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Sommario. In questo lavoro viene data un’interpretazione geometrica
degli 1-cocicli della rappresentazione coaggiunta di un gruppo di Lie e
della loro relazione con i 2-cocicli a valori reali sulla corrispondente
algebra di Lie. Gli 1-cocicli sono interpretati come classi di 1-forme
sul gruppo di Lie G soddisfacenti ad una opportuna equazione differen-
ziale. Le immagini di queste 1-forme costituiscono un fogliettamento
del fibrato cotangente T*G del gruppo. Questo fogliettamento puo
anche essere costruito per mezzo di una forma bilineare invariante sul
gruppo, antisimmetrica nel caso di 1-cocicli simplettici. La 2-forma e
usata per modificare la struttura simplettica canonica di T*G e anche
per modificare il rilevamento canonico dei campi vettoriali su G. Non
viene usata la trivializzazione naturale di T*G. Vengono invece usate
entrambe le algebre di Lie dei campi generatori destri e sinistri e i
corrispondenti spazi duali delle 1-forme invarianti a sinistra e a destra.
Questo lavoro € una continuazione dell’analisi del fibrato cotangente
di un gruppo di Lie iniziata in [3] ed ¢é una versione riveduta del lavoro
[4). L’interpretazione geometrica degli I-cocicli e dei 2-cocicli qui
data ¢ stata suggerita dall’analisi delle azioni hamiltoniane in termini
di sottovarieta coisotrope [1][2].

0. - Introduction

In this paper we give a geometrical interpretation of the 1-cocycles
of the coadjoint representation of a Lie group and their relation with
the 2-cocycles with real values on the corresponding Lie algebra. The
l-cocycles are interpreted as classes of 1-forms on the Lie group G
satisfying a suitable differential equation. The images of 1-forms of a
class form a foliation of the cotangent bundle 7* G of the group. This
foliation can be also constructed by means of an invariant bilinear
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form on the group, or by an invariant closed 2-form in the case of a
symplectic cocycle. The 2-form is used to modify the canonical sym-
plectic structure of T*G and also to modify the canonical lift of vector
fields of G to T*G. We do not use the natural trivialization of T#G.
Instead, we use both Lie algebras of left and right infinitesimal genera-
tors and the corresponding dual spaces of right and left-invariant 1-forms.
This paper is a continuation of the analysis of the cotangent bundle of a
Lie group initiated in [3] and it is a revised version of [4]. The geometri-
cal interpretation of 1-cocycles and 2-cocycles given here was suggested
by the analysis of Hamiltonian actions in terms of coisotropic sub-
manifolds [1][2].

1. - Notation

Let G be a differential manifold. We consider a vector field on G as
a section X : G = TG of the tangent bundle 7 : TG - G and a 1-form
on G as a section of the cotangent bundle 7 : 7*G — G. The spaces of
smooth vector fields and k-forms on G are denoted by 4 (G) and @, (G)
respectively. Symbols [X, Y], dy and iy denote the Lie brackets of
vector fields X and Y, the Lie derivative and the interior product of
a form with respect to a vector field X.

We denote by 6, the Liouville 1-form on 7*G. The 2-form df
is the canonical symplectic form on T*G.

The canonical lift of a diffeomorphism  : G = G is the diffeomor-
phism  : T*G = T*G characterized by the following properties:

(1.1) Vg =0 » TG U=y -7g .

The canonical lift is defined by the equation

(1.2) W, Y (N=(TY"* (v), b (hET*G,vET, , G)
where T is the tangent functor, or by the equation

(13)  y-yru=p ¢ WED(G),

where y*: @, (G) > @, (G) is the pull-back by .
The canonical lift ofa vector field X on G is the vector field X on
T*G characterized by the following properties:

(1.4) dy 0,=0 , Tmng-X=X-mg .
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The canonical lift is defined by the equation
(1.5) igydl, =—dE, ,

where

(1.6) Ey: T*G=>R:h=>(X .

A vector field Z on T*G is said to be m;-projectable to a vector
field X on G if Tw; - Z= X - m;. This condition is equivalent to

(1.7) iz 06 =Ex .

The vector field X is T -projectable to X.
We consider the natural left actions of G on itself:

(1.8) NGXG>G:(gg) >N (g)=gg ,

P:GXG~>G:(gg)>p, (g)=gg".
We denote by I; and r; the Lie algebras of the infinitesimal genera-
tors of the actions A and p respectively. The linear dual spaces l;
and rg are the spaces of right-invariant and left-invariant 1-forms
on G respectively:
(1.9) vElé Spfv=v, g€EGEdyr=0, VYeEr;,

*
UEr; & ?\;‘p=u, EEGCEdyn=0, VXEI;.

