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For a variety of classical mechanical systems embeddable into flat space with
Cartesian coordinatesc;} and for which the Hamilton—Jacobi equation can be
solved via separation of variables in a particular curvalinear sy$tefn we an-

swer the following question. When is the separable potential functiexpressible

as a polynomialor as a rational functionin the defining coordinategs;}? Many
examples are given. @997 American Institute of Physics.
[S0022-24887)01905-1

I. INTRODUCTION

In recent years there has been renewed interest in the notion of integrability as it applies to the
solution of mechanical systems. Many examples of such systems are known. The crucial require-
ment for the notion of integrability to be valid is the existence of a suitable number of constants
of the motion. This guarantees in principle that the corresponding mathematical problem can be
solved. One of the classical ways of solving some integrable mechanical systems is using the
method of separation of variables. Commonly quoted integrable systems are the so-called Neu-
mann system of a particle moving on a sphere under the influence of the anisotropic harmonic
potential and also the problem of geodesic flow on an ellip§di@he problem we consider here
is, generally, how to classify systematically those classical mechanical systems that are of the form

n
H= 2 glpipj+V(xt...x". (1.1)
i,j=1

via separation of variables techniques. Here the metficorresponds to some Riemannian space

that is embedded into flat space and xhare Cartesian coordinates in that space. Specifically, we

will determine the possible separable potentMlg/hich are polynomials or rational functions of

the Cartesian coordinates. In particular we consider the case of spaces of constant curvature, i.e.,
Euclidean space, the positive definite hyperboloid and the sphere. Also considered here are com-
plex versions of these spaces. For the real spaces we have mentioned, all the separable coordinate
systems are knowh® The requirement that the potential provide a separation of variables is also
known (e.g., Ref. 7. Indeed if the coordinateg' provide a separation of variables via some
transformatiory'=y'(x%,... x"), i=1,...n, the only nonzero elements of the contravariant tensor
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gijzgij[sil/s], i,j=1,...hq,
g"=[SYSIf(y"), r=ni+,...n+N+2, a=n;+n+2,...n+Nn+ng+2,

ni+ny

g*f=| > hFy(SYS)|, a,B=n;+n,+2,...n1+Nn,+ng+2.
=]

Heren;+n,+nz=n, and there exists a Stkel matrix S= (§-J-(yi))nxn such thatS=detS and
Sl is theij cofactor ofS. The requirement that the potentials separate in these coordinates is that

ni+ny Skl
V(yL,...y" = g,l v(y*) = (1.2

When this is the cas¥ is said to be &tackel multiplierin the coordinate systeryi. Coordinates
of the typey', i=1,...n,;, are calledStackel coordinates Coordinates of typey’,r=n;
+1,...n,+n,+2, are called first-order coordinates Coordinates of typey®,a=n;+n,
+2,...n,+n,+n3+2, are calledgnorable variables We will restrict ourselves here to coordi-
nate systems such thg¥ is a diagonal metric. This is both necessary and sufficient for the case
of separation of variables for real spaces of constant curviture.

In the case of real Euclidean space let us consider the generic elliptical coordjngtes
defined by

X7 =2y (uj—e) /My (ex—e), i.j.k=1...n, (1.3

and e;# e, for i #k. For elliptical coordinates the new variables are subject to the restrictions
e, <U;<e,<u,<---<e,<u,. The general form for the Stkel multiplier associated with these
coordinates can be readily calculated. This may be deduced from the infinitesimal distance

2

c i (up—u;)
ds?=— mARTM VG
4 &0 I (u—e)
Indeed the form of such a &tkeel multiplier must be
n
vi(u;)
V(uq,...,uy)= _. 1.4
(Us ) izl Hmzi(Un—Uu;) (14

In this sense this problem has been solved. However, we seek a solution to a more restricted
problem here. Indeed we answer the following two questions.

(1) When is the Stekel multiplier V(u,,...,u,;) expressible as a polynomial in the defining
coordinates;?
(2) When is the multiplier in the form of a rational function of the Cartesian coordinafes

These are two important classes of potentials and a number of physically interesting cases are
known. Indeed Eisenhart has shown that in an orthogonal separable sysagmtential is in the
form of a Stakel multiplier if and only if

A LY i ag" aV_O L
auau, 9 u o, 9w au O 9

giigJJ

for i #j.° However, Benentf has proved thatexpressed in Cartesian coordinatdsese condi-
tions for elliptical coordinates are equivalent to
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PPV

a d Y
(ei_ej) Xi &_)(j_ Xj (9_)(') ( 2V+ kzl Xk (9_Xk) =0 (16)

+
aXi aXl

for i #j. Thus for elliptical coordinates, the solutions to questighsand (2) are just the poly-
nomial or rational solutions t@1.6). We will give a different and more general solution to these
guestions.

We first look at the problem of polynomial potentials. The crucial observation is the follow-
ing. LetV(X4,...,X,) be a polynomial solution of1.6). When expressed as a function of tle
coordinates vigl.3), V should be symmetric. Therefore when expressed in the ftrf each of
the functionsv;(u;) =v(u;). We can deduce(u;) if V is of polynomial form. Indeed if we put
u;j=a; for i#1 such thata,#e, for all k andl, then we see that(u) should have the form
v(u)=R(u)Ju—e;+S(u) whereR andS are rational functions afi. Doing a similar calculation
with e; replaced bye, we must then have

R(u)yu—e;+S(u)=R’(u)yu—e,+S'(u).

