JEAN-PAUL DUFOUR

SÉMINAIRE SUD-RHODANIEN DE GÉOMÉTRIE

Géométrie symplectique et mécanique

Rencontre de Balaruc I

Le Colloque de Balaruc de Géométrie Symplectique et Mécanique a été organisé par le groupe de géométrie et topologie différentielle de Montpellier dans le cadre du "Séminaire sud-rhodanien de géométrie", qui regroupe les équipes de géométrie des universités d'Avignon, Lyon, Marseille et Montpellier. Il a pris place parmi les Journées de la Société Mathématique de France, à la suite de la rencontre de Lyon de juin 1983.

Le Département de Mathématiques et la Présidence de l'Université des Sciences et Techniques du Languedoc ont participé à son organisation et le Conseil général de l'Hérault lui a apporté son aide.

J.P. Dufour

Table

Introduction 1
A. BANYAGA
The Calabi Invariant and the Gauge groups
S. BENENTI - W. TULCZYJEW
Momentum relations for hamiltonian group actions
M. CHAPERON
Questions de Geometrie symplectique
J.C. CORTET
*-Produits en théorie des groupes : le cas nilpotent
P. DAZORD
Stabilité et linéarisation dans les variétés de Poisson 59
HU HE-SHENG
Some non-linear PDE's and harmonic maps
P. LECOMTE
Cohomologie de l'lagèbre de Poisson et star-produits invariants 86
P. LIBERMANN
Sur quelques propriétés de géométrie homogène91
A. LICHNEROWICZ
Géométrie des algèbres de Lie locales de Kirillov
C. MARLE
Quelques propriétés des variétés de Jacobi
A. WEINSTEIN
Symplectic reduction and fixed points

S. BENENTI ET W.M. TULCZYJEW Momentum relations for Hamiltonian group actions

1. Introduction

Time dependent Hamiltonian dynamics finds an elegant interpretation as a homogeneous system determined by a coisotropic submanifold of the Homogeneous formulation of cotangent bundle of the space-time manifold. dynamics is advantageous also in the time independent case since it leads to a geometric interpretation of the Hamilton-Jacobi method [2] [5]. time independent Hamiltonian system provides the simplest example of Hamiltonian group action [6]. The group in this case is the group R of In order to obtain a geometric framework for Hamiltonian real numbers. actions of more general Lie groups we generalize the homogeneous formulation of dynamics replacing the time axis by a differential manifold T. We then study coisotropic submanifolds of $T^*(T) \times P$, where P is a symplectic manifold replacing the phase manifold of a Hamiltonian system. Choosing a coisotropic submanifold M \subset T*(T) \times P which satisfies certain conditions we obtain a generalization of the homogeneous formulation of time dependent Hamiltonian dynamics. Next we assume an action of a Lie group G in the manifold T and obtain a generalization of time independent dynamics postulating certain invariance properties of M with respect to the action of G. At the same time we obtain a Hamiltonian action of G in P represented as a homogeneous system. The manifold M closely related to the momentum mapping [8] is called the momentum relation for the Hamiltonian action.

2. Notation

Differential manifolds are finite dimensional, real, of class C^{∞} . Differentiable means of class C^{∞} . Mappings between manifolds are assumed differentiable. A transformation means differentiable automorphism. We denote by:

```
\tau_{Q}:T(Q)\to Q the tangent bundle projection of a manifold Q:
\pi_Q: T^*(Q) \to Q the cotangent bundle projection of Q;
T<sub>q</sub>(Q)
                the tangent space at a point q \in Q;
T*(Q)
                the cotangent space at a point q & Q:
 \theta_{0}
              the Liouville 1-form on T*(Q);
X(0)
                the space of differentiable vector field on Q:
X_{u}(P,\omega) the space of differentiable Hamiltonian vector
                fields on a symplectic manifold (P, \omega);
\Phi_{k}(Q) the space of k-forms on Q (k = 0,1,2,...);
T\alpha: T(Q) \to T(Q') the tangent mapping of a mapping \alpha: Q \to Q';
\alpha^*: \Phi_k(Q') \to \Phi_k(Q) the pull back by \alpha;
d: \Phi_{k}(Q) \rightarrow \Phi_{k+1}(Q) the exterior differential;
id<sub>Q</sub>:Q → Q
                the identity mapping;
                the evaluation between vectors (or vector fields) and
<,>
                covectors (or forms);
                the interior product by a vector v (or vector field):
i.,
[.]
              Lie brackets of vector fields:
        Poisson brackets of functions;
\hat{\xi}: T^*(Q) \to T^*(Q) the canonical lift of a transformation \xi of Q;
\hat{X}:T^*(Q) \to T(T^*(Q)) the canonical lift of a vector field X on Q;
                the symplectic polar operator acting on subspaces of
               symplectic spaces.
```

3. The submanifold M

Let T be a connected differential manifold, (P,ω) a connected symplectic manifold, and $\widetilde{P}=T^*(T)\times P$. Let $\operatorname{pr}_T:T\times P\to T$, $\operatorname{pr}_P:T\times P\to P$, $\operatorname{pr}_1:\widetilde{P}\to T^*(T)$, $\operatorname{pr}_2:\widetilde{P}\to P$ be the canonical projections and $\varepsilon=\pi_T\times\operatorname{id}_P:\widetilde{P}\to T\times P$. Let $\omega_T=\operatorname{d}\theta_T$ be the canonical symplectic form on $T^*(T)$ and $\widetilde{\omega}=\operatorname{pr}_1^*(\omega_T)+\operatorname{pr}_2^*(\omega)$. Then $(\widetilde{P},\widetilde{\omega})$ is a symplectic manifold.

