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S. BENENTI ET WM. TULCZYJEW
Momentum relations for Hamiltonian
group actions

1. Introduction

Time dependent Hamiltonian dynamics finds an elegant interpretation
as a homogeneous system determined by a coisotropic submanifold of the
cotangent bundle of the space-time manifold. Homogeneous formulation of
dynamics is advantageous also in the time independent case since it leads
to a geometric interpretation of the Hamilton-Jacobi method [2] [5]. A
time independent Hamiltonian system provides the simblest example of a
Hamiltonian ‘group action [6]. The group in this case is the group R of
real numbers. In order to obtain a geometric framework for Hamiltonian
actions of more general Lie groups-we generalize the homogeneous formul-
ation of dynamics replacing the time axis by a differential manifold T. We
then study coisotropic submanifolds of T¥(T) x P, where P is a symplectic
manifold replacing the phase manifold of a Hamiltonian system. Choosing a
coisotropic submanifold M < T*(T) x P which satisfies certain conditions we
obtain a generalization of the homogeneous formulation of time dependent
Hamiltonian dynamics. Next we assume an action of a Lie group G in the
manifold T and obtain a generalization of time independent dynamics post-
ulating certain invariance properties of M with respect to the action of G.
At the same time we obtain a Hamiltonian action of G in P represented as a
homogeneous system. The manifold M closely related to the momentum mapping

[8] is called the momentum relation for the Hamiltonian action.
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2. Notation

Differential manifolds are finite dimensional, real, of class C*.
Differentiable means of class C*°. Mappings between manifolds are assumed
differentiable. A transformation means differentiable automorphism. We
denote by:

IQ:T(Q)—+ Q the tangent bundle projection of a manifold Q;

™ :T*¥(Q) =+ Q the cotangent bundle projection of Q;

Tq?Q) the tangent space at a point q € Q;

T;(Q) the cotangent space at a point q € Q;

QQ the Liouville 1-form on T*(Q);

X Q) the space of differentiable vector field on Q;
XH(P,aJ) the space of differentiable Hamiltonian vector

fields on a symplectic manifold (P, w);
@k(Q) the space of k-forms on Q (k = 0,1,2,....);
Ta :T(Q) = T(Q') the tangent mapping of a mapping «:Q —Q';
«¥®:d (Q') & (Q)  the pull back by «;

d: ¢, (Q) — ¢, 1@ the exterior differentialj
idQ:Q-—’Q the identity mapping;
<y the evaluation between vectors (or vector fields) and

covectors (or forms);

iv the interior product by a vector v (or vector field);
[,] Lie brackets of vector fields;
{,} Poisson brackets of functions;

£:T*(Q) —T*(Q) the canonical 1lift of a transformation ¥ of Q;
X:T#(Q) — T(T*(Q)) the canonical lift of a vector field X on Q;
g

the symplectic polar operator acting on subspaces of
symplectic spaces.

3. The submanifold M
Let T be a connected differential manifold, (P,w) a connected sym-

plectic manifold, and P = T*#(T) x P. Let pr:Tx P—»T, pr :T xP—P,
T P

pr1:? -+ T*(T), prezﬁ —-P be the canonical projections and
£ = ‘WT X idP:$«-T x P. Let cuT = d GT be the canonical symplectic form
on T*#(T) and & = pr?(aJT) 4 prz(uJ). Then (5,&3) is a symplectic mani-
fold.

Let M be a submanifold of P. We assume that:
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(A.1) M is the image of a differentiable section T x P—P of the pro-
Jjection € = KT X idP.

Let H:T x P — T*(T) be the mapping defined by H = - Prye M . Then
M= {(h,p) ¢ P; h = - H( T (h),p)}.

Conversely, a function H:T x P —=T#*(T) such that Ty e H = pr, generates a
submanifold M c P satisfying (A.1).

For each t ¢ T and p € P we introduce the mappings

H, :P —rT,:(T):p —-H(t,p);

Hp:T —T#(T):t —H(t,p).

Hp is a section of T, i.e. a 1-form on T. We can interpreted H as a

T!
P-dependent family of 1-forms on T.