This can only hold ifR(u)=R’(u)=0 andS(u) =S’ (u). Before proceeding further we note the
following.
Lemma. Let $u4,...,u,] be the symmetric polynomial defined by

1

S[uq,...,u,]=+ E Uj el i=1,...n, 1.7

and S[uq,...,u,]=0. Similarly let E[e4,....e,]=S[€1,..-.€,]- Then the symmetric functions
S[uq,...,u,] are expressible in terms of the Cartesian coordinates via

X2

n
k
Sl[ul,...,un]zE|[e1,...,en]+k§=:1 ?E|,1[e1,...,ek,l,ekﬂ,...,en], I=1,..n. (1.9

This follows readily from the identity

o X o o Meatuug w9
=1 (u—ey) M (u—g)

Multiplying this expression b)H}‘zl(u—ej) we easily deduce the identit}t.8). The functions
SMp[ul,...,un]zE{Lluf’/Hj#(ui—uj) for p an integer can be expressed in terms of Cartesian
coordinates via the recurrence relation

n

SMq:jgl (=1 S[ug, ... U ]SMy_j, (.10

for g=n, whereSM,_;=1 andSM,=0 for O<sp<n-—1.

Consequently, iy (u) is a polynomial inu, the corresponding potential is a polynomial in the
Cartesian coordinates. We can conclude that all contributions for wifich= uP give a basis for
all Stackel multipliers which are polynomial in the Cartesian coordinatesThe second type of
contribution viz. 1/4—a)9, can be readily expressed in terms of Cartesian coordinates. Indeed we
need only consider the special caseO0, as the general case can be obtained by translating all the
u; variables. We observe thaSM,p[ul,...,un]=(H{‘=1vi)SMp+n,z[vl,...,vn] where v;
=1/u;. Then using the resuﬁq[vl,...,vn]zSn_q[ul,...,un]/(H{‘:lui) we can always evaluate

J. Math. Phys., Vol. 38, No. 5, May 1997
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SM_[ug,...,uy]. The analysis is now complete. The basic building blocks for potentials which
are rational functions of the Cartesian coordinates are thektamultipliersSMp[ul,...,un]
wherep=0,=1,+2,... .

For real Euclidean spaces there is one other generic coordinate system, paraboloidal coordi-
nates. These coordinates are given by

C
Xl: E

Iy (uj—e 1)
=c2 1= , ik=2,..n, j=1,...n,
IMyzi-1(ek—€-1) ’

B

=1

1.1y

X

where e;<ui<e,<u,<ez<---<u,_1<e,<u,. The corresponding infinitesmal distance is
2 & Mpei(Up—uy)
d?=— > —2o T g2, 11
4 IZl - (u—e) (112
and the symmetrical functior§[u,,...,u,] are given by the expressions

Czsl[ul,...,un]:El[ez,...,en]_le,
n
2 _ _ _2 2
c°S[Uq,....u,]=E[ey,....en]—2X:E_[€5,....€4] k=2xkE,,z[eZ,ek,l,ekﬂ,...,en],
=2,...n—1, (1.13
n

C®Sy[Uy, ... .Up]= _2X1En—1[e21---aen]_k22 XiEn—Z[ebek—lrek+1--ven]-

This follows from the identity

n 2

Xi¢ ITE_ 1 (u—uy)
—2cx,—Cc?u+ =c? .
! gz (u—ey I, (u—ey)

(1.19

To establish which potentials are &kal multipliers for paraboloidal coordinates and which
are rational functions of the Cartesian coordinates we must consider two cases.

(1) n>2. In this case we can use essentially the previous argument for elliptical coordinates in
E,. Then, as expected, linear combinations@tt) =v (u)=(u—a)®, p=0,£1,+2,...,form
a basis for all Stekel multipliers that are rational functions of Cartesian coordinates.

(2) n=2. In this case we cannot use the previous argument, as there is ordy ooeurring, viz.
e,, which we can take to be 0. We can only deduce tt{af) = R(u)u*?+ S(u) whereR and
S are rational functions. IR(u) =0, then our result follows as far>2. If R(u) # 0, then we
change to the new variable=u'? and discard the functioB(u). The corresponding Stkel
multiplier has the form

T(wy) = T(w,)
Wy =W

: (1.15

U(Wl 7W2) =

where T(w) is a rational function ofv of the form R(w?)w. If we perform a partial fraction
decomposition oR(u) with respect tau, then the functiorm (w) typically has terms of the type/1

J. Math. Phys., Vol. 38, No. 5, May 1997
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which are monomialsy® and terms of type/2 which are of the fonvi (w?—a?)P. In the case of
monomials, ifp is even, then the corresponding contribution to thecl@hmultiplier is a poly-
nomial in the Cartesian coordinatgg. If p is odd, then the corresponding contribution can be
written as an algebraic function of the symmetric functi®jsv,, w,]. Furthermore, these sym-
metric functions cannot be expressed as rational functiong ofndeed they are determined by
algebraic relations. For example, in the case of

_ _ 2, 12
Sydus, Up]l=S[wq, Wo]=wi+w,=ur“+uz*,

the relation betwees,;, and the symmetric polynomial§ =S u; u,] is given by
[Slo—Si1?=4S5.

In a similar way we could argue that contributing termsuviav,, w,) of the form 1/v
—a)P cannot contribute rational functions ®f to the expression for a separable potential. We are
thus left with the possibility that (u) must be a rational function ef. Consequently (u) admits
a partial fraction decomposition with typical terms of the fouh or 1/(u—a)? for p andq
positive integers.

In the following sections we will answer questiof¥) and (2) for a variety of classical
mechanical systems embeddable into flat space with Cartesian coordixtaad for which the
Hamilton—Jacobi equation can be solved via separation of variables in a particular curvalinear
system{u;}. Many examples are given in the Appendix.

In summary, the conclusions of Sec. | are as follows. It is known that separable coordinates in
n-dimensional Euclidean space are constructed from generic separable coordinate systems viz.
elliptical coordinates and paraboloidal coordindt@&r these coordinate systems we have asked
what potentials rational in the Cartesian coordinates can be found such that solution via the
separation of variables ansatz is still valid. We have shown that potentials fulfilling this require-
ment can be constructed from the symmetric quant®jgs, ,...,u,] and that these quantities can
always be expressed as a rational function of the Cartesian coordigatés(1.8). These ideas
are extended in subsequent sections to the case of the sphere and the hyperiodtidensions.