Let M be a submanifold of \tilde{P} . We assume that:

(A.1) M is the image of a differentiable section $\mu: T \times P \to \widetilde{P}$ of the projection $\varepsilon = \pi_T \times \mathrm{id}_p$.

Let $H: T \times P \to T^*(T)$ be the mapping defined by $H = -pr_1 \circ \mu$. Then

$$M = \{(h,p) \in \tilde{P}; h = -H(\pi_{T}(h),p)\}.$$

Conversely, a function $H:T\times P\to T^*(T)$ such that $\pi_T\circ H=\operatorname{pr}_T$ generates a submanifold $M\subset\widetilde{P}$ satisfying (A.1).

For each $t \in T$ and $p \in P$ we introduce the mappings

$$\begin{aligned} & H_t : P \rightarrow T_t^*(T) : p \mapsto H(t,p); \\ & H_p : T \rightarrow T^*(T) : t \mapsto H(t,p). \end{aligned}$$

 H_p is a section of π_T , i.e. a 1-form on T. We can interpreted H as a P-dependent family of 1-forms on T.

The mapping H can be identified with the function

$$H:T(T) \times P \rightarrow R:(u,p) \mapsto H(u,p) = \langle u,H(\tau_T(u),p) \rangle$$

which is linear on the fibers of T(T). Hence,

$$M = \{(h,p) \in \widetilde{P}; \langle u,h \rangle = -H(u,p), \forall u \in T_t(T), t = \pi_T(h)\}.$$

From this point of view H can be interpreted as a 1-form on T with values in the space $\Phi_0(P)$. We denote by dH the corresponding differential, which is a 2-form on T with values in $\Phi_0(P)$. For each $u \in T(T)$ and $X \in X(T)$ we introduce the functions

$$\begin{aligned} & H_{u} = \langle u, H \rangle : P \rightarrow R : p \rightarrow H(u, p), \\ & H_{y} = \langle X, H \rangle : T \times P \rightarrow R : (t, p) \rightarrow \langle X(t), H \rangle. \end{aligned}$$

 H_X can be interpreted as a 0-form on T with values in $\phi_0(P)$. We denote by dH_Y the corresponding differential.

For each $X \in X(T)$ we introduce the functions

$$E_{X}:T^{*}(T) \rightarrow R:h \mapsto \langle X,h \rangle;$$

$$\widetilde{H}_{X} = pr_{1}^{*}(E_{X}) + \varepsilon^{*}(H_{X}):\widetilde{P} \rightarrow R.$$

We remark that E_X is the Hamiltonian of the canonical lift $\widehat{X} \in \chi(T^*(T))$ of X and that $H_Y = E_Y \circ H = H^*(E_Y)$.

The calculation: $\mu^*(\widetilde{H}_X) = \mu^* \circ \operatorname{pr}_1^*(E_X) + \mu^* \circ \varepsilon^*(H_X) = (\operatorname{pr}_1 \circ \mu)^*(E_X) + (\varepsilon \circ \mu)^*(H_X) = -H^*(E_X) + H_X = 0$, shows that

$$M = \{(h,p) \in \widetilde{P}; \widetilde{H}_{X}(h,p) = 0, \forall X \in X(T)\}.$$

The mapping $\widetilde{H}\colon \mathfrak{X}(T) \to \Phi_0(\widetilde{P})\colon X \mapsto \widetilde{H}_X$ is a linear monomorphism and provides a further description of M.

4. The symplectic polar of T(M)

The symplectic polar T (M) of T(M) is defined by

$$T^{\S}(M) = \{(v,w) \in T(\widetilde{P}); (h,p) = (\tau_{T^*(T)}(v), \tau_{p}(w)) \in M, \\ \langle (v,w) \wedge (v',w'), \widetilde{\omega} \rangle = 0, \forall (v',w') \in T_{(h,p)}(M) \}.$$

Since

$$\begin{split} T_{(h,p)}(M) &= \{(v',w') \in T_{(h,p)}(\widetilde{P}); \ (v',w') = T \, \mu(u',w'), \\ & w' \in T_p(P), \ u' \in T_t(T), \ t = \pi_T(h) \} \\ &= \{(v',w') \in T_{(h,p)}(\widetilde{P}); \ v' = TH(u',w'), \\ & w' \in T_p(P), \ u' \in T_t(T), \ t = \pi_T(h) \} \\ &= \{(v',w') \in T_{(h,p)}(\widetilde{P}); \ v' = TH_p(u') + TH_t(w'), \\ & w' \in T_p(P), \ u' \in T_t(T), \ t = \pi_T(h) \}, \end{split}$$

we have:

$$\begin{split} T_{(h,p)}^{(M)} &= \{ (v,w) \in T_{(h,p)}^{(p)}; \langle v \wedge (TH_{p}(u') + TH_{t}(w')), \omega_{T} \rangle + \\ &+ \langle w \wedge w', \omega \rangle = 0, \ \forall \ w' \in T_{p}^{(p)}, \ u' \in T_{t}^{(T)}, \ t = \pi_{T}^{(h)} \}, \end{split}$$

