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Abstract: Coordinates which allow the integration by separation of variables of the geodesic
Hamilton-Jacobi equation are called separable. Particular interest is placed on orthogonal sep-
arable coordinates. In this paper it is proved that on a Riemannian manifold with constant
curvature and on a Lorentzian manifold with constant positive curvature every system of sep-
arable coordinates has an orthogonal equivalent, i.e. that in these manifolds the integration by
separation of variables of the geodesic Hamilton-Jacobi equation always occurs in orthogonal
coordinates. Proofs of this property concerning strictly-Riemannian manifolds of positive, nega-
tive and zero constant curvature (and also for conformally flat manifolds) were firstly given by
Kalnins and Miller (1982-1986). The proof presented here is based on elementary properties of
Killing vectors of an affine space and on a geometrical characterization of the equivalence classes
of separable coordinates.
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1. Introduction

The main purpose of the present paper is to prove the following

Theorem. On a Riemannian manifold with positive metric and constant curvature
and on a Lorentzian manifold with constant positive curvature every system of sepa-
rable coordinates has an orthogonal equivalent.

Proofs of the existence of orthogonal equivalents of separable systems on the Eu-
clidean spaces E, on the spheres S,, on the hyperboloids H,, and on the conformally
Euclidean spaces C,, are given in [11,12,7]. A first consequence of these interesting re-
sults is that the classifications of the orthogonal separable coordinate systems given by
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Eisenhart and Olevskii, for the 3-dimensional Euclidean space [4], the conformally Eu-
clidean 3-spaces [5], and the 3-sphere [14], are in fact exhaustive. Moreover, as Kalnins
and Miller and co-workers have done, this classification can be extended to all the
above mentioned spaces, for all dimensions [7].

In our approach, the proof of the Theorem is an occasion for exploring the geometry
of the separation of variables. By recalling the theorem on the normal form of the
metric tensor components in separable coordinates [1,2,9,10], it can be seen that the
non-diagonal part of the corresponding matrix is due to the presence of ignorable
coordinates (first class coordinates, according to the classification of Levi-Civita). The
geometrical counterpart of these coordinates is an abelian sub-algebra of the Lie algebra
of Killing vectors, and it is shown that this subalgebra is normal (i.e. its orthogonal
distribution is completely integrable) (Section 2). Hence, for proving the existence
of an orthogonal equivalent of a separable coordinate system one has to prove that
the corresponding subalgebra of Killing vectors has an orthogonal basis. We consider
the Killing vector algebras of a Euclidean (positive metric) affine space E, and of a
Minkowskian (hyperbolic metric) affine space M,. As for all affine spaces, after fixing
a point, the Killing vectors are characterized by pairs (A,u), where u is a vector of the
underlying vector space and A is a skew-symmetric endomorphism on this space. So,
we can relate the differential properties of the Killing vector fields with the algebraic
properties of these pairs (Section 2 and 3). We need a preliminary analysis on the
canonical form of skew-symmetric 2-tensors in a Euclidean or hyperbolic vector space
(Section 3). The central result is the algebraic characterization of a normal abelian
subalgebra of Killing vectors (Theorem 1, Section 4); for its proof we used as a tool a
particular version of the integrability criterion of a Pfaffian system (Lemma, Section 4).
After this characterization, we can immediately derive results concerning the existence
of orthogonal equivalents of separable coordinate systems, not only for E, and M,, but
also for their hyperquadrics [6], which are manifolds of constant curvature (Section 5).

2. Separation of variables on Riemannian manifolds

Definition 1. A coordinate system (¢') on a Riemannian manifold (Qy,g) is called
separable if the geodesic Hamilton-Jacobi equation

1 ., 0W oW
= ”———-'“——T=h 1
29" o 39 (1)

has a complete integral W(q', a¥) of the form
W = Wi(¢',a*) + Wa(g?,a*) + -+ Wa(q", a¥). (2)

A coordinate system (¢') is said to be orthogonal if g/ = 0 for i # j.

Definition 2. Two separable coordinate systems are said to be equivalent if in every
domain U C ) where both are defined they give rise to the same complete integral,
interpreted as a Lagrangian foliation of the cotangent bundle T*U c T*Q.
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An equivalent relation.is then defined in the set of the separable systems whose
domains contain a given point of @).

The theory of separation of variables is based on a classification of the coordinates
due to Levi-Civita [13].

