Integrable Lagrangian systems on quadrics with additional symmetries

S. BENENTI, O. BOGOYAVLENSKIJ

Abstract. The family of the integrable natural Lagrangian systems on quadrics having additional symmetries is constructed by the classical Hamilton-Jacobi method.

1. Construction of the elliptic coordinates on quadrics with additional symmetries

In the classical work by Jacobi [1] the elliptic coordinates were introduced for the proof of integrability of geodesics on two-dimensional ellipsoids. Jacobi's constructions were generalized by Moser [2] for the n-dimensional ellipsoid with different semi-axes, n-dimensional sphere and Euclidean space.

The present work is devoted to the construction of the Lagrange equations, integrable by the Hamilton-Jacobi method on quadrics with additional symmetries. We consider the natural Lagrangians

(1.1)
$$L = \frac{1}{2} \sum_{\nu=0}^{n} (\dot{x}_{\nu})^2 - V(x_0, \dots, x_n)$$

on the quadrics determined by the equations

(1.2)
$$\sum_{\nu=0}^{n} \frac{x_{\nu}^{2}}{a_{\nu}} = 1$$

where some of the coefficients a_{ν} are equal. Two important cases when all coefficients a_{ν} are equal and when they all are different were studied by Jacobi [1] and Moser [2].

Let us suppose that the coefficients (a_0, \ldots, a_n) be divided into k + 1 groups of equal coefficients,

(1.3)
$$a_{0} = \dots = a_{i_{1}} = b_{0},$$
$$a_{i_{1}+1} = \dots = a_{i_{2}} = b_{1},$$
$$\dots,$$
$$a_{i_{k}+1} = \dots = a_{n} = b_{k}$$

In this case the quadric (1.2) possesses a large group of isometries

(1.4)
$$G = \prod_{m=0}^{k} SO(h_m), \qquad h_m = i_{m+1} - i_m, \qquad i_0 = 0, \ i_{k+1} = n.$$

We use the following substitution

(1.5)
$$x_{i_m+j} = r_m y_{mj}, \qquad m = 0, \dots, k, \qquad j = 1, \dots, h_m,$$

in the k + 1 groups of coordinates x_{ν} , corresponding to the decomposition of the coefficients (1.3). Here variables y_{mj} satisfy the equation of k_m -dimensional sphere

(1.6)
$$y_{m1}^2 + \ldots + y_{mh_m}^2 = 1, \qquad k_m = h_m - 1.$$

Therefore equation (1.2) after the substitution (1.5) takes the form

(1.7)
$$\sum_{j=0}^{k} \frac{r_j^2}{b_j} = 1,$$

where all coefficients b_j are different. We define the elliptic coordinates $(u_{m1}, \ldots, u_{mk_m})$ on each sphere $\rightarrow^{k_m} (1.6)$ by the equation [1, 2]

(1.8)
$$\sum_{i=1}^{h_m} \frac{y_{mi}^2}{z - c_{mi}} = \frac{U_m(z)}{A_m(z)},$$

where z is an independent variable, and

(1.9)
$$U_m(z) = \prod_{i=1}^{k_m} (z - u_{mi}), \qquad C_m(z) = \prod_{i=1}^{h_m} (z - c_{mi}).$$

Here c_{mi} are some non-equal constants. The residues of the both-hand-sides of (1.8) in the poles $z = c_{mi}$ lead to the relations

(1.10)
$$y_{mi}^2 = \frac{U_m(c_{mi})}{C'_m(c_{mi})}$$

between the Cartesian coordinates y_{mi} and the elliptic coordinates u_{mi} . The elliptic coordinates (w_1, \ldots, w_k) are determined on the quadric (1.7) by the equation [1, 2]

(1.11)
$$\sum_{i=0}^{k} \frac{r_i^2}{z - b_i} + 1 = \frac{z W(z)}{B(z)},$$

where z is an independent parameter and

(1.12)
$$W(z) = \prod_{j=1}^{k} (z - w_j), \qquad B(z) = \prod_{i=0}^{k} (z - b_i)$$

Due to the equality of the residues of both hand-sides of (1.11) in the poles $z = b_j$ we obtain the expressions

