it follows that:

Proposition 10.4: For all KPC , a solution of Eq. ~1.6! is

VK5lKV5lK

f

rv
2 , ~10.9!

where lK is the eigenvalue of K associated with the eigenvector R.

For the basic elements of C, Eqs. ~4.10! show that

lQ5R2
53rv

2
5~x2z !2

1~y2x !2
1~z2y !2

lT50

lI5r2
5x2

1y2
1z2

lS52s52~x1y1z !,

~10.10!

hence, by ~10.9!
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VQ53f

VT50

VI5r2V5
r2

rv
2 f

VS52sV52
s

rv
2 f .

~10.11!

Using ~10.9! and ~10.10! we could write the expressions of these functions in Cartesian coordi-

nates. Furthermore, if we introduce the momentum vector

p5F px

py

pz

G , ~10.12!

and the associated quantities

pv5Pv5v•p5px1py1pz

pr5r•p5xpx1ypy1zpz

pc5M•d5r3p•d5
1

)
~~y2x !pz1~z2y !px1~x2z !py!,

~10.13!

M5r3p5F ypz2zpy

zpx2xpz

xpy2ypx

G , ~10.14!

the mass-center momentum, the radial momentum, the axial angular momentum ~with respect

to the polar axis v!, and the angular momentum vector, respectively, then we derive from ~4.7!

PQ53pc
2

PT5pv
2

PI5r2p2
2pr

2
5M 2

PS5pvpr2sp2.

~10.15!

The resulting basic first integrals ~1.5! are

HQ53( 1
2pc

2
1f)

HT5
1
2pv

2

HI5
1

2
M 2

1
r2

rv
2 f

HS5
1

2
~pvpr2sp2!2

s

rv
2 f .

~10.16!

Using ~10.9!, ~10.10!, ~10.13!, and ~10.14!, we could express these first integrals in Cartesian

coordinates and see that they are rational in ~x,y,z! ~and, of course, quadratic in the momenta!.
From ~10.9! it follows that all these first integrals ~except pv! are not defined on the meridian

planes passing through the Cartesian axes ~see Remark 4.1!.
Remark 10.5: The existence of rational first integrals for the n-body Calogero system has been

proved in Ref. 16. Actually, HT is equivalent to the linear first integral pv , which appears in the

KS-algebra of the cylindrical web ~see below!. The existence of four independent first integrals,

besides the Hamiltonian itself, shows that the Calogero system is ‘‘maximally super-integrable,’’
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in the sense that it has the maximal number of first integrals allowed by its dimension. ~The

maximal number of independent first integrals of a N-dimensional dynamical system is N21; for

a Hamiltonian system N52n , and in our case N56. About the definition of super-integrability

see, for instance, Refs. 3, 4, and 17.! However, if one deserves the term ‘‘Arnold–Liouville

super-integrable’’ to those Hamiltonian systems which admit at least two inequivalent systems of

n independent first integrals in involution, generating two distict Lagrangian foliations in the

cotangent bundle T*Q , then the above discussion shows that the Calogero system is in fact, as any

super-separable system, also AL-super-integrable. d

As a conclusion of the above discussion, in Table I we list for each separable web W
*

of the

Calogero system ~we consider only the webs centered at the origin O of the coordinates! the basic

elements of the KS-algebra K
*

and of the involutive function algebra H
*

.

Remark 10.6: The first integral HQ is in involution with all the basic first integrals ~10.16!.
Therefore, it belongs to every involutive function algebra H

*
associated with the separation. Since

pc5rv
2 ċ , ~10.17!

it yields the constant of motion6

1
2rv

4 ċ2
1f5constant. ~10.18!

The explicit expression of the function f~c! can be found in Ref. 5

f~c !5
9g

2 sin2~3c !
. ~10.19!

The following proof of this formula exhibits some interesting properties of the inverse-square

potential. Let us consider the equatorial plane V and the projection operator which associates with

any vector v the orthogonal projection vv over V

vv5v2
1
3v•vv, ~10.20!

so that vv•v50 @see ~10.7! and Fig. 1 for the case of the position vector r#. Let us consider the

projections of the basic coordinate vectors ~X, Y, Z!

Xv5X2
1
3v•Xv

Yv5Y2
1
3v•Yv

Zv5Z2
1
3v•Zv.

~10.21!

For these vectors

Xv•Xv5
2
3, . . . , Xv•Yv52

1
3, . . . . ~10.22!

