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0.- Introduction.

In this paper we give a geometrical interpretation of the 1-cocycles
of a Lie group and their relation with the 2-cocycles on the correponding
Lie algebra. 1-cocycles are interpreted as classes of 1-forms on the Lie
group G satisfying a suitable differential equation. The images of 1-forms
of a class give rise to a foliation of the cotangent bundle T#G of the
group. This foliation can be also constructed by means of an invariant
closed 2-form on the group, representing a 2-cocycle. This form is used to
correct the canonical symplectic structure of T#G and also to correct the
canonical lift of vector fields of G to T*G. In this approach the struc-
ture of the cotangent bundle of G plays an essential role. We do not use
the natural trivialization of T¥*G. Instead, we use both Lie algebras of
left and right infinitesimal generators and the corresponding dual spaces
of right and left-invariant 1-forms. This paper is a continuation of the
analysis of the cotangent bundle of a Lie group initiated in [3]. The
geometrical interpretation of 1-cocycles and 2-cocycles given here has been
suggested by results of an analysis concerning the geometrical interpre-

tations of Hamiltonian actions in terms of coisotropic submanifolds [4][2].



1.- Notation.

Let G be a Lie group. We consider a vector field on the manifold G

as a section X:G - TG of the tangent bundle tG=TG-4-G and a 1-form on G as

a section of the cotangent bundle WG:T’G-* G. The spaces of smooth vec-

torfields and k-forms on G are denoted by X(G) and 4>k'(G) respectively.
Symbols [X,Y], dx and ix denote the Lie brackets of vector fields X and Y,
the Lie derivative and the interior product with respect to a vector field

X. We consider the left and the right translations on G:

MG X G — G:(g,g") »-»Ag(s') gg',

r:G xG — G:(g,g'") Pg(g') g'e .

They are smooth left actions of G onto itself. We denote by £G and &G
the Lie algebras of the infinitesimal generators (vector fields) of the
actions A and ¢ respectively. The linear dual spaces !a and ta are
identified with the spaces of right-ivariant and left-invariant 1-forms on

G:

penl & Apuzp, VEEG &> diu=0, VXed,

yge('; @e;y-:v,#’gecﬁdyv:mv’!e’zc.
Since the two actions commute, we have [X,Y] = O for each X ¢ '{G and
Y € Z_. Consequently: dxdY -d,d, = d

G YOX [x,Y
We denote by OG the Liouville 1-form on T#G. The 2-form d BG is

]=0.

the canonical symplectic form on T#*G.
The canconical 1ift of a diffeomorphism % :G —+ G is the unique dif-
feomorphism 4 :T#G — T#G such that

y Moo W = Mg oW .

(1.1) @-€G= 6 "

G



It can be also defined by equation

(1.2) <v, D> = <Ty~(v),k> (k 6 TEG, V € Ty 160,

Y (g)
where T denotes the tangent functor. We use the following formula relating
A with the pull-back w*: & (6) = &, (G):

A -

(1.3) (y* (@) = ¢ (x (W) (g €6, p e (@)

The canonical 1ift of a vector field X on G is the unique vector

field X on T¥G such that

(1.4) a6 =0 , Tw LY

It can be also defined by equation

(1.5) i,d6_, = - dE

X" G X’

where
(4_6) Esz'G —+ R:k <X o wG(k),k>.

The lifted actions
1 :C x T*G — T*G:(g,k) 3g(k),
¢ :G x T* - T*G:(g,k) — 5’58(k),

A A
are generated by the canonical 1ifts X and Y of the vector fields X ¢ !G
an Y e 26 respectively. The images of the left-invariant (resp. right
invariant) 1-forms are the orbits of 3 (resp. of ?).

We have two representations of G on the vector space d%(G):



A6 x &,(0) = &,(6):(g,v) = A,
e*G x &.(6) =P (G)i(g, p) s OB .

When restricted to ‘Ca and to ¢e we have the left and the right coadjoint

representations of G respectively.




2.- The 1-coecycle differential equation.
We consider the differential equation
(2.1) dxdx-y=o i VxedG,Ye‘zG,
where 4.:0 —»T*G is a 1-form on an open set U c G. This equation is linear

in 4 and symmetric with respect to X and Y. Sums of left and right-

invariant 1-forms are trivial solutions of (2.1). We call normal solution

a solution 4 in the neighborhood of the identity e of the group G such
that 4 (e) = 0. A trivial normal solution is of the kind 4 = x - ¥
with xe 'zé, Y e ia, and u(e) = v(e). The space of solutions of (2.1)
is invariant under addition of left and right-invariant 1-forms and the
pull-back actions A* and ?"