The mapping H can be identified with the function

H:T(T) x P —R:(u,p) — H(u,p) = <u,H( tT(u),p)>
which is linear on the fibers of T(T). Hence,

M = {(h,p) e B; <u,h> = - H(u,p), ¥ue T (T), & = Wo(h)}.
From this point of view H can be interpreted as a 1-form on T with values
in the space ¢0(P). We denote by dH the corresponding differential, which
is a 2-form on T with values in ¢O(P). For each u ¢ T(T) and X € X (T)

we introduce the functions

Hu = <u,H> :P —-R:p —H(u,p),
<X,H> :T x P —R:(t,p) — <X(t),H>.

Hx can be interpreted as a O-form on T with values in ¢0(P)- We denote by
_t_l_Hx the corresponding differential.

For each X ¢ X¥(T) we introduce the functions
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Ey:T*(T) = Rth ++<X,h>;
H = pph * oP =
Hx = pr1(Ex) + € (Hx).P R.

We remark that E_, is the Hamiltonian of the canonical 1ift X e X (T*(T)) of

X and that H

X
= T
=E,o H=H (Ex).

X X
The calculation: }J(ﬁx) = p¥epri(Ey) + u* o g*(Hy) = (pry e
/M)'(Ex) + (& - /L)‘(Hx) z - H*EEX) + Hy = 0, shows that

M = {(h,p) e P; ﬁx(h,p) =0, ¥ X e ¥(T)}].

The mapping H: ¥(T) — @0(?):)('—'?!

further description of M.

4, The symplectic polar of T(M)
The symplectic polar T?(M) of T(M) is defined by

T¥(M) = {(v,w) e T(B); (h,p) = (=

Since

T(hsp

we have:

T(n,p)

The choice w'
§
(THp('rt('r)) ;

+ <W',i wd>
W

(M

<(vyw) A (vh,wt), &>

)(M)

) =

0.

= {(v',w') € T(h,p)

Ww'e Tp(P), u' e Tt(T)’ t = 'KT(h)}
= {(v',w') € T(h,é)(ﬁ); v' = TH(u',w'),
w' e Tp(P), u' e Tt(T)’ t = WT(h)]

= {(v',w') e T(h,p)

{(v,W) e T(h,

X

is a linear monomorphism and provides a

= 0,

T*(T
¥(v',w') €T

)(v), Tp(W)) e M,

(n,p) M)+

(B); (vr,w') = Tulu',w'),

(F); v.= THp(u’) + THt(w'),
W' e Tp(P), u' e Tt(T}, t = wT(h)},

p)('15); v A (THp(u') + TH (W'D, wed> +

T

+WAW,w> =0, V w'e TP(P), ute T.(T, t = To(h)}

0 implies <VATHp(u'), w
hence, <v A THt(w'),

It follows that:

T

15

>=0, Vu'e T (T), i.e.

w. > + <WwA W

T

yw? = (THt(w'),ivld

vV €

T
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T00 = ((vyw) e T(B)s b= = B(E,D), b= Trpn (V) & = To(n),
P = Tpn), ve (TH (T (N, fw + (TH)*, w) o}.

Here we denote by (Tth)* the linear dual mapping of Tth = THtITp(P).
Remarks. (i) From the fact that the fibers of T*(T) are Lagrangian
it follows that the restriction of T‘WT to the subspace (TH (T (T))EJ
Th(T'(T)) is an isomorphism. (ii) If (v,w) e 1‘§ )(M) then w is uniquely
determined by v and by p. From (i) and (ii) it follows that: (iii) T§(M)
is the image of a section ¢ :T(T) x P — T(P) of the projection T Ty X Fpe
This section is clearly differentiable. (iv) The restriction of the pro-
jection Te to the space T(§h,p)
t, (T x P), where t = KT(h). (v) The restriction of Tpr

g - N
Te (T(h’p)(M)) is an isomorphism onto Tt(T).

(M) 1is a linear monomorphism into

T to the space

5. The coisotropy of M

In order to characaterize the coisotropy of M (T§(M) < T(M)), we use
the natural Poisson structures on T*(T), P, T x P and P induced by ch, w
and @. We use the same symbol {,} for all Poisson brackets.