The result of these investigations gives all potentials which are rational in terms of Cartesian
coordinates and have the separability property. In addition we develop these ideas even further to
include spaces in which the rational &kal form of elliptic coordinates is generalized and show
that similar results hold in this case also. This we do via what amounts to flat space embeddings.

II. ELLIPTIC COORDINATES ON THE n SPHERE

The application of these ideas to the case of elliptic coordinates amspbere proceeds with
some modifications. Elliptic coordinates & are given by

Im'_,(u—e)
2 j=1\"] i . .
f=—r———————  j k=1,...n+1, =1,...n, 2.1
o si(ec—e) : @

subject toe; <u;<e,<Up,<---<e,<up<en,;; and='"Ix?=1. A typical form of Stakel mul-

tiplier is

vi(up)

Hm#i(um_ui). (2.2)

V(ul,...,un)zz,1

Again we ask the question which separable potentials can be expressed as rational functions of the
projective coordinates,. The expressionil.9) is now replaced by

J. Math. Phys., Vol. 38, No. 5, May 1997



2350 Kalnins, Benenti, and Miller, Jr.: Stackel spaces and rational potentials

n+1 2
Xk TTg_;(u—uy)

k=1 U_ek:HFil(u_ej), @3
from which we deduce that
n+1
Sl[ul,...,un]zg,l X2E[€1,...8k_1,€ks1+---.En]. (2.9

The argument used for the case of Euclidean elliptic coordinates goes through much as before.
Indeed the Stekel multipliersSMg[uy,...,u,], with p=0,+1,=2,..., form a basis for all such
potentials. Among these potentials are several well-known examples of separable coordinate sys-
tems on then sphere. Indee=S,[u,,...,u,]=={_,u; corresponds to the Neumann potential
s le (1—x?).237 The Stakel multiplier 142 corresponds to the choice of functiorfu) =1
— 2 MI,L(u — &)/ (u — €. The often quoted Rosochatius potentiat = * 1c, /x2," can then

be constructed from the correspondingck& multipliers. For the Garnier system with potential

n
2
kz—:l Eiql€1,. - 8k—1,€k+1s--En)Xk |+

n 2
V(xl,...,xn)=(k§=:1 xﬁ) -

the corresponding function is

vk(u):un+l_2El[e1,...,en]un+(E2[el,...,en]_ El[el,...,en]z)un71+ 2E1[el,...,en]2.

lll. COMPLEX S,, COMPLEX E,, AND LIMITING REAL CASES

Having solved the problem of rational potentials for generic coordinates om gphere and
in Euclideann space we can now answer the same question for degenerate versions of these
coordinates. We make use of well-established limiting proceduifem particular we consider
those cases relevant to the real manifdisEuclideann spacek,,, (2) then sphereS,, and(3)
the n-dimensional hyperboloi#fi,,. This can be best done by first considering complex Euclidean
n space and the complaxsphere, and then passing to the real cases. For the compkere
let us consider what modifications are necessary for the solution of our problems. The process of
taking two rootse; equal best illustrates the general procedure. Indeed if we put

Xo— Vag(X+ €xp),  X3—ax], (3.1

Xj—?XJ',, j:3,...,n,

wherea; = —a,=1/e ande,=e; + €, then the generic elliptic coordinates on thephere become

12 =TIy (uj—ey) /T  3(ex—ey),

d
2X1X5= (a_el) [TI 4 (Ui — e MR 3(e—ey)],
(3.2

X[ 2=TILy (ui—e)/TIRif(e—ey), j=3,..n+1,

n+1
2xix5+ >y x/2=1.
=

J. Math. Phys., Vol. 38, No. 5, May 1997
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For this example, the argument used previously in the generic case is readily adapted. Indeed
if we take a Stakel multiplier in the form(1.4), the functionv (u) must be a rational function of
u. Accordingly the basis for the rational 8teel multipliers in this coordinate system is exactly the
same when written in terms of the coordinates To express these Sfeel multipliers in terms of
the coordinateg; we need only take the appropriate limits in the expressiar®. The functions
Sluy,...,u,] can be obtained from the new form (.9), viz.

2X1Xz X3 +n+l Xg TTg_;(u—uy) 3.3
u—e;  (u—e)? &5 u—e (u—e)’ll i(u—e)’ 33
For the explicit form of the function§[u,,...,u,] we obtain
S][Ul,...,Un]:2X1X2E|[e1,eg,...,en+l]+XiE|,1[eg,...,en+1]
n+1
+I<Z3 X2E[€1,€1,. . k-1, 10 Cni1l. (3.9

Here we have dropped the primes in thg. We note in particular from3.3) that 2x;x,
+ 301 Ix2=1. For this particular case the Neumann potential becomes

n+1
V=2e,+es+  +en— x§+2elxlx2+k§_:3 x2|. (3.5

The most general possibility of this kind occurs whenéteare equal in groups. Specifically,
if we write instead ofx; and e, the new variable9<jJ and ejJ, where j=1,...N;, andJ
=1,...,P, respectively, the infinitesimal distance is

ds’= kZ %duﬁ. (3.6

These coordinates can be obtained from the most general elliptic ones by well-defined limiting
processe$® Under the transformation

el—ey+lel y, j=1..N;, J=1..P,

3.7
Ny
x/—aj xi+i:2J €11 li)
where
P
Jf}ﬁ—. - 2(ijl—1_Jf|l)a 321 Ny=n+1,
and
af:1/Hk¢j(J€%,1_J6&71), k:]-y"'vNJa
the fundamental formulél.9) assumes the form
5 ”KE“ s Oly(u-w) a8
& S (u—e )T IR (u—eg Nk '