By extending local solutions we can obtain global solutions of

(2.1). A global solution is a maximal connected submanifold of T*G

obtained as union of images of 1local solutions. The existence and the
geometrical meaning of global solutions will be discussed in the next
sections. In the present section we assume that all global solutions are
|-forms defined on all of G. They form a subspace S'(G) of &, (G). We
denote by T1(G) the subspace of trivial solutions, i.e. T1(G) = 35 + ta.
The quotient space H’(G) = S1(G)/T1(G) is the space of the equivalence

classes of the following equivalence relation in S1(G):

x,v %" & Y':Y#/U- + Y }*e’CE' YGLE.

We denote by [lx] the class represented by the solution 4 . For each g € G
let us consider the subspaces S;(G) = {ye S1(G); i (g) = 0], T;(G) =
{y & T‘(G); y(g) = 0}c S;(G). In particular, S:(G) is the space of the
normal solutions and T;(G) is the space of the trivial normal solutions.

We have natural isomorphisms

1 1 1 1
$5(0) = 83, (@), T, 6) T (6),



defined by means of the representations )* and ?*, and also natural

isomorphisms
1 1 1 1
S (G)/T (G) 2 8_(G)/T_(G).
g g
In particular:
1 1 1 1
S (G)/T (G) = Se(G)/Te(G).
PROPOSITION 2.1.- A 1-form ke <1>1(G) is a solution of equation
(2.1) if and only if for each g ¢ G the 1-form 4& - AE‘@ is right-
invariant (resp. - A* & is left-invariant).
pics oy
Proof.- Equation (2.1) means that dy'y is a left-invariant 1-form
o : * ] i 1 B
for each Y ¢ ’CG. Thus }lng? - d‘it for each g € G. Since Y is left
3 s * = 2% ¥ = * =
invariant, we have '\gdy*( = dY dga( . It follows that dy(‘( .'-\8 ¥ ) 0,

for each Y €& ’LG, hence that ‘& - ;l;'( is right-invariant. The reasoning

is reversible. (Q.E.D.)

PROPOSITION 2.2.- Let 4 be a solution of equation (2.1). The

mapping
(2.2) ©:G —ofa:g ol i MRS £
g
(resp. 6:G —-v)t&:g it g 9;_1 4 ) satisfies equation
(2.3) B(gg') = 2*_, B(g") + H(g)
g

(resp. O(gg") = f.-1 0(g') + f(g)) for each g,g' € G, i.e. it is a
g

1-cocycle of G with respect to the left coadjoint representation on ta

(resp. right coadjoint representation on 2#). If g is a trivial

solution, then & is a 1-coboundary.



Proof.- Because of Prop. 2.1 the mapping ¢ is well defined.

Moreover, 6 (gg') = k- (A® )_13’ sl leadl (AW _15/)

gg'
g - A%, B8 - A" g = B(g) - A"  9(g'). This Shows frat @ is a

cocycle% If 4 = /JE+V , Wwhere /4.56 26 and Y e ¢%, then 0O(g)

T-A'_1'X = }&+Y-l;_1(ﬂ+\/) = /44.\1_1'-1\/_}_{
Yy = A§_1v . This shows that # is a coboundary. (R E.D.)

REMARK 2.3.- If a mapping §:G —»<P1(G) is defined as in (2.2), then

for each g e G:
(2.4)  0(e)e) = () - A_( ()
(we use identity (1.3)).

PROPOSITION 2.4.- Equation
(2.5) 4 (g) = 6(g)g) , ¥gedq,

defines an isomorphism of the space of 1-forms 4 € @1(6) and the space of
mappings €:G —tia (or 6:G — Jz(!,;). The 1-form 4 is a normal (resp. a
trivial normal) solution of equation (2.1) if and only if ¢ is a 1-cocycle

(resp. a 1-coboundary).