For any position vector r, we consider the angles (cx ,cy ,cz) formed by rv and (Xv ,Yv ,Zv),

respectively ~see Fig. 2!, and oriented in such a way that

TABLE I. Basic elements of the separable webs for the calogero system.

Web W
*

Basis of K
*

Basis of H
*

Wcyl G, Q, T H ,HQ ,HT

Wpar G, Q, S H ,HQ ,HS

Wsph G, Q, I H ,HQ ,HI

Wpro G,Q,I1(c2/3)T H ,HQ ,HI1(c2/3)HT

Wobl G,Q,I2(c2/3)T H ,HQ ,HI2(c2/3)HT
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Xv3rv5uXvuurvusin cxd5A 2
3 rv sin cxd, . . . ~v5)d!. ~10.23!

We choose c5cx as the fundamental angle. Thus,

cy5c1
2
3p , cz5c1

4
3p.c2

2
3p

and

sin~3cy!5sin~3c !, sin~3cz!5sin~3c !. ~10.24!

From the definitions ~10.21! it follows that:

rv3Xv5r3X2
1
3sv3X2

1
3r3v5F 0

z

2y
G2

s

3 F 0

1

21
G1

1

3 F z2y

x2z

y2x
G5

1

3
~z2y !v5

1

3
R•Xv.

~10.25!

Similar results hold for Yv and Zv . The comparison with ~10.23! shows that

~z2y !2
52rv

2 sin2 cx5
2
3 R2 sin2 cx . ~10.26!

Thus,

f5rv
2 V5

g

2
S 1

sin2 cx

1
1

sin2 cy

1
1

sin2 cz
D . ~10.27!

This proves once more that f is a function of the angle c alone. We can transform this expression

by using the identity

sin 3c5sin c~324 sin2 c !,

so that, due to ~10.24!

FIG. 2. Orthogonal projection onto the equatorial plane V.
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f5
g

2 sin2~3c !
@~324 sin2 cx!2

1~324 sin2 cy!2
1~324 sin2 cz!

2#

5
g

2 sin2~3c !
@27116~sin4 cx1sin4 cy1sin4 cz!224~sin2 cx1sin2 cy1sin2 cz!# .

~10.28!

From ~10.23!

sin2 cx5
3

2

~z2y !2

R2 , . . . .

Thus

sin2 cx1sin2 cy1sin2 cz5
3
2 . ~10.29!

Actually, this last formula is a general identity which holds for any triple (fx ,cy ,cz) of angles

differing by 2
3p ~modulo 2p!. It is remarkable that a similar formula holds for the fourth powers

sin4 cx1sin4 cy1sin4 cz5
9
8. ~10.30!

Indeed,

sin4 cx5sin2 cx2
1
4 sin2~2cx!, . . . .

Summing these three expressions, we can apply formula ~10.28! to the angles (2cx,2cy,2cz) and

get ~10.30!. Thus, ~10.28! leads to ~10.19!. d

Remark 10.7: For the basic K-tensors ~4.7!, Eqs. ~1.3! are, respectively, equivalent to

d~R•¹VRb!50

d~v•¹Vv
b!50

d~r•¹Vrb
2r2dV !50

d~v•¹Vrb
1r•¹Vv

b
22v•rdV !50,

~10.31!

where

Rb
5~z2y !dx1~x2z !dy1~y2x !dz5)rv

2 dc

rb
5xdx1ydy1zdz5rdr

v
b
5dx1dy1dz5ds ,

~10.32!

while Eqs. ~1.6! are equivalent to

R•¹VRb
5dVQ ,

v•¹Vv
b
50,

r•¹Vrb
2r2dV5dV I ,

v•¹Vrb
1r•¹Vv

b
22v•rdV52dVS.

~10.33!

d

XI. COMMUTATION RELATIONS

For functions on T*Q of the kind ~1.5!

HA5
1
2PA1VA , ~11.1!

4673J. Math. Phys., Vol. 41, No. 7, July 2000 The super-separability of the three-body . . .



with VA satisfying ~1.6!, dVA5AdV , the following general commutation relation holds @see also

~4.11!, we replace here, when convenient, notation PA by P(A)#

$HA ,HB%5
1
4$PA ,PB%1P~@A,B#a¹V !5

1
4P~@A,B# !1P~@A,B#a¹V !, ~11.2!

where

@A,B#a5AB2BA ~11.3!

denotes the algebraic commutator of the linear operators A and B. The term P(@A,B#) in ~11.2!
is cubic in (p i), while P(@A,B#a¹V) is linear. Notice that @A,B#a¹V is the vector field image of

the gradient ¹V by the linear ~skew-symmetric! operator @A,B#a .