J. Math. Phys., Vol. 38, No. 5, May 1997



2352 Kalnins, Benenti, and Miller, Jr.: Stackel spaces and rational potentials

whereS,;=3]_;x/x’,; ;. The expressions foB[uj,...,u,] can be determined from this re-

sult. Indeed(3.8) can be rewritten

P Ng+1
Myu-u)= 2 > §u-e)' Hy(u—e)™ (3.9
We then deduce that
P Ng+1
sm[ul,...,un]:gl lEZ S(=DAHT2INS, o mon[e1(ND),.. k(1= 2),....ep(Np)],

(3.10

whereAx=2, .kN, . The coordinates determined in this way are said to be generic coordinates of
type{N,,....Np}. Here,

_ k Hm#i(um_ui) 2
d§—]2% TP (e dU (3.11)

By cross multiplying in the expressidi3.8) we see immediately that

P N,
2 2 =1 (3.12
and the coordinatex;j’ are given by

s

L (ay—ln?ﬂm—%) (313

(-0 lgey)  Ti.(e—ey)’

whereS/, ; =S!_x)x), ;.
The case of generic coordinatesdp can be treated similarly. The only restriction now is that
25_iN;=n+1 and

Ny

n p
DIESPIDE

=1

under the transformation given above.

The rules for constructing all other coordinate systems on the conmplphere that corre-
spond to orthogonal coordinates are just as in Ref. 18 to which we refer. In the Appendix we give
some of the potentials for the simplest cases. For the case of hypenbsgfiace there are addi-
tional coordinate systems which can be regarded as generic. These correspond to the signatures
{21...3 and{31...3, as well as the generic cagk...1 in which e;=¢5 . The first few potentials
which correspond to these cases are given in the Appendix.

For the case of complex Euclidean space similar general coordinate systems correspond to a
metric of type(3.6) with Ejplejsn. The various possible forms of this metric are determined by
coordinates via limiting processes similar to those forthgphere. Making the same change of
designation as before viz] ande], j=1,...N;, J=1,...P, andS_;N;=n, we can calculate
the properties of the various coordinatesiidimensions by suitable limiting procedures from the
generic case in which a#l;, i=1,...n, are distinct. The only difference in this case is that the
condition ejJ—>eJ+Jejl,1 could include the possibility that, sag; =«. There are two possible
signatures that describe coordinate systems of this tfyde;...,N;], and[‘ﬁ,l,...,NJ]. All the

calculations involving N4,...,N;] look exactly as with the corresponding coordinates onrthe

J. Math. Phys., Vol. 38, No. 5, May 1997



Kalnins, Benenti, and Miller, Jr.: Stackel spaces and rational potentials 2353

sphere, i.e., the limiting processes are given®y), the fundamental formula b{3.8), and the
symmetric functions by3.10. The only restriction is thanF;lezn. For the second type of
generic coordinates, which corresponq[fe,...,NJ], the coordinates are given by

Sjl+1:(1/(j_1)!)(5/06)1.71[(H|n=1(ful_1))/(693_)NJ]|5=0, j=1,...Ny (3.14
Sj]+1:[1/(j—1)!](5/533)(j_1)[HP:1(Ui—eJ)/HL;tJ(eL_eJ)], j=1,...Ny,

WhereSj]+l is defined as above with the extra condition thggt 1. The fundamental form defin-
ing these coordinates is

P Ny
(LU(N;—1)1)(9 9€)N [ (T y(eu— 1))/ ((eu—1) (€= 1)N) ][ —o+ X, 2, 44 /

(u—e))NF I=TI0_ (u— U5 (u—ey). (3.19

The symmetric function§[u,,...,u,] can be read off from this formula.

IV. FLAT SPACE EMBEDDINGS

It is possible to extend these ideas to rationat&ehmetrics not necessarily corresponding to
spaces of constant curvature. As an example consider the Riemannian space whose metric is
defined by

du? dus
ds?=(u;—u - . 4.1
(up—uy) M (u—e) T (u—e)) 4.1

This space is such that the corresponding Hamilton—Jacobi separation of variables method of
solution works. It is indeed a special form of the'&tal separable form we have given in the
introduction. As an analogue of what we have been doing so far, we obtain these coordinates from
an embedding in a higher-dimensional flat space. Indeed we can obtain suitable coordinates by
considering

2_(U1—€)(u—&)

X oe-e i=1,..,5, 4.2
subject to the restrictions
5
Zl x2=0, Izl ex?=0, 21 ex?=1. (4.3

We now ask the question: what form does a potential have to take in order that it bekal Sta
multiplier which is expressible as a rational function of thevariables? If the Stzkel multiplier
has the form(1.4), and if it is a polynomial in the;s, then withu,=e;, say,v(u) can be written

in terms of the functions

R2345:\/m, Rijk:\/(U_ej)(U—ek)(u—ei), ij ke,
Rx=+V(u—e)(u—ey), jk# R=Vu—g

as follows:

J. Math. Phys., Vol. 38, No. 5, May 1997



2354 Kalnins, Benenti, and Miller, Jr.: Stackel spaces and rational potentials
v(U) = Basd U)Rozsst =, Bljk U)lek+ 2 BIJ(U)RIJ +2 Bi(u)R;+B(u), (4.9
i,

wherei, j, k can have the values 2, 3, 4, 5 and all 8dunctions are rational functions of
u. If we do this for all possible choices af,=e3,e,,e5, then this can only be consistent if
v(u) is a polynomial function ofi. From the relations

u;+u,=E4[e;,e,,e3,84,65]

5 5
SEEPRE]
a a (4.5

5 5
3,2 2.2
+E1[91192163ae41e5]( 21 erX; ) —Ez[el,ez,es,e4,es]<21 €/’ X;
1= 1=

5

_ 4,2

Uup= ( 21 €i X
<

we can deduce the form of the corresponding potentials in terms of the coordinatesimilar
argument can also be used to show that if the potential is a rational function gf titleen the
corresponding functiom (u) must also be rational.