The choice w' = 0 implies $\langle v \wedge TH_p(u'), \omega_T \rangle = 0$, $\forall u' \in T_t(T)$, i.e. $v \in (TH_p(T_t(T))^{\S};$ hence, $\langle v \wedge TH_t(w'), \omega_T \rangle + \langle w \wedge w', \omega \rangle = \langle TH_t(w'), i_v \omega_T \rangle + \langle w', i_v \omega \rangle = 0$. It follows that:

$$T^{\S}(M) = \{(v,w) \in T(\widetilde{P}); h = -H(t,p), h = \tau_{T^{*}(T)}(v), t = \pi_{T}(h), \\ p = \tau_{p}(w), v \in (TH_{p}(T_{t}(T)))^{\S}, i_{w}\omega + (T_{p}H_{t})^{*}(i_{v}\omega_{T}) = 0\}.$$

Here we denote by $(T_pH_t)^*$ the linear dual mapping of $T_pH_t = TH_t|T_p(P)$.

Remarks. (i) From the fact that the fibers of $T^*(T)$ are Lagrangian it follows that the restriction of $T\pi_T$ to the subspace $(TH_p(T_t(T))^{\frac{c}{2}} \subset T_h(T^*(T))$ is an isomorphism. (ii) If $(v,w) \in T_{(h,p)}^{\frac{c}{2}}(M)$ then w is uniquely determined by v and by p. From (i) and (ii) it follows that: (iii) $T^{\frac{c}{2}}(M)$ is the image of a section $\sigma:T(T)\times P\to T(\widetilde{P})$ of the projection $T\pi_T\times \tau_P$. This section is clearly differentiable. (iv) The restriction of the projection $T^{\frac{c}{2}}$ to the space $T_{(h,p)}^{\frac{c}{2}}(M)$ is a linear monomorphism into $T_{t,p}(T\times P)$, where $t=\pi_T(h)$. (v) The restriction of Tpr_T to the space $T^{\frac{c}{2}}(T_{(h,p)}^{\frac{c}{2}}(M))$ is an isomorphism onto $T_t(T)$.

5. The coisotropy of M

In order to characaterize the coisotropy of M ($T^9(M) \subset T(M)$), we use the natural Poisson structures on $T^*(T)$, P, T × P and \widetilde{P} induced by ω_T , ω and $\widetilde{\omega}$. We use the same symbol {,} for all Poisson brackets.

Proposition 5.1. M is a coisotropic submanifold of (P, ω) if and only if one of the following equations holds:

(a)
$$\{H_u, H_v\} + \langle u \wedge v, dH \rangle = 0$$
, $\forall u, v \in T(T): \tau_T(u) = \tau_T(v)$.

(b) $\{H_X, H_Y\} = H_{[X,Y]} - \langle X, dH_Y \rangle + \langle Y, dH_X \rangle, \forall X, Y \in X(T).$

(c) $\{\widetilde{H}_{X},\widetilde{H}_{Y}\}=\widetilde{H}_{[X,Y]}, \forall X,Y \in \mathcal{X}(T).$

Proof. Projections $\operatorname{pr}_1: \widetilde{P} \to T^*(T)$ and $\varepsilon = \pi_T \times \operatorname{id}_P: \widetilde{P} \to T \times P$ are Poisson mappings. If Z_A is the Hamiltonian vector field on $(T^*(T), \omega_T)$ generated by the function $A: T^*(T) \to R$, then the vector field $Z_A \times 0$ on \widetilde{P} is the Hamiltonian vector field generated by $\operatorname{pr}_1^*(A) = A \circ \operatorname{pr}_1$. It follows that $\{\varepsilon^*(B), \operatorname{pr}_1^*(A)\} = \langle Z_A \times 0, \varepsilon^*(dB) \rangle$ for each function $B: T \times P \to R$. In particular we have: $\{\varepsilon^*(H_X), \operatorname{pr}_1^*(E_Y)\} = \langle \widehat{Y} \times 0, \varepsilon^*(dH_X) \rangle = \varepsilon^*\langle Y, dH_X \rangle$, where $X, Y \in \mathcal{X}(T)$. Hence,

$$\begin{split} \{\widetilde{H}_{X}, \widetilde{H}_{Y}\} &= \{ \text{pr}_{1}^{*}(E_{X}) + \epsilon^{*}(H_{X}), \, \text{pr}_{1}^{*}(E_{Y}) + \epsilon^{*}(H_{Y}) \} \\ &= \{ \text{pr}_{1}^{*}(E_{X}), \text{pr}_{1}^{*}(E_{Y}) \} + \{ \epsilon^{*}(H_{X}), \, \epsilon^{*}(H_{Y}) \} + \\ &+ \{ \epsilon^{*}(H_{X}), \text{pr}_{1}^{*}(E_{Y}) \} - \{ \epsilon^{*}(H_{Y}), \text{pr}_{1}^{*}(E_{Y}) \} \end{split}$$

=
$$pr_1^*\{E_X, E_Y\}$$
 + $\epsilon^*\{H_X, H_Y\}$ + $\epsilon^*(\langle Y, dH_X \rangle - \langle X, dH_Y \rangle)$
= $pr_1^*(E_{[X,Y]})$ + $\epsilon^*(H_{[X,Y]})$ + $\epsilon^*(\{H_X, H_Y\} - H_{[X,Y]})$
+ $\langle Y, dH_X \rangle$ - $\langle X, dH_Y \rangle$),

i.e.