(1.13)
$$r_i^2 = \frac{b_i W(b_i)}{B'(b_i)}$$

for the Cartesian coordinates r_i in terms of the elliptic coordinates w_j . The expressions for the Cartesian coordinates x_{i_m+j} (1.5) follow from (1.10) and (1.13)

(1.14)
$$x_{i_m+j} = r_m y_{mj} = \left(\frac{b_m W(b_m) U_m(c_{mj})}{B'(b_m) C'_m(c_{mj})}\right)^{\frac{1}{2}}$$

2. The Hamilton-Jacobi equation in elliptic coordinates

Lagrangian (1.1) in the coordinates (r_m, y_{mj}) takes the form

(2.1)
$$L = \frac{1}{2} \sum_{i=0}^{k} \dot{r}_{i}^{2} + \frac{1}{2} \sum_{m=0}^{k} r_{m}^{2} \left(\dot{y}_{m1}^{2} + \ldots + \dot{y}_{mk_{m}+1}^{2} \right) - V(x_{i}),$$

while the standard kinetic energy on the sphere (1.6) in the elliptic coordinates $(u_{m1}, \ldots, u_{mk_m})$ has the form [1, 2]:

(2.2)
$$\dot{y}_{m1}^2 + \ldots + \dot{y}_{mh_m}^2 = \sum_{i=1}^{k_m} f_{mi} \dot{u}_{ki}^2, \qquad f_{mi} = -\frac{U'_m(u_{mi})}{4C_m(u_{mi})}.$$

The standard kinetic energy on the quadric (1.7) has the known expression [1, 2] in the elliptic coordinates (w_1, \ldots, w_k) :

(2.3)
$$\dot{r}_0^2 + \ldots + \dot{r}_k^2 = \sum_{i=1}^k g_i \dot{v}_i^2, \qquad g_i = \frac{w_i W'(w_i)}{4B(w_i)}.$$

By using these formulae and the expressions (1.13) we get the form of the Lagrangian (2.1) in elliptic coordinates,

(2.4)
$$L = \frac{1}{2} \sum_{i=1}^{k} \frac{w_i W'(w_i)}{4B(w_i)} \dot{w}_i^2 - \frac{1}{2} \sum_{m=0}^{k} \frac{b_m W(b_m)}{B'(b_m)} \sum_{i=1}^{km} \frac{U'_m(u_{mi})}{4C_m(u_{mi})} \dot{u}_{mi}^2 - V(w_i, u_{mj})$$

The corresponding Lagrange system after the Legendre transformation turns into the Hamiltonian system

(2.5)
$$\dot{p}_i = -\frac{\partial H}{\partial u_i}, \qquad \dot{u}_i = \frac{\partial H}{\partial p_i}$$

with the Hamiltonian

(2.6)
$$H = \sum_{i=1}^{k} \frac{2B(w_i)}{w_i W'(w_i)} p_i^2 - \sum_{m=0}^{k} \frac{2B'(b_m)}{b_m W(b_m)} \sum_{i=1}^{k_m} \frac{C_m(u_{mi})}{U'_m(u_{mi})} p_{mi}^2 + V(w_i, u_{mj}).$$

Therefore the Hamilton-Jacobi equation

(2.7)
$$H\left(\frac{\partial S}{\partial u_i}, u_i\right) = \eta_1$$

for the generating function $S(w_i, u_{mj}, \eta_1, \ldots, \eta_n)$ assumes the following explicit form

(2.8)
$$\sum_{i=1}^{k} \frac{2B(w_i)}{w_i W'(w_i)} \left(\frac{\partial S}{\partial v_i}\right)^2 - \sum_{m=0}^{k} \frac{2B'(b_m)}{b_m W(b_m)} \sum_{i=1}^{k} \frac{C_m(u_{mi})}{U'_m(u_{mi})} \left(\frac{\partial S}{\partial u_{mi}}\right)^2 + V(w_i, u_{mj}) = \eta_1$$

in the elliptic coordinates (v_i, u_{mj}) .