These results extend easily to the case of general coordinate systems of this type. Indeed let us
consider a Riemannian space with infinitesimal distance

ds?= E [TT i (U= U) /LTIy (up—€)) Jd U, (4.6)

wherep>n+1. A suitable choice of Cartesian coordinates is
X7 = (U (uj—e) /My i(e—ep), i.k=1,...p. 4.7

The subspace spanned by these coordinates is given by the simultaneous equations

p
Z elx?= 6 Sqp-n-1. 9=1,...p—n—-1. (4.9

The symmetric function§,[uy,..., u,] are given by the formulas

Sr[ul,...,un]=(—1)p‘”§0(—1)5E,_S[el,.. ep]E ep N itsye2, (4.9

The surfaces thus defined are the intersectiop-oh— 1 quadrics. The result expounded for the
particular example given above holds in general for these spaces: If the fungtignin the
corresponding Stkel multiplier is a polynomial/rational inu, the Stakel multiplier is
polynomial/rational in the coordinates.

As a corollary let us consider a Riemannian space with infinitesimal distance

d52:k21 [T e (U= i) JLT L (U — E VTP 4 (uy—€))] dg. (4.10

This system can be obtained from one of the previous type with infinitesimal distance

n+q

ds’= 2 [T (U= U VLTIPZ 1 (U= &) ] dUig, (4.1
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subject to the restrictions,,, 1=E,,...,U, q=E4. These can be interpreted as the extra con-
straints

n+p

2 x?/(Ej—e)=0, j=1,..4. (4.12

Just as before it is possible to make some ofghequal. The expressions for the infinitesimal
distance, coordinates, and the generating function are essentially the same as given previously for
systems of typéN,,...,Np]. The constraints now have the form

N;—k
o
Je
for g=1,...p—n—1.

The results of this section can be summarized as follows. Fak&tanetrics of type

Ny

=]
2 2 Su,-ek

1) 4.1
=& q,p—n—1 (4.13

ds2=k§1 [ e (U= U /LTI (U —epN] du, (4.14

an embedding into flat space can be distinguished in two ways.
(1) If =7_;N;=N=n, then the coordinates are given by

(-1

. J
S]]H:[l/“_l)!](ﬁ_ej [T 1 (u;— ) /TI . 5(eL —€y)],

wherej=1,...N;, J=1,... P. The fundamental form defining these coordinates is

P Ng
.]Zl]=l j+l/(u eJ)N‘]+l ]_Hk 1(U Uk)/HJ 2(U e).
The coordinates;, i=1,... N, are subject to the constraints
9 \Na—k .
2 2 Sny-1+k Jey €j| = q,p-n-1-

=1 k=1

(2 If E, >,N;=N=n, then the coordinates are given by

g\t
Sl+1:(1/(j_1)!)(£) [(HI 1(eu— 1))/(663_1)NJ]|5:Ov j=1,...Nq,

(i-1)
S]-J+1=[1/(j—1)!](&—%> [y (ui—en)/TT . (e —ep],  j=1,...Ny,

whereN;=n—N andxj=1. The fundamental form defining these coordinates is
g \Na—1
(1(N1—1)!)(£) [T y(eu— 1))/ ((eu—1)(e83—1)")]| =0

PNy
+J§ 2 col (U= =TIR_ (u—u) /MY, (u—ey).
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In either case the fundamental formula determines the symmetric func§pus,...,u,].
Hence the possible Stlel multipliers that give rise to rational potentials in terms of the Cartesian
coordinates can be determined.

Metrics of the form

m

ds2=k§1 [T k(U= W) LT (U — EDMIVLTIP y (u— )] du?

can be obtained from(4.1) via the requirement thatu;=E;,....uy =E;, Uy +1
=Ep,...Un +m,= E2----iuMl+...+Mq:Eq- Making suitable redefinitions of the remaining vari-
ables we recover the metric given.

In all three cases we can adapt earlier proofs to establish that separable potentials which are
rational in the corresponding Cartesian coordinates are generated by the fundtigns(u
—a)P, p=0,=1,£2,... . What has been achieved here is a generalization of the results of
Wojciechowskit®?°who obtained families of separable potentials which corresponded to polyno-
mial potentials on the sphere. Indeed these results provide a comprehensive generalization since
we have necessary and sufficient conditions that separable potentials can be obtained which are
rational functions of “Cartesian coordinates.” These also include the rational family of potentials
obtained by Wojciechowski.

V. FURTHER GENERALIZATIONS

It is possible to generalize further the results presented thus far. Indeed if we consieal Sta
metrics of the form

2 2
dug dus

d52=(u1—u2) (ul_el)(ul_eZ)(ul_eS)_ (uz—ag)(uz—ay)(uy—as) |’

(5.7

the corresponding Hamilton—Jacobi and Sdimger equations afford a separation of variables
and the general form of the potential compatible with separation is

V(uy,up)= w (5.2

The question we now ask is how much the analogy between what we have already done goes
through for metrics like this one? We show that an analogue of the embedding into a suitable flat
space can be achieved. For the example given above, a suitable choice of Euclidean coordinates is

2 _ 2 _ _ 2 2
231, 26, = At 2 U1 2k, = A2k, (Un =€) (U~ 8 ) = Agy ok, 071, Way s
Z5 =Aq (u—e ) =Ay v} (5.3
1, ~ A (U™ 6, V110 '
2 _ _ 2
Zo, = Aok, (Uz— 8 ) = Agi Wiy,

wherel,,k;=1,2,3, and a suitable choice of constants is
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4 €, €, 8
A1l 2k, 3 (

2 g

+ L
ell_elz)(ell_eIS) (akl_akz)(akl_aks)

4 4
4e|1—§(a1+ a2+ a3) 4ak1_§(el+ e2+ 63)

i) A = ’
(&r,—e (e, —e) 2 (ay, —ay,) (A, — ay,)

A1I1:

wherel,l,,l5 andk,,k,,k; are even permutations of 1,2,3.
There are relations between the various Cartesian coordinates thus produced. Indeed