Since the two actions commute, [X,Y]=0 and dydy—dydy =
=dix y)=0 forall X€l;, Y €r;. The lifted actions

(1.10)  X:GXT*G=>T*G: (g h)~> A, (h),

p:G XT*G—=>T*G:(g h)~>p, (h),
are generated by the canonical lifts X and Y of the vector fields
X€l; and Y Er; respectively. The images of the left-invariant

(resp. right-invariant) 1-forms are the orbits of A (resp. of p).
We have two representations of G in the vector space ¢, (G):
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(LID - MG X 8, () >, (6): @) >N v,
RS NGRS NOHFITET S

When restricted to l; and to ré these actions provide the left
and the right coadjoint representations of G respectively.

2. The 1-cocycle differential equation

We consider local 1-forms «:U—->T*G, UC G, satisfying the
system of differential equations

These equations are linear in y and symmetric with respect to X and
Y. Sums of left and right-invariant 1-forms are called trivial solutions
of (2.1). A solution vy in a neighbourhood of the identity e of the
group G such that «(e)=0 is called a normal solution. Each trivial
normal solution is of the form y=u—» with ,uEr:; ,vEl; and
u(e)=v(e). The space of solutions of (2.1) is invariant under addition
of left and right-invariant 1-forms and the pull-back actions A* and
p*.

For a simpler discussion, in the present section we assume that all
local solutions can be extended to global 1-forms on G. The solutions’
form a linear subspace S'(G) of &,(G). We denote by T!(G) the
subspace of trivial solutions, i.e. 7! (G)=I; +rf; . The quotient
space H'(G)=S'(G)/T* (G) is the space of the equivalence classes
of the following equivalence relation in S? (G):

(2.2) Y~Y' = Y=y +utr,

for some ,uEr;; and 1)612.. We denote by [y] the class of a
solution 7.

PROPOSITION 2.1 - A l-form v on G is a solution of (2.1) if and
only 1f for each g€ G the 1-form y— 7\ v is right-invariant (or
= p v is left-invariant).

Proof. - Equations (2.1) imply that dy+y is a left-invariant 1-form for
each Y €r;. Thus A *dyy=dyy for each g€G. Since Y is
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left-invariant, we have A, *dyy=dyA*y. It follows that dy (y—
—A*y)=0, for each Y €rg, thus y-— ?\g *vy is right-invariant.
Reversing this reasoning we show that v is a solution if v — 7\g*'y is
invariant for each g€ G. (Q.E.D.)

PROPOSITION 2.2 - Let vy be a I-form on G. The mapping ¢:G =
- &, (G) defined by

(2.3) o(@)=v—A-17
satisfies
(2.4) algg)=N;-1 0(g) +0(g) .

forall g and g’ in G .

Proof. - 0(gg')=‘y—(?\*a)_17

= Ap-1 (7\ -17)
=7 A1 (Y= olg))

N v+ N 0(E)

g

=0(g) + ;-1 0(2) (QED)

REMARK 2.1 - The mapping ¢ is a 1-coboundary in the representa-
tion A* of G on ®,(G) (definition (2.3)). Hence, it is a 1-cocycle
(formula (2.4)). Proposition 2.1 shows that if vy isa solution of (2.1),
then a(g)Elc*; and 0:G—>l; is a 1-cocycle in the coadjoint
representation. If + is a trivial solutlon of (2.1),then o isal coboun-
dary. Indeed, if y=u+yp, uErG s VEIG , then a(g)=vy— ?\ 1 Y=
=pu+rv—A\ _1(,u+v)—v—7\g_1v

Let Z!(G, lG) and B! (G, lG) be the spaces of the 1-cocycles
and 1 coboundanes in the left coadjoint representation, and let
B Gl =245, Ic) /B! (G, lp). From the Remark 2.1 it follows
that the linear mapping

(2.5) SHG)=>Z (G 1y) iy >0
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defined by (2.3) induces linear mappings
(2.6) SY(G)frg = ZM(G, 1) = [v),~ o],
H'(G)~>H'(G,1;): [v]~[o],

where [v]; denotes the class of asolution < inthe equivalence relation
on S'(G)

’ ' *
(2.7) ¥ Ely=v Erg

and [0] is the class of the cocycle o in H'(G,1y ). The class [v],
is the inverse image of ¢ in the mapping (2.5). Proposition 2.3 below
shows that the mapping (2.5) is surjective and that mappings (2.6) are
isomorphisms. For these reasons we can call (2.1) the I-cocycle diffe-
rential equation.

For the mapping ¢:G— ®,(G) defined in (2.3) we have (see
formula (1.3)):

28) 0@ (@ =7@) A (v(e)).