(d)
$$\{\widetilde{H}_{X}, \widetilde{H}_{Y}\} = \widetilde{H}_{[X,Y]} + \varepsilon * (\{H_{X}, H_{Y}\} - H_{[X,Y]} + \langle Y, dH_{X} \rangle - \langle X, dH_{Y} \rangle).$$

It follows that

(e)
$$\mu^*\{H_X, H_Y\} = \{H_X, H_Y\} - H_{[X,Y]} + \langle Y, dH_X \rangle - \langle X, dH_Y \rangle$$
.

Since M is characterized by the equations $\mu^*(H_X) = 0$, $\forall X \in \mathcal{X}(T)$, M is coisotropic if and only if $\mu^*\{H_X, H_Y\} = 0$, $\forall X, Y \in \mathcal{X}(T)$. Because of (e) and (d), this condition is equivalent to (b), thus also equivalent to (c). For a 1-form on T with values in any vector space the identity

(f)
$$\langle X \wedge Y, dH \rangle = \langle X, d \langle Y, H \rangle \rangle - \langle Y, d \langle X, H \rangle \rangle - \langle [X,Y], H \rangle$$
.

holds. Then (b) is equivalent to

$$\{H_{Y}, H_{Y}\} + \langle X \wedge Y, dH \rangle = 0, \forall X, Y \in X(T),$$

thus it is also equivalent to (a). (Q.E.D.)

A generalization of the homogeneous formulation of dynamics Let us assume that

(A.2) M is a coisotropic submanifold of (P, ω) .

The triple $(P, \omega; M)$ forms a <u>homogeneous system</u> [2] [5]. It is well known that the characteristic distribution $T^{5}(M)$ of M, which we simply denote by D', is completely integrable [1] [8] [12]. We call <u>characteristic</u> a maximal connected integral manifold of D'. We introduce the relation $D = \{h, p, h', p'\} \in \widetilde{P} \times \widetilde{P}$; (h, p) and (h', p') belong to the same characteristic of M}.

From the theory of homogeneous systems [2] [5] we know that:

- (i) D' is an <u>infinitesimal</u> <u>symplectic</u> <u>relation</u> on $(\tilde{P}, \tilde{\omega})$, i.e. a Lagrangian submanifold of the symplectic manifold $(T(\tilde{P}), d_T \tilde{\omega})$, where d_T is the derivation operator defined in [9].
- (ii) D is a symplectic relation on $(\tilde{P}, \tilde{\omega})$, i.e. a Lagrangian submanifold (may be immersed) of the symplectic manifold $(\tilde{P}, \tilde{\omega}) \times (\tilde{P}, -\tilde{\omega})$.

Let $\alpha:T(T^*(T)) \to T^*(T(T))$ be the diffeomorphism characterized by the conditions [10] [2] [3]: $\pi_{T(T)} \circ \alpha = T \pi_{T}$, $d_{T} \theta_{T} = \alpha^*(\theta_{T(T)})$. Let $\beta:T(P) \to T^*(P)$ be the vector bundle isomorphism define by the symplectic form $\omega: \beta(w) = i_w \omega$. In the following discussion we identify the manifold $T(P) = T(T^*(T) \times P)$ with the manifold $T(T^*(T)) \times T(P)$ and the manifold $T^*(T(T)) \times P$ with the manifold $T^*(T(T)) \times T^*(P)$. The diffeomorphism $\alpha:T^*(T(T)) \times T^*(P) \to T^*(T(T) \times P)$ is defined by the equation $\alpha:T^*(T,T) \to T^*(T,T)$, where $\alpha:T^*(T,T) \to T^*(T,T)$, $\alpha:T^*(T,$

Proposition 6.1. The infinitesimal symplectic relation D' is generated by the function $H:T(T)\times P\to R$ with respect to the symplectomorphism $\alpha\times\beta:T(\widetilde{P})\to T^*(T(T)\times P)$, i.e.

D' =
$$(\alpha \times \beta)^{-1}$$
 o $(-dH)(T(T) \times P)$
= $\{(v,w) \in T(\widetilde{P}); v = -\alpha^{-1}(dH_{p}(u)), i_{w}\omega = -dH_{u}(p), u = T\pi_{T}(v), p = \tau_{p}(w)\}.$

Proof. We know (Section 4) that D' is the image of a section of the projection T π_{T} \times τ_{p} . We must prove that

Let $\beta':T(T^*(T))) \to T^*(T^*(T))$ and $\tilde{\beta}:T(\tilde{P}) \to T^*(\tilde{P})$ be the vector bundle isomorphisms defined by the symplectic forms d $\theta_{T^*(T)}$ and $\tilde{\omega}$ respectively. We know that [2] [11]

$$\beta'^*(\theta_{T^*(T)}) - \alpha^*(\theta_{T(T)}) = dW,$$

where $W:T(T^*(T)) \to R: v \to \langle v, \theta_T \rangle$, and that the pull back to D' of the 1-form $\tilde{\theta} = \tilde{\beta}^*(\theta_{\tilde{p}})$ is zero. Then $\sigma^*(\tilde{\theta}) = 0$. Since $\tilde{\beta} = \beta' \times \beta$, we

can write:

$$\tilde{\theta} = \pi_1^* \times \beta^{\prime * (\theta_{T*(T)})} + \pi_2^* \circ \beta^{* (\theta_p)},$$

where $\pi_1:T(\tilde{P})\to T(T^*(T))$ and $\pi_2:T(\tilde{P})\to T(P)$ are the canonical projections. Let us introduce the 1-form

$$\widetilde{\lambda} = \pi_1^* \circ \alpha^*(\theta_{T(T)}) + \pi_2^* \circ \beta^*(\theta_P) = (\alpha \times \beta)^*(\theta_{T(T)} \times P).$$

