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ORTHOGONAL SEPARABLE DYNAMICAL SYSTEMS
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Abstract. The general setting for a global geometrical approach (o the orthogonal sepa-
ration of variables is presented together with some applications to dynamical systems in
the Euclidean spaces.
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1. INTRODUCTION

Let M, be an n-dimensional manifold and T* M, its catangent bundle. Let (¢*) be
local coordinates of M,, and (¢*, p;) the corresponding canonical coordinates on T*M,,
(i=1,...,n).

It is known that integrals in involution of a Hamiltonian dynamical system X g
on T*M, can be found by solving the corresponding Hamilton-Jacobi equation, that
is by finding a complete solution W(qg',¢,) depending on suitable coordinates (g') of
M, and on n constants of integration (¢;), ¢ = 0,1,...,n — 1. Such a complete
solution is (locally) the generating function of a transversal Lagrangian foliation of
T"M,, parametrized by (c,). These Lagrangian submanifolds are defined by equations

oW
1.1 ;T ——
( ) Pi aq,a

which can be solved with respect to (e;). Then the functions c,{¢’,ps) give rise to n
independent integrals in involution, {c,,¢es} = 0 (Jacobi theorem), so that the system
is integrable.

[f it is possible to find a complete integral of the kind
(1.2) W= Wi(g', ca) + ...+ Wn(u,cq),

then we say that the Hamiltonian system is integrable by separation of variable
(briefly, separable) and the coordinates (¢*) are said to be separable (with respect
to the Hamiltonian H ). The constants of integration (c,) are called separation con-
stants. Equations (1.1) show that this is the case when each p; is a function of the
corresponding coordinate ¢' only (and in general of all the constants (c,)).
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Analytical Mechanics is mainly interested in dynamical systems defined by a triple
(M,,g,V) where (M,,g) is the Riemannian configuration manifold and V: M, — R
the potential energy, and whose Hamiltonian is

1 .
(1.3) H = 5¢"pip; +V.

We say that such a system is orthogonal separable if it is separable with respect to
orthogonal coordinates (g'), g/ = 0 for i # j. A celebrated theorem of Stickel [22, 23]
gives the general form of the integrals in involution in orthogonal separable coordinates.
These integrals are quadratic polynomials in the momenta (p;), so that their coefficients
define Killing tensors of order 2, and it turns out to be convenient to deal with the
algebraic properties of these tensors, interpreted as linear operators on vector fields and
1-forms, in order to establish an intrinsic characterization of the orthogonal separation.
This characterization was firstly investigated in classical papers by Eisenhart [6, 7], and
more recently by Kalnins and Miller [10], Woodhouse [27], Shapovalov [21]. The aim of
this lecture, which is closely related to previous papers [1, 2], is to present an improved
version of the geometrical characterization of the orthogonal separation, together with
some applications to separable dynamical systems in the Euclidean spaces.

2. STACKEL WEBS AND STACKEL SYSTEMS

According to the general theory of the separation of variables (Levi-Civita [13]), a
necessary condition for the separability of a dynamical system (M,,g,V) is that the
corresponding geodesic Hamiltonian system (V = 0) be separable. This means that
the investigation of the separability of the geodesic flow of a Riemannian manifold is a
preliminary problem, even if the geodesic flow is known (as in the case of an Euclidean
space, for instance).

Definition 2.1. Local coordinates (¢') on a Riemannian manifold (M, g) are said
to be separable if the corresponding geodesic Hamilton-Jacobi equation has a complete
integral of the form (1.2).

Since the separation property is invariant under separated transformations of the
coordinates (i.e. transformations whose Jacobian is diagonal), in order to have a geo-
metrical picture of the separation it is better to think of the coordinate hypersurfaces
rather than of the coordinates. This suggests the use of the notion of a web.

Definition 2.2. An orthogonal web on a Riemannian manifold (M,, g) is a family
(8;) = (81,...,8,) of n orthogonal foliations of hypersurfaces (submanifolds of dimen-
sion n — 1), defined on all M, with the exception of a closed singular set 0. A
parametrization of an orthogonal web is a set (¢') = (¢',... ,¢") of n real C* func-
tions on M, — Q such that dg' # 0 everywhere and dg'|S; = 0 (i.e. ¢’|S; = const.) for
each leaf §; € 8;. Locally, a parametrization gives rise to orthogonal coordinates which
are adapted to the web.

Example 2.1. Elliptic web on the Euclidean plane E;. Let E, be the Euclidean
plane and let (z,y) be Cartesian (orthogonal) coordinates with origin in a point O.
Let us consider two points F; = (—¢,0) and F; = (¢,0) in E,. Confocal ellipses and
hyperbolae, with focuses (F, Fy) define an orthogonal web (8;,8,) on E, with singular
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sat 8 = {Fy, F3}. In the foliation 8, we include the y-axis, all confocal hyperbalae,
and the open intervals I; = (—o0, 1} and Iy = (F3,+00) of the z-axis. In the foliation
§; we include all confocal ellipses and the open interval [y = (Fy, F3)} of the z-axis.
We have two natural parametrizations of this web. A first parametrization (g!,¢?%) is
defined by

¢'(P) = |PR| - |PFR|, ¢ (P)=|PF|+|PF|, P¢cE,,

where | PQ| denotes the distance between two points. A second parametrization (u?, u?)
is defined by the roots of the equation

2 2

Ll vy _ _l 2 __ g2
7 a u—b—l (a<b, b (1—2IF1F2| —2C).

