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For a variety of classical mechanical systems embeddable into flat space with
Cartesian coordinates$xi% and for which the Hamilton–Jacobi equation can be
solved via separation of variables in a particular curvalinear system$uj%, we an-
swer the following question. When is the separable potential functionv expressible
as a polynomial~or as a rational function! in the defining coordinates$xi%? Many
examples are given. ©1997 American Institute of Physics.
@S0022-2488~97!01905-1#

I. INTRODUCTION

In recent years there has been renewed interest in the notion of integrability as it applies to the
solution of mechanical systems. Many examples of such systems are known. The crucial require-
ment for the notion of integrability to be valid is the existence of a suitable number of constants
of the motion. This guarantees in principle that the corresponding mathematical problem can be
solved. One of the classical ways of solving some integrable mechanical systems is using the
method of separation of variables. Commonly quoted integrable systems are the so-called Neu-
mann system of a particle moving on a sphere under the influence of the anisotropic harmonic
potential and also the problem of geodesic flow on an ellipsoid.1–4 The problem we consider here
is, generally, how to classify systematically those classical mechanical systems that are of the form

H5 (
i , j51

n

gi j pipj1V~x1,...,xn!. ~1.1!

via separation of variables techniques. Here the metricgi j corresponds to some Riemannian space
that is embedded into flat space and thexi are Cartesian coordinates in that space. Specifically, we
will determine the possible separable potentialsV which are polynomials or rational functions of
the Cartesian coordinates. In particular we consider the case of spaces of constant curvature, i.e.,
Euclidean space, the positive definite hyperboloid and the sphere. Also considered here are com-
plex versions of these spaces. For the real spaces we have mentioned, all the separable coordinate
systems are known.5,6 The requirement that the potential provide a separation of variables is also
known ~e.g., Ref. 7!. Indeed if the coordinatesyi provide a separation of variables via some
transformationyi5yi(x1,...,xn), i51,...,n, the only nonzero elements of the contravariant tensor

ḡi j5 (
p,q51

n

gpq
]yi

]xp
]yj

]xq

are8–15
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gi j5d i j @Si1/S#, i , j51,...,n1 ,

gra5@Sr1/S# f r~y
r !, r5n11,...,n11n212, a5n11n212,...,n11n21n312,

gab5F (
k51

n11n2

hk
ab~yk!~Sk1/S!G , a,b5n11n212,...,n11n21n312.

Heren11n21n35n, and there exists a Sta¨ckel matrix S̄5„S̄i j (y
i)…n3n such thatS5detS̄ and

Si j is thei j cofactor ofS̄. The requirement that the potentials separate in these coordinates is that7

V~y1,...,yn!5 (
k51

n11n2

v~yk!
Sk1

S
. ~1.2!

When this is the caseV is said to be aStäckel multiplierin the coordinate systemyi . Coordinates
of the type yi , i51,...,n1 , are calledStäckel coordinates. Coordinates of typeyr ,r5n1
11,...,n11n212, are called first-order coordinates. Coordinates of typeya,a5n11n2
12,...,n11n21n312, are calledignorable variables. We will restrict ourselves here to coordi-
nate systems such thatḡi j is a diagonal metric. This is both necessary and sufficient for the case
of separation of variables for real spaces of constant curvature.6

In the case of real Euclidean space let us consider the generic elliptical coordinates$ui%
defined by

xi
25c2P j51

n ~uj2ei !/PkÞ i~ek2ei !, i , j ,k51,...,n, ~1.3!

and eiÞek for iÞk. For elliptical coordinates the new variables are subject to the restrictions
e1,u1,e2,u2,•••,en,un . The general form for the Sta¨ckel multiplier associated with these
coordinates can be readily calculated. This may be deduced from the infinitesimal distance

ds25
c2

4 (
k51

n
PmÞ i~um2ui !

P l51
n ~uk2el !

duk
2.

Indeed the form of such a Sta¨ckel multiplier must be

V~u1 ,...,un!5 (
i51

n
v i~ui !

PmÞ i~um2ui !
. ~1.4!

In this sense this problem has been solved. However, we seek a solution to a more restricted
problem here. Indeed we answer the following two questions.

~1! When is the Sta¨ckel multiplier V(u1 ,...,un) expressible as a polynomial in the defining
coordinatesxi?

~2! When is the multiplier in the form of a rational function of the Cartesian coordinatesxi?

These are two important classes of potentials and a number of physically interesting cases are
known. Indeed Eisenhart has shown that in an orthogonal separable systemyi a potential is in the
form of a Stäckel multiplier if and only if

gii gj j
]2V

]ui]uj
2gii

]gj j

]ui

]V

]uj
2gj j

]gii

]uj

]V

]ui
50, ~1.5!

for iÞ j .9 However, Benenti16 has proved that~expressed in Cartesian coordinates! these condi-
tions for elliptical coordinates are equivalent to
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~ei2ej !
]2V

]xi]xj
1S xi ]

]xj
2xj

]

]xi
D S 2V1 (

k51

n

xk
]V

]xk
D 50 ~1.6!

for iÞ j . Thus for elliptical coordinates, the solutions to questions~1! and ~2! are just the poly-
nomial or rational solutions to~1.6!. We will give a different and more general solution to these
questions.

We first look at the problem of polynomial potentials. The crucial observation is the follow-
ing. Let V(x1 ,...,xn) be a polynomial solution of~1.6!. When expressed as a function of theui
coordinates via~1.3!, V should be symmetric. Therefore when expressed in the form~1.4! each of
the functionsv i(ui)5v(ui). We can deducev(ui) if V is of polynomial form. Indeed if we put
ui5ai for iÞ1 such thatakÞel for all k and l , then we see thatv(u) should have the form
v(u)5R(u)Au2e11S(u) whereR andS are rational functions ofu. Doing a similar calculation
with e1 replaced bye2 we must then have

R~u!Au2e11S~u!5R8~u!Au2e21S8~u!.

This can only hold ifR(u)5R8(u)50 andS(u)5S8(u). Before proceeding further we note the
following.

Lemma. Let Si@u1 ,...,un# be the symmetric polynomial defined by

Si@u1 ,...,un#5
1

i ! (
j 1 ,...,j iÞ

uj 1,...,uj i, i51,...,n, ~1.7!

and S0@u1 ,...,un#50. Similarly let Ei@e1 ,...,en#5Si@e1 ,...,en#. Then the symmetric functions
Si@u1 ,...,un# are expressible in terms of the Cartesian coordinates via

Sl@u1 ,...,un#5El@e1 ,...,en#1 (
k51

n xk
2

c2
El21@e1 ,...,ek21 ,ek11 ,...,en#, l51,...,n. ~1.8!