Definition 3. Let (¢,p;) be the canonical coordinates on T*Q corresponding to a
coordinate system (g*) on Q. Let H = 1 g/ p; p; be the geodesic Hamiltonian. A coor-
dinate ¢* is said to be of first class if the function  H/dq', which is a polynomial of
degree 2 in the momenta, is divisible by 0 H/dp;, which is a polynomial of degree 1 in
the momenta. Otherwise, the coordinate is said to be of second class. A coordinate of
first class ¢* is said to be ignorable if 8H/0q" = 0.

A further definition is needed when the metric g is not positive.

Definition 4. A coordinate of second class ¢¢ is said to be isotropic or null if g* = 0
(i.e. if the gradient of the coordinate ¢ is an isotropic vector)

It can be proved [1,2] that

Proposition 1. (i) The numbers (my,m2,l) of non-isotropic second class, of isotropic
second class and of first class coordinates respectively, are invariant within an equiva-
lence class of separable coordinates.

(ii) The second class coordinates are orthogonal and essential (in two equivalent
separable systems they are related by a separated transformation, i.e. a transformation
whose Jacobian is diagonal).

(iii) In an equivalence class of separable coordinates there ezists a system (q') where
the first class coordinates (¢*) are ignorable and such that the matriz (¢%) of the
contravariant components of the metric tensor has the following normal form:

§ab g 0 0
0 0 g¢* (3)
0 gaa gaﬁ

We used the following convention for the indices. Latin indices h,1,7,... run from
1 to n, the dimension of Q. For indices corresponding to second class coordinates,
running from 1 to m < n, we use the first Latin letters a,b,.... We denote by &,b,...
indices corresponding to non-isotropic second class coordinates; they run from 1 to m;.
We denote by @,b,... indices corresponding to isotropic second class coordinates; they
run from m; + 1 to mg, and m; + my = m. For indices corresponding to first class
coordinates, running from m + 1 to n, we use Greek letters o, 8,.... Weset [ = n—m.

An immediate consequence of Proposition 1 is the following

Proposition 2. (i) Separable systems without first class coordinates are orthogonal.
(ii) Separable systems with isotropic second class coordinates cannot have an orthog-
onal equivalent.
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Examples given in [8] as truly non-orthogonal separable coordinates on the Minkow-
skian space M3 enter in point (ii) of this proposition.
To state a further consequence of Proposition 1 we need to recall the following

Definition 5. A Killing vector X on a Riemannian manifold (Q,,g) is a vector field
on () such that dxg = 0. (Here dx denotes the Lie derivative with respect to the field
X).

There are other equivalent definitions of Killing vectors, which we do not need to
mention here. Killing vectors are in fact infinitesimal isometries. They form a finite-
dimensional subalgebra of the Lie algebra of vector fields on @, which we denote by

K@)

Definition 6. We say that a subalgebra D c K!(Q) is normal if the distribution AL
orthogonal to the distribution A generated by D is completely integrable. We say that
a subalgebra D c K1(Q) is (metrically) degenerate if the metric tensor reduced to
A, C T,Q is singular for each point ¢ € Q.

Here, a distribution A is intended as a subbundle of the tangent bundle T'Q. Hence
we have to exclude the closed subset of ) made of those points in which the vector fields
of the differential system D span a space whose dimension is less than the dimension of
the subalgebra D. (For questions concerning differential systems and distribution we
refer to [15]).

Proposition 3. Let U C Q be the open domain of definition of an equivalence class
of separable coordinates with | > 0 first class coordinates. Then there ezxists a nor-
mal abelian subalgebra D C KY(U) of dimension l. This subalgebra is degenerate if
and only if there are isotropic second class coordinates. The integral manifolds of the
corresponding distribution A are defined by equations ¢* = const., where (¢*) are the
second class coordinates.

Proof. Let (¢') be separable coordinates for which the matrix (g%/) takes the normal
form (3) (they are called normal separable coordinates). Let us consider the vector
fields X; = 0/0q. All these vectors commute, [X;, X;] = 0. Since the coordinates (¢*)
are ignorable, the vectors (X, ) are Killing vectors. They are independent everywhere
in the domain U of the coordinates, so that they define an abelian subalgebra of K1(U)
of dimension / and a distribution A. Let us consider the orthogonal distribution A+.
(i) Assume that there are no isotropic second class coordinates. The normal form (3)
reduces to

6ab ga,a. 0
(4)
0 gf‘ﬁ

We see that the vectors X, generate AL. Since they commute, this distribution is
completely integrable. Thus D is normal. Since AN Al = 0, both distributions are
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not degenerate. (ii) Assume that isotropic second class coordinates are present. Let us
consider the dual vector fields X* = g%/ X, so that X¢- X5 = 6;- (here - denotes the
scalar product). From the normal form (3) it follows in particular that

Xzt Xy, X°Pog®Xy X*XP=0.

