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INERTIA TENSORS AND STACKEL SYSTEMS
IN THE EUCLIDEAN SPACES

Abstract. The Cartesian components of the Killing tensors belonging to
the fundamental Stackel systems in the Euclidean affine space E, (elliptic,
parabolic and spherical-elliptic) are computed within the Stackel-Eisenhart
theory of the orthogonal separation on a Riemannian manifold, by using the
fundamental properties of the elementary symmetric functions and of the

inertia tensors of a massive body.

1. Introduction

A system of orthogonal separable coordinates on a Riemannian manifold
(Mp,g) is geometrically characterized by an n-dimensional space S of Killing
2-tensors over M, whose elements are in involution and have n eigenvectors in
common (the intrinsic characterization of the orthogonal separation, after the
crucial results of Eisenhart [EI1] [EI2] [EI3], have been treated in [WO] [KM1]
[SH] [BKW] [BKM] [BE1]). Let us call such a space & a Stackel system.

The aim of the present lecture is to illustrate a method for calculating
the Stickel systems in the affine Euclidean spaces Ey.

Separable coordinates in the Euclidean spaces E, have been fully
discussed and classified by Kalnins and Miller [KM2] [KA] after proving that

(*)Research supported by GNFM-CNR and by MURST. Lecture delivered at Giornate di
Geometria Differenziale, Dipartimenti di Matematica dell’Universita e del Politecnico di
Torino, Torino, May 29-30, 1992.
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in these spaces every separable coordinate system has an orthogonal equivalent
(this analysis is extended to other spaces of constant curvature, the spheres S,,
[KM2] and the hyperboloids H, [KM3], to the conformally Euclidean spaces
and other spaces [KMR] [BKM] [BKW]).

In the- Euclidean spaces E, the elliptic coordinates play a
fundamental role. In elliptic coordinates a basis of the corresponding Stéckel
system can be computed by a method suggested by Jacobi himself (see [MO1]
[MO2]), or, in a more general way, by the theorem of Stickel [ST1] [ST2] (see
[KM2]). However, for a better understanding of the separation in E,, it is
of some interest to know the Cartesian components of the elements of the
elliptic Stackel systems. These components can be computed by using the
transformation rule of the components of a tensor. However, looking at the
transformations from elliptic coordinates to Cartesian coordinates, this seems
to be an unpracticable way. So that some special procedure is needed.

A solution to this problem can be found in [MW]. We present here
a different approach, which is based on the general theory of orthogonal
separation and it is suggested by a known fact concerning the inertia tensor
of a massive body: the inertia tensor is a symmetric 2-tensor field whose
eigendirections span orthogonal distributions which are completely integrable
and whose integral manifolds are confocal quadrics. Indeed, as it is classically
known [EI1] [BL] [WE], the coordinate surfaces corresponding to a separable
system in E,, are confocal quadrics (possibly with degeneracy). Thus there is
a rather surprising link between these two apparently distant subjects, the
separablity of the Hamilton-Jacobi equation and the geometry of massive
bodies. This is simply due to the fact that the inertia tensor is a Killing
tensor.

We shall use this fact (Section 3), together with the main properties of
the elementary symmetric functions (which are listed in Section 2), as a tool
for dealing with the separation in the Euclidean space E,,. In the present
lecture we will consider only three kinds of Stickel systems, elliptic (Section
4) parabolic (Section 5) and spherical-elliptic (Section 6), which are the
building blocks for all Stackel systems and all separable dynamical systems
in E,. Elliptic and parabolic coordinates are naturally defined by the inertia
tensor of a body, more precisely by the planar moment of inertia, denoted
by L, which is a conformal Killing tensor and plays the role of generator of
the whole Stéackel system according to a rule concerning a particular kind
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of orthogonal separable coordinates (Section 2). We allow the masses of the
single points of the body to be either positive or negative numbers. When
the total mass m is not zero, the center of mass is well defined, and when the
principal moments of inertia at the center of mass are distinct numbers, we
get the elliptic coordinates. When m = 0, the center of mass is not defined
and it is substituted by a point O and a vector w, such that Lo - w = 0.
If the tensor L has all distinct eigenvalues at O, then we get the parabolic
coordinates (the parabolic axis is determined by the pair (O,w)). Finally,
the Stiickel system corresponding to spherical-elliptic coordinates (also called
conical coordinates) can be obtained as the part proportional to the total mass
m of the elliptic Stackel system, or as the limit when the total mass increases
to infinity.

2. Elementary symmetric functions and orthogonal separation

Before dealing with the orthogonal separation in the Euclidean spaces
we ought to consider a very special kind of separable coordinates on a generic
Riemannian manifold (My,g), whose properties are strictly related to the
properties of the elementary symmetric functions.