In order to express the commutation relations for all the basic first integrals ~10.16!, it is

convenient to introduce the adjoint skew-symmetric two-tensor of the vector field R

V5*R5F 0 y2x z2x

x2y 0 z2y

x2z y2z 0
G , ~11.4!

such that, for any vector v

Vv5R3v. ~11.5!

Indeed, since the basic K-tensors ~4.7! have the common eigenvector R, their algebraic commu-

tators are all of the kind f V, where f is a function on E3 . This follows from the general identity:

@A,B#aR5*@A,B#a3R,

and from the condition

@A,B#aR50,

which imply

*@A,B#a5 f R,

i.e.,

@A,B#a5 f V.

We find

@T,S#a5
3
2V5

1
2~3lG2lT!V

@T,I#a52~x1y1z !V5lSV

~11.6!

@S,I#a52
1
2~x2

1y2
1z2!V52

1
2lIV

@Q,I#a5@Q,T#a5@Q,S#a50.

Moreover, a straightforward calculation shows that the Poisson brackets of the five functions PK

for these K-tensors have a similar behavior
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$PT ,PS%522pv~3PG2PT!

$PT ,PI%524pvPS

~11.7!
$PS ,PI%52pvPI

$PQ ,PI%5$PQ ,PT%5$PQ ,PS%50,

as well as the Poisson brackets of the five first integrals, derived from ~11.2!

$HT ,HS%52pv~3H2HT!

$HT ,HI%522pvHS

~11.8!
$HS ,HI%5pvHI

$HQ ,HI%5$HQ ,HT%5$HQ ,HS%50.

Remark 11.1: The commutation relations ~11.8! show that the nonvanishing Poisson brackets

yield cubic first integrals which factorize in the product of pv5p•v ~10.13! ~which is linear! and

the basic quadratic first integrals themselves @or a linear combination of them, as in (11.8)1#.

Since pv5AHT, it follows that no new independent first integrals are generated by the Poisson

brackets ~see Remark 10.5! and that the algebra of first integrals generated in this way is quadrati-

cally closed. d

Remark 11.2: About the independence of the basic elements (H i) of each involutive function

algebra H
*

~see Table I!, we observe that they are in particular vertically independent, i.e.,

detF]H i

]p j
GÞ0,

for all p not tangent to a hypersurface of the web. This is in fact a general property of the

orthogonal separation. Indeed, from ~1.9! it follows that:

detF]H i

]p j
G5det@w ~ i !

j
p j#5p1¯pn det@w ~ i !

j # .

Since det@w(i)
j #Þ0, the result is zero iff at least one p i vanishes. On the other hand, p i50 means

that p is tangent to the foliation q i
5constant. d

XII. FINAL REMARKS

This paper leaves open interesting questions concerning, for example, ~i! the case n.3 and,

~ii! the case of a ‘‘multiparametrized’’ Calogero system ~in the sense explained below! at least for

n53. These cases are currently under investigation, and we have at the moment only partial

results. About case ~i! we mention for instance Ref. 18 where separability is stated for the

n-particle elliptic Calogero–Moser system up to general ~complex! canonical transformations.

If we want to extend the geometrical intrinsic method presented here to these more general

cases ~as well as to any dynamical system in a Euclidean space! what we need is a complete ‘‘list’’

or ‘‘dictionary’’ relating all possible separable orthogonal webs in a Euclidean space with the

intrinsic expressions ~in terms of products of vectors with a clear geometrical meaning! of all

possible characteristic K-tensors and of a basis of the associated KS-algebras. This dictionary,

besides that one which assigns separable systems of coordinates to symmetry operators, should

give a further help in the application of the separability theory to the Hamilton–Jacobi equations

as well as to the Schrödinger or Helmholtz equations. Indeed, for testing if a potential V is

separable we should simply check if the characteristic equation ~1.3! d(K dV)50 is satisfied for

4675J. Math. Phys., Vol. 41, No. 7, July 2000 The super-separability of the three-body . . .



at least one of the characteristics tensors K of the list, and this can be done in any coordinate

system we like ~not necessarily separable! since the characteristic equation ~1.3! has an intrinsic

meaning. When a characteristic K-tensor satisfying ~1.3! is found then, as a second step, we

proceed to integrate equations ~1.6! for a basis of the associated KS-algebra; this will produce n

first integrals in involution ~1.5! HK .