These roots are (improperly) called elliptic coordinates. We observe that two hyper-
bolae which are symmetric with respect to the y-axis have the same value of ! but the
opposite value of ¢!.

Definition 2.3. A Stackel web on a Riemannian manifold { M,,, g) is an orthogonal
web whose adapted coordinates are separable.

The question arises how to recognize geometrically if an orthogonal web is a Stickel -
web. An answer to this problem can be found by considering particular sets of Killing
tensors.

Definition 2.4. A Stackel system on a Riemannian manifold (M,,g¢) is an n-
dimensional subspace & of the space of Killing tensors of order 2 over the manifold,
such that, with the exclusion of a closed singular set 2 C M,,,

(i) it has a basis of n pointwise independent elements,
(ii) all the elements have common eigendirections,
(ili) these eigendirections are normal.
A vector field (or a distribution of dimension 1, i.e. a field of directions) is said to be

normal if the orthogonal distribution is completely integrable. The integral manifolds
of the normal eigendirections are called the integral manifolds of the Stickel system.

The main fact is that there is a one to one correspondence between Stickel webs and
Stackel systems. We can state this property as follows.

Proposition 2.1. An orthogonal web is a Stéckél web if and only if its leaves are
integral manifolds of a Stickel system.

According to this proposition we say that a Stackel web is generated by a Stickel
system. For the proof we need two lemmas.

NoTaTION. We denote by (&;) the partial derivatives with respect to coordinates
(¢') and by (E;) the vector fields corresponding to these derivatives, that is the natural
(local) frame corresponding to the coordinates (g').

Lemma 2.1. [8, 11] Let K be a symmetric tensor which is diagonalized with respect
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to orthogonal coordinates (u'). Let (p;) be the corresponding eigenvalues,

(2.1) K=Y e¢"E:®E.
i=1

Then K is a Killing tensor if and only if the following equations are satisfied

(2.2) digj = (0i—0;)dilng”  (i#j), diei=0.

Proof. There is a bijective correspondence between symmetric contravariant tensor
fields on a differentiable manifold M, and the polynomial functions on the cotangent
bundle T*M,.:

I ) Pipd
K= (K""") o EK:HA Lotk e s iDis
A symmetric tensor K on a Riemannian manifold (M,,g) is by definition a Killing
tensor if
(2.3) {Ex,E,} =0,

where { , } are the canonical Poisson brackets of the real functions on T*M,. This
means that the function Ex is an integral of the geodesic flow. Under the assumption
(2.1) equation (2.3) implies

> g% (97 dies — (0i — en) ig™) pip? =0,
i
and this condition is equivalent to system (2.2). m
Equations (2.2) can be derived from more general equations written by Eisenhart

(8], concerning the characterization of a Killing 2-tensor in the frame made by unitary
eigenvectors. For a more general version of Eisenhart’s equations see [1].

Lemma 2.2. [6] Local orthogonal coordinates (¢*) are separable if and only if the
following -;-nz(n — 1) equations are satisfied,

(2.4) 909" = 0;In g’ ;g™ + 0, In g" ig™*, i #j.

Proof. The additive separation of a complete solution W(u',¢c,) is equivalent to the
complete integrability of the following differential system (see Levi-Civita [13]):

. L o;H
aipj=0 (2#1)1 al'pl':_ﬁa
where P P
6,- = a—q‘., o' = a_p,

For the geodesic Hamiltonian H = 1¢% p? these integrability conditions coincide with
equations (2.4). m

Proof of Proposition 2.1. Let us consider the differential system (2.2). The complete
integrability conditions of this system,

(25) de(aggh) = (')](()zgh) = 01
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are equivalent to equations
(26)  (0:— 0;)(@:0;6™ - Biln g’ 99" - O;Ing" Big™) =0 (i # ).

Assume that the orthogonal coordinates (g) are separable. Then equations (2.4) are
identically satisfied as well as equations (2.5). As a consequence, the linear system (2.2)

has a set of independent solutions (g,;), ¢ = 0,...,n — 1, so that det(g,;) # 0. Due to
Lemma 1 the tensors

{2.7) K. = 049" E;®E;

form a basis of an n-dimensional space § of Killing 2-tensors which is a Stickel system
in the domain of definition of the coordinates. Conversely, if such a subspace exists,
we can represent a basis as in (2.7) and the functions (g} form a complete solution
of system (2.2). Hence, the complete integrability conditions (2.4) hold. For each pair
of distinct indices (2, §) there is at least one index a such that g,; — g.; # 0, otherwise
det(g,} = 0. Thus equations (6) imply the separability conditions (2.4). m

Some remarks concerning Proposition 2.1 and its proof are in order.

Remark 2.1. The complete integrability of the differential system (2.2) is equivalent
to the separability of the coordinates (¢'). Hence, equations (2.2) are the characteristic
differential equations of the Stickel systems.

Remark 2.2. Every Stickel system contains the metric tensor g. Indeed, p; = 1 is
always a solution of equations (2.2).

Remark 2.3. All elements of a Stickel system S commute as linear operators and
are in involution, i.e.

(2.8) K-K-K.K=0  [K,K'|=0, VKK eS.

We denote by K - K’ the composition of two linear operators and by [K, K’} the Lie
brackets defined by equation

(2.9) Eig x={Ex,Ex}.