Hence the isotropic vector fields (X?) span an isotropic distribution I which is con-
tained in the distribution A generated by (X ), and which is also orthogonal to A, since
X?. X, = 0. This proves that A is degenerate. Since we have also X% - X, = X; - X, =
0, the orthogonal distribution A+ is generated by the vector fields (X;, X?). It is ob-
vious that [X3, X;] = 0 and [X4, X3] = 0. Moreover, [X?, X*] = [¢3 X4, g% X4] = 0
and [Xo, X% = [Xa4, 9% Xg] = 0 since X, are Killing vectors. Finally, [X;,X?] =
[X3,9% Xo) = X39°* X,. However, it is known from the theory of the separation of
variables [2] that X;g%* = g% fZ where fZ is a factor which does not depend on the
index a. Thus the last expression of the Lie brackets becomes = f2 g% X, = f2 X2,
These complete the proof that At is completely integrable. 0O

Proposition 4. A separable system without isotropic second class coordinates has an
orthogonal equivalent if and only if the normal abelian subalgebra D has an orthogonal
basis.

Proof. According to the general theory of separation, a linear transformation with con-
stant coefficients of ignorable first class coordinates (¢*) produces an equivalent system
of separable coordinates. Such a transformation is equivalent to a linear transformation
of the vectors X,. The normal form (4) shows that the matrix (¢*) is diagonal when
g°‘5=0f0ra¢ﬂ,i.e.gaﬁ=Xa-Xg:Ofora;é,B. O

This last proposition shows that the proof that on a manifold ) every separable
system (without isotropic second class coordinates) has an orthogonal equivalent, is
equivalent to proving that all normal non-degenerate abelian subalgebras of K1(Q)
have an orthogonal basis.

3. Killing vectors in an affine space

Let (Q,g) be a Euclidean or pseudo-Euclidean affine space. We choose a point
O € @ (the origin) so that the affine space is identified with the underlying Euclidean
or pseudo-Euclidean vector space (F,g): points of @ are vectors of E.

Let us denote by @ - y the scalar product of two vectors of E: - y = g(=,y) and set
|z|| = ® - ®. Let us denote by A - B the composition of two linear endomorphisms on E
and set [A,B] = A - B—B - A; they commute iff [A, B] = 0. Let us denote by = - A the
image of the vector # € E by A. The rank of an endomorphism A is the dimension of
the image space E - A. There is a natural identification between linear endomorphisms
and bilinear forms on E, defined by equation A(z,y) = @ - A - y. The metric tensor
g corresponds to the identity. Linear endomorphisms or bilinear forms will be simply
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called 2-tensors. A 2-tensor A is skew-symmeltricifz - A-y=—y - A - . The exterior
product of two vectors (u,v) is the skew-symmetric 2-tensor u A v such that

z-(uAv)=z -uv—2-vu
A skew-symmetric 2-tensor is said to be simple if its rank is 2 or, equivalently, if it
can be represented (in a non-unique way) as an exterior product of two vectors.

It is known that a vector field X on the affine space (@, g) is a Killing vector if and
only if

X(z)=z-A4+u, VzeckE, (1)

where A is a skew-symmetric 2-tensor and v € E. We say that X is a rotation (around
the origin) if u = 0, a translation if A = 0. Equation (1) will be written

X = (A,u). (2)

The elements (A, u) will be called the generators of the Killing vector X. The following
identities hold for Killing vectors in an affine space:

a(A,u)=(aA,au) (a eR),

(A,u)+ (B,v) = (A+ B,u+v),

[(A,v),(B,v)] = ([4,B],u- B-v- A), (3)

d(A,u) = A,

(A,u)(z) - (B,v)(z)=-z-A-B-z+z-A-v+z-B-utu-v.
In (3)4 and in the following discussion we use the natural indentification between vector
fields and exterior 1-forms, so that the differential dX of a vector field makes sense.
The square brackets at the right hand side of (3)3 are the Lie brackets of vector fields.
Identities (3),2,3 give a linear representation of K1(Q) in the vector space Q?(E) & E,

where Q?(E) is the space of skew-symmetric 2-tensors over E.

From (3)3 and (3)s it follows that

Proposition 1. (i) Two Killing vector fields (A,u) and (B,v) commute if and only
if
[A,B]=0, u-B=v-A.
(it) Two Killing vector fields (A,u) and (B,v) are everywhere orthogonal if and only

if
A-B=0, v-A+u-B=0, u-v=0.