Let o4 be the elementary symmetric function of order @ = 1,...,n of
the n variables ('), that is the sum of all possible products of a variables
with distinct indices. Let oz 7 be the symmetric function of order a over the

same variables, with the exclusion of those of index (¢,...,7), that is
U;.m] = Ua'ui=_“=uj:0-
Let us set

00—00—00—1 0_1:O‘LI=021=0,
(2.1) ‘ y :
a,’l—an =0, gL,=0 o=
For a = 0,1,...,n these functions satisfy the algebraic identity
(2.2) oa =0l +ulol_,
and the differential identity

(2.3) 0,00 = 0",



318

where
ad
g = auz‘y
from which we derive the identities
ot
dioq =0, 4
al =o¥ + 4 G';J_l

(2.4) UZ — ol = (W — u?) O'ij_l

11 —
5 UOTu_1=a0g.
1

The last one is a consequence of (2.3) and the Euler theorem for homogeneous
functions,

Zui 0,04 = aoy,.
1
By combining (2.4); with (2.4)3 we get
(2.5) (u! — u') ol = ot — ol .

The elementary symmetric functions are defined by the polynomial identity

(2.6) i(—l)’f AR = U,

k=0
where
(2.7) UM = JJx - o),
1=1
from which it follows that
n
(2.8) Y (=1F (= k) AnEl gy = g,
k=0

(2.9) Y (-D* ) ko = 0.

bl
1l
o
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By applying to this last identity the partial derivative 9;, due to (2.3) and
(2.8), we get

n

S -DF (= k) (u) oy + (u) R el ) = 0,
k=0
(2.10) S (-DF o = - U'(u).
k=1

By applying 0; to (2.9), with j # i, we get

n

(2.11) Y (-1 rel_ = 0.

k=1
From (2.10) and (2.11) it follows that if we set

i)n—a—l

(2.12) 50 = (—1)2

U'(ui) (G,:D,..,,n—l),

then the matrix (&%) is the inverse matrix od (o}), with a = 0,...,n — 1:

1
b

aé&f:ﬁf.

0

8
|l

The determinant of the matrix (° up to the factors (—1)*(U'(u"))"! is the
Vandermonde determinant, so that

det(5%) = 3;&(_1)& 1 ]
et = s Tlo -0

where

n—1

H(_l)a - (_1)%n(n—1)’ ﬁU’(ui) — (_1)%n(n~—1)(ui _ uj)2'

a=0 1=1
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Thus
1
! det(6?) = =————,
(2.13) et(af) TTjiui — w)
and
(2.14) det(crg) = H(u" — ).

>t

Finally, from (2.4); we get the last identity we will use in the following
discussion,

n—1
(2.15) oy ot (W — ') =8 — & .
a=0
ProprosiTION 2.1. Let (u') be orthogonal coordinates on a

Riemannian manifold (My,g). Let (E;) be the corresponding frame of vector
fields. If

1

(2.16) W, glngl = o=

(1 #4)
or equivalently, if the 2-tensor field L with eigenvalues (ui) and eigenvectors
(Ei),
n . .
(2.17) : L=) u¢"E;®E;,
1=1

is a conformal Killing tensor, then the coordinates (u') are separable and
the corresponding Stéckel system S is generated by the independent Killing
tensors (Kg4) (a = 0,1,...,n — 1) defined by one of the following equivalent
formulae

n
(2.18) Ko=) 04" EQE;,

1=1

(2.19) Kazaag_Ka_]'L, K_I:-O,
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(2.20) Ko=) (-1)f o, IF,
k=0

(2-21) K():g, Ka:étr(Ka_l'L)g—Ka_l‘L (a:l,...,n-l).

To prove this proposition we need two lemmas.

LemMa 2.1. Let L be a symmetric tensor which is diagonalized
with respect to orthogonal coordinates (u'). Let (g;) be the corresponding
eigenvalues,

n
(2.22) L= Z 0:9" E; @ E;.
1=1

Then L is a conformal Killing tensor if and only if there exists a vector field
C = C'E; such that the following equations are satisfied

(2.23) dioj = (ei—0j)dilng? + C;  (i#3), Oei=Ci.
L is a Killing tensor when C = 0.

Proof. A tensor field L is a conformal Killing tensor if and only if

{Er,Eg} = Ec Eg

where

(Y 1 o ;
Ep=51Yppj,  Eg=59"pinj;  Eg=C'pi

Under the assumption (2.22) we get
Y g [g” die;j — (0i — o) 0ig"? — ¢ Ci| pip? =0,
g

and this condition is equivalent to equations (2.23). m
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LEMMA 2.2. An orthogonal coordinate system (u‘) is separable if and
only if the linear differential system

(2.24) dioj = (0i — 0,)0; In g (i # j), dipi =0,

is completely integrable. If (04i) (a = 0,...,n — 1) is a complete solution,
then the tensors

n
(2.25) Ko=) 04id" Ei®Ei,

1=1
form a basis of the Stickel system S corresponding to the separable
coordinates (u').