Proposition 5.1. M is a coisotropic submanifold of (P,w) if and

only if one of the folloﬁing equations holds:

(a) {Hu,Hv} + uA Vv,dH> = 0, ¥ u,ve T(T): tT(u) g ‘Tv)s.

T
(b) {HX,HY} = f[x,Y] - <X,dH.> + <Y, dH >y ¥ X,Y e X(T).

Y
(e) {Hx,HY} = H[x'”, ¥ XX e £ (1)

Proof. Projections pr,:P — T*(T) and £ = T x idP:$4T x P are

1 T
Poisson mappings. If ZA is the Hamiltonian vector field on (T*(T), u&)

generated by the function A:T*(T) —+R, then the vector field ZA X 0Oon P is

the Hamiltonian vector field generated by pr?(A) = Ao pr,. It follows
that { é*(B),pr?(A)} = (ZA x 0, ¢*¥(dB)> for each function B:T x P —+R. 1In
particular we have: { &’(Hx),pr?(EY)} = & x 0, e*(de)> =
£ ¥<Y O,de> = 5'(Y,§Hx>, where X,Y € ¥(T). Hence,

85y - » # * *

[HX’HY} = {pr1(Ex) + € (HX), prI(EY) + £ (HY)}

— {PP?(EX),Prg(EY)J + L e*(Hy), e*(Hy)) +
+ { e'(Hx),pP?(EY)} - { a'(HY),PP?(Ex)}
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pri(Ey,Ep} + e*(Hy,H) + £%(<Y,dH > = <X,QH )

* #* #* -
Pri(Ery,yy) + ®(Hiy yy) + e ({Hy,H)
+ <L,dH> - <X dH ),

B,y

S = . ) T .
(d)  {Hy,Hy} = Hrx,yy + e*({Hg,Hy) - H + <Y,dH > - <X,dH>)

[X,Y¥]

It follows that

(e) ,u'{Hx,HY} = {Hx,HY} - H + <Y,dH.> - <X,QHY>.

[x,Y]
Since M is characterized by the equations ﬂ!(Hx) =0, ¥X ¢ ¥(T), M is
coisotropic if and only if /”'{HX’HY} =0, ¥ X,Y ¢ ¥(T). Because of (e)
and (d), this condition is equivalent to (b), thus also equivalent to (c).
For a 1-form on T with values in any vector space the identity
(f) <X A Y,dH> = <X,d<Y,H>> - <Y,d<X,H>» - <[X,Y],H>.
holds. Then (b) is equivalent to

{Hy,Hy} + <X A Y,dH> = 0, ¥ X,Y ¢ X(T),

thus it is also equivalent to (a). (Q.E.D.)

6. A generalization of the homogeneous formulation of dynamics

Let us assume that
(A.2) M is a coisotropic submanifold of (P, w).
The triple (P,w ;M) forms a homogeneous system [2] [5]. It is well

known that the characteristic distribution T§(M) of M, which we simply
denote by D', is completely integrable [1] [8] [12]. We call characteris-

tic a maximal connected integral manifold of D'. We introduce the relation
D = {h,p,h',p') € P x P; (h,p) and (h',p') belong to the same characte-
ristic of M}.
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From the theory of homogeneous systems [2] [5] we know that:

(i) D' is an infinitesimal symplectic relation on (P, &), i.e. a Lagrang-

ian submanifold of the symplectic manifold (T(?),GTG), where dT is the

derivation operator defined in [9].

(ii) D is a symplectic relation on (P,&), i.e. a Lagrangian submanifold

(may be immersed) of the symplectic manifold (P, &) x (F,-&).

Let «:T(T*(T)) — T*(T(T)) be the diffeomorphism characterized by the
conditions [10] [2] [3]: “’T(T) e = T T dT 5T = o¥#( BT(T))’ Let
p:T(P) — T#(P) be the vector bundle isomorphism define by the symplectic
form w: P (w) = iww . In the following discussion we identify the mani-
fold T(P) = T(T*(T) x P) with the manifold T(T*(T)) x T(P) and the manifold
T*(T(T) X P) with the manifold T*(T(T)) x T#(P). The diffeomorphism
¢:T*(T(T)) X T#*(P) — T*#(T(T) x P) is defined by the equation <(a,w),
(b,e)> = <a,b> + <w,c>, where a ¢ Tu(T(T)), W e Tp(P), b e T;(T(T)),

c e T;(P).