Actually, in the present paper we did not follow precisely this procedure, since we solved the

characteristic equation ~1.3! with respect to K, and not with respect to the potential V . The reason

is that, even in the case n53, the kind of list we are looking for is at the moment incomplete ~a
paper is in preparation, Ref. 12!. Indeed, our analysis of the characteristic equation of the Calogero

potential leads to consider only rotational KS-algebras, around the particular axis v determined by

the ‘‘diagonal vector’’ v5(1,1,1). All the remaining separable webs in the Euclidean three-space

are not involved. The necessity and the effectiveness of such a list becomes evident in investigat-

ing case ~ii!. We give here only an outline, leaving a complete discussion to a next paper. Let us

consider the following two generalized versions of the Calogero potential:

V15
1

~ax2gz !2 1
1

~by2ax !2 1
1

~gz2by !2

V25
a

~x2z !2 1
b

~y2x !2 1
g

~z2y !2 ,

~12.1!

where a ,b ,gPR, and Þ0 in V1 . Up to a rescaling of the coordinates and for a ,b ,g.0, the

potential V1 represents the case of three particles with different masses. Let us consider the five

rotationsl characteristic K-tensors introduced in this paper, but referred to an arbitrary axis v
~through the origin O of the Cartesian coordinates! and to an arbitrary point CPv . In this general

situation, expressions ~5.3!, ~6.7!, ~7.4!, ~8.7!, and ~9.4! become

Kcyl5R^ R2d^ d

Kpar5d(rC2d•rCG

Ksph5rC
2 G2rC ^ rC1R^ R

Kpro5rC
2 G2rC ^ rC1c2d^ d

Kobl5rC
2 G2rC ^ rC2c2d^ d ,

~12.2!

where d is a unit vector parallel to the axis v, R5d3rC ,rC is the radius vector referred to the

point CPv , and cPR. Now, it is easy to see that the characteristic equation ~1.3! for V5V1 is

satisfied by all K-tensors in the list ~12.2!, provided both vectors d and OC be parallel to the vector

(1/a ,1/b ,1/g), while for V5V2 , d and OC must be parallel to ~1,1,1!, as for the original Calogero

potential ~1.1!. Thus, also V1 and V2 are super-separable. Furthermore, for a quadratic potential

Vk5k(x2
1y2

1z2)(kPR) the characteristic equation ~1.3! can be satisfied for all tensors ~12.2!,
with the exception of K5Kpar , for C5O and for any arbitrary unit vector d. Thus, also Vk is

super-separable.

As we said in the Introduction, the aim of this paper is to prove the super-separability of the

Calogero three-system, and to construct the corresponding first integrals in involution. The further

work of writing and discussing Eqs. ~1.10!–~1.13! for all possible choice of separable coordinates

is in progress.

Other questions arise about the separability of the Schrödinger or Helmholtz equation and the

associated symmetries. A general remark concerning this topic is the following. On a Riemannian

manifold ~Qn , G!, with a function HA of the kind ~11.1! we associate the second-order differential

operator ~on functions c over Q!

ĤAc52
\

2
DAc1VAc , ~12.3!

where ~¹ i is the covariant derivative with respect to the Levi-Civita connection!
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DAc5d~Adc !5¹ i~A i j] jc ! ~12.4!

is the pseudo-Laplacian associated with the symmetric two-tensor A5(A i j). Note that DG5D is

the ordinary Laplace–Beltrami operator and Ĥ5ĤG . It can be shown19 that the commutation

relation

ĤAĤB2ĤBĤA50

holds for all A and B belonging to a KS-algebra K, provided the commutation condition

ARic2RicA50 ~12.5!

holds for all APK, or at least for a characteristic tensor of K, where Ric is the Ricci tensor ~here

interpreted as linear operator on one-forms or vectors!. Equation ~12.5! is an intrinsic version of

the well-known Robertson condition.9,20 On manifolds of constant curvature ~for instance on

Euclidean spaces! it is obviously satisfied. All this shows that on these manifolds an involutive

function algebra H associated with the orthogonal additive separation of the Hamilton–Jacobi

equation corresponds to a system of second-order symmetry operators of the Schrödinger equation

Ĥc5lc , which are related to its multiplicative separation.21 For this reason, the analysis of the

separability in terms of symmetry operators of the Schrödinger equations in Euclidean or on

constant curvature spaces, as done in Refs. 17, 22, 23 for n52,3, is equivalent to the analysis of

the separability of the corresponding Hamilton–Jacobi equations in terms of first integrals and

Killing tensors.
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