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The nonorthogonal separation of variables in the Hamilton–Jacobi equation corre-

sponding to a natural Hamiltonian H5
1
2g

i jp ip j1V , with a metric tensor of any

signature, is intrinsically characterized by geometrical objects on the Riemannian

configuration manifold: Killing vectors, Killing tensors, and Killing webs. Com-

parisons with previous characterizations and some illustrative examples are given.
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I. INTRODUCTION

In this paper we investigate the intrinsic characterization in terms of Riemannian geometry of

the additive separation of variables in the Hamilton–Jacobi equation. We are concerned with a

Hamiltonian of the kind

H5
1
2g

i jp ip j1V , ~1.1!

where g i j(qI ) are the contravariant components of a metric tensor g on a differentiable

n-dimensional manifold Q and V(qI ) is a smooth function on Q . We denote by (qI ,pI )5(q i,p i)

canonical coordinates on T*Q corresponding to coordinates qI 5(q i) on Q ~indices, i , j , . . . run

from 1 to n!. The coordinates qI are called separable if the corresponding Hamilton–Jacobi

equation

1

2
g i j] iW] jW1V5h S ] i5

]

]q iD ~1.2!

has a complete solution of the form

W~qI ,cI !5W1~q1,cI !1•••1Wn~qn,cI !, ~1.3!

where cI 5(c i) are integration constants. We say that the Hamiltonian H5G1V is separable when

such a coordinate system exists.

Hamiltonian systems of this kind form a large class of integrable systems and, moreover, the

additive separation of the HJ-equation is related to the multiplicative separation of the correspond-

ing Helmholtz ~or Schrödinger! equation. It is known that the first integrals in involution arising

from the additive separation of the HJ-equation ~1.2! are linear or quadratic in the momenta pI .

This is shown by the general procedure of the integration by separation of variables of the

HJ-equation based on the general expressions of the functions g i j and V in separable coordinates.

Finding these expressions has been for a long time one of the main problems in the theory of

separation of the HJ-equation, after the solution given by Stäckel1 in 1893 for orthogonal coordi-

nates. The general setting of this problem was clearly formulated by Levi-Civita,2 who wrote the

partial differential equations characterizing the separation of a Hamiltonian H(qI ,pI ), and pointed

out that the separation of the geodesic Hamiltonian,

0022-2488/97/38(12)/6578/25/$10.00
6578 J. Math. Phys. 38 (12), December 1997 © 1997 American Institute of Physics



G5
1
2g

i jp ip j ~1.4!

is a crucial problem, since it is a necessary condition for the separation of the Hamiltonian ~1.1!.
He also suggested a method for discussing his equations, based on a division of the separable

coordinates into two classes ~as we shall see below!. After various significant contributions

~among which we mention those of Dall’Acqua,3 Agostinelli,4 Forbat,5 Iarov-Iarovoi,6 Havas7!
Levi-Civita equations for a nonhomogenous quadratic time-dependent Hamiltonian have been

completely and rigorously solved by Cantrijn8 in the case of a positive-definite metric. For a

nondefinite metric further technical difficulties arise from the occurrence of ‘‘null coordinates’’

~for which g ii
50!. A complete solution has been given in Ref. 9 ~see also Refs. 10, 11!.

Since quadratic first integrals correspond to Killing 2-tensors ~K-tensors! and linear first

integrals to Killing vectors ~K-vectors!, these objects can be used for an intrinsic characterization

of the separation for both HJ-equation and Helmholtz equation. General theorems on the relation-

ships between separation and Killing vectors and tensors have been proved by Eisenhart,12 Kalnins

and Miller,13 and Shapovalov14 for the separation in orthogonal coordinates, by Woodhouse15 ~see

also Refs. 16, 17! for the separation of a single coordinate, and by Kalnins and Miller18 for the

general nonorthogonal separation in a metric of any signature. Since K-vectors and tensors are

related to first and second order symmetry operators of the Laplace–Beltrami operator, also the

group-theoretical aspect of separation on general or special manifolds has been widely explored

~for a review see Ref. 19!.
The intrinsic characterization of the additive separation of the HJ-equation proposed in this

paper is focused over the following two points: ~i! Since separable coordinates occur in equiva-

lence classes ~two systems separable coordinates are equivalent if they provide intrinsically the

same complete integral of the HJ-equation! the separation phenomenon is related to the geometri-

cal properties of the particular ‘‘webs’’ formed by the coordinate hypersurfaces. ~ii! While in the

previous characterizations ~Refs. 12–18! a number m<n of independent K-tensors ~m5n for the

orthogonal case! and a complementary number r5n2m of K-vectors are involved, here it is

shown how the separation can be characterized by a single K-tensor with suitable properties,

together with an Abelian subalgebra of K-vectors. The main statements are truly coordinate-

independent ~although for their proofs local coordinate representations are used!. As usual, all

objects are assumed to be smooth (C`). The classical approach to the separation of the HJ-

equation ~1.2! based on the Levi-Civita equations is revisited from the very beginning with

valuable simplifications and in a way suitable for our purposes. The problem of relating the

additive separation of the HJ-equation with the multiplicative separation of the Helmholtz equa-

tion, i.e., of extending the Robertson conditions12,20 to the general nonorthogonal separation for a

nonpositive metric, is not considered.

II. MAIN RESULTS

Our approach will be similar to that followed in a previous paper for the orthogonal

separation,21 based on the following simple remark: since the orthogonal separation is preserved

under coordinate transformations with diagonal Jacobian ~each coordinated is transformed sepa-

rately! then the separation has to be considered as a geometrical property of the orthogonal web

formed by the coordinate hypersurfaces. Let us consider the following definitions. An orthogonal

web on a Riemannian manifold Qn is a set S n5(S
i)5(S

1, . . . ,S n) of n pairwise transversal

and orthogonal foliations of connected submanifolds of codimension 1. ~Two submanifolds of

codimension 1 are orthogonal if their normal vectors are orthogonal; in a nondefinite metric

orthogonality does not imply transversality.! A coordinate system qI is adapted to a web S if its

leaves are locally represented by equations q i
5constant. An orthogonal web is separable if in the

adapted coordinates the geodesic Hamiltonian G is separable. A potential V is separable in an

orthogonal web S if in the adapted coordinates the Hamiltonian H5G1V is separable.
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A simple example is the following ~see also Sec. VI!: on the Euclidean space Q5R
2

5$(x ,y)% a system of confocal conics form an orthogonal web—let us consider for instance the

case of ellipses and hyperbola: a system of functions constant on these curves is clearly q1

5uPF1u1uPF2 , q2
5uPF1u2uPF2u, where P is the generic point of the plane, (F1 ,F2) are the

two focuses, and u•u denotes the distance between points. These functions form a coordinate

system adapted to the web only locally, since two different points could have the same values of

(q1,q2). Another system of functions constant on the conics is given by the roots (u1,u2) of the

equation

x2

u2a
1

y2

u2b
51.

where 0,a,b , 2(b2a)5uF1F2u2. They are called elliptic coordinates of the plane, although

only locally they form coordinate systems in a strict sense ~as in the previous case!. As we know

~see the comments in Sec. VI! such a web is separable and the separability can be characterized by

the existence of a Killing tensor, according to the following statement, proved in Ref. 21 ~see also

Refs. 22, 23!.

Theorem 1: An orthogonal web on a Riemannian manifold Q is separable if and only if there

exists a K-tensor K, ~i! with pointwise simple real eigenvalues and ~ii! with eigenvectors orthogo-

nal to the leaves of the web. A potential V is separable in this web if and only if d(K•dV)50.

Here K•dV is the image of the 1-form dV by the linear endomorphism K. We say that K is

a characteristic Killing tensor of the separable web. Notice that it is not uniquely determined. We

can restate this property in an equivalent form as follows:

Theorem 2: A Hamiltonian H5G1V is separable in orthogonal coordinates if and only if on

the manifold Q there exists a K-tensor K with pointwise simple real eigenvalues, orthogonally

integrable eigenvectors ~or closed eigenforms! and such that d(K•dV)50.

We say that a vector field is orthogonally integrable if the orthogonal distribution is com-

pletely integrable ~see below!. A vector field with this property is also called normal or

normalizable.13 With respect the geometrical characterization given by Kalnins and Miller in Ref.

13 ~Theorem 6!—for the geodesic case only—where n K-tensors are involved, here we have the

advantage of dealing with only one K-tensor but the disadvantage of the practical difficulty of

checking if a given K-tensor has normalizable eigenvectors. ~In some cases it is possible to answer

this question, without knowing the eigenvectors, by computing the Nijenhuis torsion of a related

conformal K-tensor, see Ref. 21.!
Remark 1: ~i! An orthogonal separable web as well as the corresponding characteristic

K-tensor may be defined only on Q2S where S is a suitable closed singular set ~for instance, on

the Euclidean plane the two focuses are the singular points of the web made of confocal conics!.
Similar remark will apply to the ‘‘existence’’ of the objects considered in the following state-

ments. ~ii! Starting from a characteristic K-tensor K it is possible to construct a n-dimensional

space K of commuting K-tensors, including the metric tensor and K itself, having common

eigenvectors with K and such that the condition d(K8•dV)50 holds for all elements K8PK .