PROPOSITION 2.3 - The equation

(2.9) Y(@)=0(g)(g), g€EGC,

defines an isomorphism between the*space @, (G) of 1-forms ¥ and
the space of l-cochaines 6:G —1I; . The 1-form vy is a normal
(resp. a trivial normal) solutions of (2.1) if and only if 6 isa l-cocy-
cle (resp. a 1-coboundary).

Proof. - If v € @, (G) is given, then for each g€ G there exists a unique
l-form 4 (g) El(; whose value at g is equal to <(g), because the
images of right- 1nvarlant 1-forms form a foliation of T*G. Conversely,
if a mapping 6:G —>IG is given, then (2.9) defines a unique section
v:G>T*G of m;, ie. a l-form on G. The correspondence so
defined is linear and bijective, hence, it is an isomorphism. Let v be
a normal (resp. trivial norma]) solution of (2.1). Because of Prop. 2.2
the mapping o : G—>IG defined by a(g)=~v— )\ | is a 1-cocycle
(resp. a l-coboundary). Since y(e)=0, this mappmg coincides with
the mapping 6 defined in (2.9) (see (2.8)). Conversely, let 8 be
a l-cocycle and vy be the 1-form defined by (2.9). Since 6 isa cocy-
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cle (see (2.4), 68(e)=0 thus vy(e)=0. By the substitution g—=>g~?! g’
in the equation (2.4) applied to € we obtain the identity

(210) N 10 'g)=0)-0().
The calculation
* ' ' ' 3 N '
(Y21 M ENV=0)E) A (v(&™' g

=0(e) (20 g (g g)

=0(2) ()~ (-1 0(e g (&)

=0(g) ()~ (0(g)—6(2) (")

=0(2) (),
shows that 9(g)='y—?\:_1 v, hence, 'y~7\:-1 « is a right-invariant
I-form for each g€ G. From Proposition 2.1 it follows that v is a
solution of equation (2.1). If € is a coboundary, then 6 (g)=v—
—?\;_111, where vEI&k . It follows that 7—v=7\;71(7—v), ie.
that y—v € r; . Hence, « is a trivial solution. (Q.E.D.)

Results of this section remain valid with the interchange of the

action A, the algebra /; and left invariance with the action p, the

algebra r; and right-invariance. The same holds for the following
sections.

3. - The lift of a vector field by means of a 2-form

Let G be a differential manifold and let B be a bilinear form (i.e. a
covariant tensor field of rank 2) on . Let us consider on T*G the
bilinear form
PROPOSITION 3.1 - The bilinear form w is non-degenerate.
Proof. - Let pET*G and vE T,T*G. Assume that, for each

uET,T*G, w B, w=0, ie. wAv, dig)—Trg ) ®Trg (v),B)=
=0. We have in particular @ A, df;) =0 for each vertical vector
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u (T'mz (1) =0). Since the fibres of T*G are Lagrangian submanifolds
and the vertical vectors are tangent to the fibres, it follows that v is
vertical. Hence, u Av, d0;>=0 for each vector u. It follows that
v=0 since df. isnon-degenerate. _  (QED)

Let X be a vector field on G. Two vector fields X and X on
T*G are defined by equations

(3.2)  ipdd,=—m,*i B,

(3.3) igw=—dE, .

REMARK 3.1. - If B is a closed 2-form (i.e. skew-symmetric and such
that dB = 0), then the 2-form w is a symplectic form on T*G, the
vector field X is the Hamiltonian vector field generated by the function

Ey with respect to w. It follows that
3.4) dy w=0.

PROPOSITION 3.2 - (i) The vector field X is vertical, i.e. Tng -X=0.
(i) X=X+ X, where X is the canonical lift of X. (iii) The vector
field X is mg-projectable to X, ie. Tmg; - X=X ..

Proof. - (i) If vE€T, T*G and Tng (v)=0, then (y, igdfs)=
—(Tmg (v), iyB>=0. Since v is tangent to a fibre of T and the
fibres are Lagrangian submanifolds, it follows that also X (p) isvertical.
(i) Since X is vertical, iym; *B=0. Hence, i3, 3 (df; + 7 *B) =
=ixdlg tigmg*B+igdl; =—dEy +m;*iy B + igdbs =—dEy.

(iii) is a direct consequence of (i) and (ii). (Q.E.D)

PROPOSITION 3.3 - For each pair (X,, X,) of vector fields on G the
following identity holds:

(3.5) iz, %% =—dE[X1,X2] + WG*(dx2 by, Bdy iy B).