This follows readily from the identity

(
k51

n xk
2

~u2ek!
2c252c2

Pk51
n ~u2uk!

P j51
n ~u2ej !

. ~1.9!

Multiplying this expression byP j51
n (u2ej ) we easily deduce the identity~1.8!. The functions

SMp@u1 ,...,un#5( i51
n ui

p/P jÞ i(ui2uj ) for p an integer can be expressed in terms of Cartesian
coordinates via the recurrence relation

SMq5(
j51

n

~21! j11Sj@u1 ,...,un#SMq2 j , ~1.10!

for q>n, whereSMn2151 andSMp50 for 0<p,n21.
Consequently, ifv(u) is a polynomial inu, the corresponding potential is a polynomial in the

Cartesian coordinates. We can conclude that all contributions for whichv(u)5up give a basis for
all Stäckel multipliers which are polynomial in the Cartesian coordinatesxk . The second type of
contribution viz. 1/(u2a)q, can be readily expressed in terms of Cartesian coordinates. Indeed we
need only consider the special casea50, as the general case can be obtained by translating all the
ui variables. We observe thatSM2p@u1 ,...,un#5(P i51

n v i)SMp1n22@v1 ,...,vn# where v i
51/ui . Then using the resultSq@v1 ,...,vn#5Sn2q@u1 ,...,un#/(P i51

n ui) we can always evaluate
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SM2p@u1 ,...,un#. The analysis is now complete. The basic building blocks for potentials which
are rational functions of the Cartesian coordinates are the Sta¨ckel multipliersSMp@u1 ,...,un#
wherep50,61,62,... .

For real Euclidean spaces there is one other generic coordinate system, paraboloidal coordi-
nates. These coordinates are given by

x15S c2D S 2(
j51

n

uj1 (
k51

n21

ekD ,
~1.11!

xi
25c2

P j51
n ~uj2ei21!

PkÞ i21~ek2ei21!
, i ,k52,...,n, j51,...,n,

where e1,u1,e2,u2,e3,•••,un21,en,un . The corresponding infinitesmal distance is

ds25
c2

4 (
k51

n
PmÞ i~um2ui !

P l51
n21~uk2el !

duk
2, ~1.12!

and the symmetrical functionsSi@u1 ,...,un# are given by the expressions

c2S1@u1 ,...,un#5E1@e2 ,...,en#22x1 ,

c2Sl@u1 ,...,un#5El@e2 ,...,en#22x1El2@e2 ,...,en#2 (
k52

n

xk
2El22@e2 ,ek21 ,ek11 ,...,en#,

l52,...,n21, ~1.13!

c2Sn@u1 ,...,un#522x1En21@e2 ,...,en#2 (
k52

n

xk
2En22@e2 ,ek21 ,ek11 ..,en#.

This follows from the identity

22cx12c2u1 (
k52

n xk
2

~u2ek!
5c2

Pk51
n ~u2uk!

P j52
n ~u2ej !

. ~1.14!

To establish which potentials are Sta¨ckel multipliers for paraboloidal coordinates and which
are rational functions of the Cartesian coordinates we must consider two cases.

~1! n.2. In this case we can use essentially the previous argument for elliptical coordinates in
En . Then, as expected, linear combinations ofv i(u)5v(u)5(u2a)p, p50,61,62,..., form
a basis for all Sta¨ckel multipliers that are rational functions of Cartesian coordinates.

~2! n52. In this case we cannot use the previous argument, as there is only oneek occurring, viz.
e2 , which we can take to be 0. We can only deduce thatv(u)5R(u)u1/21S(u) whereR and
S are rational functions. IfR(u)50, then our result follows as forn.2. If R(u)Þ0, then we
change to the new variablew5u1/2 and discard the functionS(u). The corresponding Sta¨ckel
multiplier has the form

v~w1 ,w2!5
T~w1!2T~w2!

w1
22w2

2 , ~1.15!

whereT(w) is a rational function ofw of the formR(w2)w. If we perform a partial fraction
decomposition ofR(u) with respect tou, then the functionT(w) typically has terms of the type/1
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which are monomialswp and terms of type/2 which are of the formw/(w22a2)p. In the case of
monomials, ifp is even, then the corresponding contribution to the Sta¨ckel multiplier is a poly-
nomial in the Cartesian coordinatesxk . If p is odd, then the corresponding contribution can be
written as an algebraic function of the symmetric functionsSi@w1 , w2#. Furthermore, these sym-
metric functions cannot be expressed as rational functions ofxk . Indeed they are determined by
algebraic relations. For example, in the case of

S1/2@u1 , u2#5S1@w1 , w2#5w11w25u1
1/21u2

1/2,

the relation betweenS1/2 and the symmetric polynomialsSi5Si@u1 u2# is given by

@S1/2
2 2S1#

254S2
2.

In a similar way we could argue that contributing terms tov(w1 , w2) of the form 1/(w
2a)p cannot contribute rational functions ofxk to the expression for a separable potential. We are
thus left with the possibility thatv(u) must be a rational function ofu. Consequentlyv(u) admits
a partial fraction decomposition with typical terms of the formup or 1/(u2a)q for p and q
positive integers.

In the following sections we will answer questions~1! and ~2! for a variety of classical
mechanical systems embeddable into flat space with Cartesian coordinates$xi% and for which the
Hamilton–Jacobi equation can be solved via separation of variables in a particular curvalinear
system$uj%. Many examples are given in the Appendix.

In summary, the conclusions of Sec. I are as follows. It is known that separable coordinates in
n-dimensional Euclidean space are constructed from generic separable coordinate systems viz.
elliptical coordinates and paraboloidal coordinates.6 For these coordinate systems we have asked
what potentials rational in the Cartesian coordinates can be found such that solution via the
separation of variables ansatz is still valid. We have shown that potentials fulfilling this require-
ment can be constructed from the symmetric quantitiesSl@u1 ,...,un# and that these quantities can
always be expressed as a rational function of the Cartesian coordinatesxk via ~1.8!. These ideas
are extended in subsequent sections to the case of the sphere and the hyperboloid inn dimensions.
The result of these investigations gives all potentials which are rational in terms of Cartesian
coordinates and have the separability property. In addition we develop these ideas even further to
include spaces in which the rational Sta¨ckel form of elliptic coordinates is generalized and show
that similar results hold in this case also. This we do via what amounts to flat space embeddings.