We have $\widetilde{\lambda} - \widetilde{\theta} = d\widetilde{W}$, where $\widetilde{W} = \pi_1^*(W):T(\widetilde{P}) \to R:(v,w) \mapsto W(v)$. From $\sigma^*(\widetilde{\theta}) = 0$ it follows that $\sigma^*(\widetilde{\lambda}) = d(\sigma^*(\widetilde{W}))$. For the left hand side of this equality we have, by definition of Liouville form, $\sigma^*(\widetilde{\lambda}) = \sigma^* \circ (\alpha \times \beta)^*(\theta_{T(T) \times P}) = ((\alpha \times \beta) \circ \sigma)^*(\theta_{T(T) \times P}) = (\alpha \times \beta) \circ \sigma$. For the right hand side we observe that if $(v,w) = \sigma(u,p)$, then $\widetilde{W}(v,w) = W(v) = \langle v, \theta_T \rangle = \langle u,h \rangle$, where $h = \tau_{T^*(T)}(v) = -H(\tau_T(u),p) = -H(u,p)$. This shows that $\sigma^*(\widetilde{W}) = -H$. (Q.E.D.)

7. The reduction of D' by vectors tangent to T

From Remarks (iv) and (v) at the end of Section 4 it follows that: (i) The set $T \in (D') \subset T(T \times P)$ is a completely integrable distribution on $T \times P$ whose leaves (maximal connected integral manifolds) are the images by ε of the characteristics of M. (ii) For each $(u,p) \in T(T) \times P$ there is a unique vector $w \in T_p(P)$ such that $(u,w) \in T \varepsilon (D')$; this vector is defined by (Proposition 6.1): $i_w \omega = -dH_H(p)$. As a consequence we have:

Proposition 7.1. For each $u \in T(T)$ the set $D_u' = \{w \in T(P); (u,w) \in T \in (D')\}$ is the image of a Hamiltonian vector field $K_u: P \to T(P)$ generated by the function $H_u: P \to R: p \mapsto H(u,p)$, i.e.: $i_K \omega = -dH_u$.

This result has the following symplectic interpretation. D_u' is the image of D' by the symplectic reduction [3] determined by the coisotropic submanifold $C_u = \{(v,w) \in T(\widetilde{P}); T\pi_T(v) = u\} = (T\pi_T \times \tau_p)^{-1}(\{u\} \times P).$ Since D' and C_u are transverse [12], the reduced set D_u' is a Lagrangian submanifold of (P,ω) generated by the restriction of the generating function H of D' to the submanifold $\{u\} \times P$ [3], i.e. by the function H₁.

Let us introduce the differentiable mapping

$$K:T(T) \times P \rightarrow T(P):(u,p) \mapsto K_{ij}(p)$$
.

Since $K_{ru + sv} = rK_u + sK_v$, for each $r, s \in R$ and for each $u, v \in T(T)$ such that $\tau_T(u) = \tau_T(v)$, the mapping K can be interpreted as a 1-form on T with values on the space $X_H(P, \omega)$ of the Hamiltonian vector fields on (P, ω) . We denote by dK the corresponding differential and we define

$$K_u = \langle u, K \rangle : P \rightarrow T(P) : p \mapsto K_u(p).$$

For each vector field $X \in X(T)$ we introduce the mapping

$$K_X = \langle X, K \rangle : T \times P \rightarrow T(P) : (t,p) \mapsto K_{X(t)}(p),$$

which is a T-dependent Hamiltonian vector field on P. We denote by dK_X the differential of the mapping K_X interpreted as a 0-form on T with values on $\mathcal{X}_H(P,\omega)$. We also define the vector fields

$$\overline{K}_{X} \in \mathcal{X}(T \times P), \quad \hat{K}_{X} \in \mathcal{X}(\widetilde{P}), \quad \widetilde{K}_{X} \in \mathcal{X}(\widetilde{P})$$

by:

$$\overline{K}_{\chi}(t,p) = (\chi(t),K_{\chi}(t,p)), \hat{K}_{\chi}(h,p) = (\hat{\chi}(h),K_{\chi}(t,p)), i_{\tilde{K}_{\chi}} \tilde{\omega} = -d\tilde{H}_{\chi}.$$

Proposition 7.2. The following identities hold:

(a)
$$[K_{u},K_{v}] + \langle u \wedge v,dK \rangle = 0$$
, $\forall u,v \in T(T): \tau_{T}(u) = \tau_{T}(v)$;

(b)
$$[K_X, K_Y] = K_{[X,Y]} - \langle X, dK_Y \rangle + \langle Y, dK_X \rangle, \forall X, Y \in X(T);$$