Proof. - The definition (3.3) can be written in the form

(3.3" igdB, =—dE, —w;"i, B

It follows that dg 8, 5= dE, —m * i, B, ie. that

3.6)  dg6

=— &g
. T *i B.
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For two vector fields X; and X, we have the identities
3.7 i~ i: dd,=—i; dE, =—F ;
(3.7 . lxzd @ W, %Cx, [X,.%,]
It follows from (3.6) and (3.7) that
d;l EX2 =i;1 a?EX2
——17 dg a’B X lX do .

= (dEX1 g ix, B)

XZ
= — % 7 :
E[Xerl T, txz 1X1 B,
ie.
= — * 5 i
(3.8) d'Xl EX2 E[Xsz] R 1X2 zX1 B.

It follows from (3.6) and (3.8) that
ilfl.?zideG Zd)?l I}—{-'2 deG _'l.)-(—z d‘?l dGG
:—dfl (dEXZ + e *iX2 B)“—I)—(2 dd)_(l BG

=—ddxl Ex2 = " "‘a’x1 1‘}‘,2 B+ i;z “G*dixlB

=—a'E[X1,X21+7rG"‘(a'iX2 inB—
~dy iy B+iy diy B)
==dEy T [y iy Bdy iy B).
(Q.E.D.)

PROPOSITION 3.4. - The vector field [X,, X, ] is m-projectable to
the vector field [X,, X, ].

Proof. - It follows from (3.6) and (3.8) that
ix,.%,1% 9%, x,

=d?1 EX2 + ifz WG*leB

=E

[Xy:%5] 2
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ie.

(39) i[f]')—(-Q]BG =E[X],X2] . (QED)

PROPOSITION 3.5. - Equality [X,,X,]= [X,, X, 1 holds if and only
if
B=

(310) iy By i

xlB_dX

11"(2
Proof. - From (3.5) and from (3.3) applied to the vector field
[X,, X, ] it follows that '

E,. %, -1x,, %, 906 =
=1 *(i B+d, i. B—d. i 4
g (l[Xszl dlexlB Xm ZX: B (Q.E.D.)

REMARK 3.2. - If B is a 2-form, then condition (3.10) is equivalent
to

(A1) diy iy B=iy iy dB=0.

Indeed, for a 2-form B we have fx, x,)B=dx, Ix,B=iy,dy B, so
that the left side of (3.10) is equal to: dy,ix, B—iy,dy B =
=diy, ix, B+iy, diy B=iy, diy B—iy iy dB.

Now we assume that G isa Lie group.

PROPOSITION 2.6 - Let X€ /.. The vector field__f defined by
(3.3) is characterized by the following properties: (i) X is T -projec-
table to X and (ii)

(3.12) iyig w=0, foreach YEr;.

Proof. - Let X be defined by (3.3). Since i} iydl; =(XAY, do,),
it follows from Proposition 3.2 that iy iy w=iyiym.*B +i;igdf, =
=iy (m;"iyB +igzdf,). Thus (3.12) follows form (3.2). Conversely,
if )_( is wg-projectable to X and we use the decomposition
X=X+X where Xis a vertical vector field, then the calculation
above shows that (3.12) implies iy§y =0, where ¢, =w.*i, B+
tigdfs. Since the 1-form §, is vertical (ie. (, ¢,)=0 when
Tm. (v)=0) and ro 18 transitive, it follows that $x=0. (Q.E.D)



COCYCLES OF THE COADJOINT REPRESENTATION, ECC. 127

Let us consider the set of vector fields
Iz = X.Xx €l;}
and the corresponding distribution
Lo = ET(T*G); XElg: X(W)=v, h=7,,,O)}.
This distribution is transversal to = .

PROPOSITION 2.7. - The set I_G is a Lie sub-algebra of Z(T*G)
(ie. L, 1is completely integrable) if and only if (3.10) holds for
each X, and X, in [;.

Proof. - The set l_G is clearly a linear sub-space. If (3.10) holds, then

from Proposition 3.5 it follows that 1, is a sub-algebra. If I, isa

sub-algebra, then [Xl,Xz] is a linear combination of elements of

IG However, [Xl,Xz] is wg-projectable to [X,,X,] (Proposition

3.4). Hence, [X;,X,]=[X;,X,]” and (3.10) holds because of

Proposition 3.5. (Q.E.D.)
Now we consider the case of a 2-form B.

PROPOSITION 3.8. - If B is a 2-form, then the integrability condi-
tion (3.10) is equivalent to

(3.13) di,B=d,B—i,dB=0,
foreach YeEr, .