II. ELLIPTIC COORDINATES ON THE n SPHERE

The application of these ideas to the case of elliptic coordinates on then sphere proceeds with
some modifications. Elliptic coordinates onSn are given by

xi
25

P j51
n ~uj2ei !

PkÞ i~ek2ei !
, i ,k51,...,n11, j51,...,n, ~2.1!

subject toe1,u1,e2,u2,•••,en,un,en11 and( i51
n11xi

251. A typical form of Sta¨ckel mul-
tiplier is

V~u1 ,...,un!5(
i51

n
v i~ui !

PmÞ i~um2ui !
. ~2.2!

Again we ask the question which separable potentials can be expressed as rational functions of the
projective coordinatesxk . The expression~1.9! is now replaced by
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(
k51

n11 xk
2

u2ek
5

Pk51
n ~u2uk!

P j51
n11~u2ej !

, ~2.3!

from which we deduce that

Sl@u1 ,...,un#5 (
k51

n11

xk
2El@e1 ,...,ek21 ,ek11 ,...,en#. ~2.4!

The argument used for the case of Euclidean elliptic coordinates goes through much as before.
Indeed the Sta¨ckel multipliersSMp@u1 ,...,un#, with p50,61,62,..., form a basis for all such
potentials. Among these potentials are several well-known examples of separable coordinate sys-
tems on then sphere. IndeedV5S1@u1 ,...,un#5( i51

n ui corresponds to the Neumann potential
( i51
n11ei(12xi

2).1,3,7 The Stäckel multiplier 1/xk
2 corresponds to the choice of functionv(u)51

2 (k51
n11P lÞk(u2 el)/(u2 ek). The often quotedRosochatius potentialV5(k51

n11ck /xk
2,17can then

be constructed from the corresponding Sta¨ckel multipliers. For the Garnier system with potential

V~x1 ,...,xn!5S (
k51

n

xk
2D 22S (

k51

n

E1@e1 ,...,ek21 ,ek11 ,...,en#xk
2D ,

the corresponding function is

vk~u!5un1122E1@e1 ,...,en#u
n1~E2@e1 ,...,en#2E1@e1 ,...,en#

2!un2112E1@e1 ,...,en#
2.

III. COMPLEX Sn , COMPLEX En , AND LIMITING REAL CASES

Having solved the problem of rational potentials for generic coordinates on then sphere and
in Euclideann space we can now answer the same question for degenerate versions of these
coordinates. We make use of well-established limiting procedures.7,18 In particular we consider
those cases relevant to the real manifolds~1! Euclideann spaceEn , ~2! then sphereSn, and~3!
then-dimensional hyperboloidHn . This can be best done by first considering complex Euclidean
n space and the complexn sphere, and then passing to the real cases. For the complexn sphere
let us consider what modifications are necessary for the solution of our problems. The process of
taking two rootsei equal best illustrates the general procedure. Indeed if we put

x2→Aa2~x181ex28!, x1→Aa1x18 ,
~3.1!

xj→xj8 , j53,...,n,

wherea152a251/e ande25e11e, then the generic elliptic coordinates on then sphere become

x18
25P i51

n ~ui2e1!/Pk53
n11~ek2e1!,

2x18x285S ]

]e1
D @P i51

n ~ui2e1!/Pk53
n11~ek2e1!#,

~3.2!

xj8
25P i51

n ~ui2ej !/PkÞ j
n11~ek2ej !, j53,...,n11,

2x18x281 (
i53

n11

xi8
251.
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For this example, the argument used previously in the generic case is readily adapted. Indeed
if we take a Sta¨ckel multiplier in the form~1.4!, the functionv(u) must be a rational function of
u. Accordingly the basis for the rational Sta¨ckel multipliers in this coordinate system is exactly the
same when written in terms of the coordinatesui . To express these Sta¨ckel multipliers in terms of
the coordinatesxi8 we need only take the appropriate limits in the expressions~1.9!. The functions
Si@u1 ,...,un# can be obtained from the new form of~1.9!, viz.

2x1x2
u2e1

1
x1
2

~u2e1!
2 1 (

k53

n11 xk
2

u2ek
5

Pk51
n ~u2uk!

~u2e1!
2P j53

n11~u2ej !
. ~3.3!

For the explicit form of the functionsSl@u1 ,...,un# we obtain

Sl@u1 ,...,un#52x1x2El@e1 ,e3 ,...,en11#1x1
2El21@e3 ,...,en11#

1 (
k53

n11

xk
2El@e1 ,e1 ,...,ek21 ,ek11 ,...,en11#. ~3.4!

Here we have dropped the primes in thexk . We note in particular from~3.3! that 2x1x2
1(k53

n11xk
251. For this particular case the Neumann potential becomes

V52e11e31•••1en112S x1212e1x1x21 (
k53

n11

xk
2D . ~3.5!

The most general possibility of this kind occurs when theeis are equal in groups. Specifically,
if we write instead ofxi and ek the new variablesxj

J and ej
J , where j51,...,NJ , and J

51,...,P, respectively, the infinitesimal distance is

ds25 (
k51

n
PmÞ i~um2ui !

P j51
NJ ~uk2ej

J!
duk

2. ~3.6!

These coordinates can be obtained from the most general elliptic ones by well-defined limiting
processes.13 Under the transformation

ej
J→eJ1

Je j21
1 , j51,...,NJ , J51,...,P,

~3.7!

xj
J→AajJS x1J1(

i52

NJ
Je j112 i

i21 xi
JD ,

where

Je j112 i
i21 5P l52

i ~Je j21
1 2Je l

1!, (
J51

P

NJ5n11,

and

aj
J51/PkÞ j~

Je j21
1 2Jek21

1 !, k51,...,NJ ,

the fundamental formula~1.9! assumes the form

(
K51

P

(
l52

NK11 Sl
K

~u2eK!NK122 l 5
P i51

n ~u2ui !

PK51
P ~u2eK!NK

, ~3.8!
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whereSj11
J 5( i51

j xi
Jxj112 i

J . The expressions forSi@u1 ,...,un# can be determined from this re-
sult. Indeed~3.8! can be rewritten

P i51
n ~u2ui !5 (

K51

P

(
l52

NK11

Sl
K~u2ek!

l22PLÞK~u2eL!NL. ~3.9!