Our aim is to relate the differential properties of sets of Killing vectors with the
algebraic properties of their generators (like Proposition 2 (i)). For our purposes we
restrict our attention to Euclidean (i.e. elliptic) or Minkowskian (i.e. hyperbolic) affine
spaces, i.e. to the cases () = E, or = M,,. The signature of M,, is assumed to be
{=FF st

To this end a preliminary analysis of skew-symmetric 2-tensors is needed. It can be
shown that (see [3] for a discussion on this topic):
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Proposition 2. A skew-symmetric 2-tensor A admits one of the following canonical
representations:

A=y E; (i=1,...,m),

A=pH+p E;, (4)
A=P+ ) E,

with
E; = a; \b;,
H =aAb, (5)
P=cAd,

where the 2m vectors (a;,b;) form a canonical basis of a Euclidean subspace Es,, (they
are spacelike, orthogonal, and unitary), the 2 vectors (a,b) form a canonical basis
of a hyperbolic 2-space Hy orthogonal to E,y,, the 2 vectors (¢,d) are independent
and orthogonal, they belong to the orthogonal space Ei-  and c is isotropic (thus d is
spacelike).

In case (4); A is said to be elliptic and the vectors b; +1 a; are complex eigenvectors
corresponding to the eigenvalues +1u°. In case (4); A is said to be hyperbolic, the
vectors a; F by are isotropic eigenvectors corresponding to the eigenvalues Fu!; for i =
2,...,m the vectors b; + ¢ a; are complex eigenvectors corresponding to the eigenvalues
+14u'. In case (4)3 A is said to be parabolic, the vector ¢ is an eigenvector corresponding
to the eigenvalue 0, the vectors b; + ¢ a; are complex eigenvectors corresponding to the
eigenvalues +1u’.

We recall that on a hyperbolic vector space: the maximum dimension of an isotropic
subspace is 1; a subspace .S is degenerate if and only if it is orthogonal to an isotropic
subspace I, which is contained in §; the vectors of § = It not belonging to I are
spacelike; a subspace S is non-degenerate if and only if § N §L = 0; the subspace ut
orthogonal to a timelike vector u is spacelike (i.e. elliptic).

According to this classification we have three kinds of Killing vectors: elliptic, hy-
perbolic and parabolic. In a Euclidean space all Killing vectors are elliptic.

It can be proved (see [3] for details) that

Proposition 3. A set (Ay) of skew-symmetric endomorphisms commute if and only
if they assume the canonical form

Ay = €4 Py + it 8, i=1,...,s. (6)
with

Py =ehda, S; = a3 A by (7)
where the pairs (a;,b;) are independent and span non-degenerate bidimensional orthog-

onal subspaces, (S5;), (¢,ds) are orthogonal to all spaces (S;), ¢ is isotropic and (d,)
are orthogonal to ec.
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Remark 1. We can choose the vectors (a;, b;) to be unitary and orthogonal, and (d,)
to be unitary. If at least one of the coefficients u, # 0, then all these vectors are
necessarily spacelike.

4. Normal abelian subalgebras of Killing vectors in Euclidean or Minkow-
skian affine spaces

Theorem 1. On E,, or M,, a subalgebra of Killing vectors of dimension | is abelion
and normal (Definition 6, Section 1) if and only if it admits a basis

a, A\b, wu, p=1,...,p
cAd, v, &= Lynsnnl (1)
0 S p+q+r=1, r=1,...,r

where vectors (a,,b,,c,d,) are independent, (a,,b,) are orthogonal and non-isotropic,
c € {a, by}t is isotropic, dy € {ap,bp,c}t, u, € {a,,b,}, wr € {a,,by,c,ds}L,
and moreover, if the space {w;} is a non-degenerate subspace or zero (r = 0), v, €
{c,dl,. .o ,dq}, Vo * da’ = Vgl * da-.

Here, we denote by {a,b,...} the space generated by the vectors (a,b,...), and
{a,b,...}* is the orthogonal subspace.

Remark 1. If the space {w;,} is degenerate, we have no conditions over the vectors
v, and, moreover, we can always choose w; = c¢. We can choose the vectors (d,) to be
orthogonal to each other. We can choose the vectors (a,,b,,d,) to be unitary. We can
choose the vectors (w,) to be unitary, except for w; = ¢ in the degenerate case. Some
of the integers (p,¢,7) may be zero.