—ay., (54)

2 2 2 2
—v7.=€_—¢€ Wi —W3 =a
Vi, V1,= & I 1k, — Wik, — Gk, 1

2_ 1
2 2 2 2
(, = Ax,) (U ok, — U1 2k,) T (@1, — B, (U 21, — U2k, + (B — B,) (B, — B, ) (€1, — €,) =0,
for ki #Kk,,ks# ks, andl #1,. Clearly, there are similar relations with tbeanda interchanged.
For the example metric we are looking at, there are only six independent conditions of this

quadratic type. There is also a degree of ambiguity in the choice of the consiants, Ay, and
Az, This is the result of the existence of the null forms

dwi: d uil,21_ d Uil,zs_ d Uis,zl+ d Ui3,23+ (a;—ag)(d Uil_ d Ugl) +(e;—e;3)(d u%l_ d U%s) =0,

dw§= d Uil,zz_ d Uil,zs_ d Uiszz+ d Uia,zs+ (a—ag)(d U%l_ d Uis) +(e;—e;3)(d ng_ d U%s) =0,

(5.9

dw3=d Uiz,zl_ d Uiz,zs‘ d Uis,zl+ d Uis,23+ (a1~ ag)(dud,— dufy) + (e~ e3)(du5,— dujy =0,
dwj=dul, 55— dUT, o3~ dUTs o5+ dUZs oot (82— 85)(dUT; — dUy) + (€~ €3) (duj,— dUzy) =O.
Can this example be generalized? The answer is yes. Consider
vi=(u—Ay), i=1..N; I=1..m, (5.6
where we also taken,>N for all i. We define the symbols

(5.7

2 2
. . :v. U. "‘UA
dlipialiy iy, ™ Pl Tigl iy

wherei#i, for m#n andk=1,... N. We wish to find Cartesian coordinates such that

izllil,izli ..... i = Aol iy Vil gl iy (5.8
and
N i(Uj—u;)
ds?= dz, . = el Kl M ARV 3 5.9
|EI Z|21Ii1,|2Ii2 ..... |ink |:El H|n_|:l(Ui_Ai|l) U ( )

This is a metric in Stekel form which separates both Hamilton—Jacobi and Stihger equa-
tions. It is convenient to WrittS“j:1/Hmj¢,j(Aj,j—Ajmj) and aIsoAsz,jA“j. For these quan-
tities the following identities hold:
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> s,-.jAjklj:o, o<k=n;. (5.10

[P
]

In order to consider Cartesian coordinates of the f¢58) so as to produce the metric, we

need to determine the the constaAta ol These will be determined in such a way that
k

are orthogonal. Ik=n, then
k

N
Al il o iNIiNZE (N k) Sy, - (5.1

To see this we consider, for instance, the termdindu,. The corresponding contribution is
(UA)ER 1 (N gA) Sa ) n—3(Um—Amy, ). Clearly, from the identitieg5.10), this type of term
summed on thé; gives zero. In general, the correct formula is

k  N-k
diptaliye iklikzsgl q:%p,s A'skl+1sq'NASl . 'Asq(Aiilii)n_k_qSislis’ ®12
wherepsAsl"l“'quN is symmetric in the indices,,...,S; andiy.q,...,ix. Summation on the
indicess, ,... Sq,SlaﬁSZ#---#Sq and{sy,...,Sq} C{ix+1,...,in} is implied. It remains to find the
coefﬂmentspSA 1eSa et us consider the coefficient afu?. We wish to construct the
coefficient to be jﬂ(ul—u,-)/Hlnllzl(ul—A“l). In particular we consider the term
(—1)N*1u2~~uN/H|1(ul—Al|l). Typical contributing factors to the numerator are
(CRo1n kA Sa) T (Un—Ap ). The coefficient of ¢1)N"tup---un /[T (U —Ay )] is
DB NN,kA81|1/(u1—Al|l)=n2~~'nN/[H,l(ul—A“l)] from which it follows that ;A
=(—1)N"Y(n, --ny). Proceeding to the calculation of the coefficient lmj---uN/H|1(u1
—A1|l) we find the contribution of terms of the for(B.12) for k=N is — Ayng,...,NN(n1A). The
other contributing term comes from

Auaig,. . N Y, N =& [(n- 26 (A + (- 1A D) A1, (5.13

and isN,lylAg. Therefore we havg,l,lAgzNylA. Proceeding in this way we can establish that

Repeating these arguments for the other coefficients we obtain the general formula

. = (—1\N- p—1,.
pAp+l """ IN (=1 p/szln'k’ (5.19

This completes the embedding of the coordinate,s into a flat space of dimension

Hk 1(nk+ 1). The various relations among the coordmates are consequences of the relations
” ﬁ AJ| . The choice of coordinates given above is unique modulo quadratic forms

which are nuII and dlagonal. The set of all such forms is generated by coefficients given by
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W, = D% Ay, =@ —by e (5.19

I's

wherel; =a; orb; ande; =1 ifl; =a; ande; =—1 if I; =b; . Further,ck=E;‘=1q .
S S S S S S S S S IJ
Separable potentials that are polynomials are constructed in the same way as previously from
the symmetric function§[uy,...,u,]. In particular if we define

Tik:llzln € I"ik'°~ik|1'‘"A\ik|nik_1vi2k|nlk (5.16
ik
and
Pi =1L, >m (Aig, =Aim, ),
then
I yu; = 1I1f | (5.17)

i=1p. -
'

In the above formula't 'a is the totally skew-symmetric tensor. From these formulas, expres-
sions can be constructed for the symmetric functions in terms of quadratic functionsxp$ thie
we look for potentials which are rational functions of the, then the restriction to symmetric
functions is no longer necessary. In fact all that is necessary is that the correspondikg Sta
multiplier be a rational function of the variables.