We then deduce that

Sm@u1 ,...,un#5 (
K51

P

(
l52

NK11

Sl
K~21!AK1 l122nSAK1 l221m2n@e1~N1!,...,eK~ l22!,...,eP~NP!#,

~3.10!

whereAK5(LÞKNL . The coordinates determined in this way are said to be generic coordinates of
type $N1 ,...,NP%. Here,

ds25 (
k51

n
PmÞ i~um2ui !

P l51
P ~uk2el !

Nl
duk

2. ~3.11!

By cross multiplying in the expression~3.8! we see immediately that

(
J51

P

(
i51

NJ

xi
JxNJ112 i

J 51 ~3.12!

and the coordinatesxj
J are given by

Sj11
J 5

1

~ j21!! S ]

]eJ
D j21 P i51

n ~ui2eJ!

PLÞJ~eL2eJ!
, ~3.13!

whereSj11
J 5( i51

j xi
Jxj112 i

J .
The case of generic coordinates inEn can be treated similarly. The only restriction now is that

(J51
p NJ5n11 and

(
i51

n

xi
2→(

J51

p

(
i51

NJ

xi
JxNJ112 i

J

under the transformation given above.
The rules for constructing all other coordinate systems on the complexn sphere that corre-

spond to orthogonal coordinates are just as in Ref. 18 to which we refer. In the Appendix we give
some of the potentials for the simplest cases. For the case of hyperbolicn space there are addi-
tional coordinate systems which can be regarded as generic. These correspond to the signatures
$21...1% and $31...1%, as well as the generic case$1...1% in which e15e2* . The first few potentials
which correspond to these cases are given in the Appendix.

For the case of complex Euclidean space similar general coordinate systems correspond to a
metric of type~3.6! with ( j51

P Nj<n. The various possible forms of this metric are determined by
coordinates via limiting processes similar to those for then sphere. Making the same change of
designation as before viz.xj

J andej
J , j51,...,NJ , J51,...,P, and( j51

P Nj5n, we can calculate
the properties of the various coordinates inn dimensions by suitable limiting procedures from the
generic case in which allei , i51,...,n, are distinct. The only difference in this case is that the
conditionej

J→eJ1
Je j21

1 could include the possibility that, say,e15`. There are two possible
signatures that describe coordinate systems of this type:@N1 ,...,NJ#, and @N1

` ,...,NJ#. All the

calculations involving@N1 ,...,NJ# look exactly as with the corresponding coordinates on then
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sphere, i.e., the limiting processes are given by~3.7!, the fundamental formula by~3.8!, and the
symmetric functions by~3.10!. The only restriction is that( j51

P Nj5n. For the second type of
generic coordinates, which correspond to@N1

` ,...,NJ#, the coordinates are given by

Sj11
1 5„1/~ j21!! …~]/]e! j21@„P l51

n ~eul21!…/~eeJ2 !NJ#ue50 , j51,...,N1
~3.14!

Sj11
J 5@1/~ j21!! #~]/]eJ!

~ j21!@P i51
n ~ui2eJ!/PLÞJ~eL2eJ!#, j51,...,NJ ,

whereSj11
J is defined as above with the extra condition thatx1

151. The fundamental form defin-
ing these coordinates is

„1/~N121!! …~]/]e!N121@„P l51
n ~eul21!…/„~eu21!~eeJ21!NJ…#ue501 (

J52

P

(
j51

NJ

Sj11
J Y

(u2eJ)
NJ112 j5Pk51

n ~u2uk!/PJ52
P ~u2eJ!. ~3.15!

The symmetric functionsSl@u1 ,...,un# can be read off from this formula.

IV. FLAT SPACE EMBEDDINGS

It is possible to extend these ideas to rational Sta¨ckel metrics not necessarily corresponding to
spaces of constant curvature. As an example consider the Riemannian space whose metric is
defined by

ds25~u12u2!F du1
2

P j51
5 ~u12ej !

2
du2

2

P j51
5 ~u22ej !

G . ~4.1!

This space is such that the corresponding Hamilton–Jacobi separation of variables method of
solution works. It is indeed a special form of the Sta¨ckel separable form we have given in the
introduction. As an analogue of what we have been doing so far, we obtain these coordinates from
an embedding in a higher-dimensional flat space. Indeed we can obtain suitable coordinates by
considering

xi
25

~u12ei !~u22ei !

P jÞ i~ei2ej !
, i51,...,5, ~4.2!

subject to the restrictions

(
i21

5

xi
250, (

i21

5

eixi
250, (

i21

5

ei
2xi

251. ~4.3!

We now ask the question: what form does a potential have to take in order that it be a Sta¨ckel
multiplier which is expressible as a rational function of thexi variables? If the Sta¨ckel multiplier
has the form~1.4!, and if it is a polynomial in thexis, then withu25e1 , say,v(u) can be written
in terms of the functions

R23455AP i52
5 ~u2ei !, Ri jk5A~u2ej !~u2ek!~u2ei !, i , j ,kÞ,

Rjk5A~u2ej !~u2ek!, j ,kÞ, Ri5Au2ei

as follows:
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v~u!5B2345~u!R23451 (
i , j ,kÞ

Bi jk~u!Ri jk1 (
i , jÞ

Bi j ~u!Ri j1(
i
Bi~u!Ri1B~u!, ~4.4!

where i , j , k can have the values 2, 3, 4, 5 and all theB functions are rational functions of
u. If we do this for all possible choices ofu25e3 ,e4 ,e5 , then this can only be consistent if
v(u) is a polynomial function ofu. From the relations

u11u25E1@e1 ,e2 ,e3 ,e4 ,e5#S (
i51

5

ei
2xi

2D 2S (
i51

5

ei
3xi

2D ,
~4.5!

u1u25S (
i51

5

ei
4xi

2D 1E1@e1 ,e2 ,e3 ,e4 ,e5#S (
i51

5

ei
3xi

2D 2E2@e1 ,e2 ,e3 ,e4 ,e5#S (
i51

5

ei
2xi

2D
we can deduce the form of the corresponding potentials in terms of the coordinatesxi . A similar
argument can also be used to show that if the potential is a rational function of thexi , then the
corresponding functionv(u) must also be rational.

These results extend easily to the case of general coordinate systems of this type. Indeed let us
consider a Riemannian space with infinitesimal distance

ds25 (
k51

n

@PmÞ i~um2ui !#/@P l51
p ~uk2el !#duk

2, ~4.6!

wherep.n11. A suitable choice of Cartesian coordinates is

xi
25~1/4!P j51

n ~uj2ei !/PkÞ i~ek2ei !, i ,k51,...,p. ~4.7!