The space K can be constructed by using separable coordinates and the so-called Stäckel matrices

associated with the metric ~see for instance Refs. 9, 13, 21!. In some cases it is possible to

construct a basis of K by an intrinsic iterative process, which avoids the use of the separable

coordinates ~this is the case of the asymmetric separable webs on Euclidean spaces, see Ref. 22!.
~iii! If (Ka) (a51,...,n) is a basis of K and if the closed 1-forms Ka•dV are exact i.e., Ka

•dV5dUa , then the n functions
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Fa5
1
2Ka

i jp ip j1Ua ~2.1!

are independent first integrals in involution. Notice that we can take the metric tensor g and the

characteristic K-tensor K as elements of this basis.

In the general case of the nonorthogonal separation there are equivalent coordinate transfor-

mations with nondiagonal Jacobian.9 Indeed, the separable coordinates are divided into two

classes: a coordinate q i is of first class if the ratio (]H/]q i)(]H/]p i)
21 is linear ~homogeneous!

in the momenta, otherwise it is of second class ~see Sec. III!. The numbers (r ,m) of first and

second class coordinates are invariant within an equivalence class and moreover only the second

class coordinates are related by separated transformations. In Sec. III, it will be shown how in the

nonorthogonal separation, instead of an orthogonal web, we are led to consider a more general

geometrical structure described in the following definition.

Definition 1: A Killing web ~K-web! on a Riemannian manifold Qn is a pair (S m ,Dr), where

~i! S m5(S
1, . . . ,S m)5(S

a) (a51,...,m) is a set of m<n pairwise transversal and orthogo-

nal foliations of connected submanifolds of codimension 1.

~ii! Dr is an r-dimensional Abelian algebra of K-vectors tangent to the leaves of S m , r5n

2m , spanning a distribution D with constant rank r and such that also the distribution I

5DùD' has a constant rank m0 .

We shall omit the dimensional indices (m ,r) when they are not needed. The rank of a

distribution D at a point qPQ is the dimension of the space Dq5DùTqQ . A distribution with

constant rank will be called regular. The distribution orthogonal to D is denoted by D'. Notice

that under the assumption that D is an Abelian subalgebra of K-vectors the dimension m0 of the

subspace Iq is constant on each orbit of D , but in general it could depend on the orbit. It follows

from this definition that the leaves of S are D-invariant and that their complete intersections

coincide with the orbits of D . Moreover, the distribution I is made of null vectors. Notice that

m050 for positive metrics and m0<1 for Lorentzian ~hyperbolic! metrics. When m050 each

subspace Dq is metrically nondegenerate. A K-web with m050 will be called nondegederate. The

dimension r of D will be called the degree of symmetry of the web. We say that D is orthogonally

integrable if D' is completely integrable.

In Sec. III it will be proved that

Theorem 3: If the Hamiltonian H5G1V is separable, then

~i! There exists a K-web (S m ,Dr) such that D is orthogonally integrable.

~ii! There exists a m-dimensional space K m of commuting and D-invariant K-tensors, includ-

ing the metric tensor, with m common eigenvectors orthogonal to the leaves of S . In K

there are elements with pairwise distinct real eigenvalues corresponding to the common

eigenvectors.

~iii! For each K-tensor KPK and for any basis (Xa) of D , d(K•dgab)50, where gab are the

inverse elements of the matrix gab5Xa•Xb (a ,b5m11,...,n).

~iv! The potential V is D-invariant and d(K•dV)50 for each element KPK .

The numbers (r ,m ,m0) entering in this statement coincide, respectively, with the number of

the first class, second class, and null second class coordinates. Moreover, the foliations (S
a)

(a51,...,m) are coordinate hypersurfaces of the second class coordinates, while the derivations

with respect to the first class coordinates ~interpreted as vector fields! span the distribution D.

Remark 2: Point ~iii! of Remark 1 also holds for this case: if (Ka) (a51,...,m) is a basis of the

space K ~the metric tensor can be included, as well as the characteristic tensor considered below!
and if all the closed forms Ka•dV are exact, i.e., Ka•dV5dUa , then the m functions ~2.1! are

first integrals in involution. To these m quadratic first integrals we add the r linear first integrals
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Fa5Xa
i p i , ~2.2!

corresponding to a basis of D , and we get a complete system of n independent first integrals in

involution.

The conditions listed in Theorem 3 are also sufficient for the separation, but as sufficient

conditions they are redundant. A way of obtaining a minimal set of sufficient conditions will be

investigated in Sec. IV. Assume that a K-web (S ,D) is given; then it generates local coordinates

(qa,qa) ~a51,...,m; a5m11,...,n! by choosing ~i! a system of m independent functions (qa)

which are constant on the leaves of the foliations (S
a), ~ii! a basis (Xa) of D and ~iii! a local

section W of the orbits of D ~W is a submanifold of dimension m transversal to the orbits!. The

coordinates (qa) are the affine parameters of the integral curves of the vector fields (Xa) starting

from the points of W . Since these are K-vectors the coordinates (qa) are ignorable. Coordinates

of this kind will be called adapted to the web ~or generated by the web!. We say that the web is

a separable Killing web if in adapted coordinates the geodesic Hamiltonian G is separable. Hence,

as it has been done for the orthogonal separation, we characterize the separability of a K-web by

means of a single characteristic K-tensor K.

Theorem 4: A K-web (S ,D) is separable if and only if there exists a D-invariant K-tensor K

with pairwise and pointwise distinct real eigenvalues corresponding to eigenvectors orthogonal to

the leaves of S and moreover, for m0.1, d(K•dgab)50 for any basis (Xa) of D .

We emphasize the fact that this last condition drops out when m0<1, for instance for positive-

definite or Lorentzian metrics ~further comments on this additional condition will be given at the

end of the proof of this theorem!. Notice that the ‘‘only if’’ part of this statement is included in

Theorem 3. Theorem 4 is an extension of Theorem 1 to the general nonorthogonal separation ~for

a geodesic Hamiltonian!.
The separability of a general Hamiltonian ~1.1! can be characterized by the existence of a pair

(Dr ,K) where Dr is an r-dimensional Abelian algebra of K-vectors and K is a K-tensor, accord-

ing to the following:

Theorem 5: The Hamiltonian H5G1V is separable if and only if on Q there exists a pair

(Dr ,K) such that

~a! Dr is a r-dimensional Abelian algebra of K-vectors spanning a regular distribution D of rank

r such that I5DùD' has a constant rank m0 .

~b! K is a D-invariant K-tensor with m5n2r pointwise and pairwise distinct real eigenvalues

with orthogonally integrable eigenvectors.

~c! The manifolds orthogonal to these eigenvectors are D-invariant.

~d! The potential V is D-invariant and d(K•dV)50.

~e! For m0.1, d(K•dgab)50.

This is an extension of Theorem 2 to the general nonorthogonal separation. Notice that the

orthogonal integrability of D does not appear in this statement, but it remains a crucial necessary

condition.

Remark 3: The extreme cases r50 and r5n are included in Theorem 5. For r50 the space

D disappears and K plays the essential role. For r5n no K-tensor is involved, V is constant and

the manifold Q is locally flat. The separable coordinates determined by an orthogonal basis of D

are rectangular Cartesian coordinates. Also the case r5n21 is in some sense trivial, since as a

characteristic K-tensor we can take the metric tensor g itself. In all these three cases the separation

is orthogonal and m050.

The nondegenerate separable systems (m050) are of particular interest. Among them we find

all the separable systems in positive definite metrics and all the orthogonal separable systems.

They are examined in Sec. V.
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III. NECESSARY CONDITIONS FOR THE SEPARATION

We base our discussion on the following known properties concerning separable coordinates.

~a! A Hamiltonian H(qI ,pI ) is separable in a coordinate system qI if and only if equations

] i] j H] i H] j H2]i]
j H] i H]j H1]i]j H] i H] j H2] i]j H] i H] j H50 ~3.1!

are identically satisfied, for iÞ j ~no summation over these indices!. Here the notation ] i5]/]q i

and ] i
5]/]p i is used. These are the separability conditions of Levi-Civita mentioned in the

Introduction.2

~b! If a Hamiltonian H is separable in two separable and overlapping coordinate systems then

these two systems are called equivalent if in the intersection of their domains they yield the same

complete solution of the H–J equation.

