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Abstract. The family of the integrable natural Lagrangian systems on quadrics
having additional symmetries is constructed by the classical Hamilton-Jacobi
method.

1. Construction of the elliptic coordinates on quadrics with additional sym-
metries

In the classical work by Jacobi [1] the elliptic coordinates were introduced for the proof of integrability
of geodesics on two-dimensional ellipsoids. Jacobi’s constructions were generalized by Moser [2] for the
n-dimensional ellipsoid with different semi-axes, n-dimensional sphere and Euclidean space.

The present work is devoted to the construction of the Lagrange equations, integrable by the Hamilton-
Jacobi method on quadrics with additional symmetries. We consider the natural Lagrangians

(1.1) L = 1

2

n
∑

ν=0

(ẋν)2 − V (x0, . . . , xn)

on the quadrics determined by the equations

(1.2)

n
∑

ν=0

x2
ν

aν

= 1

where some of the coefficients aν are equal. Two important cases when all coefficients aν are equal and
when they all are different were studied by Jacobi [1] and Moser [2].

Let us suppose that the coefficients (a0, . . . , an) be divided into k + 1 groups of equal coefficients,

(1.3)

a0 = . . . = ai1 = b0,

ai1+1 = . . . = ai2 = b1,

· · · ,

aik+1 = . . . = an = bk

In this case the quadric (1.2) possesses a large group of isometries

(1.4) G =
k
∏

m=0

SO(hm), hm = im+1 − im, i0 = 0, ik+1 = n.
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We use the following substitution

(1.5) xim+j = rmymj , m = 0, . . . , k, j = 1, . . . , hm,

in the k + 1 groups of coordinates xν, corresponding to the decomposition of the coefficients (1.3). Here
variables ymj satisfy the equation of km-dimensional sphere

(1.6) y2
m1 + . . . + y2

mhm
= 1, km = hm − 1.

Therefore equation (1.2) after the substitution (1.5) takes the form

(1.7)
k
∑

j=0

r2
j

bj

= 1,

where all coefficients bj are different. We define the elliptic coordinates (um1, . . . , umkm
) on each sphere

→km (1.6) by the equation [1, 2]

(1.8)

hm
∑

i=1

y2
mi

z − cmi

=
Um(z)

Am(z)
,

where z is an independent variable, and

(1.9) Um(z) =

km
∏

i=1

(z − umi), Cm(z) =

hm
∏

i=1

(z − cmi).

Here cmi are some non-equal constants. The residues of the both-hand-sides of (1.8) in the poles z = cmi

lead to the relations

(1.10) y2
mi =

Um(cmi)

C ′

m(cmi)

between the Cartesian coordinates ymi and the elliptic coordinates umi.

The elliptic coordinates (w1, . . . , wk) are determined on the quadric (1.7) by the equation [1, 2]

(1.11)

k
∑

i=0

r2
i

z − bi

+ 1 =
z W (z)

B(z)
,

where z is an independent parameter and

(1.12) W (z) =

k
∏

j=1

(z − wj), B(z) =

k
∏

i=0

(z − bi).

Due to the equality of the residues of both hand-sides of (1.11) in the poles z = bj we obtain the
expressions

(1.13) r2
i =

biW (bi)

B′(bi)

for the Cartesian coordinates ri in terms of the elliptic coordinates wj. The expressions for the Cartesian
coordinates xim+j (1.5) follow from (1.10) and (1.13)

(1.14) xim+j = rmymj =

(

bmW (bm)Um(cmj)

B′(bm)C ′

m(cmj )

)
1

2
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2. The Hamilton-Jacobi equation in elliptic coordinates

Lagrangian (1.1) in the coordinates (rm, ymj) takes the form

(2.1) L = 1

2

k
∑

i=0

ṙ2
i + 1

2

k
∑

m=0

r2
m

(

ẏ2
m1 + . . . + ẏ2

mkm+1

)

− V (xi),

while the standard kinetic energy on the sphere (1.6) in the elliptic coordinates (um1, . . . , umkm
) has the

form [1, 2]:

(2.2) ẏ2
m1 + . . . + ẏ2

mhm
=

km
∑

i=1

fmiu̇
2
ki, fmi = −

U ′

m(umi)

4Cm(umi)
.