Proof. The separability conditions for an orthogonal coordinate
system, that is equations

;09" - 0iln g7 B;g"" — 0 In g aigth =0 (i# 7)),

coincide with the integrability conditions of (2.24) (for a discussion on this
topic see [BE1]). =

Proof of Proposition 2.1. Due to Lemma 1 (equations (2.23)) the tensor
L defined by (2.17) is a conformal Killing tensor if and only if conditions (2.16)
are satisfied (when p; = u' equations (2.23) become 0 = (u' — u?)d; In ¢?7 + C;
and C; = 1). Due to equations (2.16) the differential system (2.24) becomes

0; — 0y
wl — ut

(2.26) dioj =

(t#37), 9iei=0.
Formula (2.5) shows that this system is identically satisfied by the functions
(2.27) 0ai=0, (a=0,...,n—1)

on the domain D = {u' # u,i # j}. Formula (2.14) shows that in this domain
det(04;) # 0. So we have proved that the linear differential system (2.26) is
completely integrable and we know that the functions (2.27) form a basis of
solutions. Then, due to Lemma 2.2, the coordinates (u') are separable and
the tensors (2.18) provide a basis for the corresponding Stéckel system. Let
us consider these tensors as linear operators (the metric tensor ¢ = K is the
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identity) and use the formula (2.2) which shows that (a7 ) are the eigenvalues of
the tensor defined by (2.19) since, due to the definition (2.17), the coordinates
(u') are the eigenvalues of the tensor L. Formula (2.20) follows by iteration
from (2.19). Finally, identity (2.4)4 implies

1
oq = —tr(Kq—1 - L),
a
and (2.21) follows from (2.19). =

REMARK 2.1. A first consequence of Proposition 2.1 is that the
functions (¢%) are the principal invariants of the tensor L interpreted as a
linear operator. So that by using one of the formulae (2.19)-(2.21) we can
build the basis (K,) of the Stéckel system by knowing the expression of L
with respect to any coordinate system. Hence, the tensor L plays the role
of generator of the Stickel system. Due to Lemma 2.1, we note that a
tensor L is a generator of a Stdckel system by means of formulae (2.19)-
(2.21) if and only if: (i) L is a conformal Killing tensor; (ii) the eigenvalues
(ui) of L are real independent functions (so that they can be interpreted as
coordinates) with distinct values; (iii) all the eigendirections of L are normal
(the orthogonal distributions are completely integrable) and the corresponding
eigenvalues (ui) are constant on the integral manifolds. The requirement
"real” is automatically satisfied in a proper Riemannian manifold (that is
for positive definite metrics). Tensors having properties (ii) and (iii) are
characterized by the vanishing of the Nijenhuis tensor [NI].

REMARK 2.2. It can be seen that the assumption (2.16) for the metric
tensor implies R;; = 0 for ¢ # j. This means that the coordinate curves are
tangent to the Ricci principal directions. This is a necessary and sufficient
condition for an additive separable orthogonal system (for the Hamilton-
Jacobi equation) to be multiplicative separable for the Helmholtz and related
equations. It is called the Robertson condition [RO] [KM1] [KA].

3. Inertia tensors and the orthogonal separation

Let M = {(P,m,) € (E5,R);¢ =1,...,N} be a finite system of mass
points in the Euclidean n-dimensional space. The masses m, can be either
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positive or negative numbers. We denote by m the total mass, the sum of
all masses. If m # 0 we can define the center of mass G through one of the
equivalent equations

1
(3.1) ZmLGP,, =0 < PG=— zt:mt PP, (P€E,).

If m = 0 the vector w defined by equation
(3.2) Z m, PP, = w
L

does not depend on the point P. With a system of masses M we can
associate three fundamental fields. A scalar field M:E,, — R, called the
polar moment of inertia, defined by

(3.3) Mp =) m(PP),

a symmetric tensor field L on E,, called the planar inertia tensor, defined
by
(3.4) Lp(v)=>_ m, (PP, -v),

[

and a symmetric tensor field I on E,, called the inertia tensor, defined by

(3.5) Ip(v) =Y m((PP)** - (PP,v)?).

Our notation is such that Lp(v) is the value on the vector v at the point
P € E, of the quadratic form associated with the symmetric tensor L. It can
be seen that

(3.6) I=Mg-L,  M=tx(L)=L(L).

With each straight line r in the space E, we associate a number I”, the
moment of inertia of r, which is the sum of the products of the masses
times the square of the distance from the line r. It follows that

(3.7) I" = Ip(v),
where v is a unitary vector parallel to 7 and P is an arbitrary point belonging
to r. The following transposition formulae hold for the tensor L,
Lp(v) = Lg(v) + m(GP -v)?, m#0,
(3.8)
Lp(v) = Lo(v)+2 PQ -vw-v, m=0.
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ProprosiTION 3.1. The planar inertia tensor L is a conformal Killing
tensor.