~c! Let a Hamiltonian H be separable in a coordinate system qI . A coordinate q i is of first class

if the ratio ] iH/] iH is a linear ~homogeneous! function in the momenta pI , otherwise it is of

second class.2,3,8,9,18 When ] iH50 the coordinate q i is ignorable. An ignorable coordinate is

obviously of first class. It is convenient to denote by (qa) ~with Greek indices running from m

11 to n! the first class coordinates and by (qa) ~with first Latin indices running from 1 to m! the

second class coordinates. Working on the separability conditions of Levi-Civita ~3.1! it can be

proved that9,10 ~1! the numbers (r ,m) of first and second class coordinates are invariant; they are

the same in two equivalent systems of separable coordinates; ~2! by a coordinate transformation

preserving the separation all first class coordinates are reducible to ignorable coordinates, ]aH

50.

~d! Let G be the geodesic Hamiltonian of a Riemannian manifold and V a potential function.

If the Hamiltonian H5G1V is separable then also G is separable in the same coordinates.2 Thus

the separation of the geodesic Hamiltonian G is a necessary condition for the separation of the

complete Hamiltonian H5G1V .

~e! For a geodesic Hamiltonian G the partial derivatives (]a) with respect to the ignorable

coordinates (qa), interpreted as vector fields, are independent and commuting K-vectors. We

recall that a K-vector is a vector field X on Q such that the function EX5X ip i is a ~linear! first

integral of the geodesic flow: $G ,EX%50. A K-vector generates a local one-parameter group of

isometries. We recall that two vector fields commute, i.e., their Lie-brackets are zero, if and only

if the corresponding linear functions on T*Q are in involution.

~f! For a geodesic Hamiltonian G it can be shown that9,10 ~1! in two equivalent separable

systems the second class coordinates are related by separated transformations i.e. by a transfor-

mations with diagonal Jacobian matrix; ~2! the second class coordinates are orthogonal, i.e., gab

50 for aÞb ~see Ref. 3 for a positive-definite metric and Ref. 10 for a nondefinite metric!.

~g! Among the second class coordinates we consider a further classification. A second class

coordinate qa is null if gaa
50. We label the second class null coordinates by q ā and the non-null

coordinates by q â, with â51,....m1 , ā5m111,...,m5m11m0 . Due to ~f!-1 also the number m0

of the null coordinates is invariant. It will be shown that

m0<min~p,q!, m0<r, ~3.2!

where (p ,q) is the signature of the metric.

~h! There exist equivalent coordinate systems (q â,q ā ,qa) such that all first class coordinates

(qa) are ignorable and g âa
50 for any non-null second class index â .9 These coordinates are

called normal separable coordinates. In these coordinates the matrix of the contravariant compo-

nents of the metric tensor assumes the standard form
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~3.3!

In the proof of this property, which is based on the separability conditions of Levi-Civita ~3.1!, we

find the equations9 ]b]aG5 f b
a]aG , for aÞb indices of second class, where f b

a are functions of the

coordinates q only. These equations are equivalent to

]bg
ai

5f b
agai ~3.4!

and are used for generating an equivalent separable coordinate system such that g âa
50. From the

standard form ~3.3! we can see that ~3.2! holds since m0.r would imply det(gij)50.

Let us examine the geometrical implications of these results for a geodesic Hamiltonian G .

Assume that on Q2S , where S is a closed singular set, there is an atlas of equivalent separable

charts. Since second class coordinates remain essentially unchanged in an equivalent coordinate

transformation @points ~c!-1 and ~f!-1#, the corresponding coordinate hypersurfaces build up m

transversal foliations (S
a). Due to ~f!-2; these foliations are pairwise orthogonal. Let us consider

a subatlas of separable charts with ignorable first class coordinates @this subatlas exists because of

~c!-2#. The K-vectors corresponding to the ignorable coordinates are tangent to the leaves of the

foliations Sa, since ]aqa
50. They commute and span a regular distribution D, which is com-

pletely integrable and whose integral submanifolds ~of dimension r! coincide with the complete

intersections of the leaves of (S
a). Let (Xa) be the vector fields corresponding to the differentials

(dqa) of the second class coordinates. Since the vector fields (]a) span the distribution D and

Xa
•]a5]aqa

50, it follows that the independent vector fields (Xa) span the orthogonal distribu-

tion D'. Moreover, from Xa
5gai] i5gaa]a1gaa]a it follows in particular that X ā

5g ā a]a . This

shows that these vector fields also belong to the distribution D, thus they belong to the distribution

I5DùD'. Furthermore, no linear combination f âXâ belongs to D, since from f âXâ
5 f a]a by

scalar multiplication by Xb
ˆ

it follows 05 f âXâ
•Xb̂

5 f âg â b̂
5 f b̂g b̂ b̂ ~no summation on b̂!, that is

f b̂50. This shows that the m5m11m0 vector fields (Xâ
•X ā ) span D' and the m0 vector fields

(X ā ) span the intersection distribution I . As a consequence, m05dim(Iq). Since this number is

invariant @point ~g!# the distribution I is regular. Since the vector fields (Xa) span the orthogonal

distribution D' and in normal separable coordinates Xâ
5g âa]a1g ââ] â reduces to Xâ

5g ââ] â , this

distribution is also spanned by the vector fields (] â ,X ā ). Since (qa) are ignorable coordinates, it

follows that @X ā ,X b̄ #5@g ā a]a ,g b̄ b]b#50. Moreover, due to ~3.4!, @] â ,X ā #5] âg ā a]a

5 f â

ā
g ā a]a5 f â

ā
X ā . This proves that both D' and I are involutive, thus completely integrable ~it

is a general property that if both D and D' are involutive then I5DùD' is involutive!. Thus we

have proved that

Proposition 1: An atlas of equivalent separable coordinate systems with r first class coordi-

nates and m0 null second class coordinates generates m5n2r pairwise transversal and orthogonal

foliations (S
a)5(S

1, . . . ,S m) of submanifolds of codimension 1, whose complete intersections

form a foliation E of submanifolds of dimension r which are the orbits of the action of an Abelian

group of isometries. If D is the distribution of vectors tangent to the foliation E , then the orthogo-
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nal distribution D' and the intersection I5DùD' are completely integrable. The rank of the

distribution I is m0 .

Notice that the distribution I is made of null vectors ~this is equivalent to I#I'!. This implies

the bound ~3.2!1. Possibly by enlarging the critical set S on Q , we can assume that there is a

global r-dimensional space D of commuting K-vectors generating D, then we have a K-web

according to Definition 2 of Sec. II. Hence, Proposition 1 leads to point ~i! of Theorem 3.

Now we consider the connection between separation and K-tensors. A Killing 2-tensor is a

contravariant 2-tensor K5(K i j) such that the function

EK5
1
2 K i jp ip j

is a ~quadratic! first integral of the geodesic flow: $G ,EK%50. In the theory of separation the role

played by these tensors is essentially algebraic; interpreted as linear endomorphisms on vectors

and 1-forms they produce eigenvalues, eigenvectors, and eigenforms, and the properties of such

objects are used for characterizing the separation. For our purposes, it is convenient to summarize

this crucial topic in the following three propositions.

Proposition 2: For a metric tensor of the standard form ~3.3! with (qa) ignorable coordinates,

the H–J equation is separable if and only if9

g ā a
5u ā

aw ā ~ ā n .s . !, g â â
5w â, ~3.5!

where each u ā

a
is a function of x ā only, and the functions (wa)5(w â,w ā ) and gab satisfy the

following differential equations:

H ]a]bwc
2]a ln wb]bwc

2]b ln wa]awc
50,

]a]bgab
2]a ln wb]bgab

2]b ln wa]agab
50.

~aÞb ! ~3.6!

Proof: For a metric of the form ~3.3! the geodesic Hamiltonian is

G5
1
2g

â âp â

2
1g ā ap ā pa1

1
2g

abpapb ,

and since the coordinates (qa) are ignorable the separability conditions of Levi-Civita are not

trivial only for pairs of indices of second class (i , j)5(a ,b). By these conditions it is possible to

prove that g ā a has the form ~3.5!1. ~see the proof of Theorem 5.4 in Ref. 10!. Thus a straightfor-

ward calculation shows that the separability conditions, which are polynomial equations of fourth

degree in the momenta, are equivalent to ~3.6!. j

In ~3.6! and in the following discussion by ]a ln wc we actually mean ]a lnuwcu5(wc)21]aw
c

when wc
,0. Now we examine Eqs. ~3.6! from a different point of view.

Proposition 3: The differential equations ~3.6! are the necessary and sufficient conditions for

the complete integrability of the linear differential system

H ]a̺b5~̺a2̺b!]a ln wb,

]aKab
5̺a]agab,

~3.7!

in the unknown functions (̺a ,Kab) of the variables (qa).

Proof: A straightforward calculation shows that the integrability conditions ]a]b̺c5]b]a̺c

of the system ~3.7! are ~a , b n.s.!