Proof.- If 4e &1(6) is given, then for each g ¢ G there exists a
unique 1-form 6&(g) € {a whose value at g itself is equal to 4(g),
because the images of the right-invaraiant 1-forms span a foliation of T®G.
Thus mapping 6 :G — !a is well defined by (2.5). Conversely, if a mapping
p :G —»c& is given, then (2.5) defines a unique section 4 :G —T#G of o
i.e. a 1-form on G. The correspondence so defined is linear, hence it is
an isomorphism. Let ¥ be a normal (resp. trivial normal) solution of
(2.1). Because of Prop. 2.2 the mapping defined by 06(g) = y - A"‘«&« is

a l1-cocylce (resp. a coboundary). Because of Remark 2.3 this mapping

coincides with that one defined in 2.5 (since ¥ (e) = 0). Conversely, let
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P :G — Ca be a 1-cocylce and 4 :G —T*G be the 1-form defined by (2.5).
We remark first of all that, because of (2.3), ¢(e) = 0; hence 4 (e) = 0.
In the following calculation we use identity (1.3) and also identity
2 .-l 9(g‘1g') = 6(g') - B(g) which comes from (2.3) by substituting g'
wi%h g"g':

6(g")(g") -
b(g")(g") - (@ (g'1g')(g'1g'))
5 (8")(g") - (A% 6 (g7'g"))(g")
B (g")(g") - (P Tg") - B(g))ig")
e (g)(g").

(5 - A% y)e"
g

A
'8
g

! _ am _ . y
This shows that 4 Ag_1y = B6(g) e fG’ hence that 4 A‘-1? is a
right-invariant 1-form for each g € G. From Prop. 2.1 it follows that ¥
is a solution of equation (2.1). If & is a coboundary (for instance in
the coadjoint representation in .Za), then H(g) = v - A® 1Y where
Y €& Z&. It follows that 4 - v = 4;_1(# -v), ?.e. that
A 4 e'éa, which means that %4 is a trivial solution. (Q.E.D.)
CONCLUSION.- The quotient space S;/T;, which is isomorphic to the
quotient space H1(G) = S‘(G)/TT(G), is isomorphic to the first cohomology

group of G with respect to the left or right coadjoint representation.

An equivalent interpretation of the mapping * iG = T¥G representing
a l-cocycle as a Lie group homomorphism is due to Marle (private com-

munication).



1"

3.- The 1lift of a vector field by means of a 2-form.

Let B a 2-form on G. With each vector field X on G we associate a

vector field X on T*G defined by equation

(3.1) ii & - dEx,

where Ex is defined in (1.6), and

(TJ:dGG-ﬁ- Tr’aB,

and a vector field f on T*G defined by equation

- . g
(3.2) 1xd BG = 'Wcle.

PROPOSITION 3.1.- The vector field f is vertical with respect the

projection T, i.e. TTW.eo X = 0.

= * = i i~d 8 =
Proof. If- ™ e TkT G and T‘TG(V) 0, then lled G

(T1TG(V) A X,B> = 0. Since v is tangent to the fibre of Ta at k ¢ T*G and
the fibre is a Lagrangian submanifold, it follows that also X(k) is tangent

to the fibve, hence 'rrrG(Y(k)) = 0. (Q.E.D.)

PROPOSITION 3.2.- For each vector field X on G we have X = X + X

where X is the canonical 1ift of X. The vector field X is nb-projectable

te %2
Y - = ° b
onX, i.e. TWG X X WG

- X i #B = n . o SR [
Proof.- Since X is vertical, i, T#B = 0. Hence, ig x(d BG + T8&B)

= #* z - # ~ & LA . «B.D.
_iid9G+ii1rGB+iid ec = - dEy + 1, TAB + igd BG dE, (Q.E.D.)
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PROPOSITION 3.3.- For each pair (xl,xz) of vector fields on G the

following identity holds:

(3.3) iz 5 =~ dE + T¥*(di, i, B + i, i, dB).
[x1,x2] [x1,x2] G X, X, X, X,

Proof.- We use identities iz ig d G- li dEx b= E[x1’x2].

]

[

(X
I

ig iy @ =

x1 2 171 2

]
1
[N
>
o
o]
+
"
¢
-
>
(=9
@

[=
g
"

o

|

-
|}
[
o
£

= diz¢ iz o - iF ig TT'EdB

2 1
wra, & .
1+ 'n:G(d1X21X1B+ 1x1ix2dB)
(Q.E.D.)

REMARK 3.4.- Identity (3.4) ca also be written as follows:

BeAs 4
G(dlX 1X1B + ixlixde).

