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Summary. Dynamics of non-holonomic mechanical systems is
interpreted as a submanifold of T'T*(Q where () is the configuration
manifold. Integrability of dynamics is discussed for linear and
non-linear constraints. The case of constrained geodesics of a
Riemannian manifold studied by Synge is also considered. Local
coordinate representations are used. An example of an ideal non-
linear non-holonomic constraint is proposed.

1. First order equations

A first order (differential) equation on a manifold M is a submanifold D of the tangent
bundle TM. A first order equation is said to be integrable if for each v € D there exists
a differentiable curve : I — M such that v(0) = v and 7(t) € D for each t € I, where
4: 1 — TM is the tangent curve to v and I is an open real interval containing 0. Such
a curve is called an integral curve of D based on v € D. It is possible to extend this
definition to the case in which D is a submanifold with boundary or a subset of T'M. If
D is a non-integrable first order equation, then the integrable part of D is the maximal
subset of D which is integrable according to the definition above.

If () are local coordinates of M, then we denote by (%, 27) the corresponding fibered
coordinates on T'M. A first order equation D is locally described by a system of equa-

tions
Dz, iB) =0

(A,B=1,...,m; m =dim(M); a =1,...,; | = dim(D)). An integral curve has a
local representation x4 = v4(t) such that for each ¢

D* (y*(£), 77 () =0
where Dv4 is the derivative of the real function v*.

Examples. (1) A subbundle D of T M, i.e. a reqular distribution on M, is an integrable
first order equation on M. For each v € D there exists an integral curve of D based on
v, but it is not unique.

(2) Let X: M — TM be a differentiable section of the tangent bundle 7p;: TM — M,
i.e. a differentiable vector field on M. The image D = X(M) of X is an integrable
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first order equation. In this case the uniqueness property holds (Cauchy theorem): if
~v: I — M and +': I' — M are integral curves based on v € D, then they coincide in the
intersection I N I’ of the intervals of definition.

2. Dynamics of holonomic systems

A fundamental example of first order equation is given by the dynamics of holonomic
mechanical systems.

Let @ be the configuration manifold of a holonomic mechanical system with n degrees
of freedom. Let (¢') be local coordinates on @ (i.e. Lagrangian coordinates of the
mechanical system). We denote by (q%, ¢%), (¢%, p;) and (¢*, p;, ¢", px) the corresponding
fibered coordinates on T'Q, T*(Q) and TT*(@) respectively. In the following discussion
Latin indices 4, j,h, k... run from 1 to n = dim(Q). The manifolds TQ and T*Q
represent the velocity space and the phase space of the mechanical system.

The dynamics of the mechanical system is the submanifold D of TT*Q locally defined
by equations

oL oL
1 i— == =0, pi——— =0,
(1) Pi = i Pi = g
or by equations
. OH OH
2 T =0 i + — =0,
(2) =5, =0 Pitga

where L:T(Q) — R is the Lagrangian function locally represented by a function of the
coordinates (¢*, ¢?), and H: T*@Q — R is the Hamiltonian function locally represented by
a function of the coordinates (¢*,p;). We call (1) and (2) the Lagrangian representation
and the Hamiltonian representation of the dynamics D respectively. Equations (1)
follow from the d’Alembert-Lagrange principle. Equations (2) follow from equations (1)
under the regularity condition

0?L
(3) det (&ji 6qj) # 0

The Hamiltonian representation D shows that the dynamics D is the image of a vector
field X on the phase space T*(@Q. Hence, D is integrable with the uniqueness property.
The local expression of the vector field X is

0 0
-+ X, —
oq' T Op;’

where OH OH
Xi=" Xj=-_".
Op; Oq’
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The vector field is globally defined by equation
ixdf = —dH,

where 6 = p; dq* is the fundamental 1-form of T*Q (the Liouwville form).

3. Dynamics with non-holonomic linear constraints

We assume that further constraints are imposed on the holonomic system. The possible
kinematical states of the system are represented by vectors v € T'QQ which belong to
a subset K of T'. In most of the applications K is a subbundle of T'Q), i.e. a regular
distribution on ). If K is not completely integrable, then the constraints are called
non-holonomic linear constraints.

The distribution K can be represented by local equations
(1) Kifg'=0 (a=1,...,1),

where K¢ are functions on the domain of the coordinates (¢°) forming a matrix of
maximal rank:

(2) rank(K}') = [.