Proposition 6.1. The infinitesimal symplectic relation D' is gene-
rated by the function H:T(T) x P—+ R with respect to the symplectomorphism
& x p3T(F) = T*(T(T) x P), i.e.

D' = (% x p)7 e (= dH)(T(T) X P)
~ -1
= {(vyw) e T(P); v = - « (de(u)), iww = - dHu(D),
u=T Tr,l.(v), p = rp(w)}-
Proof. We know (Section 4) that D' is the image of a section’ of
the projection T TrT X ‘cp. We mus-t prove that
(¢ X p)e o = - dH.

Let p':T(T'(T))) — T#(T*(T)) and /E:T('ﬁ) —T#(P) be the vector bundle
isomorphisms defined by the symplectic forms d @
We know that [2] [11]

T#(T) and « respectively.

P Cru(r)) - «*(Bp(q)) = av,

where W:T(T*(T)) — R:v —<v, BT>, and that the pull back to D' of the
- g = S O, i * 5 = = i A =
1-form & )i ( P) is zero. Then o*(f ) = 0. Since P B x/; , We

18



can write:
§= 1r'1' xﬁ"(eT*(T)) + TL'; ° /5*( GP),

where m1:T(§)—+ T(T*(T)) and ﬂE:T(ﬁ) —+ T(P) are the canonical projec-
tions. Let us introduce the 1-form

X= n* o u*(6

1 (T Yo

)) + T o P'( GP) = (o« x P)'( e

2 T(T) x P

~

We have A -8 =dW, where W = n:(W):T(?)—* R: (v,w) —W(v). From
c*#(8) = 0 it follows that o*( %) = d(o*(W)). For the left hand side of
this equality we have, by definition of Liouville form, o¥*( 2 o i
L 2PN #* = © * - °
g (“xﬁ)(gT(T)xP) = (¢ x p) 0’)(9T(T)xp)-(°<>i/3) G
For the right hand side we observe that if (v,w) = o(u,p), then W(v,w) =
W(v) = <v, BT) = <uih>, where h = tT.(T)(v) = - H('tT(u),P) = - H(u,p).
This shows that o¥*(W) = - H. (Q.E.D.)

7. The reduction of D' by vectors tangent to T

From Remarks (iv) and (v) at the end of Section 4 it follows that:
(i) The set Te (D') € T(T x P) is a completely integrable distribution on
T x P whose leaves (maximal connected integral manifolds) are the images by
¢ of the characteristics of M. (ii) For each (u,p) € T(T) x P there is a
unique vector w e Tp(P) such that (u,w) € T£ (D'); this vector is defined
by (Proposition 6.1): ijw = - dHu(p). As a consequence we have:

Proposition 7.1. For each u € T(T) the set D! = {we T(P); (u,w)
e Te (D')} is the image of a Hamiltonian vector field Ku:P —+ T(P) gene-
rated by the function Hu:P.—’R:p-—»H(u,p), i.e.t ig w = - dH .

This result has the following symplectic interBretation. D& is the
image of D' by the symplectic reduction [3] determined by the coisotropic
submanifold C, = {(v,w)e T(B); T (v) = u} = (Tmy x 7,07 ({u) x P).
Since D' and Cu are transverse [12], the reduced set D& is a Lagrangian
submanifold of (P,w) generated by the restriction of the generating func-
tion H of D' to the submanifold {u} x P [3], i.e. by the function Hu.