It is also possible to consider metrics for which some of the consmqtare equal. As an

example, consider the coordinates defined by

(uy—eq)(uz—ay)

w = )
114, (e1—e3)

2(uy—eq)(uz—a,) g (Uup—e)(uz—a)
J’__
(a,—a )(a,~a,) de (e1—e3)

2w11,22w12,22—

, -1, -1
a) =
B33 (eg—ep)®  (a,—ay)(a,—ay,)

(uy—eg)(uz—ay),

wi=[4(e;— (1/3)(a;+a,+az))(u;—e;)/(e;—e3)], (5.18
) 9 4(e;—3(ag+ay+as))(u;—ey)
R T

4(e3—3(as+ay+as))(u;—e3)

(el_eS)z

2 _
W13~

4(ay,— 5(2e;+e3))(Uy—ay)

(a,—a)(a,~a,)

Wa1,~

The corresponding infinitesimal distance is
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3
dszzlE_l (2dwy1 g,dw1p3,+dwls; +dwd ) +2dwydo+dol;
=
du? duj

(ul_el)z(ul_eS)_ (up—ag)(uz—ay)(uy—as) |

(5.19

=(u;—uy)

It is also possible to lift the restrictiom,>N. We illustrate this with the following example.
If we choose coordinates; such that

wf=(u2—a3)2, w10=2(Uy—ag) Uy,
wi=Uy—a3, w3ws=(Uy—az)(—1+4(u—as)),

(u;—ey)(—5u,+4e,+aj)

2
wc=U;1— 65, wgwg=— s
5 1 2 5We e,— €3

(5.20

(u;—e3)(—5uy,+4eztaj)

2
w7=U;—€3, wrwg= ,
7=U1—8€;3 708 e—e,

wsZ;:_(Ul_ez)(uz_aa)/(es_ez), wio:_(U1_93)(U2_33)/(92_ea)= (1)%1: Ug,
the corresponding infinitesimal distance is
dSZZdwldwz-l—dw3dw4+dw5dw6+dw7dw8+dw§+dwio+dwil

2 2
du;y dus

(up—eg)(u;—e3) u—ag]’

=2(u;—Uuy)
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APPENDIX

Here we adopt the shortened notatlgys S[u4,...,u,] and work out a few specific examples
of the properties that have been developed above. For the expressions forcked Btaltipliers

we have

SM, ;=1, SM,=S;, SM,,,;=S-S,, (A1)

SMy2=51-25,S,+S;, SMy.3=5{—-35{S,+25,S;+S5-S;.
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1. Elliptical coordinates in Euclidean  n space

In this case the functionS; are given by(1.8). Consequently,

n
SMy,=Ej[es,....e ]+ > X2,
k=1

n 2 n
SMnH:(El[el,...,en]+k21 xﬁ) —( Ez[el,...,en]+k21 xﬁEl[el,...,ek_l,ek+1,...,en]),

(A2)
n 3 n
SMn+2: El[el,...,en]'f'kzl Xi) _2( El[el,...,en]+gl Xﬁ)
n
X Ez[el,...,en]JrkZ,l xﬁEl[el,...,ek1,ek+1,...,en])
n
+ E3[e1,...,en]+k21 xﬁEz[el,...,ek_l,ek+1,...,en]).
2. Paraboloidal coordinates in  E|,
In this case the functionS, are given by(1.13. Consequently,
SMn: _2X1+ El[ez,...,en],
n
SMni1=(—2x,+Eq[ey,....e0])%~ Ez[ez,---,en]—leEl[eza---,en]_gz x2|, (A3)

SMn+2:(_2X1+ El[ez,...,en])s_Z(_2X1+ El[ez,...,en])( Ez[ez,...,en]_leEl[ez,...,en]

+

n
-2 X
k=2

n
Eg[ez,...,en]—2x1E2[e2,...,en]—kg2 El[ez,...,ek_l,ekﬂ,...,en]xﬁ) .

For then sphere the corresponding &kal multipliers are given by

n+1

2
SMn=k§_)1 Eil€1,. . 8k—1:€ks1,--Bnr1]Xk

n+1 2 n+1
SMn+1:(IZl El[el!---aek1aek+lv---aen+l]xﬁ) _k§=:1 Ez[elv---1ekflrek+1a---ren+l]xﬁy
(A4)
n+1 n+1

SMps2=

3
2 2
kE—:l El[eli"'vekliek+lv"'1en+1]xk) -2 kzl El[elv"'vek11ek+11"'1en+l]xk)

n+1
2
kzl Eoler,....&k—1,8k+1,--En+1]Xk

n+1

2
X k21 E3[e1,...,ek_l,ek+1,...,en+1]xk>.

+
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The basic building blocks for rational potentials in the generic elliptic coordinate systems are
obtained from the Stkel multipliers of the form(2.2) with v(u)=u~P wherep is a positive
integer. We list the first few such potentials. In terms of the functignse have

1 Sn- (Sh-1—SiSh-2)
SM—1:§, SM_,= nSﬁl’ SM,gzanz,
" (AS)
(Sh-17 2580 1Sh 2+ Sy 3SD)
SM,4: 84 .
n
For generic elliptical coordinates in Euclidearspace these potentials have the form
n -1
SM_]_: En[el,...,en]-i-gl XiEn_l[el,...,ek_l,ek+1,...,en] y
En_a[€1,....en ]+ 201 X2En_o[€1,..,8k_1,Eks1,.-.€
SM,2= n 1[ 1 n] k=1"k"5n 2[ 1 k—11%k+1 n] (AG)

(En[eli"'!en]+22=1XEEnfl[eli"'vekflvek+l!"1en])2,

n

2
SM_3:(( En_l[el,...,en]Jrkz1 xﬁEn_z[el,...,ek_l,ek+1,...,en])
n
- ( En[el,...,en]+k2l xﬁEn_l[el,...,ek_l,ek+1,...,en])

X

n
En_z[el,...,en]Jrgl xﬁEn_3[e1,...,ek_l,ek+1,...,en]))/

n 3
2
( En[el,...,en]JrkZ1 xkEn1[e1,...,ek1,ek+1,...,en]) .