The first property is obvious since all elements of S have the same eigendirections. The
second is a general property of solutions of linear differential systems like (2.2). In the
present case, for two elements of § we have: '

1
{Ex,Ex} = Z{ 0ig Pl 5 5 @iy"pf}
= Z Z [(0: 9" + B39 0:) 0 — (9;0} 6% + D397 0l) 0] P} 677 s
= Z 29"9 pip; (€950 - o; 0;0: + (cjoi — 0;0i)8;n g™")

=0
due to equations {2.2).

Remark 2.4. A Stickel system can be represented by a single Killing tensor with
pointwise simple eigenvalues. Indeed, if a Killing tensor K having normal eigendi-
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rections exists, since the eigenvalues are all different, equation (2.5) written for the
eigenvalues of K produces equations (2.6) and consequently the separability conditions
(2.4), since g; # p;. But these separability conditions imply the existence of a Stickel
system. Conversely, in a Stickel system we can always find an element with pointwise
distinct eigenvalues. Indeed, if we consider a complete solution (g,;) at a point as a set
of components of independent vectors @, With respect to a basis €' of an n-dimensional
vector space, up to a linear transformation with constant coefficients, we can obviously
find a vector g whose components with respect to this basis are all different. This
means that at that point g; # ;. However this condition remains valid in an open
neighborhood of that point. We do not discuss here the possibility of globalizing this
local process. We conclude that

Proposition 2.2. An orthogonal web is a Stickel web if and only if its leaves are
(locally) integral manifolds of a Killing tensor with pointwise simple eigenvalues.

Then we say that a Stickel web is generated by a Killing tensor with pointwise
simple eigenvalues.

Remark 2.5. It can be shown that the commutability condition (2.8); can replace
condition (ii) in the Definition 2.4 of Stickel system (for positive metrics), and that the
involutive condition (2.8); can replace condition (iii) [1]. It can also be shown that, in
terms of eigenforms, conditions (ii) and (iii) can be replaced with the following one: the
Killing tensors have simultaneous closed eigenforms (this is in fact the characteristic
property of the orthogonal separation proposed in [4]).

The properties of a Stickel system considered in the Remarks (2.2), (2.3), (2.4)
have been included in the set of necessary and sufficient conditions for the existence of
orthogonal separable coordinates (see [6] and [27]). In fact, after Proposition 2.1 and
Definition 2.4, they are redundant.

Example 2.2. For n = 2 a Stickel system always has a basis of the kind (g, K)
where K is a Killing tensor which is not proportional to the metric tensor. Thus a
Stéckel system is always represented by such a Killing tensor K. The critical set §2
is the set of points where the Killing tensor K has double eigenvalues (i.e. where it is
proportional to the metric tensor). The condition that the eigenvectors are normal is
obviously satisfied. If the eigenvalues (91, 0;) of K are independent functions, then they
give a parametrization of the Stickel web. For more details see [3].

Example 2.3. The Euclidean plane E;. Let us denote by Ro the unitary rotation
around a point O of the Euclidean plain. This is a vectorfield defined by

Ro(z) = w x =,

where x is the position vector of a generic point with respect to O, and w is a unitary
vector orthogonal to the plain. We can extend the meaning of the symbol Ry to the
case in which the point O goes to infinity. Then Ry is a translation, a constant unitary
vector field. With this convention, it can be seen that every Killing tensor in the plain
is of the kind

K=aR,nﬂRQ+bg, a,beR,

where N denotes the symmetric tensor product. It follows that all possible Stickel
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systems are characterized by a Killing tensor of the kind
K=Rpn RQ.

thus there are four kinds of Stickel webs in the plain, corresponding to the following
four cases ({2 is the critical set}):

P#£Q Q={PQ} elliptic web
F=Q Q={r} polar web

P — o0 Q={Q)}) parabolic web
PQ — o0 Q=40 cartesian web

All these webs are made of confocal conics (with degeneration in the second and fourth
case; a detailed discussion is in [3]). A similar approack can be used for the hyperbolic
plane, for the 2-sphere and the 2-pseudosphere.

3. SEPARABLE POTENTIALS

Definition 3.1. We say that a real differentiable function V: M,, — R is separable
with respect to (or compatible with) a Stickel web if the dynamxcal system (M,,g,V)
is separable in any coordinate system adapted to the web.

Proposition 3.1. A potential {unction V is compatible with respect to a Stickel
web generated by a Stickel system & if and ounly if

(3.1) dK - -dV)=0
for all elements K of § or for at least an element of § with simple eigenvalues.

To prove this statement we need the following lemma (see also [4]).

Lemma 3.1. A potential V is separable with respect to orthogonal separable coor-
dinates (q') if and only if the following } n(n — 1) equations are satisfied,

(3.2) 80V = 0:In g 3V + 8;In g 3V,  i#j,

Proof. These equations follow from the separability conditions of Levi-Civita [13]
applied to a Hamiltonian of the kind H = } g% p? + V (see the proof of Lemma 2.2). m

Proof of Proposition 3.1. Let us consider an element K € & expressed as in (2.1). The
covariant components of K - dV are (g;9;V), thus equation d(K - dV') = 0 is equivalent
to

di(e; 9;V) — 0;(ei 8:V) = 0.
Due to equations (3.2), it follows that this is equivalent to
(0i— 0;)(3i8;V — 8;In g 8;V — B;Ing" a;V) =0, i+ 3.

The rest of the proof follows the same pattern as that of Proposition 2.1. See also
Remark 2.4. »
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Proposition 3.2. Let (K,) = (K, K.,...,K,) be a basis of a Stickel system S,
and V a separable potential. Let V,: M — R be functions (locally) defined by

(3.3) dv, = K, - dV,
then the functions co:T*M — R defined by
(3.4) ¢a = Ex, + 7"V,

where m:T*M — M is the cotangent fibration, are independent integrals in involution.