The subspace spanned by these coordinates is given by the simultaneous equations

(
i51

p

ei
qxi

25dq,p2n21 , q51,...,p2n21. ~4.8!

The symmetric functionsSr@u1 ,..., un# are given by the formulas

Sr@u1 ,...,un#5~21!p2n(
s50

r

~21!sEr2s@e1 ,...,ep#(
k51

p

ek
p2n211sxi

2. ~4.9!

The surfaces thus defined are the intersection ofp2n21 quadrics. The result expounded for the
particular example given above holds in general for these spaces: If the functionv(u) in the
corresponding Sta¨ckel multiplier is a polynomial/rational inu, the Sta¨ckel multiplier is
polynomial/rational in the coordinatesxi .

As a corollary let us consider a Riemannian space with infinitesimal distance

ds25 (
k51

n

@PmÞk~um2uk!#@P j51
q ~uk2Ej !#/@P l51

p ~uk2el !# duk
2. ~4.10!

This system can be obtained from one of the previous type with infinitesimal distance

ds25 (
k51

n1q

@PmÞk~um2uk!#/@P l51
p ~uk2el !# duk

2, ~4.11!
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subject to the restrictionsun115E1 ,...,un1q5Eq . These can be interpreted as the extra con-
straints

(
i51

n1p

xi
2/~Ej2ei !50, j51,...,q. ~4.12!

Just as before it is possible to make some of theei equal. The expressions for the infinitesimal
distance, coordinates, and the generating function are essentially the same as given previously for
systems of type@N1 ,...,NP#. The constraints now have the form

(
J51

P

(
k51

NJ

SNJ211kF S ]

]eJ
D NJ2k

eJ
qG5dq,p2n21 ~4.13!

for q51,...,p2n21.
The results of this section can be summarized as follows. For Sta¨ckel metrics of type

ds25 (
k51

n

@PmÞ i~um2ui !#/@P l51
P ~uk2el !

Nl# duk
2, ~4.14!

an embedding into flat space can be distinguished in two ways.
~1! If ( l51

P Nl5N>n, then the coordinates are given by

Sj11
J 5@1/~ j21!! #S ]

]eJ
D ~ j21!

@P i51
n ~ui2eJ!/PLÞJ~eL2eJ!#,

where j51,...,NJ , J51,...,P. The fundamental form defining these coordinates is

(
J51

P

(
j51

NJ

Sj11
J /~u2eJ!

NJ112 j5Pk51
n ~u2uk!/PJ52

P ~u2eJ!.

The coordinatesxi , i51,...,N, are subject to the constraints

(
J51

P

(
k51

NJ

SNJ211kF S ]

]eJ
D NJ2k

eJ
qG5dq,p2n21 .

~2! If ( l52
P Nl5N>n, then the coordinates are given by

Sj11
1 5„1/~ j21!! …S ]

]e D j21

@„P l51
n ~eul21!…/~eeJ21!NJ#ue50 , j51,...,N1 ,

Sj11
J 5@1/~ j21!! #S ]

]eJ
D ~ j21!

@P i51
n ~ui2eJ!/PLÞJ~eL2eJ!#, j51,...,NJ ,

whereN15n2N andx1
151. The fundamental form defining these coordinates is

„1~N121!! …S ]

]e D N121

@„P l51
n ~eul21!…/„~eu21!~eeJ21!NJ…#ue50

1 (
J52

P

(
j51

NJ

Sj11
J /~u2eJ!

NJ112 j5Pk51
n ~u2uk!/PJ52

P ~u2eJ!.
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In either case the fundamental formula determines the symmetric functionsSl@u1 ,...,un#.
Hence the possible Sta¨ckel multipliers that give rise to rational potentials in terms of the Cartesian
coordinates can be determined.

Metrics of the form

ds25 (
k51

m

@PmÞk~um2uk!#@P j51
q ~uk2Ej !

M j #/@P l51
p ~uk2el !

Nl# duk
2

can be obtained from ~4.11! via the requirement thatu15E1 ,...,uM1
5E1 ,uM111

5E2 ,...,uM11M2
5E2 ,...,uM11...1Mq

5Eq . Making suitable redefinitions of the remaining vari-
ables we recover the metric given.

In all three cases we can adapt earlier proofs to establish that separable potentials which are
rational in the corresponding Cartesian coordinates are generated by the functionsv(u)5(u
2a)p, p50,61,62,... . What has been achieved here is a generalization of the results of
Wojciechowski,19,20who obtained families of separable potentials which corresponded to polyno-
mial potentials on the sphere. Indeed these results provide a comprehensive generalization since
we have necessary and sufficient conditions that separable potentials can be obtained which are
rational functions of ‘‘Cartesian coordinates.’’ These also include the rational family of potentials
obtained by Wojciechowski.

V. FURTHER GENERALIZATIONS

It is possible to generalize further the results presented thus far. Indeed if we consider Sta¨ckel
metrics of the form

ds25~u12u2!F du1
2

~u12e1!~u12e2!~u12e3!
2

du2
2

~u22a1!~u22a2!~u22a3!
G , ~5.1!

the corresponding Hamilton–Jacobi and Schro¨dinger equations afford a separation of variables
and the general form of the potential compatible with separation is

V~u1 ,u2!5
v1~u1!2v2~u2!

u12u2
. ~5.2!

The question we now ask is how much the analogy between what we have already done goes
through for metrics like this one? We show that an analogue of the embedding into a suitable flat
space can be achieved. For the example given above, a suitable choice of Euclidean coordinates is

z1l1,2k1
2 5A1l1,2k1

u1l1,2k1
2 5A1l12k1

~u12el1!~u22ak1!5A1l12k1
v1l1
2 w2k1

2 ,

z1l1
2 5A1l1

~u12el1!5A1l1
v1l1
2 , ~5.3!

z2k1
2 5A2k1

~u22ak1!5A2k1
w1k1
2 ,

wherel 1 ,k151,2,3, and a suitable choice of constants is
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A1l12k2
5
4

3 F el22el3
~el12el2!~el12el3!

1
ak22ak3

~ak12ak2!~ak12ak3!
G ,

A1l1
5
4el12

4
3~a11a21a3!

~el12el2!~el12el3!
, A2k2

5
4ak12

4
3~e11e21e3!

~ak12ak2!~ak12ak3!
,

wherel 1 ,l 2 ,l 3 andk1 ,k2 ,k3 are even permutations of 1,2,3.
There are relations between the various Cartesian coordinates thus produced. Indeed

v1l1
2 2v1l2

2 5el22el1, w1k1
2 2w1k2

2 5ak22ak1, ~5.4!