The standard kinetic energy on the quadric (1.7) has the known expression [1, 2] in the elliptic coordinates
(w1, . . . , wk):

(2.3) ṙ2
0 + . . . + ṙ2

k =

k
∑

i=1

gi v̇2
i , gi =

wiW
′(wi)

4B(wi)
.

By using these formulae and the expressions (1.13) we get the form of the Lagrangian (2.1) in elliptic
coordinates,

(2.4) L = 1

2

k
∑

i=1

wiW
′(wi)

4B(wi)
ẇ2

i −
1

2

k
∑

m=0

bmW (bm)

B′(bm)

km
∑

i=1

U ′

m(umi)

4Cm(umi)
u̇2

mi − V (wi, umj).

The corresponding Lagrange system after the Legendre transformation turns into the Hamiltonian system

(2.5) ṗi = −
∂H

∂ui

, u̇i =
∂H

∂pi

,

with the Hamiltonian

(2.6) H =

k
∑

i=1

2B(wi)

wiW ′(wi)
p2

i −

k
∑

m=0

2B′(bm)

bmW (bm)

km
∑

i=1

Cm(umi)

U ′

m(umi)
p2

mi + V (wi, umj).

Therefore the Hamilton-Jacobi equation

(2.7) H

(

∂S

∂ui

, ui

)

= η1

for the generating function S(wi, umj, η1, . . . , ηn) assumes the following explicit form

(2.8)

k
∑

i=1

2B(wi)

wiW ′(wi)

(

∂S

∂vi

)2

−

k
∑

m=0

2B′(bm)

bmW (bm)

km
∑

i=1

Cm(umi)

U ′

m(umi)

(

∂S

∂umi

)2

+ V (wi, umj) = η1

in the elliptic coordinates (vi, umj).

3. The family of the integrable Lagrangian systems

Theorem. The Lagrange system with the Lagrangian (1.1) on a quadric (1.2) with an additional symmetry

(1.4) is integrable by quadratures if the potential V (x0, . . . , xn) in the elliptic coordinates (wi, umj) has

the form

(3.1) V (wi, umj) =

k
∑

i=1

Fi(wi)

W ′(wi)
+

k
∑

m=0

1

W (bm)

km
∑

i=1

Fmi(umi)

U ′

m(umi)
,



Integrable Lagrangian systems on quadrics with additional symmetries 4

where Fi(vi) and Fmi(umi) are arbitrary smooth functions of one variable.

Proof. We use the classical Hamilton-Jacobi method for the Hamiltonian system (2.5), (2.6), correspond-
ing to the Lagrangian (1.1). To construct the solution of the Hamilton-Jacobi equation (2.8) we represent
the generating function S(ui, ηj) in the form

(3.2)

S(wi, umj, η1, . . . , ηn) = G(w1, . . . , wk, η1, . . . , ηk, ηm1)+

+

k
∑

m=0

Gm(um1, . . . , umkm
, ηm1, . . . , ηmkm

).

The Hamilton-Jacobi equation (2.8) after substituting the expressions (3.1) and (3.2) is split into k + 1
independent equations for the functions (Gm),

(3.3)

km
∑

i=1

1

U ′

m(umi)

(

Fmi(umi) −
2

bm

B′(bm)Cm(umi)

(

∂Gm

∂umi

)2
)

= ηm1

and one independent equation for the function G,

(3.4)

k
∑

i=1

1

U ′(wi)

(

Fi(wi) +
2

wi

B(wi)

(

∂G

∂wi

)2
)

+

k
∑

m=0

ηm1

W (bm)
= η1.