For paraboloidal coordinates in Euclidearspace these potentials have the form
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n

-1
SM_]_: - ( 2X1En_1[ez,...,en]+k22 XiEn_z[ez,...,ek_l,ek+1,...,en]> y

n
SM_,= ( En,l[el,...,en]—2x1En,2[e1,...,en]—kz2 xﬁEn3[e2,...,ek1,ek+1,...,en]) /

n 2
( —2x1En_1[e2,...,en]—k22 xﬁEn_z[ez,...,ek_l,ek+1,...,en]> , (A7)

SM,SZ

n 2
En,l[el,...,en]—2x1En,2[el,...,en]—g,2 xﬁEn3[e2,...,ek1,ek+1,...,en])

n

—2x1En_1[e2,...,en]—k22 xﬁEn_z[ez,...,ek_l,ek+l,...,en]) ( E,_Jer,....en]
n

_2x1En_3[e1,...,en]—kZ2 xﬁEn_4[e2,...,ek_l,ekH,...,en]) /

n 3
( —2x1En,1[e2,...,en]—g::2 xﬁEn2[e2,...,ek1,ek+1,...,en]) .

For the corresponding coordinates on thephere

n+1 -1
_ 2
SM_;= kzl xkEn[el,...,ek1,ek+1,...,en]> ,
+1,2
SXEn-a[€r, - 81,811, 0]
SM_,= SIFL2E 2 (A8)
( k:lxk n[elv"'lek—liek+1!"'ven])
n+1 2 n+1
2 2
SM_3= kzl XkEn—l[el!'"iek—l’ek+1l-"’en]) _kZ]_ XkEn[el,...,ek_l,ek+1,...,en])

X

n+1 n+1 3
2 2
k§—:1 xkEnz[el,...,ek1,ek+1,...,en]) / (kzl xkEn[el,...,ek1,ek+l,...,en]) .

As noted previously there are additional types of generic coordinate systems associated with
the n-dimensional hyperboloid. We here list the expressions for the symmetric functions
Sley,...,,] in terms of the corresponding coordinatgs

Case 1:

Sifug,....Up]=— Ei71[33:---aen+1]xi+ Eile1,€3,....€n+1]2X1X2
n+1

+k23 Ei[el(2)1e37"'vekfliek+lv"'1en+l]

for coordinates of typg21...1.
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Case 2:

S[Uy, g =Ei o€, -1 IC—Ei 01,85, €04 112X0Xp+ Ei[€1(2),84,-.- 011]
n+1
2
X(X2+ 2X1X3)+k24 Ei[e1(3),e4,...,ek_l,ek+1,...,en+1]

for coordinates of typé31...1. These expressions could of course be substituted into the expres-
sions for the Stekel multipliers given above. The relation of the coordinatgso the standard
coordinates on the hyperboloid can be deduced from the express'(@m§+22{2;'§xﬁ=1 for the
case{21...3 and x3+2x;xs+ =07 1x2=1 for the {31...1. Indeed, in case 1 choose coordinates
such thatx;=(y,—Y2)/v2, Xo=(Y1+Y2)/V2, X =iy, k=3,...n+1, and in case 2 choose co-
ordinates such that;=(y;—y3)/v2, Xo=1Y,, X3=(Y1+VY3)/V2, X =iy\, k=3,...n+1. With

these coordinates we hayé— 37" Jy2=1. Forn=3 we give the expressions for the series of
Stackel multipliers.

(1) Coordinates of typ¢l11}:
SM,=(ep+e3)xi+ (e,+€1)x5+ (e,+€1)%5,
SMy=((ex+€3)X3+ (ey+e1)Xa+ (8,1 €1)X3)2 — (€285X2 + €,81X5+ €,61X3),
SM_ 1= (eze3%; + e85+ ee1x3) 1,

2
(ext+e1)x3

SM_,=(e,+e3)X°+ (e,+6)Xo+ ’
2= (et €3)XT+ (1 €e1)X5 (e2e3X§+e2elx§+e2e1x§)2

— 2 2 2\2 2 2 2
SM_z=((eyt+e3)x;t (et e X5+ (et e1)X3) — (ee3X]+ €,61X5+ €,e1X3)/

(€,65X5+ €,8,X5+ €,6,X3)°.

(2) Coordinates of typé21}:

SM,=—x2+2(e;+e3) XX+ 2€;X3,

S M3: (_ Xi"‘ 2(el+ e3)X1X2+ 291)(%)2_ (2€1e3X1X2— e3xi+ e%x%) y

S M_]_: (28183X1X2_ E3X§+ eixg) -1

—X2+2(e1+ €3)X Xy + 2€,X5
SM_,= 227
(2€183X Xy — €3X] +€1X3)

(— X2+ 2(e1+ €3)X1Xp+ 2€,X5)° — (2€,€3X1 X, — €3X5 + €3X3)
SM-5= (2€,€3%X1Xo— E3X>+2%2)3 '
1€3X1Xp — €3X] + €1X3

(3) Coordinates of typ€3}:
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S M2: - 2X1X2+ 291(X§+ 2X1X3),
SMy= (= 2X1Xp+ 2€1(X5+ 2X1X3))?— (€5(X5+ 2X1X3) + X5 — 2€1X1X,),
SM_ ;= (€3(X3+2x1X3) + X2 — 2e1X1Xp) %,

L 2xX 281 (X 2%y Xg)
(5(X5+2X1X3) + X3 — 2€1X1Xp)?

SM_,

€2(X3+ 2X1X3) + X2 — 2€1X1X;)
(503G +2X1X3) +X] — 2€,X:Xp)%

SM_3=(—2X1Xp+ 2€;(X5+ 2X;X3))?
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