~̺a2̺b!~]a]bwc
2]a ln wb]bwc

2]b ln wa]awc!50. ~3.8!

If Eqs. ~3.6!1. hold, then ~3.8! are identically satisfied. Conversely, if the linear system (3.7)1 is

completely integrable then it has local solutions such that ̺aÞ̺b for aÞb ~indeed in a vector
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space there are vectors with distinct components with respect to any fixed basis! so that ~3.8!
implies ~3.6!1. Under the assumption that ~3.7! is integrable the integrability condition of ~3.7!
becomes

~̺a2̺b!~]a]bgab
2]b ln wa]agab

2]a ln wb]bgab!50. ~3.9!

Following the same reasoning as before, we conclude that Eqs. ~3.9! are equivalent to ~3.6!2. j

Remark 1: This proof shows that the complete integrability of the subsystem ~3.7! is equiva-

lent to the existence of a solution such that ̺aÞ̺b for aÞb .

Proposition 4. Let (g i j) be a metric tensor of the form ~3.3! with (qa) ignorable coordinates

and such that ~3.5! hold. Then the 2-tensor K5(K i j) defined by

~K i j!5S ̺ âg â â 0 0

0 0 ̺ b̄ g b̄ b

0 ̺ ā ga ā Kab
D ~3.10!

is a K-tensor if and only if Eqs. ~3.7! are satisfied. All K-tensors of this kind commute ~i.e., the

corresponding functions EK are all in involution!.
Proof: The left-hand side of the Killing equation $G ,EK%50 is a third degree polynomial in

the momenta p , so that all the coefficients must vanish. In the present case

H G5
1
2 w âp â

2
1u ā

aw ā p ā pa1
1
2 gabpapb ,

EK5
1
2 ̺ âw âp â

2
1̺ ā u ā

aw ā p ā pa1
1
2 Kabpapb .

A straightforward calculation shows that $G ,EK%50 is equivalent to ~3.7! and $EK ,EK8%50 for

two K-tensors K and K8 determined by two solutions of ~3.7!. j

The functions (̺a) entering in this discussion are eigenvalues of K corresponding to eigen-

forms (dqa). The metric tensor g (̺a51) is always a solution of ~3.7!. The first-class ~ignorable!
coordinates (qa) do not appear at all, so that ]aK i j

50. This means that the K-tensors are

D-invariant. Thus from Propositions 2, 3, 4 and Remark 1 we derive point ~ii! of Theorem 3.

Remark 2: Equations (3.7)2 are equivalent to

dKab
5K•dgab. ~3.11!

Indeed, for a function F the components of the 1-form h5K•dF are h i5g i jK
jh]hF . If ]aF

50 by ~3.10! we find

H ha5ga j̺ag ja]aF5da
a
̺a]aF50,

ha5ga j̺bg jb]bF5da
b
̺b]bF5̺a]aF .

so that ~3.11! is equivalent to (3.7)2 . The integrability condition of ~3.11! is

d~K•dgab!50. ~3.12!

This proves point ~iii! of Theorem 3.

So far we considered a geodesic Hamiltonian G . Now we examine a separable Hamiltonian

H5G1V . All the preceding procedure should be repeated from the very beginning, by dividing

the coordinates into two classes and so on. However, this long way can be avoided since we can

reduce again to a geodesic case by considering the so-called Eisenhart metric.24 Let us consider

the manifold Q̄5R3Q with local coordinates (q0,q i) ~q0 is the natural coordinate over R! and

the cotangent bundle T*Q̄5R
2
3T*Q with momenta (p0 ,p i). Since at this level we deal with
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local objects we can assume that VÞ0, so that we can consider locally on Q̄ a contravariant metric

tensor ḡ whose contravariant components are g i j, g0i
50 and g00

52V . Then the geodesic Hamil-

tonian is

Ḡ5G1Vp0
2
5

1
2g

i jp ip j1
1
2g

00p0
2.

Since q0 is ignorable, p0 is a constant of motion. If we consider on T*Q̄ the geodesic flow of Ḡ

then we can see that the integral curves with p051 are projected onto T*Q in the integral curves

of the Hamiltonian H5G1V . Moreover, the separation of the H–J equation corresponding to H

is equivalent to the separation of the H–J equation corresponding to Ḡ , which is a geodesic

Hamiltonian. Indeed, if W(qI ,cI )5W(q1,cI )1•••1Wn(qn,cI ) is a separated complete integral of

H5G1V , then W̄5W(q1,cI )1•••1Wn(qn,cI )1c0q0 is a separated complete integral of Ḡ ,

where c0 is a further constant.

By applying to Ḡ the results concerning the separation of the geodesic H–J equation we find

on Q̄ a K-web (S̄ ,D̄), where the space D̄ contains the K-vector ]0 , and a K-tensor K̄. Since they

are ]0-invariant, they project onto a K-web (S ,D) and a K-tensor K of Q , satisfying the prop-

erties considered above. Moreover, since the metric ḡ is represented by the pair (g,V) and K̄ by

a pair (K,U), it follows that K̄ is a K-tensor if and only if K is a K-tensor and

dU5K•dV . ~3.13!

This implies

d~K•dV !50. ~3.14!

Moreover, since ḡ is D̄-invariant, it follows that V is D-invariant. This completes the proof of

Theorem 3 of Sec. II.

Remark 3: Equations ~3.6! and ~3.7! hold for the extended metric, thus also for g00
52V

~notice that ]aV50 since V is D-invariant!. Hence, the separability conditions (3.6)2 as well

equations (3.7)2 are implemented by the analogous equations corresponding to V , namely,

]a]bV2]a ln wb]bV2]b ln wa]aV50. ~3.15!

and

]aU5̺a]aV , ~3.16!

where K00
52U . This last equation is equivalent to ~3.13! and the separability conditions ~3.15!

are equivalent to the integrability condition ~3.14! ~since the eigenvalues are distinct!.

Remark 4: We say that a K-web (S m ,Dr) is reducible if there exists a K-web (S
m8
8 ,D

r8
8 )

such that m8,m , D,D8 and S 8 is a subweb of S . The necessary conditions listed in Theorem

3 do not exclude the existence of a reduced K-web (S 8,D8) satisfying the same conditions, but

such that the potential V is no more D8-invariant. A simple concrete example is the following ~see

also Sec. VI!. Let (S 2 ,D1) be the K-web in Q5R
3
5$(x ,y ,z)% ~the Euclidean space! where D1

are the rotations around the z-axis and S 5(S
1,S 2) are the cylinders around the z-axis and the

planes orthogonal to the z-axis, respectively. This web is reducible to (S 18 ,D28) where D28 con-

tains D1 and the translations along the z-axis, and S 18 is the subweb made of the cylinders. Then

we observe that the Hamiltonian H5G1V with a potential of the kind V5A(z)1B(r) is sepa-

rable in the cylindrical coordinates (q1,q2,q3)5(z ,r ,u) and the K-web produced by the proof of

Theorem 3 is just (S 2 ,D1). However the cylindrical coordinates by themselves generate the

reduced web (S 18 ,D28), where V is not D8-invariant.

Remark 5: Let us consider on T*Q the Hamiltonian H5G1V and the functions
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EK5
1
2 K i jp ip j , FK5EK1U ,

where K is a symmetric 2-tensor. Then FK is a first integral, that is $H ,FK%50, if and only if

$G ,EK%50, dU5K•dV .

This first equation means that K is a K-tensor. The second one is just Eq. ~3.13!. Thus Eq. ~3.14!
where K is a Killing tensor is a necessary condition for the existence of a first integral of the kind

FK5EK1U . This also shows that if we know a basis (Ka) of K then locally we can construct m

quadratic first integrals in involution of this kind by integrating the closed 1-forms Ka•dV ~Re-

marks 1, 2, Sec. II!.

IV. SUFFICIENT CONDITIONS FOR SEPARATION

Let (S m ,Dr) be a K-web and let (qa,qa) be adapted coordinates defined as in Sec. II; (qa)

are independent functions such that the differentials (dqa) are characteristic 1-forms of the folia-

tions (S
a) and the coordinates (qa) are the affine parameters of the integral curves of a basis

(Xa) of D , based on the points of an arbitrary chosen local section W of these foliations. Since

these vectors are tangent to the foliations (S
a) we have ^Xa ,dqa&50. Since they commute, a

local coordinate system (qa,qa) is defined such that Xa5]a . Since they are K-vectors, the

coordinates (qa) are ignorable, i.e., ]ag i j
50. The vector field Xa corresponding to the 1-form dqa

is orthogonal to the manifolds of the foliation S
a. Since these foliations are orthogonal it follows

that gab
5Xa

•Xb
50 ~for aÞb!. Moreover, by the same reasoning used in Sec. III, it follows that

the m independent vector fields (Xa) span the orthogonal distribution D' and that m0

5dim(DpùDp
') is the number of those coordinates (q ā ) for which g ā ā

50 ~null coordinates!.
Hence, in the coordinates (qa,qa) the matrix (g i j) has the form

. ~4.1!