(c)
$$[\tilde{K}_{\chi}, \tilde{K}_{\gamma}] = \tilde{K}_{[\chi, \gamma]}, \forall \chi, \gamma \in \mathcal{X}(T).$$

Proof. Since K is a 1-form on T with values in $\mathfrak{X}_{H}(P,\omega)$, $\beta \circ K$ is a 1-form with values in $\Phi_{1}(P)$ and $\Phi_{1}(P)$ and $\Phi_{2}(P)$ and $\Phi_{3}(P)$ and $\Phi_{4}(P)$ defined by $\Phi_{4}(P)$, then $\Phi_{4}(P)$ defined by $\Phi_{4}(P)$, then $\Phi_{5}(P)$ defined by $\Phi_{4}(P)$, then $\Phi_{5}(P)$ defined by $\Phi_{4}(P)$ defined by $\Phi_{4}(P)$, then $\Phi_{5}(P)$ defined by $\Phi_{4}(P)$ def

(d) $[K_X, K_Y] + \langle X \wedge Y, dK \rangle = 0, \forall X, Y \in \mathcal{X}(T).$

Then equivalence between (a) and (b) follows from the identity (f) of Section 5 applied to K. (c) follows from the fact that \widetilde{K}_X is the Hamiltonian vector field generated by \widetilde{H}_X and from Proposition 5.1, (c). (Q.E.D.)

Proposition 7.3. The following properties hold:

- (i) \widetilde{K}_{χ} is a characteristic vector field, i.e. $\widetilde{K}_{\chi}(M) \subset D'$.
- (ii) \widetilde{K}_{X} is ε -projectable on \overline{K}_{X} , i.e. $\overline{K}_{X} \circ \varepsilon = T\varepsilon \circ \widetilde{K}_{X}$.
- (iii) \hat{K}_{X} is ε -projectable on \bar{K}_{X} , i.e. $\bar{K}_{X} \circ \varepsilon = T\varepsilon \circ \hat{K}_{X}$.
- (iv) The vector fields \overline{K}_{χ} span the distribution $T_{\mathcal{E}}$ (D').
- (v) \hat{K}_{x} is tangent to M \iff $\hat{K}_{y} = \tilde{K}_{y} \iff dH_{y} = 0$.

Proof. (iii) follows directly from the definition of \widehat{K}_{χ} . (i) is a consequence of the fact that the generating function \widehat{H}_{χ} of \widehat{K}_{χ} is constant (= 0) on M. (iv) follows from (i) and (ii). Let $(v,w) \in D'$, $u = T \pi_{T}(v)$, $t = \tau_{T}(u)$, $p = \tau_{p}(w)$. The calculation

$$\langle (v,w) \land \widetilde{K}_{X}, \widetilde{\omega} \rangle = \langle (v,w), d\widetilde{H}_{X} \rangle$$

$$= \langle (v,w), pr_{1}^{*}(dE_{X}) + \epsilon^{*}(dH_{X}) \rangle$$

$$= \langle v, dE_{X} \rangle + \langle (u,w), dH_{X} \rangle$$

$$= \langle v \land \widehat{X}, \omega_{T} \rangle + \langle w \land K_{X(t)}, \omega \rangle + \langle u, dH_{X} \rangle (p)$$

$$= \langle (v,w) \land \widehat{K}_{X}, \widetilde{\omega} \rangle + \langle u, dH_{X} \rangle (p)$$

shows that $\widetilde{K}_{\chi}(h,p)$ differs from $\widehat{K}_{\chi}(h,p)$ by a vector (z,0) such that $T \pi_{T}(z)$ = 0 and proves (ii) and (v). (Q.E.D.)

8. The reduction of D by pairs of points of T

From Remarks (iv) and (v) at the end of Section 4 it follows that the leaves of the distribution $T_{\mathcal{E}}$ (D') intersect transversally the fibers of $pr_{\mathbf{T}}$. Hence, each leaf of $T_{\mathcal{E}}$ (D') is the union of images of local sections of $pr_{\mathbf{T}}$. For a simpler discussion we postulate the following <u>completeness</u> condition:

(A.3) The leaves of the distribution $T_{\mathcal{E}}$ (D') are images of global sections of the projection $pr_T: T \times P \to T$.

Proposition 8.1. For each t_4 , $t_2 \in T$ the set $D_{t_2,t_4} = \{(p_2,p_4)\}$ $P \times P$; (t_4,p_4) and (t_2,p_2) belong to the same leaf of $T \in (D')$ is the graph of a symplectomorphism φ_{t_2,t_4} on (P,ω) .