To prove this proposition we need the following version of the complete integrability
criterion of a Pfaffian system:

Lemma. Let (8y) = (01,62,...,0,) be (local) characteristic 1-forms of a regular dis-
tribution © CTQ: O ={veTQ|(v,0,) =0, a =1,2,...,1}. Then the distribution is
completely integrable if and only if

L AON...ANOANdOB, =0 =13 0 B (2)

Proof. The usual integrability criterion for a distribution characterized by independent
differential 1-forms (6 ) is that 1-forms (w3) exist so that

0o = wE A 6. (3)
Equations (3) imply (2). To prove the converse, let us consider a local frame (§;) =
(0as0a),i=1,...,m,a=141,... ,n, extending the given system (8, ). Let us represent

the differentials df, in this frame:

Ao = f3 0; AO; = FEV 85 N0, + f22 0, A6, + 27520, A6,
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From equation (2), from equation 6; A... A 6; A df; = 0 for instance, it follows that
0, AO AL A...NO =0,ie fi=0,since (0,,0,01,...,0;) are independent (when
a #b). Hence, f2b =0 and

Ao = 2705 A6y +2f5°05 A G,

This is an expression of (3). O

Proof of Theorem 1. Let (X, = (Aa,va)), @ =1,...,1, be a basis of a subalgebra
D c KY(Q) of dimension /. Let us assume that D is abelian. Since all X, commute,
according to Proposition 1 (i), Section 3, all A, commute, and according to Proposition
3, Section 3, we can always write

Ay = pio ¢ Ady + pi, a; Ab;, i=1,...s,

where, for each a the 2s + 2 vectors (¢, dy, a;,b;) are independent and orthogonal and
c is isotropic. With the exception of ¢, we can always assume that these vectors are
unitary. After linear transformations involving the parabolic terms we can reduce to a
system

,Ufai/\bi v, L:l,...,k
cANdy +pya; Ab;, v, c=k+1,...,m

where all d, are independent and orthogonal. Let p be the dimension of the space
generated by A, = u! a; Ab;. After linear transformations involving a basis of this space
we reduce to a system

ap/\bp'*'ll';an/\bﬁ v, p=Ly e sp B=PF 100058
0 wr | r=pd ek
C/\da+lj’2rai/\bi Vo U:k-f-l,...,m

By subtracting from the last ¢ = m — k elements the first p elements we finally get,
after a suitable reordering, a system

X, ’a,,/\bp+,ugaﬂ/\bﬂ u, T
Yo | = | cAde +vfanAbs v, O =l 5 (5)
Z‘r 0 wr T-:l,...,’l‘

All the vector fields (5) commute. According to Proposition 1 (i), Section 3, this implies
in particular

wr € {ai’bhc’dO‘}L‘ (6)

Let us assume that D is normal. The distribution orthogonal to the vector fields (5) is
completely integrable. Then, according to the Lemma, the following conditions hold:

Xi Ao e AXp AN c AYGAZY Ksis NZp AdW =10
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where W is any one of the vector fields (X,,Y,, Z,). Indeed, these vector fields, inter-
preted as 1-forms, are the characteristic forms of the orthogonal distribution. However,
Z; = wy, dZ; = 0, so that the only significant conditions are

Xin  AXpANYIA LAY Aw AL Awe AdX, =0,

(7)

XA e A XpAVA A AYg Awy Asw i Awp AdYy = 0,

where:
Xp=z-ap,by—z-bpa,+ p;z- Bg+uy,
Y,=z-¢cd;—z-dyc+viz- B+ v,,
B = ag A b,
dX,=a, Ab, + 5 B,
dY, = eAdy + V] B,.
The left hand sides of equations (7) are polynomials of degree p + ¢ in the variables
z = (z1,22%,...,2"). Let us consider the coefficient of maximal degree for o = 1. We
get the equation
(zrarbi—z-brar+pfz-B)A...
A(z-apb,—x-byap+ pyz- By)
Az-cdi—z-dictviz-Bg)A...
A(z-cdy—=z-dyct+vjz- By)
Alendi +vfBe)AwiA... Aw, = 0.