Let us assume that there exists a D-invariant K-tensor K such the vector fields orthogonal to

the foliations (S
a) are eigenvectors corresponding to distinct eigenvalues (̺a). Since qa

5constant on S
a, it follows that the 1-forms (dqa) satisfy the eigenform equation

K•dqa
5̺adqa, ~4.2!

equivalent to

Kai
5̺agai.

We have in particular

Kaa
5̺agaa, K â â

5̺ âg â â, K ā ā
50, Kab

50 ~aÞb !. ~4.3!

Thus the matrix (K i j) has a form similar to ~4.1!. Since K is a K-tensor, the Killing equation holds

$G ,EK%50, where
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H G5
1
2 g i jp ip j5

1
2 g â âppâ

2
1gaapapa1

1
2 gabpapb ,

EK5
1
2 K i jp ip j5

1
2 K â âp â

2
1Kaapapa1

1
2K

abpapb .

Since K is D-invariant, the components (K i j) do not depend on the ignorable coordinates (qa);

]aK i j
50. Thus we find the equation

g â âp â] âEK1gabpb]aEK2K â âp â] âG2Kabpb]aG50. ~4.4!

The left-hand side is a homogeneous polynomial of third degree in the momenta p whose coef-

ficients must vanish. This leads to seven equations, corresponding to seven different kinds of

coefficients, which we analyze separately.

~1! The equation corresponding to the coefficient of p âp
b̂

2
is

g â â] âK b̂ b̂
2K â â] âg b̂ b̂

50.

Due to ~4.3! this is equivalent to

] â̺ b̂5~̺ â2r b̂!] â ln g b̂ b̂. ~4.5!

For â5 b̂ we have in particular ] â̺ â50.

~2! The equation corresponding to the coefficient of p âpb
ˆ pa for âÞ b̂ is

g â â] âK b̂a
1g b̂ b̂] b̂K âa

2K â â] âg b̂a
2K b̂ b̂] b̂g âa

50.

This is equivalent to

g â â~g b̂a] â̺ b̂2~̺ â2̺ b̂!] âg b̂a!1g b̂ b̂~g âa] b̺̂ â2~̺ b̂2̺ â!] b̂g âa!50.

By ~4.5! and the assumption ̺ âÞ̺ b̂ , this last equation reduces to

g â â~g b̂a] â ln g b̂ b̂
2] âgb

ˆ a!5g b̂ b̂~g âa] b̂ ln g â â
2] b̂g âa!,

that is

] âS g b̂a

g b̂ b̂ D 5] b̂S g âa

g â â D ~ âÞ b̂ !.

It is a remarkable fact that these equations can be interpreted as the integrability conditions of the

following linear differential system in the r unknown functions va(q â),

] âva
52

g âa

g â â
.

Indeed, a solution of this system provides a coordinate transformation

qa8
5qa

1va~q â!,

such that g âa8
50. From a geometrical point of view this coordinate transformation corresponds to

a change of the local section W considered in the definition of the coordinates adapted to the web.

Hence, from now on we can assume that g âa
50, so that the matrix (g i j) @as well as the matrix
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(K i j)# assumes the standard form ~3.3!. After this point we are in the situation discussed by

Kalnins and Miller in Ref. 18—proof of Theorem 3, which we shall follow with suitable modifi-

cations.

~3! The coefficient of p â

2
pa yields the equation ~sum over b!

gba]b~̺ âg â â!5̺bgba]bg â â,

which reduces to ~sum over ā!

g ā a@] ā̺ â2~̺ ā 2̺ â!] ā ln g â â#50.

Since the submatrix (g ā a) has maximal rank and m0<r , it follows that

] ā̺ â5~̺ ā 2̺ â!] ā ln g â â. ~4.6!

~4! The equation corresponding to the coefficient of p âp ā pa is ] â(̺ ā g ā a)5̺ â] ā g ā a. For

g ā aÞ0 this is equivalent to

] â̺ ā 5~̺ â2̺ ā !] â ln g ā a. ~4.7!

However, for any fixed index ā there is at least one index b for which g ā bÞ0 @otherwise

det(gij)50#. Let us set

w ā
5gb ā Þ0 ~4.8!

and write for any index a

ga ā
5u ā

aw ā . ~4.9!

By subtracting term by term Eq. ~4.7! and the same equation written for a5b we find

] âu ā

a
50. ~4.10!

Thus Eq. ~4.7! can be written

] â̺ ā 5~̺ â2̺ ā !] â ln w b̄ . ~4.11!

We remark that at this point we can prove that D is orthogonally integrable. Indeed, as we

have seen in Sec. III @the metric tensor has the standard form ~3.3!#, the orthogonal distribution is

spanned by the vector fields (] â ,X ā ) where X ā
5g ā a]a and @X ā ,X b̄ #50. Moreover @] â ,X ā #

5g ā a]a5u ā

a] âw ā ]a5(w ā )21g ā a]a5(w ā )21X ā , and this shows that D' is involutive.

~5! The equation corresponding to the coefficient p b̄ papb is ~sum over a!

ga~a]aKb) b̄
5Ka~a]agb) b̄ ,

and it is equivalent to

g ā ~a~ gb) b̄ ] ā̺ b̄ 2~̺ ā 2̺ b̄ !] ā gb) b̄!50, ~4.12!

with no summation over b̄ . As shown in Ref. 18, the discussion of this equation leads to the

following conclusion: Eq. ~4.8! hold with

] b̄ u ā

a
50 ~ b̄Þ ā !. ~4.13!
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and

] ā̺ b̄ 5~̺ ā 2̺ b̄ !] ā ln w b̄ . ~4.14!

At this point by setting

w â
5g â â

we can see that Eqs. ~4.5!, ~4.6!, ~4.11!, and ~4.14! form a system of the kind (3.7)1 ,

]a̺b5~̺a2̺b!]a ln wb,

including ]a̺a50 for a5b . This linear system has a solution such that ̺aÞ̺b for aÞb , so it is

completely integrable ~Remark 1 of Sec. III!. On the other hand, Eqs. ~4.10! and ~4.13! show that

each function u ā

a
entering in the representation ~4.9! depends on the variable q ā only. Thus by

Propositions 2 and 3 of Sec. III we conclude that the separability conditions (3.6)1 are satisfied. It

remains to show that also (3.6)2 are fulfilled, and for this we can use the remaining two equations

following from the Killing Eq. ~4.4!.
~6! The equation corresponding to the coefficient p âpapb is

] âKab
5̺ â] â] âgab. ~4.15!

~7! The part of Eq. ~4.4! corresponding to the monomials papbpg can be written

g āa~] ā Kbg
2̺ ā] ā gbg!pa pb pg50, ~4.16!

with summation on ā . If m050 ~no null coordinates! this equation is meaningless. If m051, this

equation implies

~] ā Kab
2̺ ā ] ā gab!pa pb50,

i.e.,

] ā Kab
5̺ ā ] ā gab. ~4.17!

We can put together ~4.15! and ~4.17! by writing

]aKab
5̺a]agab. ~4.18!

These are the second equations in ~3.7!. Thus the separability conditions are all satisfied and

Theorem 4 in Sec. II is proved for m051.

Remark 1: For m0.1 Eqs. ~4.17! do not follow from ~4.16! so that they must be considered

as further conditions to be imposed on K for the separability of the web. They involve the null

second class coordinates and the corresponding eigenvalues. Unfortunately their intrinsic meaning

remains obscure. Thus we return to the whole system ~4.18!, which includes ~4.17!; as we re-

marked in Sec. III this system is equivalent to dKab
5K•dgab and we can take the integrability

condition

d~K•dgab!50 ~4.19!

as an additional condition on K in order to get the separation of the K-web in the case m0.1.

Finally, we prove Theorem 5 of Sec. II. The conditions listed in the statement are necessary

for the separation because of Theorem 3. They are also sufficient: if a pair (D ,K) satisfying these

conditions is given, then the foliations (S
1, . . . ,S m) orthogonal to the m eigenvectors of K

corresponding to the distinct eigenvalues and the algebra D form a K-web, because of conditions
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~a!, ~b!, ~c!. Moreover, conditions ~b! and ~e! imply that this K-web is separable, due to Theorem

4. Finally, the D-invariance of V means that ]aV50 for the ignorable coordinates adapted to the

web, so that condition d(K•dV)50 is equivalent to the separability conditions ~3.15!, since the

eigenvalues are distinct. Thus Theorem 5 is proved.