3. The family of the integrable Lagrangian systems

Theorem. The Lagrange system with the Lagrangian (1.1) on a quadric (1.2) with an additional symmetry (1.4) is integrable by quadratures if the potential $V(x_0, \ldots, x_n)$ in the elliptic coordinates (w_i, u_{mj}) has the form

(3.1)
$$V(w_i, u_{mj}) = \sum_{i=1}^k \frac{F_i(w_i)}{W'(w_i)} + \sum_{m=0}^k \frac{1}{W(b_m)} \sum_{i=1}^{k_m} \frac{F_{mi}(u_{mi})}{U'_m(u_{mi})},$$

where $F_i(v_i)$ and $F_{mi}(u_{mi})$ are arbitrary smooth functions of one variable.

Proof. We use the classical Hamilton-Jacobi method for the Hamiltonian system (2.5), (2.6), corresponding to the Lagrangian (1.1). To construct the solution of the Hamilton-Jacobi equation (2.8) we represent the generating function $S(u_i, \eta_j)$ in the form

(3.2)

$$S(w_i, u_{mj}, \eta_1, \dots, \eta_n) = G(w_1, \dots, w_k, \eta_1, \dots, \eta_k, \eta_{m1}) + \sum_{m=0}^k G_m(u_{m1}, \dots, u_{mk_m}, \eta_{m1}, \dots, \eta_{mk_m}).$$

The Hamilton-Jacobi equation (2.8) after substituting the expressions (3.1) and (3.2) is split into k + 1 independent equations for the functions (G_m) ,

(3.3)
$$\sum_{i=1}^{k_m} \frac{1}{U'_m(u_{mi})} \left(F_{mi}(u_{mi}) - \frac{2}{b_m} B'(b_m) C_m(u_{mi}) \left(\frac{\partial G_m}{\partial u_{mi}} \right)^2 \right) = \eta_{m1}$$

and one independent equation for the function G,

(3.4)
$$\sum_{i=1}^{k} \frac{1}{U'(w_i)} \left(F_i(w_i) + \frac{2}{w_i} B(w_i) \left(\frac{\partial G}{\partial w_i}\right)^2 \right) + \sum_{m=0}^{k} \frac{\eta_{m1}}{W(b_m)} = \eta_1$$

Let us introduce k + 1 polynomials

(3.5)
$$P_m(z) = \eta_{m1} z^{k_m - 1} + \eta_{m2} z^{k_m - 2} + \ldots + \eta_{mk_m}$$

and one polynomial P(z)

(3.6)
$$P(z) = \eta_1 z^{k-1} + \eta_2 z^{k-2} + \ldots + \eta_k,$$

where the coefficients η_{mi} and η_j are independent constants. From the Cauchy theorem about the residues the known identities follow

(3.7)
$$\eta_{m1} = \frac{1}{2\pi i} \oint \frac{P_m(z)}{U_m(z)} dz = \sum_{i=1}^{k_m} \frac{P_m(u_{mi})}{U'_m(u_{mi})}$$

(3.8)
$$\eta_1 = \frac{1}{2\pi i} \oint \frac{P(z)}{W(z)} dz = \sum_{i=1}^k \frac{P(w_i)}{W'(w_i)}$$

By substituting the expression (3.7) into the equation (3.3) we obtain the explicit solution

(3.9)
$$G_m(u_{m1}, \dots, u_{mk_m}, \eta_{m1}, \dots, \eta_{mk_m}) = \sum_{i=1}^{k_m} \int_0^{u_{mi}} \left(\frac{b_m(F_{mi}(z) - P_m(z))}{2B'(b_m)C_m(z)} \right)^{\frac{1}{2}} dz$$

To solve equation (3.4) we prove the following statement.

Lemma. The function U(z) in (1.12) satisfies the identity

(3.10)
$$\frac{1}{W(z)} = \sum_{i=1}^{k} \frac{1}{W'(w_i)} \cdot \frac{1}{z - w_i}.$$

Proof. The residues of two meromorphic functions in both hand-sides of (3.10) in the poles (w_1, \ldots, w_k) coincide. Both functions tend to zero for $|z| \to \infty$. Therefore these two meromorphic functions coincide.