Proof. - We apply the interior product i, to the left side of (3.11)
which is equivalent to (3.10) (see Remark 3.2). Since Y commutes
with X, and X,, we have iydiy iy B—iyiy iy dB=iy iy
(dyB—iydB). Since r; 1is transitive, equations (3.11) and (3.13)
are equivalent. (Q.E.D.)

REMARK 3.3 - The integrability condition (3.13) is satisfied if B is
closed (dB =0) and right-invariant (d, B =0, forall Y €r;). -

PROPOSITION 3.9. - Let B be a closed and right-invariant 2-form.
The canonical lift ¥ of Y Er, is a symplectic vector field with
respect to the symplectic form w, i.e.
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(3.14)  dy w=0,
and

315  [X. ¥]=0,
foreach X€1,.

Proof. - It follows from equations (3.3) and (3.2) applied to Y,
that iyw=—dEy +m;*iyB. Hence, d,w=m;*di,B=d,B-
—iydB=0. Both vector fields X and Y are Hamiltonian vector
fields with respect to the symplectic form w. Hence, the Lie bracket
[X, Y] is the globally Hamiltonian vector field generated by the func-
tion {X A Y, w), which is zero because of Proposition 3.6. (Q.E.D.)

4. - Global solutions of the 1-cocycle equation.

PROPOSITION 4.1. - Let B be a bilinear form on a Lie group G.
(i) The distribution L, corresponding to B is completely integra-
ble if the system of differential equations

(4.1) ixyB+dyy=0, XEI, ,

is locally integrable, i.e. for each gE€G there exists a neighbourhood U
of g and a local section y:U—=>T*G of -‘J'TG satisfying the systems
(4.1). (ii) If the system (4.1) is locally integrable, then the image y(U)
of a local solution is an integral manifold of L. (iii) If the system
(4.1) is locally integrable, then the local solutions satisfy the 1-cocycle
equation if and only if B is right-invariant. '

To prove this proposition we use the following Lemmas.

LEMMA 4.1. - Let G be a manifold. A vector field Z on T*G is
tangent to the image y(G)C T*G ofa l-form v on G if and only
if

4.2) v*d; (05 — 7w *7Y)=0.

Proof. - Let S=+v(G) and £=0,; — n;*y. We have (v =@ 0,)-
—Tm; v), =, p—v(g), with vET (T*G), pET G, u=Tng (v)

It follows that p €S if and only if E(p) 0. Let us consider the
symplectic form df¢=d0, —n,*dy on T*G (Proposition 3.1).
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The calculation vy*d§ = y*dl, — y*m;*dy=dy*0; — (g - V) *dy=
=dvy—dy=0 shows that S is a lagrangian submanifold with respect
to di. Equation (i, £)|S=0 holds for any arbitrary vector field Z on
T*G. This equation is equivalent to y*i, £ =0. It follows that

Y¥dz §=7*(diz & +ipdf)
=dy*i E+y*i, dt
e e
Since S is lagrangian, the vector Z(p) is tangent to S at a point
p €S if and only if WA Z(p), d§=0 for each v E T,S, ie. if and
only if (i,d§)|S=0. This condition is equivalent to ~y*i,d§=0,
i.e. to equation y*d, £=0. (Q.E.D.)

LEMMA 4.2. - Let B be a bilinear form on a manifold G and X
a vector field on G. The vector field X defined by (3.3) is tangent to
the image y(G) of a l-form yon G if and only if iy, B +d,y=0.

Proof. - We apply Lemma 4.1 to the vector field X. We have
X=X+ X (Proposition 3.2, (ii)). From

dz0; =0,

dglg =igdl; +digl; =igdl, =— 7, *iyB,
dyme*y=ms*dyy,

dgmg*y=0,

it follows that y*dy (65 —mg*y)=—v* 7 (ixy B+dy7) =—(iyB +
+dy ). (Q.E.D.)

Proof of Proposition 4.1. - (i) (ii) Let ZG be completely integrable.
Since the generating vector fields X are transverse to the fibres, inte-
gral manifolds of L are images of local sections y: U~ T*G of
which satisfy equations (4.1) (Lemma 4.2). Conversely, if (4.1) is
locally integrable, then i,B=—d,y for each X E€Il,. Hence, for
each X, and X, in I; we have:
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i[Xl.‘leB +dX2 iX] B—dX], inB =
=—d[X1JXz]B—dX2 dX1 7+dX1 dXz 1=0.

It follows from Proposition 3.7 that L_G is completely integrable.
(iii) If (4.1) is locally integrable, then from iy,B=—d, 7y it follows
that dydyy=—dyiyB=—iyd, B, for each Y €&r;. The l-cocycle
equation (2.1) is satisfied if and only if i, d, B =0. Since [ is transi-
tive, this equation is equivalent to d, B =0. (Q.E.D.)