By developing the exterior product, in the resulting sum we get only one term

(:c-a1 bi—x by al-l-,LL'f:l:'B,{)/\...
A(z-apby,—x-byap+pyz- Bg)
Az-e)PdiA...ANdgA(Vf B) Awi A...Aw,,
so that this term must vanish. According to the commutability condition (6) the vec-
tors w;, are orthogonal to the space {a;,b;,d,}, which is a regular subspace, since all
generators are orthogonal and non-isotropic. Thus the vectors (a;,b;,d,,w.) are inde-
pendent. Hence, the term we have considered can vanish if and only if v§ = 0 for each
value of the index k. This proves that v* = 0. Now we can consider the coefficient of
maximal degree for p = 1. We get the equation
(m-al bi—x-b; a1+ufz-Bn)/\...
A(z-apb,—a-bpa,+ psc: By)
Az-cdi—z-dic)A...AN(z-cdy—=z-dyc)
A(a1 Aby 4+ pfB)Awi A...Aw, = 0.
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We get only one term
(x-a1by—z-byag+pfz-Be)A...
/\(a:-apbp—a:-bpap-f-uz:c-Bﬁ)
AdiA.c..Ade Ao A(@y Aby +pfB)Awy AL Awy,
and thus only one term
(uz-Be)A(z-azby—z-byaz)A..
A(z - apby,—z-byap)
AdiA...Adr A...ANat ANbj Awi A...\Nw,.

Again all vectors involved are independent, so that this term vanishes if and only if
p§ = 0. This proves u5 = 0. Hence, system (5) reduces to

X, a, Ab, u, p=1L....p
Y, | =1 eAd; v, c=1l,....q (8)
Zx 0 wr

= R

According to Proposition 1 (i), Section 3, the commutation relations now imply

wr € {a,,by,c, dy1*,
v € {a,,b,,c}t, Vo dyr = vy - dy, (9)
up € {(aﬁ7b6)3‘3> da}’La
where the diacritic " over an index means the exclusion of that index. Let us write the
integrability conditions (7) in this simplified situation:
(:c car by —x-by a1+u1)/\.../\(az-ap by —x-bpa,+up)
ANae-cdi—z-dictvi)A...A(z-cdjg—z-d;c+vy) (10)
AwiA...ANwrANa, ANb, = 0.

(zrarby—z -biar+u)A... Az -apb,—z-byap+up)
/\(az-cdl—m-dlc+'u1)/\.../\(z-cdq——z-dqc-i—'vq) (11)
AwiA...ANwrAeAd, =0.

Let us consider equation (10) for p = 1. It reduces to

uiAagAbyA(z-agby—x -byas+u)A...A(z-apby—z-b,ap+uy,)
/\(w-cdl—a}-dlc+'v1)/\.../\(a:-cdq—-a:-'dqc-}-vq)
Awg A Aws = (0.

The left hand side is a polynomial of degree p + ¢ — 1 in @. Let us take the part of
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maximal degree:
wrAay AbyA(z-ayby—z -bya)A...A(z-apby,~z-byayp)
ANz -cdy—=-dy c)/\.../\(wacdqwa:-dqc)
AwiA...ANw, = 0.
This equation produces in particular the equation
uiAaiAbiA(m a2 by—a-bya)A...A(x-apb,—-bya,)
ANdiA...AdgAwi AL Aw, = 0.

This means that

uy € {alabheZaeSa"' aepvdde‘r}a

where e, for p = 2,...,p means one of the two elements (a,,b,). This implies

u; € {a‘lvbl’daaw‘r}v

However u; is orthogonal to all d, due to the commutability conditions (9)3, so that we
finally get: u; € {a1,b;,w,}. By adding suitable combinations of the independent vec-
tors w, we can reduce to the case u; € {a1,b;}. Hence we have proved that conditions
(9)3 for the system (8) are equivalent to

u, € {a,,b,}. (12)
Let us consider equation (11) for ¢ = 1. It reduces to
(za1by—z-braj+u))A...A(z-apby—z-byap+uy)
AviA(z-cdy+v)A...A(z-cdy+vy)
AwiA...Awr AcAdy = 0.

The left hand side is a polynomial of degree p+ ¢ — 1 in z. Let us take the part of
maximal degree:

(z-arby—a-braj+u)A...A(z-apby—z-bya,+u,) (13)
/\vl/\dzl\.../\dq/\wl/\.../\wr/\c/\dl:0.

Now we have two cases: (i) the space F' = {w,} is regular, including the case F =
0; (ii) the space F is mot regular. In case (i), due to conditions (9);, all vectors
(ap, by, ¢,ds,w,) are independent, so that the previous equation implies that

v1 € {ep,¢,do,w;},

thus
vy € {¢,ds,ws}.