It follows from the D’Alembert-Lagrange principle that the dynamics D is the subset
of T'T* () locally defined by equations

oL oL ,
3 i — —— =0, )i — =— = Ao K, K¢ =0,
(3) Pi = 5 bi = 5 q
or by equations

OH OH ,
4 5 — =0, i - = )\, K7, K¢ =0,
(4) “ o, it oq" !

where (\,) are the Lagrange multipliers. A point of TT*(Q belongs to D if and only
if its coordinates satisfy equations (3) or (4) with some values of the parameters (\,).
The terms

(5) R, =\ K

represent the possible reaction forces of the constraints.

The Lagrangian representation (3) of the dynamics D is suitable for proving that D
is a submanifold. The Hamiltonian representation (4) is suitable for discussing the
integrability of D. The integrability will be discussed in the next section.

The distribution K can be represented by parametric equations of the kind

(6) ¢ =X, {=F@)w (a=1+1,...,n),
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where the functions F form a matrix of maximal rank:
(7) rank(F.) =n — L.

The parameters (2 = ¢*,w®) can be interpreted as coordinates on K and equations (6)
as representing a local immersion of K into 7'Q). Coordinates (w®) are known in the
classical literature as ”pseudo-velocities”. The equivalence of the representations (1)
and (6) implies that

(8) F!K* =0.

The substitution of (6) into the first two sets of the Lagrange equations (3) yields
equations of the kind

9) pi = fi(xj:wa)§ Di = gi(xj:wa) + Ao Kia(xj)-

The system of equations (6) and (9) gives the parametric representation of the dynamics
D. The 2n parameters (x°, Ao, w®) can be interpreted as coordinates on D and equations
(6) and (9) as representing a local immersion of D into TT*(Q. Indeed, a straightforward
calculation shows that the Jacobian matrix of the functions at the left sides of (6) and
(9), with respect to the variables (2%, Ao, w?®), has maximal rank. This proves

Proposition 1. Under the reqularity conditions (3,52) and (2) the subset D C TT*Q
defined by equations (3) is a submanifold of dimension 2n.

4. The integrability theorem and the elimination of the Lagrangian
multipliers

For the sake of simplicity we shall use the following notation:

H ,
mo= 08 g 08
dq Op;

etc.

The image by the tangent fibration 77+«q: TT*Q — T*Q of the first order equation D
considered in Section 3 is the subset C' C T*Q locally defined by equations

(1) C*=K{H =0

which are obtained by combining the first and the third set of equations (4.§3).
The regularity condition (3.§2) is equivalent to

2) det (H) # 0.

The regularity conditions (2.§3) and (2) imply that the [ functions at the left side of (1)
are independent. Hence, the subset C'is a submanifold of 7% of dimension 2n —1[. The
first set of the Lagrange equations (3.§3) can be interpreted as the local definition of
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a fiber bundle isomorphism A: THQ — T*Q), i.e. of the Legendre transformation. The
first set of the Hamilton equations can be interpreted as the local definition of A~1'.
Hence, C' = A(K).

Let v: I — T*Q be integral curve of D. The image (I) is contained in C'. Hence, the
image (I) of the tangent curve 4: I — TT*@Q is contained in T'C. It follows that the
integrable part of D is contained in the intersection D NT'C'. The submanifold T'C' is
defined by equations (1) and equations

(3) ¢ (K H + K{ H}) +p; K H? =0,

obtained from (1) by formal derivation. Since the submanifold D is defined by equations
(4.83), the intersection D NT'C is characterized by equations

(4) K H' H + K¢ (H, H — HY Hj) + K¢ K? HY )\, = 0.
Under the condition

(5) det (H” K{ K?) # 0,

we can solve equations (4) with respect to the multipliers (\,). We obtain

(6) Ao = Gap L,

Lb={H,C"} = K} (HY" H; — HI H') — K}; H" H/,
(Gap) = (G*) ™', G = HY K¢ K.