Let us introduce the differentiable mapping

K:T(T) X P —»T(P):(u,p)'—-Ku(p)-
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Since K =rKk + sk , for each r,s e R and for each u,v ¢ T(T) such
ru +sv u v

that t,r(u) = t,r(v), the mapping K can be interpreted as a 1-formon T
with values on the space XH(P,w) of the Hamiltonian vector fields on

(P, w). We denote by dK the corresponding differential and we define
Ku = <u,K> P > T(P):p HKU(D)-
For each vector field X € X(T) we introduce the mapping

K, = <X,K> :T x P =+=T(P):(t,p)—K

X (p),

X(t)

which is a T-dependent Hamiltonian vector field on P. We denote by ng the
differential of the mapping Kx interpreted as a O-form on T with values on

X.H(P, w). We also define the vector fields

Kee X(TxP), K e ¥, & ex®

K (t,p) = (X(2),K,(t,p)), Ry(h,p) = (R(h),Ky(t,p)), : S afi

Proposition 7.2. The following identities hold:

(a) [Ku,l(v] + <u A v,dk> = 0, "V‘u,v € T(T): zT(u) = *c,r(v);
(b) [EX’EY] E[x’” - f:,gxf + CY,dK >, Y X,Y e X(T);
(e) [KX'KY] = K[x’”, X,Y € X¥(T).

X

Proof. Since K is a 1-form on T with values in EH(P,w), peKisa
1-form with values in & (P) and d(p-K) = A- dK. If SH is the 1-form
on T with values on @.I(P) defined by <u, dH> = dHu, then g-K = - &H
because of Proposition 7.1, and <u A v,d $H> = d<u A v,dH>. Hence, because
of Proposition 5.1, (a), pe [Ku’Kv] = - d{Hu,Hv} = d<u A v,dH> =
<uAv,dSH> = - g o <uA v,dk>, and identity (a) is proved. (a) is equi-

valent to
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(d)  [Ky Kyl + <X A Y,dK> = 0, ¥ X,¥ e X(T).

Then equivalence between (a) and (b) follows from the identity (f) of
Section 5 applied to K. (c) follows from the fact that EX is the Hamil-
tonian vector field generated by Hx
(Q.E.D.)

Proposition 7.3. The following properties hold:

and from Proposition 5.1, (ec).

(i) Kk is a characteristic vector field, i.e. EX(M)c:D'.

, i.e. K, o0& =Te»Ex.

(ii) Kx is g-projectable on Kx Ky )
i, B et im Pe o Kb

(iii) ﬁx is ¢ -projectable on EX - 2
(iv) The vector fields EX span the distribution Tg (D').
(v) ﬁx is tangent to M & ﬁx = Ex
Proof. (iii) follows directly from the definition of ﬁx. (i) is a
consequence of the fact that the generating function Hx of Kx is constant

(= 0) on M. (iv) follows from (i) and (ii). Let (v,w) e D', u =T ET(v),

&= QHX = O,

t = tT(u), p = tP(W). The calculation

<(v,W) A Ex,cm - <(v,w),dﬁx>

<(v,w),pr#(dEx) + g'(de)>
= <V,dE> + ((u,w),de>

-

v A X, wT) + <w A I(x(t),w> + <u,ng>(p)

(v,W) A Rx, &> + <u,dH >(p)

shows that ﬁx(h,p) differs from ﬁx(h,p) by a vector (z,0) such that T wr(z)
= 0 and proves (ii) and (v). (Q.E.D.)

8. The reduction of D by pairs of points of T
From Remarks (iv) and (v) at the end of Section 4 it follows that the
leaves of the distribution T¢ (D') intersect transversally the fibers of

prT. Hence, each leaf of T¢ (D') is the union of images of local sections

of prT. For a simpler discussion we postulate the following completeness
condition:

(A.3) The leaves of the distribution Tg (D') are images of global sections

of the projection pr_:T x P —T.

T
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Proposition 8.1. For each t,,t, e T the set D, = {(p, »p, )
29%4
P x P; (t,,p,) and (t,,p,) belong to the same leaf of Te¢ (D')} is the
graph of a symplectomorphism ¢, . on (P, w).
2

1
Proof. Dt t; is not empty because of (A.3). It can also be defined
2
by th,t4 = {(pz,p4) e PxP; 3 h,h e T#(T): (hz,pz,h1,p4) e Dn Ctz,ti}
where = (T) x P x T*# (T) x P is a coisotropic submanifold of
tz,t . s