Proof. By definition, a symmetric 2-tensor field L is conformal Killing
tensor if along all geodesics

(3-9) = Fov?,

dt
where C is a vector field and

1 . ;
Fr = §L,’]‘ vt v, Fo=Civ',

being (') the components of the vector tangent to the geodesics. Along any
curve P(t) in E, we have

d dv
EL(v)_2ZmLPPL'U (PPL-a—v-v).

If the curve is a geodesic curve (that is, a straight line), then % = 0, so that
dL
—=-C-v??
dt ’

where C is the vector field defined by

o _(Cp=2mGP (m#0)
(310) CP— 2 ZL:m.LPPL — {CP: —QMICOHSt- (m:O)

This proves the statement. =

The vector field C is a gradient of a function f (we say that L is an
exact conformal Killing tensor):

{f(P) =1m#d, *=GP,
f(P)=—-2w-r, r=0P (O = arbitrary point).

ProPOSITION 3.2. The inertia tensor I is a Killing tensor.
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Proof.  We have two simple proofs. (i) A Killing tensor, on a
Riemannian manifold, is a symmetric 2-tensor K such that the quantity

1 rd
Fg(P,v) = SKp(v)

is constant along every geodesic curve P(t), where v is the unitary vector
tangent to the geodesic. In the Euclidean space the geodesics are the straight
lines and moreover, due to the definition (3.7) of the moment of inertia, the
quantity Fr(P) does not depend on the choice of the point P over a line. (ii)
We have

% = ;mLPPt-vvz—(fl—f =0. =

These propositions and the fact that equations (3.6) fit with the step
a = 1in the iterative formula (2.18), with Ky = I, suggests that the planar
inertia tensor L is a good candidate for playing the role of generator of a
Stéckel system of the kind considered in the preceding section.

4. Elliptic Stackel systems

Let us consider the conformal Killing tensor L defined by (3.8) in the
case m # 0,

(4.1) L=ILg+mr@r (r = GP)

Let (zq4) be Cartesian coordinates with origin O = G defined by the
eigendirections of Lg. Let (aq) be the eigenvalues of Ly and (u') the
eigenvalues of L at a generic point. Equation (4.1) is equivalent to

(4.2) L*E — Qo 6aﬁ+m1‘a zg.
Let (X4 ) be the unitary constant vector fields corresponding to the Cartesian

coordinates (zy).

ProrosiTioN 4.1. Ifa; < ap < ... < ay, then the eigenvalues (ui) of
L coincide with the elliptic coordinates and the tensor L generates a basis of
the elliptic Stéckel system according to Proposition 2.1.
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Proof. Let us consider the vector fields

n

1 Ty
(4.3) B = 3 Z X iy

i
ut — aqy

a=1

where (u') are the roots of equation

. 1
4.4 R o B
(] agl A— Gy m

It follows that

1 a e m%
L-E)®*==-z o) -
( l) Qla u'-aa+m'32=:1u’—aﬂ
1 a
:—a?a(ia +1)
u—aa
=t _Fa g
T 2ut—gq4

that is L+ E; = u' E;. This shows that the elliptic coordinates (u?), which are
defined by equation (4.4) (usually with m = 1) [MO1] and are separated by
the constants (aq),

n

ap<ul<a<ul<...<u" ! <ay < U,

are eigenvalues of the conformal Killing tensor L. Furthermore, the
eigenvectors (E;) form the natural frame corresponding to these coordinates.
Indeed, equation (4.4) is equivalent to equation

n 2
T 1 U(A
(4.3) ; A—ay m (A

L~~~
~—

s

where

(4.6) v =[x -v), AN = JJ(A - aa).
1=1 a=1
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If we multiply by A — a, and evaluate the result for A = a4, then we get
equations
_ Ulaa)

Alaq)’
which relate the Cartesian coordinates (z4) with the elliptic coordinates (u?).
From (4.7) it follows that

(4.7) 22 =

dzg 1 1z
4.8 s B o=y ;
(48) dut 2 ut —ay
and we find the components of the vector fields (E;). Hence, the tensor field
L satisfies the requirements of Proposition 2.1. =

REMARK 4.1. The relevance of a tensor like (4.1), in connection with
elliptic coordinates, is pointed out by Moser [MO1] [MO2] within a different
framework.

REMARK 4.2. According to Proposition 4.1, the roots of equation (4.4)
are the eigenvalues of L, thus equation (4.4) is equivalent to the characteristic
equation of L, so that the elementary symmetric functions (o,) of the roots
(ui) are the coefficients of this equation and coincide with the principal
invariants of L. The comparison between the characteristic equation of L
and equation (4.4) shows that

n
(4.9) Oa=Sa+m qu_lm%’, (a=0,1,...,n),
‘j:l
where (¢, ) are the symmetric functions of the variables (a,) and
(4.10) Op =¢p = 1, (-1 = 0.
ProPOSITION 4.2. The elliptic Stackel system corresponding to
the distinct constants (ao) is generated by the Killing tensors (K4) (a =
0,1,...,n — 1) whose Cartesian components are

n
K" =¢+m Z oy s
(4.11) =1
Ix"gﬁ:—mggflzaxg (a # 3),

where (¢,) are the elementary symmetric functions of the constants (aq).