(3.4) iz =

[x1,x2] i [X.I,X
In the discussion above we use only the differential manifold struc-
ture of G. In the next discussion we use the Lie group structure of G.

Analogous results hold by exchanging A with ¢ and LG with kG.

REMARK 3.5.- If B is closed (dB = 0) then the 2-form & is a sym-
plectic form on T*G and (3.1) shows that the vector field X is the Hamil-
tonian vector field generated by the function EX with reference to this

symplectic form. In particular from (3.1) it follows that

(3.5) diiﬁ = 0.
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PROPOSITION 3.6.- Let X € €.. The vector field X defined by (3.1)
has the following characteristic properties: it is nc-projectable onto X
and

(3.6) <XA Y,&> ¥YYex

n
o
-

G*

Proof.- If X is defined by (3.1), then because of Props. 3.1 and 3.2

— o~ A A ~ A
we have: <X A Y,@> = <X A Y,1r&B> + XA Y,d BG> = 1A(‘TG xB + igd 2] )
Thus (3.6) follows from (3.2). Conversely, if X is T.-projectable onto X

G
and we use the decomposition X=X +X where X is a vertical vector field,

then the above calculation shows that from (3.6) it follows that i? &x =0

where 3, £ TALB + igd 9 - The 1-form &, is such that <v,%x> = 0 when

T1TG(V) = 0. Since ‘ZG is transitive, it follows that ?x = 0. (Q.E.D.)

REMARK 3.7.- If B is closed and left-invariant (de = 0, for each
X e £G), then the canonical 1lift X of X & CG is a symplectic vector field

with respect to the symplectic form @, i.e.:

Aoz 0,
(3.7) dx 0
This follows from equation (3.1), which can be written iﬁ Wz - dEx +
GixB and the fact that 1XB is closed: dixB & de - ide 2.0

REMARK 3.8.- If B is closed and right-invariant then

(3.8) [X,Y] =0,

£
for each X e G and Y € cG'

tonian vector fields with respect to the symplectic structure <o, Hence

Both vector fields X and Y are indeed Hamil-

the Lie bracket [X,Y] is the globally Hamiltonian vector field generated by

the function <X A Y,&>, which is zero because of Prop. 3.6.
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PROPOSITION 3.9.- The space of vector fields é& = {f; X e lG} is a
Lie sub-algebra of X (T*G) if and only if

(3.9) di_B=dB - i,dB =0, for eachY & z

Y Y b ¢ G’ :

Proof.- Let x1,x2 € 3G and Y € eG' Because of (3.4) and Prop.3.5,

we have:

Aj,.= = w
TIX, X))
= i?i[x X ]aJ + l?'ﬁ (dlxz X B

0+ TTG(lellex B+ 1Y1X ixde)

1
H‘Glx x1(d B -4 dB)

<X, %,) A 1,5 =1
dB)

+ 1

1
XK

If (3.9) holds, then [i&,ié] is 'WG-projectable onto [X1,X2] and (3.6)

holds. Thus [f1,?2] = [X,,X,]. Conversely, if € . is a sub-algebra, then

G

[i1,ié] is a linear combination of elements of € Because of (3.6), we

G’
have 1K21x1(dYB - 1YdB) = 0, for each x1,x2 € -CG and Y e TG' Since lG
is transitive, (3.9) follows. (Q.E.D.)

CONCLUSION.- With each 2-form B on G we associate a distribution E&
on T*G of rank equal to the dimension of G. This distribution is determined
by the vector fields X e ZG defined as in (3.1), where X ¢ EG. The
distribution is completely integrable if and only if (3.9) holds. In this

case the mapping
£, X (T4) X - X

is a Lie algebra homomorphism.
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4.- Global solutions of the cocycle equation.

PROPOSITION 4.1.- The distribution LG

G is completely integrable if and only if the equation

corresponding to a 2-form B on

(4.1) iB+dygy =0 , ¥Xe eG,
where ' § is a l1-formon G, is locally integrable, i.e. for each g ¢ G
there exists a local section 4 :U — T*G of T satisfying (4.1) such that
g e U. The image y(U) of a local solution of (4.1) is an integral mani-
fold of LG' Equation (4.1) is locally integrable and the local solutions
satisfy the l1-cocycle equation (2.1) if and only if B is closed and
right-invariant, i.e. dB = 0 and d!B= 0 for each Y € -tG.