It follows from Proposition 4.1, (i), (iii) and from the integrability
condition (4.13) that: '

PROPOSITION 4.2 - Let B be a 2-form on G. The system (4.1) is
locally integrable and local solutions satisfy the 1-cocycle equation
(2.1) if and only if B is closed and right-invariant.

If the distribution EG associated with the bilinear form B is com-
pletely integrable, then we call global solution of equation (4.1) a
maximal connected integral manifold I' of L. If B siright-invariant
(Proposition 4.1, (iii)), then a global solution I" of (4.1) is also a global
solution of the 1-cocycle equation (2.1), i.e. the union of images of
local sections satisfying (2.1). Since the distribution L. is transverse
to m;, m; restricted to a global solution I' form a covering of G.
It follows that if G is connected and simply connected, then global
solutions are (images of) 1-forms on G. If T' is a global solution, then
the set

T+u={kET*G k=k'+u(ng (K), kK €T},  p€rg ,

is a global solution. All global solutions corresponding to B are obtain-
ed from I' in this way. There is a unique global solution which con-
tains the zero convector 0 € T:‘G at the identity e of G, i.e. a unique
normal global solution (see Section 1).

We have seen how to construct 1-cocycles (i.e. 1-forms <y satisfying
the l-cocycle equation) starting from bilinear forms B on G. The
following proposition shows how to construct bilinear forms starting
from 1-cocycles.

PROPOSITION 4.3. - Let v be a 1-form satisfying the 1-cocycle
equation (2.1). A right-invariant bilinear form B satisfying the system
(4.1) is defined by equation
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4.3) zX 1X1B dxl v, X, and X, in [, ,

Proof. - We apply the Lie derivative dy with Y €, to both sides of
(4.3). We obtain

dyiy,iy, B=—dyiy,dy v
=—iy, Xm dyy
=0.

Since r, is transitive, it follows that ix,ix, B=const. (on the

connected components of (). This means that (4.3) defines a right-
invariant bilinear form. Equation (4.3) can be written in the form
ix, liy, B+dy v)=0. Since [; is transitive, we have iy B+dy v=0
for each XIEIG (Q_ED)

If the bilinear form B defined by (4.3) is skew-symmetric (i.e. if
B is a 2-form), then the l-cocycle corresponding to v is said to be a
symplectic cocycle (Souriau [8]). Symplectic cocycles arise in connec-
tion with symplectic group actions. It is well known that right-invariant
closed 2-forms can be interpreted as 2-cocycles on I, with real values.
Let [B] be the cohomology class of the 2-cocycle B; it is the space of
2-forms B'=B +dA where A€ lG If v is a local solution of (4.1)
corresponding to B, then v+ u, u€ ’G , is a local solution correspon-
ding to B (since dyu=0), and y'=vy—A is a local solution corre-
sponding to B'=B + dA. Equations (4.1) and (4.3) give the relation-
ships between 2-cocycles B€E Z! (G, lg) and 1-cocycles 8 € Z! (G, l;)
through the representative l-forms < of the equivalence class
[Y]; €S (G)/rg (Section 2).

REMARK 4.1 - Let B” be the transpose of a bilinear form B. Since
lc and r; commute, for each XE lc and Y €r;, we have
iy(dyy+ixB)=dyiyv+iyixB=iy(diyy+iyBT). Since I; and
rc are transitive, it follows that the system (4.1) is equivalent to the
system

(4.4) iy BT +diyy=0, YEr, ,
i.e. to the system
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in the case of a skew-symmetric bilinear form (BT =—B). It follows
from Proposition 3.2 (ii) and definitions (3.2) and (3.3) that if v isa
local solution of (4.1) corresponding to B, then the function

Ey =E? —me¥iy Y

is a local Hamiltonian of Y with respect to the symplectic form w
defined by (3.1), i.e. iy w=—dEy. Hence, the vector fields Y are
globally Hamiltonian if equations (4.1) have global solutions which
are 1-forms. .

5. - 2-cocycles and actions on 7*G

If a foliation of T*G made of images of 1-forms is given, then any
action on G can be lifted to an action on T*G in a natural way.
Each infinitesimal generator X of the action on G can be lifted to an
infinitesimal generator X of the lifted action. The vector field X
is uniquely defined by the following conditions: (i) it is tangent to the
leaves of the foliation, (ii) it is mg-projectable to the vector field X.
For example, the actions A and p of a Lie group onto itself are
lifted to the canonical actions A and p by means of the foliations
determined by the left-invariant and right-invariant forms respectively.