(B,&) x (P,-&). We have T° (c ()= TSI (M) x 0 xT (T‘ (1)) X0 =
2184 ta
T(T' (T)) X 0 x T(T' (T)) x 0 (here 0 denotes the "zero sectlon" of T(P))
2
because the fibers of T#(T) are Lagrangian submanifolds. The reduced

symplectic manifold of (P,®) x (F,-&) by C, . 1is canonically sym-
2974

plectomorphic to (P,w) X (P,-w). Dt t, is the reduced set of D by

ct o From the implication: (v,0) ‘ T(M), T (v) =0 = v = 0 (Sec-

tion u), and from T(D) ¢ T(M) x T(M) it follows t.hat. ré(ct L) NTD) <
2154

T (Ct g )M (T(M) x T(M)) = 0. This shows that the coisotropic sub-
23%1

manifold Ct t and the Lagrangian submanifold D are transverse. It fol-
29 V4

lows that Dt t is a Lagrangian submanifold, i.e. a symplectic relation.
29™
Assumption (A.3) implies that Dt t is the graph of a diffeomorphism,
'2 774
denoted by w . (Q.E.D.)
t11t1

We obtain a differentiable mapping
w:Tx Tx P —’P:(t1,t2,p) > wtz,t4(p)

which can be interpreted as a (T x T)-dependent family of symplectomorph-
isms on (P,« ) and whose infinitesimal counterpart is the mapping K intro-
duced in Section T.

Proposition 8.2. For each t,t ,t,,t, e T we have: ¥ = id

q? % \f’ b, X p?
o - *
t, ptz tz ytu ts 2

Proof. It is obvious that Dt t is the diagonal of P X P. The compo-

’
sition rule D = D =D , follows directly from D e D = D and

ts,t, taaty tsaty

the definition of D . (Q.E.D.)

t,,t,

Let 4:R—+T be a curve on T. The 1lift of 4 through the point

(t,,p,) is defined by X:R—>T x Pir—(«(r), ¢ (po). From the

L xlr),te

definition of Dt ¢ and Dy it follows that if ¥tR—T(T x P) is the
o

tangent curve of % and q(r) (u,w), then w e D&. As a consequence:
Proposition 8.3. Let 4:R—+T be a differentiable curve on T and

4#:R—>T(T) be the corresponding tangent curve. Let K, :R x P—+ T(P) be
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the R-dependent vector field on P defined by K,‘ (ryp) =K ¥ (r )(p) Then
the mapping F:R x R x P -+ P defined by F(r-a yP'yp) = LF«(”’ 'ar(r,)(p) is the
flow of K« [1].

Proposition 8.4. If Yy:Rx T—+T is the flow of a complete vector

field X on T, then the mappings

L_FW:R x TXP—=TxP:(r,t,p) = (¥(r,t), ¥

5 5 w(r,t),t
Q,W:R x P —+P:(r,h,p) —( "{fr(h), P (p)),

(p)),

W(l",t)’t

where "z}’r is the canonical lift of Wp:T—»T:t —Y(r,t), are the flows of
the vectorfields KX and Kx respectively.

Proposition 8.3 provides a direct method of constructing the sym-
plectomorphisms L?t,t,’ through the choice of curves 4 and the integration
of the corresponding vector fields K,g .
9. The momentum relation

We call momentum relation a submanifold M c T#(T) x P satisfying

(A.1), (A.2) and (A.3). The corresponding mapping J:P — 4’1('1') defined by

J(p) = Hp is called the momentum mapping. With M we associate also the

mappings K and ¢ described in Sections 7 and 8 respectively.
Let A:G xT —+T a differentiable left action of a Lie group G on T.
The momentum relation M transfers the action of G from T to T x P and to P.

These actions are respectively defined by:

‘f’A.G X TxP—=TxP:i(g,typ)—( A (t), tf’/\( ), t(p)),
ue)\Gx P —B:(g,h,p)—( 3 (h), ‘-F,\( t),t(p))’
where ) :T—+T is the diffeomorphism defined by A (t) = X(g,t) and RE
is its canonical 1lift. These mappings are actions because of Pro-
position 8.2. Let € c X(T) be the Lie algebra of generators of the
action A. As a direct generalization of Proposition 8.3 we have:
Proposition 9.1. If X ¢ €, then K is a generator of (P,\ and K is
a generator of tPA .
We study the case in which the momentum relation M induces also an

action of G on the manifold P. For a simpler discussion we assume that
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(A.4) The action ) is transitive: ¥ t ,t, e T, I ge G: t = A(g,t,).