LEMMA 4.2.- Let B a 2-form on G and X a vector field on G. The lift
X of X (definition (3.1)) is tangent to the image #(G) of a 1-form y on G

if and only if i B + dX y = 0.

X
= #(6 - * = - o #* = T

Proof.- From 4¥(6 .- Tgy) = g (Tge 4)*y = 0 it follows

that a vector field X on TG is tangent to the image of the 1-form ¥ Af

and only if

t'di(ec - 77'53’) = 0.

If X = X+ f, where X is any vector field on G, then:

dg 6, = 05

d'xvﬁc =1id9G+di§9G=iidt9G = - T
ag = a5

dinap 0.

#5 .
GixBs

¥

Hence, gﬁdi( BG - Trax) = -%'o‘!Ta(ixB + dx/() z - (ixB + \X/) (Q.E.D.)
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LEMMA 4.3.- Equation (4.1) is equivalent to equation

(4.2) 4 B-digy =0, ¥Ye2xg,

Proof.- Since X and Y commute, lx(ditgf - iYB) = dXiY ¥ - iXiYB =
ig(dyy + i;B). (Q.E.D.)

Proof of Prop. 4.1.- Let EG be completely integrable. Since the

generating vector fields X are transverse to the fibres, integral manifolds
of LG are 1images of 1local sections X:U — T¥#G of ﬂ‘G. They satisfy
equation (4.1) because of Lemma 4.2. Conversely, if (4.1) is 1locally

integrable, then from (4.2) it follows that di,B = 0, ¥ Y ¢ g i.e. the

Y
condition of complete integrability of EG (Prop. 3.9). By applying the Lie

derivative dY to equation (4.1) with Ye (2 since [X,Y] = 0 we find:

(4.3) iXdYB + dde.K = 0.

If dB = 0 and d,B = O for each Y & %2 then di B = 0 and L, is completely

Y G’ Y G
integrable. From (4.3) it follows that d,d 4 = 0. Conversely, if fG is
completely integrable and dxdyqf = 0, from (4.3) we derive ideB =0,
hence: d_B = 0. From integrability condition (3.9) we derive also dB = 0.

b {
(Q.E.D.)

PROPOSITION 4.4.- Let 4 be a 1-form satisfying the 1-cocycle

equation (2.1). Then equation

(4.4) <X, A X

1 2B =1, dyy Y XX

e £ _.;
172 G

2

defines a closed and right-invariant 2-form B satisfying equation (4.1).

Proof.- The right hand side of (4.4) is bi-linear in X1 and Xz. Let

us apply the Lie derivative d!’ with Y & TLG, to both sides of (4.1). We
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obtain: inx1dx§( = ix1dx2dyﬁ' =0, because of (2.1). Hence:
<x1 A x2,B> z=v: =i & 1ix2B = const., and B is right-invariant 2-form on G
satisfying equation i, (iXZB + dxzx ) = 0. It follows that B satisfies
also equation (4.3). B is closed because of the last part of Prop. 4.1.
(Q.E.D.)

REMARKS.

(a) A leaf (maximal connected integral manifold) of the integrable
distribution EG associated with a 2-form B represents a global solution of
equation (4.1). In general a leaf [ form a covering of G with respect to
the projection ﬂb restricted to [". It follows that if G is connected and
simply céﬁected then global solutions are 1-forms on G. The set of global
solutions is invariant under addition of 1left-invariant 1-forms and the

action @ . This means that if [ is a leaf, then the sets
(4.5) [+ g = {k € T*G; k = k' + o T (k'), k' e}
/ G
and ?8(1") are also leaves for each HE 'Za and g € G. It follows that

there is a unique global solution [T which contains the zero covector

0 e T;G at the identity e of the group, i.e. a unique normal solution (see

Section 1).

(b) Closed and right-invariant 2-forms on G are 2-cocycles on CG
with respect to the trivial representation of G on eG' Let us denote by
[B]£ the cohomology class determined by B: it is the space of 2-forms
B' = B + dA where A € Ca. If [ is a global solution of (4.1) where B is

a 2-cocycle, then [ is a global solution of the 1-cocycle equation (2.1).

A global solution corresponding to B' = B + dA is given by [ - A (see

definition (4.5)). The set of all global solutions corresponding to the

class [B]6 is then given by the class [M] of the global solutions of the
* 8

type M- A P where ue x @ and A ¢ ZG' Conversely, if [ is a
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global solution of the 1-cocylce equation (2.1), then we can define a
2-cocycle B through formula (4.4), by any local solution ¥ representing [,

for instance in the neighborhood of the identity e of G.