329

Proof. We can apply one of the formulae (2.19)-(2.21). Let us choose
for instance the iterative formula (2.19). For a = 0, from (11) we get K§* = 1

and Kgﬁ = 0, that is Ko = g, in agreement with (2.19). Assume that the
expressions (4.11) hold for the index a — 1 and let us check if they hold for
the following index a. According to (2.19) we have,

Z K L™

Z I;Oz‘yl L‘ra A-gfl Laa
T#a

<a+cha 25 1t Y i heaid
r#a

(e Tt ot
i |

+ o 2
=Ga— QaSq_1 + M E (Ss—1 = a'ﬂ’gazl) Iy
T#a

=gy +mZ<a 1.1.,

So that (4.11); is proved. Here we used formulae (4.2) and (4.9) and the
identities (2.2) and (2.4); for the symmetric functions (¢z) of the variables
(ag). In an analogous way we can prove (4.11);. =

REMARK 4.3. In the Cartesian frame (X4 ) the Killing tensors (4.11)
can be written as follows,

n 1 n o
(4.12) Ko=) i Xa®Xatgm 3, by Reg,

a=1 a,f=1
where for a # 3
Raﬁ= (:EaXﬁ—mﬁXQ)@(maXﬁ—.’L‘ﬂXa)
(4.13) =23 Xg®Xp+25X00 Xa
—l‘amﬁ(XaQ@Xﬁ-i-Xﬁ @ Xa)
We note that R,3 = Rg, and that the vector field 2o X g—24 X4 is a unitary

rotation on the (z4,243) plane. The tensor product R,z does not depend on
the choice of the orientation of this rotation.
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REMARK 4.4. Let us denote by (pq) the momenta corresponding to
the Cartesian coordinates (z,) and set

(4.14) lag = Tapg—23Pa -
Then the integrals
L.
Eg, = 3K&" papg
corresponding to the Killing tensors (K ) are

1 s 1 & ap
(4.15) Eg = 5 Z % Vo + 2 Z Saci lz,ﬁ’
a=1 01”321

REMARK 4.5. If we define
=, n—1
(4.16) Ka=znga (a=1,...,n),
a=0
where (S3) is the inverse matrix of (¢2), that is (compare with (2.12))

—a - n—a—1 -
(4.17) ih = flTa?J(a“) , A(z) = 0[I;[l(z - aq),

then we get (we need identity (2.15) for the symmetric functions (<G)X another
basis (K ) of the elliptic Stickel system,

= 1
(4.18) Ko=Xo®Xq-m)_ Ro .
aa - a-y
T#a
The Cartesian components of the tensors (I?a) are

2

oo _ Ty
K" =1 m‘#zaaa_a‘r,
~ 3;2
(4.19) RS = -mo—=, (a,8,7 #)
Ry =m—L
o — g
K=o,
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and the corresponding integrals

1 A
4.20 Ey ==|pi- -
V) E.TgiPe™ ™ Z Qo — Gy
T#a
For m = —1 they correspond to the involutive integrals found by Marshall

and Wojciechowski [MW] (with constant potentials).

REMARK 4.6. If the coefficients (a,) are not all distinct, then the
Killing tensors (K ,) are well defined but not all independent, while some of
the Killing tensors ( K4 ) are not defined (however, those which can be defined
by (4.14) are independent). Under the assumption that all (ay) are distinct,
all the Killing tensors (Kg), with the exception of K¢ = g, have distinct
eigenvalues

1
Oai = Tg;

which are functions of the coordinates (u'). The eigenvalues of the tensors
(K o) are the functions

n—1
(4.21) P = Y G50
=0

of the 2n variables (u*,aq).

5. Parabolic Stackel systems

Equation (3.8) for m = 0 shows that
(5.1) L=Lo+r@utwdr (r=QP)
where ) is any fixed point of the space. We assume w # 0.

ProprosITION 5.1. There exists a unique point O such that Lp-w = 0.
The vector w is an eigenvector of Lp for every point P of the straight line
parallel to the vector w and containing O.
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Proof. Due to (5.1), condition Lo - w = 0 is equivalent to
Lop-wtw’r+r-ww=0, r=QO0.

This is a linear equation in r which implies

1
w=-——w-Lg-w,
i 2w? Q

thus
i w-Lq-w
’_F(W""LQ'"’)'

This defines a unique point O. Furthermore, let us consider the points
P = O + kw where k € R. According to (3.8),

Lp=Lo+2kw®w,
thus
Lp w = 2kw?w,
since Lo-w=20. =
According to formula (5.1) and Proposition 5.1 we can write

(5.2) L=ILp+r@u+tw®r (= OP) Lo -w=0.