V. NONDEGENERATE SEPARATION

We say that the separation is nondegenerate or regular if all second class coordinates are

non-null; gaaÞ0 (a51... .,m), i.e., m050. Intrinsically this means that DqùDq
'

50 at each point

q , so that the subspace Dq spanned by D is metrically nondegenerate. This is always the case for

a definite metric. Since D' is completely integrable, there is a foliation W of m-dimensional

submanifolds orthogonal to the orbits of D . These submanifolds are isometric under the action of

D . Let Q8 be the quotient set of the orbits of D . Locally Q8 can be identified with one of the

leaves of W . Moreover, the potential V reduces to a function on Q8. The second class coordinates

(qa) can be interpreted as orthogonal coordinates on Q8. When m050 the standard form of the

metric is

~g i j!5S gaa 0

0 gabD
and the separability conditions of Levi-Civita are equivalent to the following equations:

H ]a]bgcc
2]a ln gbb]bgcc

2]b ln gaa]agcc
50,

]a]bgab
2]a ln gbb]bgab

2]b ln gaa]agab
50.

]a]bV2]a ln gbb]bV2]b ln gaa]aV50,

~5.1!

with aÞb ~not summed!. Thus the coordinates (qa) on Q8 are separable and the manifold Q8 has

an orthogonal separable web.

If D has an orthogonal basis, then also the submatrix (gab) can be diagonalized and the

separation occurs in orthogonal coordinates. In Ref. 25 it is proved that on a manifold with

positive metric and constant curvature an Abelian algebra of K-vectors D which is orthogonally

integrable has an orthogonal basis ~this property also holds for an hyperbolic metric with constant

positive curvature, when D is metrically nondegenerate!, so that in these manifolds the separation

is orthogonal. This property was previously proved by Kalnins and Miller ~see Refs. 26–28! by

another method.

If (Xa) is an orthogonal basis of D , then

K
*

5K1caXa ^ Xa ~ca
PR! ~5.2!

is a K-tensor with eigenvectors (Xa,Xa). We can choose the constants (ca) in order to get all

distinct eigenvalues for K
*

. Thus the tensor K
*

characterizes the orthogonal separation according

to Theorem 1 of Sec. II.

These remarks suggest the following inverse problem. Assume that on a Riemannian manifold

Q there is a linear r-dimensional space D of commuting K-vectors such that ~i! the distribution D
spanned by D is regular and metrically nondegenerate and ~ii! D' is completely integrable.

Furthermore, assume that on an integral manifold Q8 of D' there is an orthogonal separable web

S 8. Then by the action of D we can extend this web to a K-web (S ,D) on Q . When is this

K-web separable? An answer is given by the following:

Proposition 1: Assume that the orthogonal sepable web S 8 on Q8 is characterized by a

K-tensor K
*
8 with pointwise simple eigenvalues and orthogonally integrable eigenvectors. Then

the orthogonal K-web (S ,D) is separable if and only if on Q8
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d~K
*
8 •dgab!50, ~5.3!

where (gab) is the inverse matrix of (gab), gab5Xa•Xb and (Xa) is a local basis of D . In this

case a characteristic K-tensor of the separable web (S ,D) is

K5K̄
*
8 1

1
2 KabXaùXb , ~5.4!

where K̄
*
8 is the extension of K

*
8 to Q by the action of D , ù is the symmetric tensor product, and

dKab
5K

*
8 •dgab. ~5.5!

Proof: Notice that the functions gab as well as gab are D-invariant, so that they reduce to

functions on Q8. As we already observed Eqs. ~5.3! are the integrability conditions of Eqs. (3.7)2 ,

which coincide with the separability conditions (5.1)2 . Furthermore, let us consider local coordi-

nates (qa,qa) adapted to the splitting (Q8,D); (qa) are coordinates on Q8 and the coordinates

(qa) are such that ]a5Xa form a basis of D ~thus they are ignorable!. The geodesic Hamiltonians

G8 and G on Q8 and Q , respectively, are

G85
1
2g

abpapb , G5
1
2g

abpapb1
1
2g

abpapb5G81R .

Moreover, if

EK
*
8 5

1
2K

abpapb , ~5.6!

then

EK5
1
2K

abpapb1
1
2K

abpapb5EK
*
8 1S . ~5.7!

Since $G8,EK
*
8 %50 ~K

*
8 is a K-tensor on Q8! and $R ,S%50, equation $G ,EK%50 ~K is a

K-tensor! is equivalent to $G8,S%1$R ,EK
*
8 %50, that is to dKab

5K
*
8 •dgab

50. Finally, we

observe that the characteristic conditions of Theorem 5 of Sec. II are satisfied by the pair

(D ,K). j

A longer discussion is needed when the orthogonal separation on Q8 is determined by a pair

(D8,K8) where D8 is a r8-dimensional space of commuting K-vectors on Q8 ~with an orthogonal

basis! and K8 is a K-tensor characterizing the separation. However, we can always reduce the

problem to the previous case by considering on Q8 a characteristic K-tensor of the form ~5.2!,

K
*
8 5K81ca8Xa8

^ Xa8
, ~ca8

PR!, ~5.8!

where (Xa8
) is an orthogonal basis of D8. With this choice Eqs. ~5.3! split in the two subsystems

d~^Xa8
,dgab&ja8

!50, d~K8•dgab!50, ~5.9!

where ja8
is the 1-form corresponding to Xa8

.

In this situation a further question arises. By the action of D an element X8PD8 is extended

to a vector field X̄8 on Q; when is this vector a K-vector? @Notice that when this happens then the

K-web (S
a,D) is reducible.# The answer is given by the following:

Proposition 2: The vector field X̄8 is a K-vector if and only if

^X8,dgab&50. ~5.10!

Proof: In the local coordinates used in the preceding proof we have EX8
5E X̄8

5Xapa . Since

$G8,E X̄8%50, equation $G ,EX8%50 is equivalent to Xa]agab
50, i.e., to ~5.8!. j
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VI. ILLUSTRATIVE EXAMPLES

In order to illustrate how the intrinsic method works we consider some examples concerning

the general theory and the separation in the Euclidean spaces of dimension 2 and 3. Only rectan-

gular Cartesian coordinates and ordinary vector calculus will be used for representing and dealing

with the intrinsic objects. For the sake of brevity we shall not write the coordinate transformations

relating the Cartesian coordinates with the separable coordinates adapted to the separable webs

encountered in the following examples.

A. The Bertrand–Darboux–Whittaker theorem

In a two-dimensional manifold a separable web is characterized by a single K-tensor K with

simple eigenvalues, since the orthogonal integrability of the eigenvectors is obviously satisfied.

The points where the two eigenvalues coincide ~or are not real, in the case of a hyperbolic

metric23! are singular points. A potential V is separable in the separable web characterized by K

if and only if the 1-form w5K•dV is closed. If w5dU , then the function

F5EK1U5
1
2K

i jp ip j1U ~6.1!

is a first integral. Thus for n52 the separation is equivalent to the existence of a quadratic first

integral ~different from the energy!. This is essentially the content of the so-called Bertrand–

Darboux–Whittaker theorem for the Euclidean plane ~see Ref. 29, Secs. 152, 153, and also Refs.

30, 31!, which however holds for any two-dimensional manifold. This theorem can be extended to

a manifold of any dimension, provided the K-tensor corresponding to the quadratic first integral

satisfies the conditions of Theorem 2 of Sec. II ~for the orthogonal separation! or of Theorem 3

~for the nonorthogonal separation!. For instance, since the separation on a Riemannian manifold

with positive metric and constant curvature is orthogonal, we can affirm that

Proposition 1: On a Riemannian manifold with positive metric and constant curvature the

separation of H5G1V occurs if and only if there exists a quadratic first integral such that the

corresponding K-tensor has pointwise single eigenvectors and orthogonally integrable eigenvec-

tors ~or closed eigenforms!.
In Ref. 30 we find an analogus statement, but restricted to a flat metric and involving n first

integrals.

B. Separation in the Euclidean plane R
2

Let us consider a Hamiltonian of the form

H5
1
2~px

2
1py

2!1V~x ,y !. ~6.2!