(c) From the discussion above it follows that if (2.1) has only
global solutions which are 1-forms, then there is an isomorphism between

cohomology classes [Ble and [4 ].

(d) If G is semi-simple, then the 1-cocycle equation (2.1) has only
trivial solutions. Indeed, for each 2-cocycle B we have B = dA with
A e fa (Whitehead Lemma); as a consequence, tﬂ = - A is a global sclution
of (4.1). 1If 4 U — T*G is a local solution of (2.1) and B is the
2-cocycle constructed by means of (4.4), then AFed L ¥+ AJU must be
a left-invariant form u restricted to U. Hence ¥ = ‘Aktu - AlU and ¥ is

trivial.

(e) From equation (4.2) it follows that if ¥ is a local solution

corresponding to B, then the function
= o
Ey = By - T&ly¥

is a local Hamiltonian of Y with respect to the symplectic form . Hence
the vector fields Y are globally Hamiltonian if equations (4.1) or (4.2)

have global solutions which are 1-forms.
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5.- The 1ift of actions by means of a 2-form.

If a foliation of T#G is assigned, whose leaves are images of
sections, then any action of G on itself can be lifted to an action on T#*G
in a natural way. Each infinitesimal generator X of the action on G can be
lifted to an infinitesimal generator X of the lifted action. The vector
field X is uniquely defined by the following conditions: (i) it is tangent
to the leaves of the foliation, (ii) it is 'ﬁb-projectable onto the vector
field X. For example, the left and right translations A and ¢ are canoni-
cally lifted to the actions 3 and § by means of the foliations determined
by the left-invariant and right-invariant forms respectively.

Let us consider the case of the foliation on T#*G generated by a

2-cocycle B.

PROPOSITION 5.1.- Let B a 2-cocycle (closed and right-invariant
2-form on G). Let us assume that all global solutions of equation (4.1)
are 1-forms and let 6:G —*ﬂa be the mapping defined by (2.2) where ¥ is a
solution of (4.1). Then the vector fields {X; X € lG} defined by (3.1)

are the infinitesimal generators of the action X:G x T¥G — T#*G defined by
(5.1 Tk = Ak + 6@)eE) (g = TGk
for each g ¢ G and k' € T®*G.

Proof.- Let X be the lifted action on T*G of the left translation
A by means of the foliation EG spanned by the vector fields X. According

to the remarks above, the vector fields X are in fact infinitesimal genera-

tors of 3 . Because of Prop.4.1 and by definition of 1— we have:
ﬁg(k') = 4(gg'),

where 4 is the solution of equation (4.1) such that k' = y(g'). On the
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other hand (see identity (1.3) and definition (2.2)):

Ak + 68) (8" ﬁsw(g')) + 0 (g)(gs")
(A;"y + 0(g))(gg")

iy (eg"),

and (5.1) follows. (Q.E.D.)

REMARK 5.2.- From Remarks 3.5, 3.7 and 3.8 it follows that the

actions 1 and ﬁ are symplectic on (T*G,<&) and commute.

For the pair of actions (5 ; ?) properties analogous to those consi-
dered in [3] for (A ,?) hold, with respect to the symplectic structure

w=d EG + 'rraB on TH*G. In particular, the orbits of the composed action

(G x G) x T4 — T*G:(g,,8,,k) — A (k) form a (generalized) coiso-

g, fe,
tropic foliations of T®#G and the corresponding reduced symplectic manifolds
can be identified with the orbits of the affine action on fa corresponding
to the 1-cocycle £ [%]. We do not deal with this topic here for the sake
of brevity. We mention that, in a different approach, actions 5 and ?

have been already considered in [4,5].
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6.- Central extensions.

Let us consider a central extension of the Lie group G by the group

R, i.e. an exact sequence of homomorphisms of Lie groups:
e 4
1-+>R—=F—G—1.

The homomorphism vZ’SF — G is a principal fibre bundle with structural group
R whose action on F is defined by R x F—+F:(r,f) +> £(r)f. Let V be
corresponding infinitesimal generator (the fundamental vector field). This
vector field belongs to the center of both Lie algebras EF and '?—F:
[v,2] = 0, for each Z € !F U aF'

Each infinitesimal generator Z ¢ ZF (resp. Z € )LF) is z-projec-
table onto an infinitesimal generator of 'CG (resp. of "LG).