Let (zq) be Cartesian coordinates with origin at the point O defined by the
eigendirections of Lp. Let 1 = z be the coordinate corresponding to the
eigenvector w. Let (aq) be the e1ge11values of Lo and (u') be the eigenvalues
of L at a generic point. Equation (5.1) is equivalent to

(5.3) Laﬂ=aaﬁaﬁ+1‘a wg + T Wa,
where, according to Proposition 5.1,
(5.4) a; =0, wWo = b1 W

Let (X o) be the unitary constant vector fields corresponding to the Cartesian
coordinates (z4), with X; = X.
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PROPOSITION 5.2. Ifas < az < ... < an, then the eigenvalues (ui) of
L coincide with the parabolic coordinates and the tensor L generates a basis
of the parabolic Stickel system according to Proposition 2.1.

Proof. Let us consider the vector fields

(5.5) E;= ( X+Zu'-—a )

where (u') are the roots of equation

‘ —(A—-2 .
(5.6) ,\_aa wz( we)
It follows that
n
(L-E)'=L"E} +> LVE]
v=2
n ol ]
=+ — —T :x—l——(u’—?w:c):—u’,
2 = u' — ay
n
(L-E)*=L"E} + Y L*E]
ety ol _Cw 1 By i
= Ql‘a+2flaui_aa _2ui—aau y

that is L - E; = u' E;. This shows that the parabolic coordinates (u'), which
are defined by equation (5.6) (usually with w = 1), and are separated by the
constants (aq ),

u <as<ul<...<ap<u",

are eigenvalues of the conformal Killing tensor L. Furthermore, the
cigenvectors (E;) form the natural frame corresponding to these coordinates.
Indeed equation (5.6) is equivalent to equation

o e 1 1 U(X)
(5.7) 0{2;2 " EZ_(,\ —2wz) = ~ 2 AN’
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where

(5.8) U =[IA-u),  4o(A) = JT(A - aa).
1=1 a=2

Equations

(5.9) x:iw(zu—za(,), = ;2;{((‘;?) (=2, ),

1=1

relate the Cartesian coordinates (z4) with the parabolic coordinates (u').

Equations (5.9); follow from (5.7) multiplied by A — a, and evaluated for

A = aq. Equation (5.9), is a particular case of formula (5.11) below (Remark

5.1), and it follows from the expression of the coefficient of A®~! in the

algebraic equation equivalent to (5.6). From equations (5.7) it follows that
oz 1 0zy 1 1z,

9 | —_— = — - = — — = P
oL vt 2w’ dut 2 U — aq (o wvsiralf)

so that we get the natural frame (5.5). Hence, the tensor field L satisfies the
requirements of Proposition 2.1. m

REMARK 5.1. As a consequence of Proposition 5.2, since the roots
of equation (5.6) are the eigenvalues of L, equation (5.6) is equivalent to
the characteristic equation of L, so that the elementary symmetric functions
(0a) of the roots (u*) are the coefficients of this equation and coincide with the
principal invariants of L. The comparison between the characteristic equation
of L and equation (5.6) shows that

n
(5.11) Oa =6a+26—1wz — w? Zﬂ;l—zl'zf (a=0,1,...,n),
y=2

where (¢;) are the elementary symmetric functions of the variables (a4) and
og=¢ =1, G—1=¢6¢_9=0.

Note that, due to (5.4), ¢, = ¢}, <& =12, and so on, and that for a = 1 we
find formula (5.7);.
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REMARK 5.2. The definition of the parabolic coordinates (u’) depends
on the differences aq — ag only, i.e. it is invariant under a translation over the
real line of these constants (as for the elliptic coordinates). However, it is
convenient to assume that aq # 0 for all @ > 1, so that all the constants aq
are different (since a; = 0).

ProprosiTION 5.3. The parabolic Stickel system corresponding to
the distinct constants (as,...,an) is generated by the Killing tensors (Kg)
(a=0,1,...,n — 1) whose Cartesian components are

( B =g,
K™ = — w1 2o,
(5.12) « B adfl, ef#fl,
K§®=¢t +2wel 2z — w? Zcf:jz w?y 3
y=2
O e
i ngﬁ = wzqa’_azrarﬁ R

where (cq) are the elementary symmetric functions of the n constants (aq) =
(0,(12, . .,(Ln).