As a consequence of this Lemma we get the useful identity

(3.11)
$$\frac{1}{W(b_m)} = \sum_{i=1}^k \frac{1}{W'(w_i)} \cdot \frac{1}{b_m - w_i}$$

Equation (3.4) after the substitution of the expressions (3.8) and (3.11) takes the form

(3.12)
$$\sum_{i=1}^{k} \frac{1}{W'(w_i)} \left(F_i(w_i) - P(w_i) + \sum_{m=0}^{k} \frac{\eta_{m1}}{b_m - w_i} + \frac{2}{w_i} B(w_i) \left(\frac{\partial G}{\partial w_i}\right)^2 \right) = 0.$$

The explicit solution of this equation is defined by the formula

(3.13)
$$G(w_1, \dots, w_k, \eta_1, \dots, \eta_k, \eta_{m1}) = \sum_{i=1}^k \int_0^{w_i} \left(\frac{z}{2B(z)} \left(P(z) + \sum_{m=0}^k \frac{\eta_{m1}}{z - b_m} - F_i(z) \right) \right)^{\frac{1}{2}} dz.$$

Therefore the generating function $S(w_i, u_{mj}, \eta_1, \ldots, \eta_n)$ (3.2) is completely determined by the formulae (3.9) and (3.13). The generating function $S(w_i, u_{mj}, \eta_i, \eta_{mj})$ (3.2) defines the canonical transformation [3] to new phase coordinates

(3.14)
$$\xi_i, \ \xi_{mj}, \ \eta_i, \ \eta_{mj}, \quad \begin{cases} i = 1, \dots, k; \\ m = 0, 1, \dots, k; \\ j = 1, \dots, k_m \end{cases}$$

by the formulae

(3.15)
$$\begin{aligned} \xi_i &= -\frac{\partial S}{\partial \eta_i}, \qquad \xi_{mj} &= -\frac{\partial S}{\partial \eta_{mj}}, \\ p_i &= \frac{\partial S}{\partial w_i}, \qquad p_{mj} &= \frac{\partial S}{\partial u_{mj}}. \end{aligned}$$

In view of the Hamilton-Jacobi equation (2.7) the Hamiltonian H (2.6) takes in coordinates (3.14) the simplest form,

(3.16)
$$H(\xi_i, \xi_{mj}, \eta_i, \eta_{mj}) = \eta_1.$$

Therefore the Hamiltonian equations in coordinates (3.14) have the form

(3.17)
$$\dot{\xi}_i = -\delta_{1i}, \quad \dot{\xi}_{mj} = 0, \quad \dot{\eta}_i = 0, \quad \dot{\eta}_{mj} = 0.$$

So we get $\xi_1 = c_1 - t$ and all other coordinates are constant.

Dynamics of trajectories of the system (2.5), (2.6) is integrable by quadratures, because it is obtained from the simplest dynamics (3.17) by a canonical transformation, inverse to (3.15). The generating function S (3.2) is determined by the quadratures (3.9), (3.13). Hence, the theorem is proved.

Remark 1. The constructed family of integrable Lagrange systems has applications in the rigid body dynamics. This family leads by the methods of [4] to the integrable cases of an axially-symmetric rigid body rotation around fixed point in the fields with the special potentials $V(x_1, x_2, x_3)$ (3.1).

Remark 2. In [5] the "degeneration" of elliptic coordinates in the Euclidean space \mathbb{R}^n was considered, corresponding to the limit $a_1 \to a_2$, and separable Hamiltonian systems in the case $a_1 = a_2$ having "invariance with respect to rotations in the (q_1, q_2) plane" (see [5], p. 1343). Our Theorem, which can be extended to the Euclidean space \mathbb{R}^n , describes more complicated separable Hamiltonian systems without any rotational symmetry, and without angular momentum-type first integrals.

References

- [1] C.G.J. JACOBI, Vorlesungen Über Dynamik, Königsberg, 1842-43; Berlin, Reimer, 1866.
- J. MOSER, Various Aspects of the Integrable Hamiltonian Systems, Dynamical Systems (C.I.M.E. Summer School, Bressanone, 1978), Progress in Mathematics, Birkhäuser, 8 (1980), 233-289.
- [3] V.I. ARNOLD, Mathematical Methods in Classical Mechanics, Springer 1983.
- [4] O.I. BOGOYAVLENSKIJ, Integrable Cases of a Rigid Body Dynamics and Integrable Systems on the Ellipsoids, Comm. Math. Phys. 103 (1986), 305-322.
- [5] I. MARSHALL, S. WOJCIECHOWSKI, When is a Hamiltonian system integrable?, J. Math. Phys. 29 (1988), 1338-1346.