PROPOSITION 5.1. - Let B be a 2-cocycle (i.e. a closed and right- .
invariant 2-form) on a Lie group G such that the corresponding
equation has 1-forms as global solutions. Let 8€Z!(G, l;) be the
1-cocycle corresponding to B and defined by 9(g)=7—7\;_1 v (see
(2.3)), where v is a solution of (4.1). The vector fields {X; X €.}
of 1; defined in (3.3) are the infinitesimal generators of the action
N:G X T*G - T*G defined by

G NE)=AK) 0@ g€). g=mcK) .
for each g€ G and k' € T*G.

Proof. - Let EG be the distribution spanned by the vector fields X.
This distribution is completely integrable (Proposition 3.8) and the
maximal connected integral manifolds are images of 1-forms satsfying
(4.1) (Proposition 4.1). Let \ be the action of G on T*G obtained
by lifting the action A on G through this foliation. This means that
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?\ (k') is the covector belonging to TA @) C= T G, with g'=
=7, (k'), and to the integral manifold contammg k',

A (K)=7(gg)

where 7 is the solution of (4.1) such that k' =+(g"). The vector fields
X are the infinitesimal generators of this action, since each X is a lift
of a generator of the action X and it is tangent to the foliation. On the
other hand (see (1.3) and definition (2.3)):

A (k') + 0(2)(gg) =2, (v(g") + 6(2) (g2")
=07+ 0()(gg)
=7v(gg) .

and (5.1) follows. (Q.E.D.)
The following proposition is a consequence of Proposition 3.9.

PROPOSITION 5.2. - The actions A and 6 commute and are sim-
plectic with respect to w=df, + 7, *B.

For the pair of actions (N p) properties analogous to those consi-
dered in [3] for (A, 6) hold, with respect to the modified symplectic
form w on T*G. In particular, the orbits of the composed action
(GXG)XT*G->T*G:(g,,8,, k)~ 7\ - (pg (k)) form a (generalized)
coisotropic foliations of 7*G and the corresponding reduced symplec-
tic manifolds can be identified with the orbits of the affine action on
l; corresponding to the l-cocycle 6 [8]. We also mention that, in
a different approach, actions A and p were already considered in
[5] and [6].

6. - Central extensions and symplectic reductions

Let us consider a central extension of the Lie group G by the group
R, i.e. an exact sequence of homomorphism of Lie groups:

€ n
1 +R=2>F=2G+1.

The homomorphism 7 :F = G is a principal fibre bundle with structu-
ral group R whose action § on F is defined by §(7, N=6,(H=ef.
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Let V' be the corresponding infinitesimal generator (the fundamental
vector field). This vector field belongs to the centers of the Lie algebras
Ip andrgp : [V, Z]=0, foreach ZE€I. Nrp .

PROPOSITION 6.1. - Each element Z€ [, (resp. ZEry) is n-projec-
table to an element X €1; (resp. X€rg):Tn-Z=X .

Proof. - Since Z and V commute, 7§,-Z=Z-6, foreach rER
It follows from n-8,=n that Tn-Z-8,=Tn-T78,-Z=Tn-Z
Hence, equation Tn(Z(f)=XMn(f), fEF defines a vector field
X on G. We can denote by X\ and p the actions on F defined as in
(1.8). Each element Z €[, is right-invariant: Tpf'Z=Z'pf. Since
n is a homomorphism, 7 - Pr=Pypy M- If g=n(f), then:

Tp,-X-n=Tp, - Tn-Z
=Tn-Tpf-Z
=T’n'Z'.Of
=X 9 P,
=X-p,n.

This shows that Tpg X=X Py, i.e. that X is also right-invariant,
thus X €1/.. (Q.E.D.)

A connection of n isa l-form « € &, (F) such that iya=1 and
dya=0. Since i,da=0 and d,da=0, there exists a unique 2-form
B on G such that da=n*B. The closed 2-form B is the curvature of a.
If o is another connection and B’ is the corresponding curvature,
then o' —a=n*4, where 4 €®,(G), and B'—B =dA. Hence, with
a central extension of G by R we associate a distinguished de-Rham
cohomology class [B] of degree 2. It can be easily shown that two
equivalent central extensions give rise to the same cohomology class.
A central extension 1> RSFBG>1 is equivalent to 1 >R

F%G~1 if there exists an isomorphism™ (: F— F' such that the
diagram

e F_n
1-R 21 26¢->R~1
€ >F7

is commutative.
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PROPOSITION 6.1. - If the connection « is right-invariant (o, *a=a
for all fE€F), then the curvature B is also right-invariant (p,*B=28
for all g€ G). If a« and «' are right-invariant, then the 1-form A
such that & —a=n*A4 is also right-invariant.