Proof. Let us apply the iterative formula (2.19). For a = 0 we get from
(5.12) K}' = K¢® = 1 and K}* = K¢? = 0, that is Ko = g, in agreement
with (2.19). Assume that the expressions (5.12) hold for the index @ — 1 and
let us check if they hold for the following index a. According to (2.19) we
have,

-11 _ -17 oyl
K, =0, - E K, ,L
7

- -1
7#1
Oa — 2WSq_1 2 + w? Zc;’_zzﬁ,
1#1

= Sa,
due to (11). So that (5.12); is proved. The remaining expressions in (5.12) are
proved in a similar way, by using the fundamental identities for the symmetric
functions (sz). =
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REMARK 5.3. In the Cartesian frame (X, ) the Killing tensors (5.12)
can be written as follows,

n n n
1
(5.13) K, = ZCg Xa®Xa+wZ§g_1 SaNXq+ 5“’2 Z C;EQ Rﬂﬂ
a=1 a=2 O’,,@:l
where, for a # 1,
(5.14) Sa=2Xq—24X (z=z, X =X,)

is a unitary rotation in the (z,z4) plane and R, is defined in (4.13).

6. Spherical-elliptic Stackel systems
With a set of n real numbers (a4) such that
a <az < ...<dapnp

we associate a family of cones

n 12
6.1 2 =90
(6.1) I
parametrized by A € R. For every point not belonging to the coordinate
planes equation (6.1) has n — 1 real roots (u®) = (u!,...,u""!) such that

n

a1<u1<a2<u2<...<u_1<an.

To these roots we add the distance from the origin
0=
The functions (u') = (u®,r) are called spherical-elliptic coordinates or

conical coordinates. It is known that they are separable.

The spherical-elliptic coordinates can be considered as the limit for
m — oo of the elliptic coordinates. Indeed, equation (4.4) reduces to equation
(6.1). Moreover equation (4.4) can be written

n Ig'
(6.2) . —%—=1,

a=1 b — —
m
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where
A
B=
Keeping p fixed, when m — oo the ellipsoids in equation (6.2) become spheres
(with r? = p).

A basis (H,) of the spherical-elliptic Stickel system can be directly
derived from the elliptic one (K,) defined in (4.11) by considering only the
terms proportional to the parameter m (this means that we consider the
elliptic coordinates with large values of m). The parameter m does not appear
in Ko = g, so that we take Hyp = g. The other Killing tensors are

H,=K,—- K,O) ([e=1,.0.4m =1}
Thus,

PRrROPOSITION 6.1. The spherical-elliptic Stickel system is generated
by the independent Killing tensors

1 n
(63) Ho=g, Ha=3 > liRes (a=1...,n-1),
a,f=1

whose Cartesian components are (for a # 0)

n
64) H*=3 a2 HP =-Plrazg  (a#P).
=1

Another basis (INIQ) can be obtained by considering the part
proportional to m in the tensors (K ) defined in (4.18).

Equations
(6.5) Epmm

where

n—1 n

(6.6) Uo(\) = [Jr-w), A =[] (A= aa),
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relate the Cartesian coordinates (zo) with the spherical-elliptic coordinates
(u') [MO1]. They follow from the identity

2 Uo(>
(6.7) EZA_GG_ &;

Equations (6.5) imply

0zq
(6.8) T =

; 0zq 24
- 1< n gy
ul — aq ( ), du” T

To

N | =

Thus the frame (E;) corresponding to the spherical-elliptic coordinates is

1
(6.9) F,= 2ot

2'”.""0:&

Xo (i<n), m:f,

and the non vanishing metric tensor components are

1W()

(6.10) %= 1 a0

(i <n), gnn = 1.
It follows that

(6.11)  dilng’ = G#£izu), &KF*=0, BG=0

w —ul

so that the separability conditions (2.24) are satisfied.

REMARK 6.1. For each @ > 0 the radius vector r is an eigenvector of
H, belonging to the zero eigenvalue,

(6.12) Hy-r=0.

REMARK 6.2. The restriction of H; to a sphere centered at O coincides

with the induced metric tensor. Indeed, the Cartesian components of H, are
(see (6.4))

(6.13) I = Z my= 1=, Hfﬂ = —Za%g,
1#a
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and a vector v = (v®) is tangent to the sphere if and only if v - r = v%z, = 0.
Thus

(Hy-0) = (1= 2207 = 3 zquyo?
T#a
=(1-22)v" 4+ 220% = v

that is, H; - v = v. We note that the spectrum of the Killing tensor H; is
(1,...,1,0).

REMARK 6.3. From Remarks 6.1 and 6.2 it follows that the n — 1
Killing tensors (Hy, Hs,...,H,_;) are reducible to every sphere centered at
the origin and give rise to a Stickel system which corresponds to the elliptic
coordinates (u®) = (u',...,u"1) originally considered by Neumann [NE] on
the sphere.

REMARK 6.4. Within the framework present here the following further
topics can be developed: (i) The construction of all Stickel systems in the
Euclidean affine spaces. To this end it is necessary to discuss the case in which
some of the constants (aq) coincide. (ii) The Cartesian characterization of all
the separable dynamical systems in the Euclidean affine spaces. To this end
it is necessary to discuss the geometrical characterization of the orthogonal
separation in a Riemannian manifold. This will be done in subsequent papers.