We can interpret (x ,y) as rectangular Cartesian coordinates. For establishing that it is separable,

in these coordinates or in some other system of coordinates, we can check if equation dw5d(K

•dV)50 is satisfied for a generic K-tensor in the Euclidean plane. Since the components of such

a tensor are

H Kxx
5A12ay1gy2,

Kyy
5B12bx1gx2,

Kxy
5C2ax2by2gxy ,

~6.3!

where (A ,B ,C ,a ,b ,g) are constant, we can translate the separability condition d(K•dV)50 into

a differential equation on V(x ,y) ~see Ref. 30, where such a differential equation is obtained by

another method!. However, it is known that on R
2 there are four kinds of separable orthogonal

webs, made of confocal conics, including degenerate cases. They can be characterized by the

K-tensors of the form21
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K5RF1
ùRF2

, ~6.4!

where ù is the symmetric tensor product (AùB5A^ B1B^ A) and RF denotes the unitary

rotation vector field around the point F; RF(rF)5v3rF , where rF is the position vector with

respect to the point F and v is a unitary vector orthogonal to the plane. The center F can go to

infinity; in this case RF is a unitary constant vector field orthogonal to the direction of F ~a
translation field!. The centers (F1 ,F2) are the focuses of the conics. When the two focuses are

distinct we have the elliptic–hyperbolic web; when the focuses coincide we have the polar web;

when one focus goes to infinity we have the parabolic web and finally, when both focuses go to

infinity, we have the Cartesian web. The focuses are the singular points of the K-tensors and form

the singular set of the web. Thus it is possible to check if the Hamiltonian ~6.2! is separable or not

by trying if equation dw5d(K•dV)50 is satisfied for one of the four kinds of K-tensors ~6.4!.
For the elliptic web the K-tensor has the form K5v3(r2r1)ùv3(r2r2), where r, r1 , and r2

are the radius vectors, with respect to the origin O of the coordinates, of the generic point P

5(x ,y) and of the two focuses F15(x1 ,y1), F25(x2 ,y2), respectively. A straightforward cal-

culation shows that the separability condition dw50 is equivalent to the differential equation

@~y2y1!~x2x2!1~y2y2!~x2x1!#~Vxx2Vyy!12@~y2y1!~y2y2!2~x2x1!~x2x2!#Vxy

13~2y2y12y2!Vx23~2x2x12x2!Vy50. ~6.5!

For r15r2 we have the polar web and the separability Eq. ~6.5! reduces to

~y2y1!~x2x1!~Vxx2Vyy!1@~y2y1!2
2~x2x1!2#Vxy13~y2y1!Vx26~x2x1!Vy50.

~6.6!

For the parabolic web the K-tensor has the form K5v3(r2r1)ùX, where X5ai1bj is a

constant vector @we denote by (i,j) the unitary vectors of the coordinates (x ,y)#. In this case the

separability condition is

@a~x2x1!2b~y2y1!#~Vxx2Vyy!12@b~x2x1!1a~y2y1!#Vxy13aVx13bVy50. ~6.7!

Finally the Cartesian web is characterized by a K-tensor of the kind K5X^ X so that the sepa-

rability condition is

~a2
2b2!Vxy1ab~Vyy2Vxx!50. ~6.8!

Thus we have proved

Proposition 2: The Hamiltonian ~6.2! is separable if and only if one of the Eqs. ~6.5!, ~6.6!,
~6.7!, and ~6.8! is satisfied with some values of the constant parameters (x1 ,y1), (x2 ,y2), (a ,b).

The values of these parameters locate the focuses of the web and the directions of the relevant

axes, so that the corresponding separable coordinates can be immediately determined @this is an

advantage with respect to the use of the generic K-tensor ~6.3!#.
By applying Proposition 2 we can find as particular cases some separable systems known in

the literature ~see for instance Refs. 30, 32!. Let us consider for instance a cubic potential

V5ax1by1gx2
1dy2

1exy1lx3
1my3

1̺x2y1sxy2. ~6.9!

By applying Eq. ~6.7! it can be seen that this potential is separable in a parabolic web if and only

if the following six equations are satisfied @they correspond to the six coefficients of the second-

degree polynomial resulting from ~6.7!#,
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5
7b̺15al22as50,

7as115bm22b̺50,

2a̺12bs2am2bl50,

8ag22ad15be12~3l2s !~by12ax1!24̺~bx11ay1!50,

8bd22bg15ae12~̺23m !~by12ax1!24s~bx11ay1!50,

2~g2d !~by12ax1!22e~bx11ay1!13aa13bb50.

~6.10!

The known integrable cases of the so-called Henon–Heiles potential can be found. For instance,

the case e5m5̺50, that is the potential

V5ax1by1gx2
1dy2

1lx3
1sxy2, ~6.11!

leads to equations

5
a~15l22s !50,

as50.

b~2s2l !50,

4ag2ad1~3l2s !~by12ax1!50,

4bd2bg22s~bx11ay1!50,

2~g2d !~by12ax1!13aa13bb50.

~6.12!

The second equation is satisfied for a50 or s50. In the case a50 ~so that bÞ0! and sÞ0 we

find

l52s , y150, x15

4d2g

2s
, b50.

This means that the potential

V5ax1gx2
1dy2

1s~2x3
1xy2! ~6.13!

is separable in the parabolic web with focus at the point @(1d2g)/2s ,0# and axis the x-axis.

Assuming a5s50, Eq. ~6.12! imply

l50, g54d , y150, b50.

We conclude that the potential

V5ax1d~4x2
1y2! ~6.14!

is separable in all the parabolic webs with axis the x-axis. The case aÞ0 and s50 leads to the

trivial potential V50. It is interesting to remark that Eq. ~6.8! is satisfied by the potential ~6.11!
for a5b , d5g and s53l . This means that the potential

V5ax1by1g~x2
1y2!1lx~x2

13y2! ~6.15!

is separable in the Cartesian web obtained from that corresponding to the coordinates (x ,y) by a

rotation of p/4.

When a potential is known to be separable in a web characterized by a K-tensor K, then by

using an integral function U of the form w we can construct the first integral F ~6.1!. Let us

consider for example the separable potential ~6.13! with g54d ,

V5ax1d~4x2
1y2!1s~2x3

1xy2!.
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The parabolic web is now centered at the origin of the coordinates (x ,y). In this web the com-

ponents of the K-tensor and of the form w ~6.11! are

Kxx
50, Kxy

52y , Kyy
5x ,

and

wx522dy2
22sxy2, wy524dxy22sx2y2ay2sy3,

so that w5dU with

U522dxy2
2sx2y2

2
1
2ay2

2
1
4sy4.

Thus we find the first integral

F5
1
2xpy

2
2ypxpy22dxy2

2
1
2ay2

2s~x2y2
1

1
4y4!.

C. Separation in the Euclidean space R
3

By discussing the differential equations arising from the separability conditions and the van-

ishing of the Riemann tensor Eisenhart12 proved that in R
3 there are 11 kinds of inequivalent

orthogonal separable coordinates and that the corresponding coordinate surfaces are confocal

quadrics, including planes. ~The separation in the Euclidean 3-space was previously investigated

by Weinacht;33 from his analysis, based on results of Dall’Acqua34 concerning the separation on

3-manifolds, it follows that any possible separable system in R
3 have an orthogonal equivalent. As

we already mentioned, the orthogonal separation on manifolds of constant curvature can be proved

by an intrinsic method.! However, all the separable webs in R
3 can be determined and classified

by means of Proposition 1 of Sec. V. We have to consider all possible r-dimensional orthogonally

integrable spaces Dr of commuting K-vectors ~with r50,1,2,3! and all the separable orthogonal

webs on a transversal manifold Q8 of the orbits of Dr characterized by a K-tensor K
*

.

Case r50: This case corresponds to asymmetric orthogonal separable webs. It is known that

there are exactly three kinds of such webs, generated by three different K-tensors with simple

eigenvalues and orthogonally integrable eigenvectors. How to find these Killing tensors is ex-

plained in Refs. 21 and 22 ~for any dimension n!. Two of them can be interpreted as the inertia

tensors of an asymmetric body of massive points with total mass mÞ0 or m50 ~the masses are

assumed to be eighter positive or negative numbers!. Both tensors have the form

K5tr~L!g2L. ~6.16!

For the case mÞ0 the tensor L is defined by

L5A1mr^ r, ~6.17!

where r is the radius vector with respect to the center of mass and A is a constant linear operator

with simple eigenvalues (aa) (a51,...,n) ~the inertia tensor at the center of mass!. For m50 the

tensor L is defined by

L5A1r^ w1w^ r, ~6.18!
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where r is the radius vector with respect to a certain focal point O , w is a constant vector such that

A•w50, and again A is a constant linear operator with simple eigenvalues (aa) (a51,...,n) ~in
this case one of them is zero!. The explicit expressions of the corresponding K-tensors are

H Ke5~ tr~A!1mr2!g2A2mr^ r,

Kp5~ tr~A!12r•w!g2A2r^ w2w^ r ~A–w50 !.
~6.19!

The K-tensors determined in this way have simple eigenvalues everywhere and their eigenvectors

generate the elliptic-hyperbolic web and the parabolic web, respectively. Both webs are made of

confocal quadrics. Each one of these two tensors generates a whole space K of commuting

K-tensors by an iterative process described in Ref. 21. In the case mÞ0 all these tensors are linear

nonhomogeneous functions of m . Taking the coefficients of m ~which in a sense corresponds to

consider the limit for m→`! we get a new space of commuting K-tensors generating a new

separable web, the spherical-conical web. A K-tensor with simple eigenvalues corresponding to

this web is

Ks5~r2 tr~A!2r–A–r!g2r2A2tr~A!r^ r1A–r^ r1r^ A–r, ~6.20!

where A is a constant linear operator with simple eigenvalues (aa). Notice that for n52 the

spherical web reduces to the polar web, which is symmetric; thus in R
2 we have only two

asymmetric separable webs.