Again, this condition can be reduced to v; € {c,d,} by adding linear combinations of
w,. Hence we have proved that conditions (9); for the system (8) are equivalent to

Vo €5, v5-dy =vy-dy, (14)
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where S = {e¢,d;}. Conversely, if conditions (14) and (12); hold, we see that both
integrability conditions (10) and (11) are identically satisfied. In case (ii) the space F
must be orthogonal to an isotropic vector. Due to the commutability conditions (9);,
this vector is necessarily the vector c. Since ¢ € F, we can always rearrange the vectors
w; in such a way that w; = ¢, and equation (13) is identically satisfied. In this case,
however, also the whole integrability condition (11) is satisfied. O

5. The existence of orthogonal separable coordinates

Theorem 1 in the preceding section gives a necessary and sufficient condition for a
subalgebra D of Killing vectors on E,, or M,, to be abelian and normal. Let us consider
some remarkable consequences.

Proposition 1. An abelian normal subalgebra D C K*(E,) has an orthogonal basis.

Proof. Since parabolic Killing vectors do not exist, due to Theorem 1, Section 4, there
is a basis of D of kind

X,\ _ [apAb, wu, p=1...,p (1)
zZ:) 0 w5 e =N
where (a,,b,) are independent and orthogonal, u, € {a,,b,} and w, € {a,,b,}+. Due
to Proposition 1, Section 3, the vector fields (X,, Z;) are orthogonal. O

Hence, because of Proposition 4, Section 2:

Proposition 2.' Every separable coordinate system on a Euclidean affine space E,, has
an orthogonal equivalent.

Let us denote by Ro(Q) the subalgebra of the rotations around the origin of an affine
space @, i.e. the set of all Killing vectors X = (A4,0), i.e. such that X(z) = = - A.

Proposition 3. An abelian normal subalgebra D C Ro(M,) has a non-degenerate
orthogonal basis.

Proof. Due to Theorem 1, Section 4, there is a basis of D

X, a, Ab, p=1...,p
= (2)
Yo cAdy a=1i....0
where (a,,b,,c,d,) are independent, unitary and orthogonal, and ¢ is isotropic. Due

to formula (3)s or Proposition 1, Section 3, the vector fields (X,,Y,) are orthogonal

and
Xp+Xp= (”bp”ap + “‘lpnbp) = (ap *b,) -z,

Yo « X5 =€ &,
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where in the first line the sign — corresponds to the case in which the element a, Ab, is
hyperbolic and a, is timelike (this can happen for only one index and only if there is no
parabolic term, i.e. ¢ = 0). This shows that, apart from a singular closed set made of
hyperplanes, the vectors (X,(z),Y,(x)) form a basis of a non-degenerate subspace. O

As a consequence, due to Proposition 3 and Proposition 4, Section 2:

Proposition 4. On a Minkowskian affine space M,, every separable coordinate system
whose abelian subalgebra D c K(M,,) corresponding to the first class coordinates is
contained in Ro(M,) (i.e. is made of rotations around the same point O) has an
orthogonal equivalent.

Furthermore, let us consider the following manifolds:

Sn = {z € Eny1 | [l=]| = 1},
H, = {z € Mpy1 |2l = -1},
Ln = {z € My [[|2]| = 1}.

They are called hyperguadrics in [6]: S, (the n-dimensional sphere) is a Riemannian
manifold with positive metric and positive constant curvature; H, (the n-dimensional
hyperboloid or pseudo-sphere) is a Riemannian manifold with positive metric and neg-
ative constant curvature; L, is a Lorentzian manifold (signature (— + +...+)) with
positive constant curvature. The rotations of E,4; and of M, are tangent to S, and
to H,, L, respectively. So that

K'(Sr) = Ro(En+1)IS,
K'(H,) = Ro(Myu41)|Hn,
K*(Ln) = Ro(Mn1)|Lan,
It follows from Proposition 1 and Proposition 3 that

Proposition 5. An abelian normal subalgebra of K'(S»), K}(H,), K'(Ly), has an
orthogonal basis. In K'(L,) every orthogonal basis is non-degenerate.

As a consequence:

Proposition 6. FEvery separable coordinate system on the spaces S,,, H,,, L., has an
orthogonal equivalent.

Since all the manifolds considered in Propositions 6 and 3 locally provide a model
of the manifolds with constant curvature considered in the theorem announced in the
Introduction, the theorem is proved.