REFERENCES

[BE1] S. BENENTI, Stickel systems and Killing tensors, Note Matem. 9 (Suppl.),
39-58 (1989).
[BE2] S. BENENTI, Orthogonal separation of variables on manifolds with constant
curvature, Diff. Geom. Appl. (forthcoming).
[BKM] C.P. BovER, E.G. KALNINS, W. MILLER JR., Stickel equivalent integrable
Hamiltonian systems, SIAM J. Math. 17, 778-797 (1986).
[BKW] C.P. BoYER, E.G. KALNINS, P. WINTERNITZ, Separation of variables for
the Hamilton-Jacobi equation on complex projective spaces, SIAM J. Math.
16, 93-109 (1985).
[BI] L. BiaNcHli, Lezioni di geometria differenziale, Spoerri, Pisa (1902-1903).
[BL] W. BLASCHKE, Eine Verallgemeinerung der Theorie der konfocalen Fy, Math.
Zeitsch. 27, 655-668 (1928).

[EI1] L.P. EISENHART, Separable systems of Stickel, Ann. Math. 35, 284-305
(1934).



340

[E12]
[EI3]
[KA]

[KM1]

[KM2)]

[KM3]

[KMR]

[MO1]

[MOZ2]
[MW]

[NE]

[NT]

[OL]

[RO]

[SH]
[ST1]

L.P. EISENHART, Stackel systems in conformal Euclidean space, Ann. Math.
36, 57-70 (1934).

L.P. EISENHART, Riemannian geometry, Princeton University Press,
Princeton (1949).

E.G. KALNINS, Separation of Variables for Riemannian Spaces of Constant
Curvature, Pitman Monographs 28 (1986).

E.G. KaLNINS, W. MILLER JR., Killing tensors and variable separation for
Hamilton-Jacobi and Helmholtz equations, STAM J. Math. Anal. 11, 1011-
1026 (1980).

E.G. KALNINS, W. MILLER JR., Separation of variables on n-dimensional
Riemannian manifolds - I. The n-sphere Sy and Euclidean n-space Ry, J.
Math. Phys. 27, 1721-1736 (1986).

E.G. KaALNINS, W. MILLER JR., Separation of variables on n-dimensional
Riemannian manifolds 2. The n-dimensional hyperboloid H, University of
Waikato Research Report 103 (1984), Separation of variables on n-dimen-
sional Riemannian manifolds 3. Conformally Euclidean spaces Cy,, University
of Waikato Research Report 105 (1984).

E.G. KaLniNs, W. MILLER JR., G.J. REID, Separation of variables for
complex Riemannian spaces of constant curvature - I. Orthogonal separable
coordinates for Syc and Enc, Proc. R. Soc. Lond. A 394, 183-206 (1984).
J. MOSER, Various aspects of the integrable Hamiltonian systems, Dynamical
systems (C.LM.E. Summer School, Bressanone, 1978), Progress of
Mathematics, Birkhauser, 8, 233-289 (1980).

J. MosER, Integrable Hamiltonian Systems and Spectral Theory, Lezioni
Fermiane, Pisa, 1981.

I. MaRsHALL, S. WoicilEcHOWSKI, When is a Hamiltonian system
integrable?, J. Math. Phys. 29, 1338-1346 (1988).

C. NEUMANN, De problemate quodam mechanico, quod ad primam integralium
ultraellipticorum classem revocatur, J. Reine Angew. Math. 56, 46-63
(1859).

A. NueNHUIS, Xy -forming sets of eigenvectors, Nederl. Akad. Wetensch.
Proc. Ser. A 54, Indag. Math. 13, 200-212 (1951).

M.N. OLEVsKII, Triorthogonal systems in spaces of constant curvature in
which equation Aqu + Au = 0 allows a complete separation of variables,

Mat. Sbornik N. S. 27 (69), 379-426 (1950).

H.P. ROBERTSON, Bermerkunhg iber separierbare Systeme in der
Wellenmechanik, Mat. Ann. 98, 749-752 (1927).

V.N. SHAPOVALOV, Stéckel spaces, Siberian Math. J. 20, 790-800 (1980).

P. STACKEL, Uber die Bewegung eines Punktes in einer n-fachen
Mannigfaltigkeit, Math. Ann. 42, 537-563 (1893).



341

[ST2] P. STACKEL, Uber quadatizche Integrale der Differentialgleichungen der
Dynamik, Ann. Math. Pura Appl. 26, 55-60 (1897).

[WE] J. WEINACHT, Uber die bedingt-periodische Bewegung eines Massenpunktes,
Math. Ann. 91, 279-299 (1924).

[WO] N.M.J. WoopHOUSE, Killing tensors and the separation of the Hamilton-
Jacobi equation, Commun. Math. Phys. 44, 9-38 (1975).

Sergio BENENTI
Istituto di Fisica Matematica “J.-L. Lagrange”
Via Carlo Alberto 10, 10123 Torino, Italy.

Lavoro pervenuto in redazione il 2.11.1992.