~ak42ak3!~u1l12k1
2 2u1l12k2

2 !1~ak12ak2!~u1l22k3
2 2u1l22k4

2 !1~ak12ak2!~ak42ak3!~el12el2!50,

for k1Þk2 ,k3Þk4 , andl 1Þ l 2 . Clearly, there are similar relations with thee anda interchanged.
For the example metric we are looking at, there are only six independent conditions of this

quadratic type. There is also a degree of ambiguity in the choice of the constantsA1l12k1
, A1l1

, and
A2k1

. This is the result of the existence of the null forms

dv1
25du11,21

2 2du11,23
2 2du13,21

2 1du13,23
2 1~a12a3!~du11

2 2du31
2 !1~e12e3!~du21

2 2du23
2 !50,

dv2
25du11,22

2 2du11,23
2 2du13,22

2 1du13,23
2 1~a22a3!~du11

2 2du13
2 !1~e12e3!~du22

2 2du23
2 !50,

~5.5!

dv3
25du12,21

2 2du12,23
2 2du13,21

2 1du13,23
2 1~a12a3!~du12

2 2du13
2 !1~e22e3!~du21

2 2du23
2 !50,

dv4
25du12,22

2 2du12,23
2 2du13,22

2 1du13,23
2 1~a22a3!~du11

2 2du13
2 !1~e22e3!~du22

2 2du23
2 !50.

Can this example be generalized? The answer is yes. Consider

v i l
25~ui2Ail !, i51,...,N; l51,...,mi , ~5.6!

where we also takemi.N for all i . We define the symbols

Ui1l i1
,i2l i2

,...,i kl i k
5v i1l i1

2 v i2l i2
2 •••v i kl i k

2 , ~5.7!

wherei mÞ i n for mÞn andk51,...,N. We wish to find Cartesian coordinates such that

zi1l i1,i2l i2,...,i kl i k
2 5Ai1l i1

,i2l i2
,...,i kl i k

Ui1l i1
,i2l i2

,...,i kl i k
~5.8!

and

ds25 (
i j ,l i j

dzi1l i1,i2l i2,...,i kl i k
2 5(

i51

N
P jÞ i~ui2uj !

P l i51
ni ~ui2Ail 1

!
dui

2. ~5.9!

This is a metric in Sta¨ckel form which separates both Hamilton–Jacobi and Schro¨dinger equa-
tions. It is convenient to writeSjl j51/PmjÞ l j

(Ajl j
2Ajmj

) and alsoAj5( l j
Ajl j

. For these quan-
tities the following identities hold:
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(
l j

Sjl jAjl j
k 50, 0<k<nj . ~5.10!

In order to consider Cartesian coordinates of the form~5.8! so as to produce the metric, we
need to determine the the constantsAi1l i1

,i2l i2
,...,i kl i k

. These will be determined in such a way that

for fixed k the corresponding Cartesian coordinateszi1l i1,i2l i2,...,i kl i k
are orthogonal. Ifk5n, then

orthogonality is assured if we have

Ai1l i1
,i2l i2

,...,i Nl i N
5 (

k51

N

~N,kL!Sklk. ~5.11!

To see this we consider, for instance, the term indu1du2 . The corresponding contribution is
(1/4)„(k51

N (N,kL)Sklk…Pm53
N (um2Amlm

). Clearly, from the identities~5.10!, this type of term
summed on thel j gives zero. In general, the correct formula is

Ai1l i1
,i2l i2

,...,i kl i k
5(

s51

k

(
q50 p,s

N2k

L i k11 ,...,i N

s1 ,...,sq As1
•••Asq

~Ai j l i j
!n2k2qSisl i s

, ~5.12!

where p,sL i k11 ,...,i N

s1 ,...,sq is symmetric in the indicess1 ,...,sq and i k11 ,...,i N . Summation on the

indicess1 ,...,sq ,s1Þs2Þ•••Þsq and$s1 ,...,sq%,$ i k11 ,...,i N% is implied. It remains to find the
coefficients p,sL i k11 ,...,i N

s1 ,...,sq . Let us consider the coefficient ofdu1
2. We wish to construct the

coefficient to be P jÞ1(u12uj )/P l151
n1 (u12A1l1

). In particular we consider the term

(21)N21u2•••uN /P l1
(u12A1l1

). Typical contributing factors to the numerator are

((k51N,k
N LSklk)„Pm52

N (um2Amlm
)…. The coefficient of (21)N21u2•••uN /@P l1

(u12A1l1
)# is

( l1 ,l2 ,...,l NN,k
LS1l1 /(u12A1l1

)5n2•••nN /@P l1
(u12A1l1

)# from which it follows that N,1L
5(21)N21/(n2•••nN). Proceeding to the calculation of the coefficient ofu3•••uN /P l1

(u1
2A1l1

) we find the contribution of terms of the form~5.12! for k5N is2A2n3 ,...,nN(N,1L). The
other contributing term comes from

A1l13l3 ,...,NlN
U1l13l3 ,...,NlN

5 (
kÞ2

@~N21,kL!~Aklk!1~N21,kL2
2!A2#Sklk ~5.13!

and isN21,1L2
2. Therefore we haveN21,1L2

25N,1L. Proceeding in this way we can establish that

p,i1
L i p11 ,...,i N

i p11 ,...,i N5N,i1
L.

Repeating these arguments for the other coefficients we obtain the general formula

N2p,i p
L i p11 ,...,i N

5~21!N2p/Pk51
p21nik,

~5.14!

N2p2q,i p
L i p11 ,...,i N ,r1 ,...,r q

r1 ,...,r q 5N2p,i p
L i p11 ,...,i N

.

This completes the embedding of the coordinatesv i l i into a flat space of dimension

Pk51
N (nk11). The various relations among the coordinates are consequences of the relations

v i l i
2 2v j l j

2 5Ajl j
2Ail i

. The choice of coordinates given above is unique modulo quadratic forms

which are null and diagonal. The set of all such forms is generated by coefficients given by
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Ai1l i1
,...,i kl i k

5~21!ck, Aisl i s
5P jÞs~ai j2bi j !e l i s

, ~5.15!

wherel i s5ais or bis ande i s51 if l i s5ais ande i s521 if l i s5bis. Further,ck5( j51
k e l i j

.