Proof. This is a consequence of the theorems of Jacobi and Stdckel. If we choose
K, = g, then ¢¢ = H. However, due to the preceding theorems and Remark 2.3, we
can prove this fact directly:

{care} = {Ek, + 7"V, Ex, + 7*V}}
={Ek,, Ex,} +{Ex,, 7" Vo} + {n"Va, Ex,}
= Ex, x,) + Ex,.av, — Ex,.av,
= Ex, Ky-Ky-K,)-dv

= 0. n

Remark 3.1. Equations (32) characterize the separability of a potential V by means
of the separable coordinates (¢*) and the contravariant components of the metric tensor
in these coordinates. It is classically known that the most general solution of equations

(3.2) is
(3.5) V =Vg"

where each V; is a function of the coordinate ¢' (a function like V is called a Stackel
multiplier [11, 4]). Instead, equation (3.1) characterizes the separability of V in an
intrinsic way, by means of the elements (or one element with simple eigenvalues) of the
Stackel system. The fact is remarkable that in applying equation (3.1) the choice of
coordinates is completely free. Another characterization of the orthogonal separation
of a dynamical system, which involves simultaneously the Killing tensors (K,) and the
functions (V,), is considered in [21] and [4].

Remark 3.2. The separability conditions (2.4) hold for any coordinate hypersurface
¢' = const., so that orthogonal separable coordinates induce separable coordinates on all
the coordinate hypersurfaces (this fact has been pointed out in [4], after different consid-
erations). Moreover, equations (3.1) are also reducible on any coordinate hypersurface.
We conclude that

Proposition 3.3. If a dynamical system (M,,g,V) is orthogonal separable then
every restriction (S, g|S,V|S) to a submanifold S C M, which is the intersection of
leaves of the corresponding Stickel web is separable.

However, there are potentials which are separable on the leaves of the web which are
not the restriction of a separable potential defined in the whole space, as shown by the
following proposition.

Proposition 3.4. Let 8; be a foliation belonging to a Stickel web corresponding
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to a Stackel system §. Let X; be a vector field orthogonal to this foliation (without
singular points). Then the restriction of a potential V: M, — R to every submanifold
of §; is separable if and only

(3.6) d(K -dV)A X, =0,

for all K € § or for at least one element K € 8 with pointwise simple eigenvalues.

Proof. According to Proposition 3.1, the induced potential V|5 is separable on all
submanifolds 5 € §; if and only if

d(K|S - dV|S) = 0,

for all K € &, or for a K with simple eigenvalues. By considering separable coor-
dinates (¢') adapted to the web, the right hand side of this equation can be written
d 3 4:(0xdkV d¢*), so that it becomes equivalent to

d Z(Qkakv dg*yndg' = 0,
x

and this is equivalent to (3.6), since by using the natural identification between !-forms
and vectorfields the dilferential d¢* can be substituted with any vector lield orthogonal
to the submanifolds of §;. »

Remark 3.3. All the above considerations hold in a pseudo-Riemannian manifold,
where the metric is not positive-definite, provided that in the formulae we replace In g™
with In |g| and we add the requirement that the Killing tensors involved have real
eigenvalues with non-null eigenvectors.

4. THE ELLIPTIC STACKEL WEB IN THE EucLiDEAN PLANE E,

Let us consider the elliptic web in the Euclidean plane E; (see Example 2.3), with
focuses Fy # F£3. Let R; (¢ = 1,2) be the rotation around F;, Ri(P) = w x 7y,
ri = P, P € kg, and u; = FiP[r;y r; = |F;P|. The elliptic Stickel system is
completely determined by the Killing tensor

(41) K = Rl ﬂRg = (w X r;)ﬂ(w X T‘z) =TT (wx ul)ﬂ(w X‘U.g).
Let us consider a bicentered symmetric potential, i.e. a potential V of the form
(42) V= V](T]) + Vz(‘l‘g).

Let us impose condition (3.1) on this potential. We can use (ry, ) as coordinates. The
local frame E; = 'a?_. corresponding to these coordinates is given by

1
sinz'ﬂ(u] —COS‘I?‘U.Q), Eg = m('ﬂ-z —cosﬂul),
where ¥ is the angle between the unitary vectors (u;), w1 - uz = cosd. The gradient of
V is the vectorfield

E, =

grad(V) = Vw1 + V, ua,

so that
X=K-grad(V)=riraw-:u; Xu(Vjwxuy = V{wxu)

=ryrysind (Vjwxuz —~ V/wxu).
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The covariant components of the vectorfield X are
Xi=X-Ei=rr(Vcest-V)) =2Vl +r}-d®)=rin V],
Xo=X-Ey=rirp(Vycosd = V)= L2V/(ri+7} —d®)=rimy VY,

where @ = | F; F3| is the distance between the two focuses, and

(4.3)

cos? = M
2 T1T
Equation (3.1) is in the present case equivalent to equation
X, 00X,
ary ~ on
that is, after (4.3), to the separated differential equation

2 2
SV = SV,
T T2

so that

a2

a3
(4.4) V =ao(r} +r3)+ T—‘ e (ag, a1, a; € R).
|

2
Hence, we have proved that (a different proof is given in [3])

Proposition 4.1. The most general bicentered symmetric potential compatible with
the Stackel web in the plane is (4.4).