Proof. - From p*a=a« it follows that n*B=da=p*da=p*n*B =
=n*pg*B, where g=n(f). Hence B =pg*B. The proof of the
invariance of A is analogous. (Q.E.D.)

PROPOSITION 6.3. - Let S be a subspace of /. of codimension 1
not containing V. A right-invariant connection « is defined by equa-
tions i a=1 and ia=0, for each ZES. If § isa subalgebra,
then the connection « is flat: da=0.

Proof. - The evaluation of « on an element of I is a constant func-
tion. Hence, « is an element of IF* . Consequently, « is right-invariant.
Since [V, Z]=0 for each vector field Z in S, the vector fields Z€E€ S
are §-invariant, so that also « is §-invariant and d, «=0. Thus « is
a right-invariant connection. From the general identity

Zy NZy, dod=dy iy, 0—dy iz a=iiz 710,
it follows that

CZAV, do=0, ZE€ES,
and

(Z, /\Zz,doz)=—i[zl_22]a, Zi,Z, ES.

This shows that if S is a sub-algebra, then da=0. (Q.E.D)

We have seen that with each central extension of the group G by R
(or with an equivalence class of such extensions) we can associate a
cohomology class [B] € H? (I;, R) represented by the curvatures of
the right-invariant connections. If this cohomolgy class is not zero, then
a distinguished subspace of dimension 1 of H? (/;.R) 1is formed by
elements of the type m[B], with m €R.

For each m R we introduce the submanifold K,, of T*F
defined by

K, ={hET*F; (V,hy=m} .



136 S. BENENTI E W.M. TULCZYJEW

This submanifold is coisotropic (because it is of codimension 1). Let
us choose a connection «. A surjective submersion K, :K,, = T*G
is defined by

(6.1) W, K (W) =Aw, b,

where h€K,,, vET,G, g=n(f), f=ng(h),and w is the horizontal
lift of v, i.e. the vector defined by equations: (w, =0, Tnp(w)=v.
The fibres of k,, are the orbits of the canonical lift & of the action
8 restricted to K,,. These orbits are characteristics of K, . (i.e.
maximal connected integral manifolds of the characteristic distribu-
tion). Moreover, Ky, (df; + mkiB)=d0.|K,,, where dO|K,, is
the pull-back of the symplectic form d6. to the submanifold K,
This means that «k,, defines a symplectic reduction from (T*F,
dig) to the symplectic manifold (T*G, w,, ) where w, =df; +
+m 1rG B (see [7] for details). i

Since V €1, Nrg, aright or left-invariant I-form ¥ on F issuch
that i,y=const.. Condition i,y=m is equivalent to y(F) C K,,

PROPOSITION 6.4. - Let « be a right-invariant connection. Let v
be a right-invariant or a left-invariant 1-form on F such taht i, y=m.
There is a unique 1-form <« on G such that

(6.2) YT ma=nty,
(6.3) Km (Y(F)=7(G).

If 7 is right-invariant, then < is right-invariant. If v is left-invariant,
then ~ satisfies equation (4.1) for mB :miyB +d,y=0, for each
X in I;.

Proof. - Let v be right-invariant: d,¥=0 for each Z€E€Il.. In parti-
cular d,¥=0. It follows that i, (y—ma)=0 and d, (¥ — ma)=0.
Hence, there exists a 1-form v on G such that ¥y —ma=n%*+v. From the
definition (6.1) of «k, it follows that &, k,, (Y(f)N =, y(f)=
=w, mo(f)+n*y(f)» =, v, since w,a=0. This proves (6.3).
The proof is analogous for 7 left-invariant. If 7 is right-invariant,
then by applying to (6.2) the Lie derivative d, with respect to a vector
field Z&€r, we obtain 0=d,n*y=n*d,y, where X isthe projec-
tion of Z. It follows that + is right-invariant. If % is left-invariant,
then the same operation with Z €[r vyields the equation
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—mdya=n*dyy, where XEI,. Since iya=const. and dya=
=izdoatdi;a=i;n*B=n*iyB, we have —miy,B=d,y for each
XEl.. ‘ (Q.E.D))

We have seen that a right-invariant connection o associated with
the central extension defines a symplectic reduction from (7*F,d6,.)
to (T*G,w, ), for each m €R, where w,, =db; + mng*B and B
is the curvature of «. We can reduce any invariant 1-form 75 on Fto
a I-form vy on G. The reduction of a right-invariant form is a right-inva-
riant 1-form, while the reduction of a left-invariant form 7 is a solu-
tions of equation (4.1), ie. a 1-form representing the 1-cocycle
associated with the 2-cocycle mB, where B is the curvature of « and
m=iy,"y.
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