We consider the following T-independence property:

(P.1) For each g e G and t,t'e T: yA(g,t),t a LPA(g,t‘),t"

If (P.1) holds, then a symplectic left action of G on (P,w) is defined by:
(a) Y. :G x P—P:(g,p) — qé(p) = t?A(g,t),t(p)

for any choice of t ¢ T.
The action P, 1is now the product of the two actions A and fk .

For each Xe € the generator K, must decompose in the product of X and a

generator of ¢A. Since Kx(t,z) = (X(t),Kx(t,p)), the vector Kx(t,p) does
not depend on t € Tj; Kx is then a vector field on P. It follows that (see
also Proposition 7.2):

Proposition 9.2. If (P.1) holds then: (i) For each X ¢ € the
vector field Kx is a generator of the symplectic action qa on (P,w);
(ii) [Kx4’sz] = K[x”xZ

Proposition 9.3. Property (P.1) is equivalent to: (i) For each
Xe€ , pe Pand t,t'e T: Kx(t,p) = Kx(t',p); i.e. to: (ii) For each

Xeé€ ,Q_Kx=0.

J» for each X,,X, £,

Let us consider the following strong T-independence property:

(P.2) For each Xe¢ £ , pe P and t,t'e T: Hx(t,p) = Hx(t',p); i.e.:
for each Xe € , ng = 0.

Since gﬂx = 0 implies ng = 0, (P.2) 4implies (P.1). The inverse
implication is not true, for instance, in the case of a time independent
Hamiltonian vector field (case T = R), which can be generated by a time
dependent Hamiltonian: one can add to the time independent Hamiltonian any
function of time.

Proposition 9.4. The following four properties are equivalent:

(1) (P.2).
(i1) M is invariant under the action &, .

(iii) For each X e € , K. is tangent to M.

X
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(iv) (P.1) and for each ge¢ G, J - fé = A;'1o J, i.e. the following

diagram commutes:

e

P e

"1

A
&, (D) —E& <I>1('r)

Proof. Statements (ii) and (iii) are obviously equivalent; (iii) and
(P.2) are equivalent because of Proposition 7.2, part (v). If (P.1) holds,
then the action ‘¢, is well defined and Qa is the product of the canon-
ical 1ift of the action )\ and the action QA itself. The second part of
(1v) is then equivalent to: H( A, (t), $,(p)) = Ar A () =
AS(H(t,p)), where g‘f G, teT, peP, thus it is equivalent to the in-
variance of M under 43 . Hence, (iv) implies (ii) and conversely, (i)
implies (iv) since (P.2) implies (P.1). (Q.E.D.)

Proposition 9.5. If (P.2) holds, then: (1) Qﬁ is a symplectic

R T R
Proof. It is a consequence of Propositions 7.2 , 5.1 (b), and 9.4.

action on (P,&); (ii) for each X, ,X, ¢ £, (Hx

10. The case of a free action
A interesting characterization of property (P.2) can be give if we

make the following further assumption:
(A.5) The ‘action A is free: A(g,t) =t => g = e = the identity of G.

Proposition 10.1. The set of transformations of T which commute with
XA is a Lie group R isomorphic to G. The action of this group is transitive
and free.

Proof. Since ) is transitive and free a differentiable mapping ¥:T
X T —+G is defined by: g = 4(t',t) if t! A(g,t). We have:

¥(t,t) = e ’ ﬁ/(ta,tz) Y(t,,t,)

¥k, 08, )s

Hence,
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Caler,en”! = a(t,tr),
g w(t',t) = 4 A(g,t'),t), ‘y(t'lt)g-.l = y(t', A(g,t)).

For each pair (t'.1 ,tz) e T x T we take the differentiable mapping ?t T
— T defined by:

S () = A(x(t,t ),t,).