Now, in order to find the integrals corresponding to the dynamical system with
potential (4.4), let us apply Proposition 3.2. Let U be the function such that dU =
K - dV where V is the potential (4.4). According to (3.4) and (4.1) the corresponding
integral is

(4.5) c=v-K-v4+U=(r1 xv)-(ry xv)+U.
We consider three cases separately.

Case I: ag = a3 = 0. This is the case of a particle moving in a Newtonian or
Coulombian field centered at a point O = F;. Hence, this dynamical system is integrable
by separation of variables not only in polar coordinates centered at O but also in elliptic
coordinates with one of the focuses coinciding with the center of the field and the other
arbitrarily chosen in the plane. In this case, see (4.3),

X1=—a12c0519:?—, Xzzalrl:—_@_,
Ty 1 ry  dr
where
U=a;(rycosd —ry).

Indeed we have

If we introduce the vector
(4.6) a:Fng:r,-—rg,
then this potential can be written

(4.7) U=-a1a - u;.



Orthogonal separable dynamical systems 173

According to formula (4.5) the corresponding separation constant is

(4.8) c=(mxv)i-a-A

where

{4.9) A=wvx{r ><'u)+a—11'|.
L

This is in fact the celebrated Laplace-Runge-Lenz vector. llence, we recognize that
this vector integral is intimmately counected with the separation in elliptic coordinates.
Note that the first part of the separation constant (4.8) is the square of the angular
momenium.

Case [I: ag = 0. This is a classical dynamical system: a point moving in a field
generated by two fixed charges or masses. Its integrability has been investigated by

Euler, Lagrange and Legendre (for the treatement of this problem aund its bibliography
gee [9, 20, 24]). It follows fromn (4.7) that the function U is

(410) U=a-: (azug - a1u1),
and the separation constant is again given by (4.8) where in this case

o a; a;
(4.11) A:vx(rlxv)-}(—l——z—)r]——)’-a.
T T2 T2
Case III: &y = a; = 0. This is the case of a point moving in a symmetric Jinear
field {for instance, the force of an ideal spring) centered at a point 0. This dynamical
system is integrable by separation of variables in Cartesian coordinates with origin O,
in polar coordinates centered at 0 and in elliptic coordinates with symmetric focuses
with respect to O. ln this case, see (4.3),
22 2 2
Xy =agr (rf — 15 —a’), X2=a0r2(rg—7';—u2),
so that N
0 2
U= (=) -2+ 13)).
If we introduce the radius vector

{4.12) r=0F= %('rl - 713),

since | )
r2=§(r¥+r§)——a2, a 1'=§(T1~—r§),

we find

1_ 22 o
U=apl{la-7r)" —a’r"— — ).
Thus, by neglecting an inessential constant,
(4.13) U=-oap(axr)
Since ry =7+ ;—a and rg =7 — lia, the separation constant (4.5) becomes

. |
{4.14) e=(rxv)- Z(axv)2 ~ag(a x r)t.
Again the first terin is the square of the angular momentum. The remaining part is
equivalent to the first integral 4% + 2ag y%, in Cartesian coordinates {z,y) such that

Fi=(-%,0)and F, = (2,0).
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5. THE ELLIPTIC STACKEL WEB IN THE EUCLIDEAN SPACE E,

Let (z,) (e = 1,...,n) be Cartesian coordinates in the Euclidean affine space E,,.
Let us consider the symmetric 2-tensor K with Cartesian components
(5.1) K =¢"4+m Z z,zy, K = —mz,z5 (a#p8),
TEa

where ¢, m € R (m # 0). (i) The tensor K is a Killing tensor. Indeed,

1 m S 1
Ex =50 et 2 (zaps—zppa)’,  Eg=3) i
o a#f a
Thus,
m
Za’TEK Py = ? (60'73113 - pnéﬁw)p‘y =
¥ o, B,y

{EK’ Ea}

m
=5 2_(PaPs = pppa) = 0.

af
Let us consider the tensor
(5.2) LG ltr(K)g—K,
whose Cartesian components are
(5.3) Log = bap o+ mzqzg,
where

1
5.4 = (Y m ®
(34) : n-1 Z" b
P
so that, conversely,
(5.5) %= Za,, - aq-
v

Obviously, (ii) the tensors L and K have the same eigenvectors. Moreover, (iii) the
Nijenhuis torsion of L vanishes. The Nijenhuis torsion [19] of a (1,1)-tensor field L =
(L]) is the (1,2)-tensor N (L) with components

h k A ho 1k
(5.6) Nij = L Lj = LidyLy)-
In the present case, with respect to Cartesian coordinates,

Z LagO4Lpy = Z Laa(‘smﬁxv + 69710) = LapZ+ + Lanzp,
) e

Z LoyOaLp, = Z Loy(bapze+ baezp) = z Loyzobap + Layes,
e e e

so that N, = 0. Due to (5.3), the following identity holds,
2

& z z
Z Lag SR, [ E  tmz, Z 2,
= U —ag U=l 5 U= ap
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Hence, if u is a root of equation

1.2
(5.7) yte -1

then

T x
Zbaﬁ AN S
5 u = ag U—dg,

This shows that (iv) the roots (u;) of equation (5.7) are eigenvalues of L and (v) the
vectors (E;) with Cartesian components

Lo

5.8 Ef = —
(538) Fe
are the corresponding eigenvectors. Moreover, equation (5.7) shows that {vi) if the
constants (a.) are distinct, then they separate the roots (u'),

o <ul <az <ut<...<a, <ut.