In the first equation {-,-} denotes the canonical Poisson bracket of functions on the
cotangent bundle T*(Q). Hence, for each point p € C' there exists one and only one
element of D belonging to the intersection D N7T,C. This means that D N T'C is the
image of a section X:C — T'C of the tangent fibration 7o: TC' — C' i.e., the image of a
vector field X on C. Hence, the intersection D NT'C' coincides with the integrable part
of D. This proves:

Proposition 2. If the regularity conditions (2.83), (2) and (5) are satisfied, then the
integrable part of the first order differential equation D defined by equations (4.83) is
the image of a vector field X in the submanifold C C T*Q defined by equations (1).

Remark 1. (i) If the quadratic form defined by the matrix (H%) is positive-definite,
then the regularity condition (5) is a consequence of condition (2.§3). This is the case
of the ordinary holonomic mechanical systems. (ii) The explicit form (6)—(7) of the
Lagrangian multipliers has been derived by Eden [7] by a different method.

The intersection D N'T'C' is defined by equations

(8) ¢'—H' =0, pi+H =GCGupL"K!, K¢ =0.
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Hence, the vector field X can be interpreted as the restriction to C of the vector field
X on T*(@Q) whose components are

9) X' =H', X;= —Hi+GaL"K".

This proves

Proposition 3. The integral curves of the first order equation D are the integral curves
of the of the vector field X based on the points of C, i.e. the solutions of the following
system of differential equations

dq' i dp;

10 = H = — H; Ga LaKb
(10) dt ’ dt +Gap LA,

whose initial conditions satisfy equations (1).

Remark 2. According to the classical terminology, equations (1) are invariant relations
of the differential system (10). Analogous results, but within the Lagrangian formalism,
have been obtained by Synge [13] (see also Agostinelli [1]) for quadratic Hamiltonians,
as we shall see in the next section. By the Legendre transformation A=1:T*Q — TQ
the vector field X|:C' — T'C is transformed into a vector field Y: K — TK over the
subbundle K C T'Q). This vector field is the geometric representation of the Gibbs-
Appel equations or the Maggi-Volterra equations. The image Y (K) of the vector field
Y, which is a submanifold of TK, is locally represented by equations involving the
coordinates (¢*,w®, ¢*,w®) of TK.

Remark 3. (Let us introduce on T*@Q the vertical 1-form
(11) ¢ = Gap L K? dg'.
Then the vector field X is intrinsically defined by equation
(12) iwdf = —dH + ¢,

where 6 is the Liouville 1-form.)

Remark 4. Any other extension can be chosen for finding the integral curves of D. To
the vector field X defined above we can add any arbitrary (sooth) vector field vanishing
on the submanifold C'.

Remark 5. The Hamilton-Jacobi method for integrating first order equations can be
applied only to Hamiltonian vector fields on cotangent bundles, i.e. to vector fields Z
such that iz df is an exact form. It follows from Remarks 3 and 4 that if we know
a submanifold J C C such that (i) X is tangent to J, (ii) the pull-back of ¢ to J is
closed, then we can find a local integral F ::J — R of ¢|J and a local extension F of
this function on T*Q. The Hamiltonian vector field Z generated by H' = H — F is such
that Z|J = X|J. Hence, we can apply the Hamilton-Jacobi method to the vector field
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Z for finding the integral curves of X|J, i.e. the motions of the non-holonomic system
lying on J.

5. The constrained geodesics

Let us consider the fundamental case of the quadratic Hamiltonian
(1) H = 59" pip;.

of the geodesics of a Riemannian (or pseudo-Riemannian) manifold (@, g). The distri-
bution K C T'Q can be represented by [ independent vector fields

0

2 K*= K% _—
( ) 6(]1’

K“i:gin; (a=1,...,1)

which span the orthogonal distribution K+ of K. In this case we have in (7.§4):

Hij — gij’
(3) G =g" K¢ K = K- K?,

L* = — g™ g* V1, K} pipj = — D" p; p;,
where
(4) D = g g7k DY me =5 (ViKp + Vi K}).

Here V is the covariant derivative with respect to the Levi-Civita connection of (Q, g).
The functions D% are the contravariant components of the deformation tensor of the
vector field K¢. We have D% = (0 if and only if K is a Killing vector. These defor-
mation tensors give the explicit expression of the reaction forces of the non-holonomic
constraints (or the components of the 1-form ¢) along a motion:

(5) Ri = ¢i = — Gap D Kb py pr..

These components are quadratic forms in the momenta (p;).