Separable potentials that are polynomials are constructed in the same way as previously from
the symmetric functionsSl@u1 ,...,un#. In particular if we define

Tik5 (
l1 ,...,l ni k

e l1 ,...,l ni kAi kl1
•••Aikl nik

21
v i kl ni k
2 ~5.16!

and

Pik
5P l i k

.mik
~Aikl i k

2Aikmik
!,

then

P j51
k ui j5P j51

k
Ti j
Pi j

. ~5.17!

In the above formulae l1••• l q is the totally skew-symmetric tensor. From these formulas, expres-
sions can be constructed for the symmetric functions in terms of quadratic functions of thexis. If
we look for potentials which are rational functions of thexis, then the restriction to symmetric
functions is no longer necessary. In fact all that is necessary is that the corresponding Sta¨ckel
multiplier be a rational function of the variablesui .

It is also possible to consider metrics for which some of the constantsAil i
are equal. As an

example, consider the coordinates defined by

v11,2l2
2 5

~u12e1!~u22al2!

~e12e3!
,

2v11,2l2
v12,2l2

5
2~u12e1!~u22al2!

~al32al2!~al32al2!
1

]

]e1

~u12e1!~u22al2!

~e12e3!
,

v13,2l2
2 5F 21

~e32e2!
2 1

21

~al32al2!~al32al2!
G ~u12e3!~u22al2!,

v11
2 5@4„e12~1/3!~a11a21a3!…~u12e1!/~e12e3!#, ~5.18!

2v11v125
]

]e1

4„e12
1
3~a11a21a3!…~u12e1!

~e12e3!
,

v13
2 5

4„e32
1
3~a11a21a3!…~u12e3!

~e12e3!
2 ,

v2l2
2 5

4„al22
1
3~2e11e3!…~u22al2!

~al32al2!~al32al2!
.

The corresponding infinitesimal distance is
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ds25 (
l251

3

~2dv11,2l2
dv12,2l2

1dv13,2l2
2 1dv2l2

2 !12dv11dv121dv13
2

5~u12u2!F du1
2

~u12e1!
2~u12e3!

2
du2

2

~u22a1!~u22a2!~u22a3!
G . ~5.19!

It is also possible to lift the restrictionmi.N. We illustrate this with the following example.
If we choose coordinatesv i such that

v1
25~u22a3!

2, v1v252~u22a3!u1 ,

v3
25u22a3 , v3v45~u22a3!„2114~u22a3!…,

v5
25u12e2 , v5v65

~u12e2!~25u214e21a3!

e22e3
,

~5.20!

v7
25u12e3 , v7v85

~u12e3!~25u214e31a3!

e32e2
,

v9
252~u12e2!~u22a3!/~e32e2!, v10

2 52~u12e3!~u22a3!/~e22e3!, v11
2 5u2

2,

the corresponding infinitesimal distance is

ds25dv1dv21dv3dv41dv5dv61dv7dv81dv9
21dv10

2 1dv11
2

52~u12u2!F du1
2

~u12e1!~u12e3!
2

du2
2

u22a3
G .
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APPENDIX

Here we adopt the shortened notationSi5Si@u1 ,...,un# and work out a few specific examples
of the properties that have been developed above. For the expressions for the Sta¨ckel multipliers
we have

SMn2151, SMn5S1 , SMn115S1
22S2 ,

~A1!

SMn125S1
322S1S21S3 , SMn135S1

423S1
2S212S1S31S2

22S4 .
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1. Elliptical coordinates in Euclidean n space

In this case the functionsSi are given by~1.8!. Consequently,

SMn5E1@e1 ,...,en#1 (
k51

n

xk
2,

SMn115S E1@e1 ,...,en#1 (
k51

n

xk
2D 22S E2@e1 ,...,en#1 (

k51

n

xk
2E1@e1 ,...,ek21 ,ek11 ,...,en# D ,

~A2!

SMn125S E1@e1 ,...,en#1 (
k51

n

xk
2D 322S E1@e1 ,...,en#1 (

k51

n

xk
2D

3S E2@e1 ,...,en#1 (
k51

n

xk
2E1@e1 ,...,ek21 ,ek11 ,...,en# D

1S E3@e1 ,...,en#1 (
k51

n

xk
2E2@e1 ,...,ek21 ,ek11 ,...,en# D .

2. Paraboloidal coordinates in En

In this case the functionsSi are given by~1.13!. Consequently,

SMn522x11E1@e2 ,...,en#,

SMn115~22x11E1@e2 ,...,en# !22S E2@e2 ,...,en#22x1E1@e2 ,...,en#2 (
k52

n

xk
2D , ~A3!

SMn125~22x11E1@e2 ,...,en# !322~22x11E1@e2 ,...,en# !S E2@e2 ,...,en#22x1E1@e2 ,...,en#

2 (
k52

n

xk
2D 1S E3@e2 ,...,en#22x1E2@e2 ,...,en#2 (

k52

n

E1@e2 ,...,ek21 ,ek11 ,...,en#xk
2D .

For then sphere the corresponding Sta¨ckel multipliers are given by

SMn5 (
k51

n11

E1@e1 ,...,ek21 ,ek11 ,...,en11#xk
2 ,

SMn115S (
k51

n11

E1@e1 ,...,ek21 ,ek11 ,...,en11#xk
2D 22 (

k51

n11

E2@e1 ,...,ek21 ,ek11 ,...,en11#xk
2 ,

~A4!

SMn125S (
k51

n11

E1@e1 ,...,ek21 ,ek11 ,...,en11#xk
2D 322S (

k51

n11

E1@e1 ,...,ek21 ,ek11 ,...,en11#xk
2D

3S (
k51

n11

E2@e1 ,...,ek21 ,ek11 ,...,en11#xk
2D 1S (

k51

n11

E3@e1 ,...,ek21 ,ek11 ,...,en11#xk
2D .
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The basic building blocks for rational potentials in the generic elliptic coordinate systems are
obtained from the Sta¨ckel multipliers of the form~2.2! with v(u)5u2p wherep is a positive
integer. We list the first few such potentials. In terms of the functionsSi we have

SM215
1

Sn
, SM225

Sn21

Sn
2 , SM235

~Sn21
2 2SnSn22!

Sn
3 ,

~A5!

SM245
~Sn21

3 22SnSn21Sn221Sn23Sn
2!

Sn
4 .

For generic elliptical coordinates in Euclideann space these potentials have the form

SM215S En@e1 ,...,en#1 (
k51

n

xk
2En21@e1 ,...,ek21 ,ek11 ,...,en# D 21

,

SM225
En21@e1 ,...,en#1(k51

n xk
2En22@e1 ,..,ek21 ,ek11 ,..,en#

~En@e1 ,...,en#1(k51
n xk

2En21@e1 ,...,ek21 ,ek11 ,..,en# !2
, ~A6!