By the theorem of Nijenhuis {19], from properties (ii) (iii} (iv) (vi) we conclude that
(vii} the Killing tensor K has normal eigenvectors whose integral manifolds are defined
by equations u' = const., where (u') are the roots of equation (5.7). Furthermore, (viii)
the eigenvalues of K are pointwise distinct. Indeed, (5.2) implies

K=t(L)g-L,

s0 that the eigenvalues of K are g; = E#i w/. Due to Proposition 2.2, from properties
(i) and {viii) we conclude that

Proposition 5.1. If the numbers (¢*) (or (@,)) are ail distinct then the teasor K.
defined in (5.1) is a Killing tensor generating a Stickel web on E,,.

We call this web the elliptic web of E, corresponding to the constants (a,). This
web is invariant under the translation a, — a4 +b (that is, it depends on the differences
6o — ag only). The roots of equation (5.7) (with m=1) are classically known as elliptic
coordinates of E,,. The elliptic web is made of confocal quadrics, and its singular
set is the union of the sets {1, defined by equations

2
T
Zo =0, E T = 1.
g — G,

TEo

These are called the focal quadrics.
Now, let us consider the potentials which are separable in this web.

Proposition 5.2. A poteatial V is compatible with the elliptic Stiackel web if and
only if the tn(n — 1) linear differential equations

(5.9) (ag — aa)BaapV + (mpaa - a:af)ﬁ) (ZV + E%a—f") =0

y=1

are satisfied,



176 S. Benenti

Proof. Since the Killing tensor K has distinct eigenvalues, we can use Proposition
3.1 and write equation (3.1) for K in Cartesian coordinates, d, X5 — 93X = 0, where

Y K®0,V = K*,V + Y K*9,V
=

VF

Xo= (K +dV)a

¢+ Z .’L‘If! 3.V - Z .r(,\.‘v,, oV,

FFa FFa

By a straightforward calculation we derive equations (5.9). m
The linear differential equations (5.9) in Cartesian coordinates (z,) are equivalent
to equations (3.2) in any coordinate system adapted to the elliptic web (for instance, in

the elliptic coordinates (u')). If we consider the potential V as a function of the squares
(z2) of the Cartesian coordinates, and if we set

so that
0.V =2z, 05, 0.0V =42,250:0;V (a#B),

then equations (5.9) become equivalent to

(5.10) (ﬂ.u = (La)f‘)ﬁo[jv + (aa = (.)[3) (V + Zzi():,V) =0.
y=1

Remark 5.1. The most general separable potential of the kind

(5.11) V=3 Valza) = Vi(z1) + ... + Va(zn)
a=1
is
n bn
(5.12) V=)o (czf, + "ﬁ)
a=1 @

where ¢ and (b, ) are arbitrary constants. Indeed, when 9,35V = 0 for a # 3, equations
(5.9) become
3(zpdaV —2q05V) + zoazg (O2V - 33V) = 0.

RV + S 5= REV + ia,,v.
I T
These equations can be satisfied if and only if
otV + f’ua(,v =c¢ (ceR),
and this implies (5.12).

Remark 5.2. If the potential V is assumed to be homogeneous of degree k in the
Cartesian coordinates, equations (5.9) imply
ngC,V = :rQB,,V

Uy — ag

(5.13) 808‘,\/ =(2+4k)
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‘These equations are identically satisfied when, for instance, k = ~2 and 8,84V = 0, or
TodpV = z30,V. We find again the potential (5.12).

Remark 5.3. Due to Proposition 3.3 all the potentials satisfying equations {5.9)
give rise to separable dynamical systems when restricted to the quadrics of the elliptic
Stickel web and to their intersections. For instance, it follows from (5.12) that a linear
spherically symmetric force (like an elastic force) centered at a point O and acting on a
mass point constrained on a smooth quadric with center O, or on the intersection of two
or more confocal quadrics centered at O, is separable. The separability of the clastic
potential V = r? = 377 _ 22 over an ellipsoid was discovered by Jacobi.

We call the Stickel system corresponding to the elliptic web the elliptic Stackel
system.

Let ¢, be the elementary symmetnc functions of order ¢ = 1,...,7n of the distinct
real numbers (a,). Let ¢ and ¢*# be the elementary symmetrlc functions with the
exclusion of a, and (ag,as), o # 3, respectively. Let us set ¢§ = "70 =1 and c“ﬁ =0.

Proposition 5.3. The 2-tensors (K,) (a = 0,1,...,n — 1) with Cartesian compo-
nents

(5.14) K3 =2 +my ), K =-mfiz.zs (a#p),
T#o
form a basis of the elliptic Stickel system.

Note that Ky =g and K| = K

Proof. These tensors have common eigenvectors (E;) defined by (5.8):

(Ko« E)" = Kg°Ef + ) KVE}

vEa
1
:E < +m Zsa I.’.c ‘—a Zgu_l:c Zn "—a
T#o “« ‘v#a v
1 z,
e (am Y - e
@ T# o
1z, x?
_ o o -y Y
= —— g —mz §y — ¢ ) ——
2ut —a, \ ¢ ~ (" “)u‘—a.,
_1 T Z ';gm?y
~ A y
2ut —a, U -y
ie. \
- a4z
K, -E; = - T E;
Ut —a

Here we used the identity {2]

& =P = (ap — ag 2P,
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The tensors (K ,) are pointwise independent (out of the singular set), since at the point
O the non-vanishing components are K2* = ¢2 and det(s) = [],54(ap — aa) # 0.
The tensors (K ,) are Killing tensors. Indeed,

1 o m &
(5.15) By, = EZCD i+ > Ecaﬂ(zapg—zﬁpa)'l.
o aff
Thus,
{Ek..Eg} = Za Ex.py =+ z Sat1 (bavPs = Padpy) Py
By
m
= 5 2 sai(papp — Popa) = .

af

Remark 5.4. The functions (V,) such that dV, = K - dV, where V is of the kind
(5.12), are

n 2
(5.16) Ver 3o (cr 4 )+Z<°ﬁ bo -;1
a=l %) Ta

Thus, by adding these functions to the corresponding functions (5.15), according to
Proposition 3.2, we get a complete system of integrals in involution.