The functions (G?) are the contravariant components of the metric tensor g restricted
to the orthogonal distribution K+ with respect to the non-holonomic frame (K¢). The
regularity condition (5.84) is equivalent to the following one: the metric induced in each
subspace of the distribution K (or of the orthogonal distribution K+) is non-degenerate.
If g is positive-definite this condition is always satisfied (see Remark 1.84).

It follows from the preceding formulae that the components of the vector field X defined
in (9.64) are

(6) X' =gp;, Xi= — (109" +Gu D" K?) pp, pi.
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The projections onto @ of the integral curves of X satisfy the second order equations

d*q’ - o by 44" dg’

C9 (i 4 Gy KV, KY) 2L 9
(7) Tz + (Thy + Gap K ViKj) —= —
which are equivalent to

¢ ai pp y 44" dd’
8 gz (T o+ Gan K Dhy) < 4 =0,

where I', ; athe coefficients of the Levi-Civita connection. The projections of the integral
curves of the vector field X satisfy the constraint equations
o dq

K; =0.
) +S—o

We recognize in system (7) the differential equations of the first kind of the con-
strained geodesics derived by Synge from a variational principle [13] (see also Prange
[11], Agostinelli [1]). Equations (7) are the geodesic equations of the connection

0

(10) i =Th; + Gay KV, K?,
whose symmetrical part is

Ly i ai b
(11) hj =Lhj + Gap K* Dy

These connections depend on the choice of the frame (K%). As pointed out by Synge,
in agreement with Remark 4.§4, it is convenient to introduce the connection

2

where
(13) Gij = Gab K;-L Kjl?, G; = gih Ghj.

Since (;; are the components of the metric tensor reduced to the orthogonal distribu-
tion K, this connection does not depend on the choice of the representation of the
distribution K. The corresponding geodesic equations

iy i o)
dt2 odt odt

called equations of the second kind by Synge, can be obtained in a direct way from the
Lagrange equations

(14) + (T}; + ViG

Pt g d do
dt2 hidqr dt

(15) = )\a Kaiv
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by applying the orthogonal projection operator P:T'() — K defined by

(16) P =0 -G
Since P «+ K% = 0, the right side vanishes, so that the Lagrange multipliers are eliminated
and the left side becomes the left side of (15) plus the term

which vanishes when the constraint equations (9) are imposed.

The procedure of eliminating the Lagrange multipliers by the projection operators
P:TQ — K and G:TQ — K= was considered by Cattaneo [4] for a single constraint
equation, i.e. for a distribution represented by a single vector field (see also Ferrarese
[8]). The so-called constrained covariant derivative of Cattaneo-Gasparini [5] was used.
This technique was previously employed by the same authors for a relative decomposi-
tion of the equations of motion of a test particle in a Lorentzian space-time with respect
to a physical frame of reference, represented by a unitary time-like vector field.

The general setting of the projection procedure is based on the fact (see also Vershik
[14]) that if V is a connection on a manifold @), K is a subbundle of T'Q and P: TQ — K
is a projection operator, then the equation

VX =p-VZ

where Z is a vector field compatible with the distribution K, i.e. such that Z(Q) C K,
defines a connection V on the subbundle K, which is called the reduced connection

of V to K by P. The connection %, whose coefficients are defined in (12), provide
a "canonical” extension to () of the reduced connection P - V, where V is the Levi-
Civita connection and P is the orthogonal projection over K. This fact is shown by the
following calculation:

~

ViZi =V z" Pl =v, 2" - v, z" G
. . 2
=V 2" —-V,(G} Z") + Z"V &, =V, Z",

since ZM G{l =0.
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6. Dynamics with non-linear non-holonomic constraints

When the kinematical constraints are represented by a submanifold K of T'(Q) defined
by local equations

(1) K%' ¢)=0 (a=1,...,1),

it is assumed that the dynamics is the first order equation D C TT*(@ locally defined
by equations

oL oL OK*
2 T ..:0, 'i— - = Na T~ Ka:().
( ) p aql p aql aql
or by equations
OH OH OK*
3 .7:_ :07 .’L' A . Na 4. KCL:()’
) T o bt oq" o'

where ()\,) are the Lagrange multipliers. Equations (2) follow from the Gauss principle
(see Prange [11]). If the constraints are linear, then equations (2) and (3) reduce to
equations (3) and (4) of §3 respectively. We mention he the recent articles by Vershik
[14] and Weber [15] on geometrical approaches to non-linear constraints which generalize
this assumption.