Proof. D_{t_2,t_4} is not empty because of (A.3). It can also be defined by $D_{t_2,t_4} = \{(p_2,p_4) \in P \times P; \exists h_4,h_2 \in T^*(T):(h_2,p_2,h_4,p_4) \in D \cap C_{t_2,t_4} \}$ where $C_{t_2,t_4} = T^*_{t_2}(T) \times P \times T^*_{t_4}(T) \times P$ is a coisotropic submanifold of $(\widetilde{P},\widetilde{\omega}) \times (\widetilde{P},-\widetilde{\omega})$. We have $T^{\S}(C_{t_2,t_4}) = T^{\S}(T^*_{t_2}(T)) \times 0 \times T^{\S}(T^*_{t_4}(T)) \times 0 = T(T^*_{t_2}(T)) \times 0 \times T(T^*_{t_4}(T)) \times 0$ (here 0 denotes the "zero section" of T(P)) because the fibers of $T^*(T)$ are Lagrangian submanifolds. The reduced symplectic manifold of $(\widetilde{P},\widetilde{\omega}) \times (\widetilde{P},-\widetilde{\omega})$ by C_{t_2,t_4} is canonically symplectomorphic to $(P,\omega) \times (P,-\omega)$. D_{t_2,t_4} is the reduced set of D by C_{t_2,t_4} . From the implication: $(v,0) \in T(M)$, $T \cap_T (v) = 0 \Rightarrow v = 0$ (Section 4), and from $T(D) \subset T(M) \times T(M)$ it follows that $T^{\S}(C_{t_2,t_4}) \cap T(D) \subset T^{\S}(C_{t_2,t_4})$ and the Lagrangian submanifold D are transverse. It follows that D_{t_2,t_4} is a Lagrangian submanifold, i.e. a symplectic relation. Assumption (A.3) implies that D_{t_2,t_4} is the graph of a diffeomorphism, denoted by φ_{t_2,t_4} . (Q.E.D.)

We obtain a differentiable mapping

$$\varphi: T \times T \times P \rightarrow P: (t_{_{4}}, t_{_{2}}, p) \mapsto \varphi_{t_{_{2}}, t_{_{4}}}(p)$$

which can be interpreted as a $(T \times T)$ -dependent family of symplectomorphisms on (P, ω) and whose infinitesimal counterpart is the mapping K introduced in Section 7.

Proposition 8.2. For each $t, t_1, t_2, t_3 \in T$ we have: $\Psi_{t,t} = id_p$,

 Ψ_{t_3} , t_2 Ψ_{t_2} , t_4 = Ψ_{t_3} , t_4 .

Proof. It is obvious that $D_{t,t}$ is the diagonal of $P \times P$. The composition rule D_{t_3} , t_2 D_{t_2} , t_4 = D_{t_3} , t_4 , follows directly from $D \cdot D = D$ and the definition of D_{t_2} , t_4 . (Q.E.D.)

Let $\gamma: R \to T$ be a curve on T. The lift of γ through the point (t_o, p_o) is defined by $\overline{\gamma}: R \to T \times P: r \mapsto (\gamma(r), \varphi_{\gamma(r), t_o}(p_o))$. From the definition of D_{t,t_o} and D_t it follows that if $\overline{\gamma}: R \to T(T \times P)$ is the tangent curve of $\overline{\gamma}$ and $\overline{\gamma}(r) = (u, w)$, then $w \in D_t$. As a consequence:

Proposition 8.3. Let $\gamma: R \to T$ be a differentiable curve on T and $\gamma: R \to T(T)$ be the corresponding tangent curve. Let $K_{\gamma}: R \times P \to T(P)$ be

the R-dependent vector field on P defined by $K_{\chi}(r,p) = K_{\chi(r)}(p)$. Then the mapping $F: \mathbb{R} \times \mathbb{R} \times \mathbb{P} \to \mathbb{P}$ defined by $F(r_o, r, p) = \varphi_{\chi(r), \chi(r_o)}(p)$ is the flow of K_{χ} [1].

Proposition 8.4. If $\psi: R \times T \to T$ is the flow of a complete vector field X on T, then the mappings

$$\begin{split} & \overline{\boldsymbol{\varphi}}_{\psi} : \mathbf{R} \times \mathbf{T} \times \mathbf{P} \to \mathbf{T} \times \mathbf{P} : (\mathbf{r}, \mathbf{t}, \mathbf{p}) \mapsto (\boldsymbol{\psi}(\mathbf{r}, \mathbf{t}), \boldsymbol{\boldsymbol{\psi}}(\mathbf{r}, \mathbf{t}), \mathbf{t}^{(\mathbf{p})}), \\ & \hat{\boldsymbol{\varphi}}_{\psi} : \mathbf{R} \times \widetilde{\mathbf{P}} \to \widetilde{\mathbf{P}} : (\mathbf{r}, \mathbf{h}, \mathbf{p}) \mapsto (\hat{\boldsymbol{\psi}}_{\mathbf{r}}(\mathbf{h}), \boldsymbol{\boldsymbol{\boldsymbol{\psi}}}_{\psi(\mathbf{r}, \mathbf{t}), \mathbf{t}}(\mathbf{p})), \end{split}$$

where $\hat{\psi}_r$ is the canonical lift of $\psi_r: T \to T: t \mapsto \psi(r,t)$, are the flows of the vectorfields \bar{K}_y and \hat{K}_y respectively.

Proposition 8.3 provides a direct method of constructing the symplectomorphisms Ψ_{t,t_o} , through the choice of curves γ and the integration of the corresponding vector fields K_{γ} .

9. The momentum relation

We call <u>momentum</u> relation a submanifold M \subset T*(T) \times P satisfying (A.1), (A.2) and (A.3). The corresponding mapping J:P $\to \Phi_1$ (T) defined by J(p) = H_p is called the <u>momentum</u> <u>mapping</u>. With M we associate also the mappings K and φ described in Sections 7 and 8 respectively.