Let us introduce k + 1 polynomials

(3.5) Pm(z) = ηm1z
km−1 + ηm2z

km−2 + . . . + ηmkm

and one polynomial P (z)

(3.6) P (z) = η1z
k−1 + η2z

k−2 + . . . + ηk,

where the coefficients ηmi and ηj are independent constants. From the Cauchy theorem about the residues
the known identities follow

(3.7) ηm1 =
1

2πi

∮

Pm(z)

Um(z)
dz =

km
∑

i=1

Pm(umi)

U ′

m(umi)
,

(3.8) η1 =
1

2πi

∮

P (z)

W (z)
dz =

k
∑

i=1

P (wi)

W ′(wi)
.

By substituting the expression (3.7) into the equation (3.3) we obtain the explicit solution

(3.9)

Gm(um1, . . . , umkm
, ηm1, . . . , ηmkm

) =

=

km
∑

i=1

∫ umi

0

(

bm(Fmi(z) − Pm(z))

2B′(bm)Cm(z)

)
1

2

dz.

To solve equation (3.4) we prove the following statement.

Lemma. The function U(z) in (1.12) satisfies the identity

(3.10)
1

W (z)
=

k
∑

i=1

1

W ′(wi)
·

1

z − wi

.
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Proof. The residues of two meromorphic functions in both hand-sides of (3.10) in the poles (w1, . . . , wk)
coincide. Both functions tend to zero for |z| → ∞. Therefore these two meromorphic functions coincide.

As a consequence of this Lemma we get the useful identity

(3.11)
1

W (bm)
=

k
∑

i=1

1

W ′(wi)
·

1

bm − wi

.

Equation (3.4) after the substitution of the expressions (3.8) and (3.11) takes the form

(3.12)

k
∑

i=1

1

W ′(wi)

(

Fi(wi) − P (wi) +

k
∑

m=0

ηm1

bm − wi

+
2

wi

B(wi)

(

∂G

∂wi

)2
)

= 0.

The explicit solution of this equation is defined by the formula

(3.13)

G(w1, . . . , wk, η1, . . . , ηk, ηm1) =

=

k
∑

i=1

∫ wi

0

(

z

2B(z)

(

P (z) +

k
∑

m=0

ηm1

z − bm

− Fi(z)

)

)

1

2

dz.

Therefore the generating function S(wi, umj, η1, . . . , ηn) (3.2) is completely determined by the formulae
(3.9) and (3.13). The generating function S(wi, umj, ηi, ηmj) (3.2) defines the canonical transformation
[3] to new phase coordinates

(3.14) ξi, ξmj , ηi, ηmj ,











i = 1, . . . , k;

m = 0, 1, . . . , k;

j = 1, . . . , km

by the formulae

(3.15)

ξi = −
∂S

∂ηi

,

pi =
∂S

∂wi

,

ξmj = −
∂S

∂ηmj

,

pmj =
∂S

∂umj

.

In view of the Hamilton-Jacobi equation (2.7) the Hamiltonian H (2.6) takes in coordinates (3.14) the
simplest form,

(3.16) H(ξi, ξmj, ηi, ηmj) = η1.

Therefore the Hamiltonian equations in coordinates (3.14) have the form

(3.17) ξ̇i = − δ1i, ξ̇mj = 0, η̇i = 0, η̇mj = 0.

So we get ξ1 = c1 − t and all other coodinates are constant.

Dynamics of trajectories of the system (2.5), (2.6) is integrable by quadratures, because it is obtained from
the simplest dynamics (3.17) by a canonical transformation, inverse to (3.15). The generating function
S (3.2) is determined by the quadratures (3.9), (3.13). Hence, the theorem is proved.

Remark 1. The constructed family of integrable Lagrange systems has applications in the rigid body
dynamics. This family leads by the methods of [4] to the integrable cases of an axially-symmetric rigid
body rotation around fixed point in the fields with the special potentials V (x1, x2, x3) (3.1).
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Remark 2. In [5] the ”degeneration” of elliptic coordinates in the Euclidean space R
n was considered,

corresponding to the limit a1 → a2, and separable Hamiltonian systems in the case a1 = a2 having
”invariance with respect to rotations in the (q1, q2) plane” (see [5], p. 1343). Our Theorem, which can be
extended to the Euclidean space R

n, describes more complicated separable Hamiltonian systems without
any rotational symmetry, and without angular momentum-type first integrals.
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