(R |

From the properties of g we derive:

= id ° =
4 Wiy X, TR h Tt P
(9e,,6,) = Sty
t.) =t
gtz,t{( ; 2?
9tz,t1(t) =t = t1 =T,

R N Ny 9t2,t4 o Mgy
§ Meot,)y Mast) T Sty

This shows that the mappings 9!‘. form a group R of transformations of T

t
29%4
commuting with the action A , that the action of R is transitive and free

and that there is a bijection between R and the set of orbits of the pro-
duct action A xGA on T XT. Let us take a point t € T and define the

transformation yg:'r—vr by 9= We remark that 93(?.0) =

Pf\(grto)vto.

Ag,t,) and g = id;. The caleulation: @  ° £, = £ (gt )¢,
S Ag ta)rte = TA@'EL), Alght) T SAle,t )t T TAls'est)t.
shows that ?8 - Pg' = Pgigs Since 571;1.1:4 = 9l(g,to),to’ where g

= y(t_,t,) ¥(t,,t,), we see that the mapping G — R:g H95'1 is an iso-
morphism of groups. Let }:T —T be a transformation commuting with the
action A. Let t, = §(t,). Then, ey "=~ F'e )\'k(t:t,)(t") =
Af(t,t,) e $(t,) = Aﬁ(t,ta)(t*) = 9t“t°(t), f.8. “¥= ¢, 1t.] thus
¥ e R. (Q.E.D.)
Remark. (a) With each t, ¢ T we associate a differentiable right

action on T defined by:
RIE K TELAME L o (BEE P e ko)t

This action 1is transitive, free and commutes with the action A, The
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explicit expression of ¢ is:

7 = Mo, e 5, 0 (8

If 9' is the action corresponding to t) e T, then

9g * Fggey ' B = ¥(L,t).

Let = < ¥ (T) be the Lie algebra of generators of R and R the grouy
of the canonical 1ifts of the elements of R.

Proposition 10.2. The following four properties are equivalent:
(i) (p.2).
(i) M is invariant under the group R x [idp}.
(iii) For each Y ¢ « , the vector field ¥ x 0 is tangent to M.
(iv) For each p e P, 3 € R: 3 '(Hp) = Hp (the 1-forms Hp are R-invariant).

Proof. Statements (ii) and (iii) are obviously equivalent. Equival-
ence of (ii) and (iv) follows from the identity ;*(Hp)(t) :
? '1(H(§(t),p)) where p ¢ P, t e T. Since the actions are transitive anc
free the Lie algebras € and % span separately the tangent space Tt(T)
at each point t € T and dim(€) = dim(x) = dim(T). Since the actions
commute, for each Xe £ , Ye¢xz , we have [X,Y] = 0 and {EX’EY} = 0. Now
the momentum relation can be defined by: M = {(h,p)e P; ﬁx(h,p) E
o, ¥Xe 2y, The Hamiltonian vector field Y x 0 is generated by pr?(EY)
and it is tangent to M if and only if /L'[pr?(EY),Hx} = 0, for each
X € € . The calculation

{pr';(EY),Hx} = {prq(EY),prq(E}s)} + (pr'{(EY), e'(Hx)}
pri{Ey,Ep} + < x0, £*(dH,)>
&¥<Y, g, >

shows that (iii) is equivalent to: (Y,ng> =0, foreach Ye z , Xe £ .
This last equation is clearly equivalent to ng = 0, for each X e ¢ , i.e.
to (P.2). (Q.E.D.)

Remarks. (b) The equivalence of the four properties above does not
involve the coisotropy of M. (c¢) The momentum mapping J has now values in
the space of R-invariant 1-forms on T. (d) Because of (A.l4) and (A.5), the
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manifold T is diffeomorphic to G. There is one diffeomorphism for each
fixed t, € T. It is defined Dby: G— T:g — A(gyt,). Then the action A
becomes equivalent to the left translation on G and the right action ¢
considered in Remark (a) to the right translation.

Conclusion. With the assumptions (A.1)-(A.5) and

(A.6) M is invariant under the action of the group R x {idpi,

the pair (M, A) gives the model for a Hamiltonian group action on a sym-
plectic manifold (P, w) [1]1 [7] [4].
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