A method for constructing the Killing tensors forming the elliptic Stackel system
(5.14) is illustrated in [2], where the fundamental Killing tensor K is interpreted as
the inertia tensor of a system of masses, with total mass m. Another approach
to the construction of the elliptic separable potentials and the separation constants
is discussed in [14, 25, 26] (however, following the approach in [14] the number of
differential equations considered as characterizing the separability turns out to be larger
than fn(n — 1)). The construction of the components in elliptic coordinates of the
separation constants dates back to Jacobi [15], and it is also developed in [12].

6. THE SPHERICAL-CONICAL STACKEL WEB IN THE EUCLIDEAN SPACE E,

With a set of n real numbers (a,) such that a; < a3 < ... < a, we associate a family
of cones

(6.1) > =0

a=1

parametrized by u € R, with vertex at the origin O of the Cartesian coordinates. If we
add to these cones the foliation made of the spheres centered at O we get an orthogonal
web, which we call the spherical-conical web (corresponding to the numbers (a.)).
When u takes the values (a,) the cones degenerate into cones of dimension n — 2 which
are called focal cones. The union of these focal cones is the critical set of the web.

For each point of E, not belonging to the focal cones equation (6.1) has n — 1 real
roots (u*) (s = 1,...,n — 1) such that ¢; < u! < a2 < u? < ... < u"! < a,. To
these roots we add the distance from the origin 4" = r. The functions (u') = (u®,7),
which give a parametrization of the web, are called spherical-elliptic coordinates or
conical coordinates. It is known that these coordinates are separable, i.e. that the
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spherical-elliptic web is a Stickel web. In our approach this fact can be recognized by
the following proposition.

Proposition 6.1. The 2-tensors (H,) (u=0,1,... ,n — 1), where Hy = g and

(6.2) Hf“:quL’lzi, HOP = P (e # 8), a=1,...,n—1,
TH o

generate a Stickel system whose integral manifolds form the spherical-conical web.

Proof. Note that the tensors (H,), for a # 0, come from the coefficients of m of the
tensors (K} defined in (5.14), or, equivalently, that

(6.3) H, = ?}{ (Ko Ka(0))  (a=1,...,u—1).

It follows that these tensors are independent Killing tensors. The radius vector » is a
common eigenvector, corresponding to the eigenvalue 0 for g # 0 and the eigenvalue 1
for a = 0. Indeed H, - r = 0 for @ # 0. The radius vector is normal and generates the
spherical foliation. Following the same pattern of the proof of Proposition 5.2 it can be
seen that the vectors E; defined in (5.8), where (') are now the roots of equation {6.1)
(sothat i=1,...,n = 1), are eigenvectors of (Ha). Moreover, the identity

o5 z2 3 z?
2 2

2 Tz, Ty, .y
- - , - — =0
uw -yl ;(u'—aa uf—aa) S

shows that the vector fields (E;) are normal and generate the surfaces defined by equa-
tion (6.1). This proves that the system (H,) forms a Stickel system whose web is a
spherical-conical web. »

Proposition 8.2. A potential V is compatible with the spherical-conical web if and
only if the 3n{n — 1) linear differential equations

3:{"‘?(13801/ —z,05V) + (ag — ay) r? 9,0,V
(6'4) +Iﬁ2<{h$v aora‘yv it chcm Ty aﬁa‘lv =0
¥ ¥

are satisfied.

Proof. We write equation (3.1) in Cartesian coordinates, by choosing K = H,.
Indeed this tensor is the first tensor in the sequence (6.3) with simple eigenvalues [2]. m

Remark 8.1. The restriction of H; to a sphere centered at O coincides with the
induced metric tensor. Indeed, the Cartesian components of H; are

Hf‘”:Zmi:l—xi, Hl“ﬁz—:z:o,a:ﬁ,
VR
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and a vector v = (v®) is tangent to the sphere if and only if v - 7 = v®*z, = 0. Thus

(Hy-v)* = (l-z2)v* - Z 9
TE
=(1-z2)v* + z2v* = v°*

that is, H, - v = v. Thus the spectrum of the Killing tensor H is (1,...,1,0).

Remark 6.2. If we consider the potential V' as a function of (z2), then equations
(6.4) are equivalent to equations

26506V ~ 83V) +1*(as = a)0apV

(6.5) + Z (g,ﬁ”m:ad(?x,v = qf"'z?yi)ﬁ('l—.,‘/) =0.
¥

Remark 6.3. A straightforward calculation shows that the most general potential
of the form V = ¥ Va(z4) which is compatible with the spherical-conical Stéckel web
is again the potential (5.12).

7. THE ELLIPTIC STACKEL WEB ON THE SPHERE S,,_;

The spherical-conical Stickel web in E, induces Stickel webs on each one of the
spheres of the web (Remark 3.2). We call such a web the spherical-elliptic Stackel
web. Let us consider one of these spheres, namely the sphere S,_; centered at the
origin O with radius r = 1. The restrictions of the Killing tensors (Hj,... yH,_1) to
8,1 (the restriction of H is the metric tensor, Remark 6.1) form a basis of the Stackel
system generating the spherical-elliptic Stackel web.