Let U be the domain of the coordinates (¢*). Then in the open subset T*U C T*Q we
can define the following functions:

OK*® OK*® g
4) A = —— B = — C*= K* G* = Ay AS HY
( ) 7 6q1 . ’ 7 6q1 . ’ |* ’ 7 7 )
(5) L= A} (HY H; — H; H) — Bf H' = {H,C"},

where the symbol |, denotes the substitution ¢° = H'. By a procedure analogous to
that of §3 and §4, it can be shown that

Proposition 4. If the reqularity conditions

(6) det (H") # 0, rank(A¢) =1, det (Gab) # 0,

are satisfied, then: (i) the subset D C TT*Q defined by equations (2) is a submanifold
of dimension 2n; (i) the subset C' = mr-g(D) C T*Q locally defined by equations

(7) c* =0,

is a submanifold of dimension 2n —1; (iii) the integrable part of D is the image of a
vector field X on C; (iv) the vector field X is the restriction of a vector field X on T*U
with components

7

(8) X' = H', X;= — H;+ Ggqp L* A%,
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where (Gqp) is the inverse matriz of (G°).

Remarks analogous to those of §4 hold for non-linear constraints.

A non-holonomic constraint is called homogeneous if v € K implies rv € K for each real
number 7. The equations (1) can be chosen to be homogeneous in the coordinates (¢*).
Caratheodory [2] pointed out that if the constraints are homogeneous then no work is
done by the reaction forces (see also Saletan and Cromer [12]). Then the constraints are
said to be ideal. (For homogeneous (non-linear) constraints the reqularity conditions (6)2
are not fulfilled for ¢* = 0, i.e. when the mechanical system is at rest (see the example
below). The corresponding singular points of D should be analyzed more closely: in
general the integrability is preserved but not the uniqueness.)

It seems that no mechanical system with ideal non-linear non-holonomic constraints is
known other than that of Appell (see Fufaev and Neimark [9]). This example, however,
suffers of some defects (for criticisms and discussions we refer to Delassus [6], Castoldi
[3], Fufaev-Neimark [9] and Pironnau [10]). Castoldi proposed a different example, but
its construction seems to be rather complicated. In fact, Hertz pointed out that non-
linear constraints can be realized as a limit of linear constraints, when certain masses
and distances become negligible. We propose here a simple example, leaving to further
investigation the question as to whether it is realistic or not and whether it confirms
the theory or not.

Example. Two identical rods r; and r, move on a plane in such a way that the rods and
the velocities v1 and vs of the midpoints P; and P, remain parallel. This constraint can
be produced by installing a sharp wheel or a sharp blade (as in an ice skate) at the center
of each rod. To guarantee that the two ”skates” r1 and ro remain parallel we constrain
four points (Ay, B1,C1, D7) of r1 and corresponding four points (As, Be, Ca, D3) of ro
to slide without friction along four rigid bars (a, b, ¢, d) respectively. These four bars can
pivot without friction around a common point P which moves freely in the plane. At
each configuration the two skates r; and r9 are in a symmetrical position with respect
to the point P. The use of four bars instead of three avoids a certain singularity in
the construction, which arises when one of the bars is orthogonal to the skates. If we
consider (on each skate an heavy small body, whose centers of masses P{ and Pj can
move along the skates slightly from the midpoints Py and Py respectively, in order that
their velocities a nd those of the skates remain parallel, and we disregard the masses of all
the components of the device), then we have constructed a system of two material points
P; and P, which move in a plane and are constrained to have parallel velocities. This
constraint is non-linear and homogenous. It is represented by equation v; X vy = 0, i.e.
by a (single) scalar homogeneous quadratic equation in the components of the velocities.
Unfortunately, the regularity condition (6)2 is not satisfied for ; = vo = 0. Hence, either
the current theory or the example, or both, are unsatisfactory. In fact, this singularity is
first of all due to the construction. If we leave the two points at rest in a configuration,
then we do not know the behavior of the system without specifying the initial directions
of the skates. But this information must be ”a priori” ignored because of our assumption



Geometrical aspects of the dynamics of non-holonomic systems 13

of disregarding (all the remaining parts) of the device.
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