The same property does not hold for Lorentzian manifolds with zero curvature (like
the Minkowkian affine spaces) and with constant negative curvature, unless further
restrictions are imposed on the algebra D associated with the first class coordinates
(as in Proposition 4). Here we give two examples.
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Example 1. Let us consider the hyperbolic 3-space M3 and all possible bi-dimensional
normal abelian subalgebras Dy C K1(M3) (in fact, due to the dimension, every bi-
dimensional subalgebra of Killing vectors is normal). According to Theorem 1, Section
4, one of the elements of the canonical basis (1), Section 4, is necessarily a translation.
Hence, we have the following cases:

(X)_(a/\b u) {llallzillbll=1,a'b:0> (3)
Z)"\L 0 w u € {a,b},w € {a,b}+,

()-(4# ) T eess
7 0 w v € {¢,d}, w € {c,d}*,

Y Ad

(z>:(co Z) coe=0; d-c=0, (5)
(gl) - (g :"”; wy + wy = 0 (non isotropic), (6)

Z 0 ¢ -
(Z:):<O w) c.c=0; c-w=0. (7)

Actually cases (3) and (4), after a suitable change of the origin O, are equivalent to

()Z() = (aé\b 3’) a-b=0 (non isotropic), w € {a,b}*, (3)
(}Z/> = (c/(;d 3)) c-c=0, d-c=0, we{c,d}?'. (4")

In both cases the pairs of Killing vectors are orthogonal and the corresponding subal-
gebra is non-degenerate:

XX = (- a)? b + (- b |all,

X-Z=0, (3")
Z-Z=|w|#0,
Y .Y =(z-¢)?,
¥+ =i, (4")
Z-7=|w| #0.

Hence, they correspond to orthogonal separable coordinates, two of the first class and
one non-isotropic of the second class. In case (5) we have:

Y- Y=(z-¢)’+2z-cv-d-2z-dv-c+v-v,
Y -Z=v-e, (5"
Z-7Z =0,

and we see that, when v - ¢ # 0, the subalgebra D given by (Y,Z) cannot have an
orthogonal basis and it is non-degenerate. Hence, the corresponding separable coor-
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dinates, two of the first class and one non-isotropic of the second class, do not have
an orthogonal equivalent. When v - ¢ = 0, the vector fields (Y, Z) are orthogonal and
the subalgebra is degenerate. The case (6), made of orthogenal translations, gives rise
to affine orthogonal coordinates. In case (7) the distribution D is degenerate. Let us
consider all the possible one-dimensional normal subalgebras D; ¢ K'(M3). They are
generated by the following three kinds of Killing vector fields:

X = (anb,0), llall = £llbll =1, a-b=0,
Y =(cnd,0), llell =0,]ld| =1, c-d=0,
Z = (0,w).

They are, respectively: a Euclidean (+) or hyperbolic (—) rotation, a parabolic rotation
and a translation. The only case which can give rise to a degenerate subalgebra is
the translation with a w isotropic. In fact, the examples of non-orthogonal separable
coordinates considered in [8] are of this kind.

Example 2. Let us consider the pseudo-Euclidean affine space Ny of signature (- —
++), and the submanifold

Ly ={zeNy||=|| = -1}.

It is a Lorentzian manifold with constant negative curvature. We show that it has a
separable coordinate system, without isotropic second class coordinates, which does
not admit an orthogonal equivalent. Let us consider a canonical basis (a,b, ¢, d) of Ny,
such that

llall = fi6ll =1, lell = lldll = - 1.

The vectors v = a + ¢ and v’ = b+ d are isotropic and orthogonal: ||v|| = ||| =
0, v - v’ = 0. Let us consider the skew-symmetric tensors

K =vAv, L=aAc+dAb.
They have the following properties:
K? =0, K-L=L-K=-vQv-vQv, L? = g.
Let us consider the two skew-symmetric tensors
A=aK+L, B=BK+1L, o # B.
They are independent and commute:
A-B=oK-L+BL-K+L*=g+(a+pB)K- L.

They generate two commuting Killing vectors (X,Y) on Ny. Since they are rotations,
they are tangent to L3, so they generate a 2-dimensional abelian subalgebra of X1(Ly).
A straightforward calculation shows that X AY AdX = 0, and by symmetry X AY AdY =
0. This proves that the subalgebra is normal (as it can be proved, this is in fact a
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general property of any bi-dimensional subalgebra of rotations in a four-dimensional
affine space). Hence, this subalgebra generates a separable coordinate system. We note
that the equation

(aK + L)+ (YK +6L) =0
implies
dg—(ab+7)(vev +v @v)=0,

and it can be satisfied only if ¥ = § = 0. This shows (see Proposition 1, Section 3)
that any two linear combinations of (X,Y’) cannot be orthogonal, and also that these
vector fields span a non-degenerate distribution. Hence, the corresponding separable
coordinate system is without isotropic second class coordinates and does not have an
orthogonal equivalent.
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