The potentials compatible with the spherical-elliptic web on 8,,_; can be divided into
three classes. (I) Potentials which are the restriction to the sphere of potentials in the
whole space E,, compatible with the spherical-conical web. In Cartesian coordinates they
are characterized by equations (6.4) or (6.5). (II) Potentials which are not compatible
with the spherical-conical web in the whole space but are compatible with the spherical-
elliptic web when restricted to every sphere. (1I1) Potentials defined on the whole space,
which are compatible with the spherical-elliptic web on a sphere of fixed radius only.

The potentials of class (I) and (II) are characterized by the following proposition,
which is a corollary of Proposition 3.4.

Proposition 7.1. The restriction of a potential V to every sphere centered at a
point O € E,, is compatible with the spherical-elliptic webs if and only if

(7.1) d(Hy -dV)AT =0,
i.e. if and only if
(72) Eaﬁz'y'i'fﬂ‘yxn +£'ya 1';3=0 (aaﬂ17 #):

where £,3 = — £, is the right hand side of equation (6.4).

A method of constructing a large class of potentials compatible with the spherical-
elliptic web on the sphere can be found in [25, 26]. We mention here three examples.
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The first twa belong to class (I), the third to class (II1).

Example 7.1. The potential (5.12) is a solution of (6.5), thm it is compatible with
the spherical-conical web (Remark 6.3). The potential ¢ 3°_ 22 is trivial on each sphere.
The potential 3, boz3 % is due to Rosochatius [17].

Example 7.2. The potential

n -1
(7.3) V= (E 1"—5)
a=1 °

is a solution of equations (6.5) (it is found in [5]).

Example 7.3, The Neumann potential [18]

(7.4) V= Eaa zi

is a solution of equatlons (7.2). Indeed, the left hand side of equation (6.5) becomes, up
to a factor 2, ¢;’(a, — ag), that is ¢f — ¢£. This means that Eapy = Tazp{sh — ¢f),

and equations (7.2) are identically satisfied.
By using equations (7.2) it can be shown that

Proposition 7.1. The most general potential of the kind (5.11) which is compatible
with the elliptic web on 8,,_; determined by the distinct numbers (a,) is the sum of
the Rosochatius and Neumaan potentials, V = 3 _b,z3% + a, z2.

8. THE PARABOLIC STACKEL WEB IN THE EUCLIDEAN SPACE E,

Let us consider the 2-tensor K with Cartesian components

KM=,

K% = —wz,,

Ko =¢*4+ 2wz,

Kf=0 (a#8, o,=2,...,n),

where ¢*, w € R(w # 0). Following the same procedure of §5, it can be shown that this
is a Killing tensor with normal eigenvectors. The tensor L defined in (5.2) plays in the
present case the same rale as in the case of §5. If the constants (e, ) defined in (5.4)
are all distinct, then the eigenvalues (u?) give a parametrization of a Stickel web of E,,,

called the parabohc web. By assuming for convenience (without loss of generality)
that ¢; = 0, the eigenvalues (u‘) are the roots of equation

(8.1)

2

(8.2) Z il :%(11-—211:3:1)

571 U—=2ag

and the vectors ( E;) of components

(8.3) El =

t

1
— Eia = ¥
w U; — Uy
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ate eigenvectors. The roots {u') (for w = 1) are called parabolic coordinates.

‘The compatible potentials are characterized by equation (3.1) applied to the tensor
(8.1). By a straightforward calculation it can be shown that

Proposition 8.1. A potential V is compatible with the parabolic Stickel web if and
only if the 3n(n — 1) linear differential equations

(@q — 221)010aV + 2,07V - Z:=1 Toy0aloV — 30V =0,

(8.4) (B # 1)
o105V ~ 55010,V + (0o — a5)8.0pV = 0.

are satisfied.

Remark 8.1. The most general separable potential of the kind V = Vi(z() + ...+
Va(zy,) is

(8.5) V=cz +Z( ex? + - )

where ¢ and (b,) are arbitrary constants.

Following a method similar to that of §5 it can be proved that

Proposition 8.2. The 2-tensors (K,) (a =0,1,...,n — 1) with Cartesian compo-
nents

KW =},

K1 = —we? |z,
Koo = q2 + 2wl 3y — WP L 4y Saa 35,
KoB = y? qufzzaz‘ﬁ (a#B, a,f=2,...,n),
form & basis of the parabolic Stackel system.

(8.6)

A constructive proof of this Proposition is given in [2].

Remark 8.2. The functions (V,) such that dV, = K, « dV (Proposition 3.2), where
V is of the kind (8.5), are

n o ba ¢
Vazccax2+a:z_:ca (I—2+Zz§)+

1‘
Yt (2 - 5et) - 3 st

a=2 o, 3=2

(8.7)

Remark 8.3. Due to Proposition 3.2, all the potentials satisfying equations (8.4)
give rise to orthogonal separable dynamical systems when restricted to the quadrics
(paraboloids) of the parabolic Stickel web and to their intersections.

Remark 8.4. The Stickel webs considered in this lecture are in a sense the building
blocks for constructing all the Stickel webs in Euclidean spaces and on spheres. Indeed,
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by also considering Stickel webs with symmetries it is possible to perform an exhaustive
classification similar to that proposed in {12].
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