For n53 the K-tensors ~6.19! and ~6.20! have an equivalent representation in terms of trans-

lations and rotations. A translation is a constant vector and a rotation is a vector field R5v3r,

where v is a constant ~unitary! vector and r is the generic position vector with respect to a fixed

point O belonging to the axis A of rotation. If we consider in R
3 an orthogonal unitary frame

(i,j,k) corresponding to Cartesian coordinates (x ,y ,z), then the ~unitary! rotations around the axis

are defined as follows:

Rx5yk2zj, Ry5zi2xk, Rz5xj2y i. ~6.21!

If (a ,b ,c) are the distinct eigenvalues of the matrix A corresponding to the eigenvectors (i,j,k),

then it can be shown that ~see Ref. 21 for any dimension n!

H Ke5m~Rx
2
1Ry

2
1Rz

2!1~b1c !i21~c1a !j2
1~a1b !k2,

Kp5w~Rzùj2Ryùk!1~b1c !i21~c1a !j2
1~a1b !k2,

Ks5aRx
2
1bRy

2
1cRz

2,

~6.22!

where Rx
2
5Rx ^ Rx and so on. In the definition ~6.19! of Kp we have considered w5wi.

Case r51: D1 is generated by a single K-vector. It is know that there are only two kinds of

orthogonally integrable K-vectors: the translations and the rotations. Let us consider both cases

separately.

Translational case: Let us take a plane Q8 orthogonal to a translation ~constant vector! X. Let

us consider on Q8 the two asymmetric separable webs, the elliptic-hyperbolic web and the para-

bolic web, corresponding to K-tensors Ke8 and Kp8 defined as in ~6.19! or in ~6.22!. In the present

case the matrix (gab) is of one element only, g115X•X5constant and Eq. ~5.3! is trivially

satisfied. Hence we get two cylindrical separable webs: the elliptic-hyperbolic cylindrical web and

the parabolic cylindrical web. The remaining two separable webs on the plane Q8, the polar and
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the Cartesian ones, generates the polar cylindrical web and the Cartesian web on the space. But

these webs are reducible to the cases r52 and r53, respectively ~see Remark 4, Sec. III!.
Rotational case: Let us take a plane P orthogonal to a rotation vector R. This plane contains

the axis of rotation A. One halfpane of P having A as a boundary will play the role of the

manifold Q8 in Proposition 1 of Sec. V. Up to an inessential constant factor, g115R–R is now the

square of the distance F from this line and Eq. ~5.3! with g11
5F22 becomes

Fd~K
*
8 •dF !23dF ∧ ~K

*
8 •dF !50. ~6.23!

Up to a constant factor F(r)5u–r1c , where u is a constant vector orthogonal to A and cPR.

Thus we have to find all pairs (u,c) such that Eq. ~6.23! is identically satisfied. In terms of vector

operations this equation is equivalent to

F curl~K
*
8 •u!23u3~K

*
8 •u!50. ~6.24!

We have to consider for K
*
8 the two possible cases ~6.19!. By developing the differential condition

~6.24!, we can prove the following propositions.

Proposition 3: If Ke8 is the inertia K-tensor of a planar distribution of masses with total mass

mÞ0, then the rotation around a straight line A belonging to this plane generates a separable web

in R
3 if and only if A is a central axis of inertia ~i.e., a principal axis of inertia relative to the

center of mass!.
Since the central moments of inertia ~i.e., the eigenvalues of A! are different, according to our

assumptions we generate in this way two different separable webs: the oblate spheroidal web

corresponding to the maximal moment of inertia ~it generates, in particular, the so-called oblate

spheroidal coordinates28,35! and the prolate spheroidal web corresponding to the minimal one.

Proposition 4: If Kp8 is the inertia K-tensor of a planar distribution of masses with total mass

m50, then the rotation around a straight line A belonging to this plain generates a separable web

in R
3 if and only if A is the central axis of inertia ~i.e., the line parallel to w and containing the

focus O!.
The separable web obtained in this way is the parabolic spheroidal web ~generating, in

particular, the so-called parabolic spheroidal coordinates!. For the rotational case it remains to

consider on P the polar and the Cartesian webs. For the polar web it is easy to check that it

generates in R
3 a separable web if and only if the center belongs to the axis of rotation A. Thus

we get the spherical polar web only ~corresponding to the spherical coordinates!. The Cartesian

web on P generates the cylindrical polar web in R
3 when one of the two orthogonal K-vectors on

P is parallel to A. This belongs, as we have already remarked, to the case r52. Thus in the

rotational case we have four separable webs with r51.

Case r52: There are two kinds of orthogonally integrable D2 . One is generated by two

orthogonal translations (X1 ,X2), the second by a translation X and a rotation R with axis parallel

to X. In both cases the foliations orthogonal to D2 are made of straight lines. In the first case these

lines are orthogonal to the translations, and the web generated in R
3 is a Cartesian web ~case r

53!. In the second case they are the half-lines orthogonal to the axis of rotation, and we get a

polar cylindrical web.

Case r53: This case corresponds to the Cartesian rectangular web, i.e., to the Cartesian

rectangular coordinates, generated by three constant and orthogonal K-vectors.

In conclusion, within this approach the 11 orthogonal separable webs in the Euclidean 3-space

can be classified as in the following table ~to be compared with those of Refs. 27, 28, 35!.
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Separable webs in R
3

D. Separation in the spherically symmetric space–times

Many examples of separable geodesic Hamiltonian come from exact solutions of Einstein

field equations ~see for instance Refs. 10, 15, 16, 36! which could be re-examined within the

framework presented here; for instance the Kerr metric, where in the equatorial plane we find a

web of confocal conics ~r5constant, u5constant!.37 Another example is the connection between

separation and the existence of an Abelian orthogonally transitive isometry group ~i.e., of an

Abelian and orthogonally integrable algebra of K-vectors, according to our terminology! which is

considered in Refs. 36, 38, 39.

Here we briefly discuss the simple case of a spherically symmetric space-time. In Q5R
4 with

coordinates (t ,x ,y ,z) let us consider a metric of the kind

ds2
5A~r !~dx2

1dy2
1dz2!1B~r !dt2,

where r2
5x2

1y2
1z2 and A(r) and B(r) are smooth functions of r.0. This kind of metric has

four fundamental K-vectors; the time translation T5] t and the rotations Rx , Ry , and Rz , defined

as in ~6.28!. Thus we recognize the existence of two orthogonal separable webs with degree of

symmetry r51 and r52.

Case r51: The vector field T is orthogonally integrable. The orthogonal manifolds are t

5constant with coordinates (x ,y ,z) and metric ds2
5A(r)(dx2

1dy2
1dz2). On the manifold Q8
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defined by t50 we have a separable web, the spherical-conical web characterized by the K-tensor

Ks defined as in (6.22)3 . Since g tt
5B21 is a function of r alone, it follows that Ks•dg tt

50 so

that Eq. ~5.3! is satisfied. Thus a separable web is defined on Q .

Case r52: The space D2 generated by the K-vectors (X0 ,X1)5(T,Rz) is orthogonally

integrable. The orthogonal 2-manifolds are defined by equations t5constant and ax1by

50(a ,bPR). We can consider the manifold Q8 defined by t50 and y50 with coordinates (x ,z)

and metric ds2
5A(r)(dx2

1dz2), r2
5x2

1z2. The manifold Q8 admits the polar web as a

separable web, whose characteristic K-tensor is K
*
8 5Ry

2, where Ry5zi2xk. Since

g00
5

1

X0•X0

5B21, g11
5

1

X1•X1

5A21x22,

a straightforward calculation shows that K
*
8 •dg00

50 and that w5K
*
8 •dg11 is the 1-form

w52S z

x2 dz2

z2

x3 dx D5d
z2

x2 ~6.25!

so that Eqs. ~5.3! are fulfilled. The separable web on Q generated by D2 and K
*
8 is that commonly

used in a space–time of this kind. Adapted coordinates are the spherical coordinates ( t ,f ,r ,u) for

which the metric has the form ds2
5A(r)(dr2

1r2(du2
1cos2 udf2))1B(r)dt2. It follows from

~6.25! that the characteristic K-tensor K determined by Eq. ~5.4! is

K5Ry
2
1

z2

x2 Rz
2.

In spherical coordinates this corresponds to the well known first integral EK5pu
2
1tan2 upf

2 .
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logica ~MURST!.
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