SM235XS En21@e1 ,...,en#1 (
k51

n

xk
2En22@e1 ,...,ek21 ,ek11 ,...,en# D 2

2S En@e1 ,...,en#1 (
k51

n

xk
2En21@e1 ,...,ek21 ,ek11 ,...,en# D

3S En22@e1 ,...,en#1 (
k51

n

xk
2En23@e1 ,...,ek21 ,ek11 ,...,en# D CY

S En@e1 ,...,en#1 (
k51

n

xk
2En21@e1 ,...,ek21 ,ek11 ,...,en# D 3.

For paraboloidal coordinates in Euclideann space these potentials have the form
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SM2152S 2x1En21@e2 ,...,en#1 (
k52

n

xk
2En22@e2 ,...,ek21 ,ek11 ,...,en# D 21

,

SM225S En21@e1 ,...,en#22x1En22@e1 ,...,en#2 (
k52

n

xk
2En23@e2 ,...,ek21 ,ek11 ,...,en# D Y

S 22x1En21@e2 ,...,en#2 (
k52

n

xk
2En22@e2 ,...,ek21 ,ek11 ,...,en# D 2, ~A7!

SM235XS En21@e1 ,...,en#22x1En22@e1 ,...,en#2 (
k52

n

xk
2En23@e2 ,...,ek21 ,ek11 ,...,en# D 2

2S 22x1En21@e2 ,...,en#2 (
k52

n

xk
2En22@e2 ,...,ek21 ,ek11 ,...,en# D S En22@e1 ,...,en#

22x1En23@e1 ,...,en#2 (
k52

n

xk
2En24@e2 ,...,ek21 ,ek11 ,...,en# D CY

S 22x1En21@e2 ,...,en#2 (
k52

n

xk
2En22@e2 ,...,ek21 ,ek11 ,...,en# D 3.

For the corresponding coordinates on then sphere

SM215S (
k51

n11

xk
2En@e1 ,...,ek21 ,ek11 ,...,en# D 21

,

SM225
(k51
n11xk

2En21@e1 ,...,ek21 ,ek11 ,...,en#

~(k51
n11xk

2En@e1 ,...,ek21 ,ek11 ,...,en# !2
, ~A8!

SM235XS (
k51

n11

xk
2En21@e1 ,...,ek21 ,ek11 ,...,en# D 22 (

k51

n11

xk
2En@e1 ,...,ek21 ,ek11 ,...,en# D

3S (
k51

n11

xk
2En22@e1 ,...,ek21 ,ek11 ,...,en# D Y S (

k51

n11

xk
2En@e1 ,...,ek21 ,ek11 ,...,en# D 3.

As noted previously there are additional types of generic coordinate systems associated with
the n-dimensional hyperboloid. We here list the expressions for the symmetric functions
Si@e1 ,...,en# in terms of the corresponding coordinatesxk .

Case 1:

Si@u1 ,...,un#52Ei21@e3 ,...,en11#x1
21Ei@e1 ,e3 ,...,en11#2x1x2

1 (
k53

n11

Ei@e1~2!,e3 ,...,ek21 ,ek11 ,...,en11#

for coordinates of type$21...1%.
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Case 2:

Si@u1 ,...,un#5Ei22@e4 ,...,en11#x1
22Ei21@e1 ,e3 ,...,en11#2x1x21Ei@e1~2!,e4 ,...,en11#

3~x2
212x1x3!1 (

k54

n11

Ei@e1~3!,e4 ,...,ek21 ,ek11 ,...,en11#

for coordinates of type$31...1%. These expressions could of course be substituted into the expres-
sions for the Sta¨ckel multipliers given above. The relation of the coordinatesxk to the standard
coordinates on the hyperboloid can be deduced from the expressions 2x1x21(k53

n11xk
251 for the

case$21...1% and x2
212x1x31(k54

n11xk
251 for the $31...1%. Indeed, in case 1 choose coordinates

such thatx15(y12y2)/&, x25(y11y2)/&, xk5 iyk , k53,...,n11, and in case 2 choose co-
ordinates such thatx15(y12y3)/&, x25 iy2 , x35(y11y3)/&, xk5 iyk , k53,...,n11. With
these coordinates we havey1

22(k52
n11yk

251. For n53 we give the expressions for the series of
Stäckel multipliers.

(1) Coordinates of type$111%:

SM25~e21e3!x1
21~e21e1!x2

21~e21e1!x3
2,

SM35„~e21e3!x1
21~e21e1!x2

21~e21e1!x3
2
…

22~e2e3x1
21e2e1x2

21e2e1x3
2!,

SM215~e2e3x1
21e2e1x2

21e2e1x3
2!21,

SM225~e21e3!x1
21~e21e1!x2

21
~e21e1!x3

2

~e2e3x1
21e2e1x2

21e2e1x3
2!2

,

SM235„~e21e3!x1
21~e21e1!x2

21~e21e1!x3
2
…

22~e2e3x1
21e2e1x2

21e2e1x3
2!/

~e2e3x1
21e2e1x2

21e2e1x3
2!3.

(2) Coordinates of type$21%:

SM252x1
212~e11e3!x1x212e1x3

2,

SM35„2x1
212~e11e3!x1x212e1x3

2
…

22~2e1e3x1x22e3x1
21e1

2x3
2!,

SM215~2e1e3x1x22e3x1
21e1

2x3
2!21,

SM225
2x1

212~e11e3!x1x212e1x3
2

~2e1e3x1x22e3x1
21e1

2x3
2!2

,

SM235
„2x1

212~e11e3!x1x212e1x3
2
…

22~2e1e3x1x22e3x1
21e1

2x3
2!

~2e1e3x1x22e3x1
21e1

2x3
2!3

.

(3) Coordinates of type$3%:
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SM2522x1x212e1~x2
212x1x3!,

SM35„22x1x212e1~x2
212x1x3!…

22„e1
2~x2

212x1x3!1x1
222e1x1x2…,

SM215„e1
2~x2

212x1x3!1x1
222e1x1x2…

21,

SM225
22x1x212e1~x2

212x1x3!

„e1
2~x2

212x1x3!1x1
222e1x1x2…

2 ,

SM235„22x1x212e1~x2
212x1x3!…

22
e1
2~x2

212x1x3!1x1
222e1x1x2)

„e1
2~x2

212x1x3!1x1
222e1x1x2…
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