A connection of VA is a 1-form « ¢ d>1(F) such that i« = 1 and

v
dvo( =0s Since ivdo( = 0 and dvdn( = 0, there exists a unique 2-form
B e 372(6) such that do = Y'B' The closed 2-form B is the curvature of
ol
With a subspace 4 of {F complementar to V we associate a
zF-invariant connection o« defined by equations ivc( = 1 and izoc = 0. for
each Z ¢ & , (= F—invariant means right-invariant with reference to the

group F, etc..) The corresponding curvature B is ’EG-invariant. If &' is
another 'zF-invariant connection and B' is the corresponding curvature,
then &' = o« = Y'A, where A is a JzG-invariant 1-form and B'- B = dA.
Hence, with a central extension of G by R we associate a distinguished
cohomology class [B].

The submanifold C of T#*F defined by
C = {h € T#F; <V,h> = 1}

is coisotropic (because it is of codimension 1). A surjective submersion
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2 31C = T*G is defined by
(6.1) <v,>(h)> = <w,h>,

where h € C, Vv e TEG' g= y(f), f= Tl"F(h), and w is the horizontal 1lift
of v, i.e. the vector defined by equations: <w,« > = 0, Tz (w) = v. The
fibres of )¢ coincide with the orbits of the canonical 1lift 'g\ of the action
7 [€]. These orbits are characteristics of C (i.e. maximal connected
integral submanifolds of the characteristic distribution). Moreover,

e ®(d 6 + 'W’EB) is equal to the pull-back d OFIC of the symplectic form

G
dGF to the submanifold C. This means that » defines a symplectic

reduction from (T*F,d EF) to the symplectic manifold (T*G,&) where

= *
w-d9G+ TFGB.

PROPOSITION 6.1.- Let 4 be a “ -invariant or a < -invariant

F
1-form such that 1-v§f = 1. There is a unique 1-form ¥ on G such that

(6.2) ¥ - a = 9%y,
(6.3) X ¥(F) = §(G).

If 57 is ’LF-invariant, then % is a ’ZG-invar'iant 1=-form. If 37 is

fF—invariant, then 4 is a 1-form representing the 1- cocycle associated

with the curvature B, i.e. satisfying equation (4.1).

Proof.- We note that for a ’CF-invariant 1-form % we have
izf = const. for each Z € 'ZF. In particular iV? = const., so that

hypothesis ivf = 1 is formulated correctly. Since 17 id ’BF-invariant we

have dzé? = 0 for each Z € * In particular dvf =0 (ﬁ' is a connection

s
of the principal fiber bundle ). It follows that i (¥ - o) = 0 and

dv(g}' - o) = 0, hence that there exists a 1-form y¥ on G such that

 -d = Z'Q’. The same reasoning holds when % is dF-invariant. From
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the definition (6.1) of »t it follows that <v, > (Y (£))> = <w, ¥ (f)> =
<wy o (f) + 2' y(£)> = <v, y>, since <w,x> = 0. This proves (6.3). If ¥y

is ‘2 -invariant, then by applying to (6.2) the Lie derivative d, with

Z
respect to a vector field Z ¢ tF we obtain 0 = dzl'?’ = zidxf, where X

is the element of ,"G onto which Z projects. It follows that 4% is

ZG-invariant. If {(_ is ZF-invar'iant. then the same operation with

Z e £F yields the equation - dzal = ?'dx‘éf , where X € EG. Since

izo( =1, dzn( = iz

each X € iG. (Q.E.D.)

= i_ n%*B = v #i ind - i 5
do = i, n B=1Y 1xB. Hence, we find 1XB = dxa’ for

CONCLUSION.- A ’EF—invariant connection o associated with the
central extension defines a symplectic reduction from (T'F,dOF) to (T*G,
), where @ is the canonical symplectic form varied by the curvature B of
o . We can reduce any connection 1-form y on F to a 1-form y on G. The

reduction of the space £%* of the % _-invariant 1-forms is just the space

F P
»85 of the 'tG-invariant 1-forms, while the reduction of the space ch of
the £ _-invariant 1-forms is the space of solutions of equation (4.1), i.e.

F
the space of 1-forms representing the 1-cocycles associated with the

2-cocycle B.
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