Let $\lambda: G \times T \to T$ a differentiable left action of a Lie group G on T. The momentum relation M transfers the action of G from T to T \times P and to \widetilde{P} . These actions are respectively defined by:

$$\begin{split} \overline{\varphi}_{\lambda}: G \times T \times P \to T \times P: (g,t,p) &\mapsto (\lambda_{g}(t), \varphi_{\lambda(g,t),t}(p)), \\ \widehat{\varphi}_{\lambda}: G \times \widetilde{P} \to \widetilde{P}: (g,h,p) &\mapsto (\widehat{\lambda}_{g}(h), \varphi_{\lambda(g,t),t}(p)), \end{split}$$

where $\lambda_g: T \to T$ is the diffeomorphism defined by $\lambda_g(t) = \lambda(g,t)$ and $\hat{\lambda}_g$ is its canonical lift. These mappings are actions because of Proposition 8.2. Let $\ell \subset X(T)$ be the Lie algebra of generators of the action λ . As a direct generalization of Proposition 8.3 we have:

Proposition 9.1. If $X\in \mathcal{L}$, then \overline{K}_X is a generator of $\overline{\varphi}_\lambda$ and \widehat{K}_X is a generator of $\widehat{\varphi}_\lambda$.

We study the case in which the momentum relation M induces also an action of G on the manifold P. For a simpler discussion we assume that

(A.4) The action λ is transitive: $\forall t_1, t_2 \in T$, $\exists g \in G$: $t_2 = \lambda(g, t_1)$.

We consider the following T-independence property:

(P.1) For each
$$g \in G$$
 and $t,t' \in T$: $\varphi_{\lambda(g,t),t} = \varphi_{\lambda(g,t'),t'}$

If (P.1) holds, then a symplectic left action of G on (P,ω) is defined by:

(a)
$$\varphi_{\lambda}: G \times P \rightarrow P: (g,p) \mapsto \varphi_{g}(p) = \varphi_{\lambda(g,t),t}(p)$$

for any choice of t & T.

The action $\overline{\varphi}_{\lambda}$ is now the product of the two actions λ and φ_{λ} . For each $X \in \mathcal{C}$ the generator \overline{K}_{X} must decompose in the product of X and a generator of φ_{λ} . Since $K_{X}(t,p) = (X(t),K_{X}(t,p))$, the vector $K_{X}(t,p)$ does not depend on $t \in T$; K_{X} is then a vector field on P. It follows that (see also Proposition 7.2):

Proposition 9.2. If (P.1) holds then: (i) For each $X \in \ell$ the vector field K_X is a generator of the symplectic action \mathcal{C}_{λ} on (P, ω) ; (ii) $[K_{X_4}, K_{X_2}] = K_{[X_4, X_2]}$, for each $X_4, X_2 \in \ell$.

Proposition 9.3. Property (P.1) is equivalent to: (i) For each $X \in \ell$, $p \in P$ and $t, t' \in T$: $K_X(t, p) = K_X(t', p)$; i.e. to: (ii) For each $X \in \ell$, $dK_X = 0$.

Let us consider the following strong T-independence property:

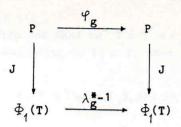
(P.2) For each $X \in \ell$, $p \in P$ and $t,t' \in T$: $H_X(t,p) = H_X(t',p)$; i.e.: for each $X \in \ell$, $dH_X = 0$.

Since $dH_X = 0$ implies $dK_X = 0$, (P.2) implies (P.1). The inverse implication is not true, for instance, in the case of a time independent Hamiltonian vector field (case T = R), which can be generated by a time dependent Hamiltonian: one can add to the time independent Hamiltonian any function of time.

Proposition 9.4. The following four properties are equivalent:

- (i) (P.2).
- (ii) M is invariant under the action $\, \hat{\varphi}_{_{\lambda}} \, . \,$
- (iii) For each X ϵ ℓ , \hat{K}_{X} is tangent to M.

(iv) (P.1) and for each $g \in G$, $J \circ \varphi_g = \lambda_g^{*-1} \circ J$, i.e. the following diagram commutes:



Proof. Statements (ii) and (iii) are obviously equivalent; (iii) and (P.2) are equivalent because of Proposition 7.2, part (v). If (P.1) holds, then the action φ_{λ} is well defined and $\hat{\varphi}_{\lambda}$ is the product of the canonical lift of the action λ and the action φ_{λ} itself. The second part of (iv) is then equivalent to: $H(\lambda_g(t), \varphi_g(p)) = (\lambda_g^{*-1}(H_p))(\lambda_g(t)) = \hat{\lambda}_g(H(t,p))$, where $g \in G$, $t \in T$, $p \in P$, thus it is equivalent to the invariance of M under $\hat{\varphi}_{\lambda}$. Hence, (iv) implies (ii) and conversely, (i) implies (iv) since (P.2) implies (P.1). (Q.E.D.)

Proposition 9.5. If (P.2) holds, then: (i) $\hat{\varphi}_{\lambda}$ is a symplectic action on $(\tilde{P}, \tilde{\omega})$; (ii) for each $X_1, X_2 \in \ell$, $\{H_{X_1}, H_{X_2}\} = H_{[X_1, X_2]}$. Proof. It is a consequence of Propositions 7.2, 5.1 (b), and 9.4.

10. The case of a free action

A interesting characterization of property (P.2) can be give if we make the following further assumption:

(A.5) The action λ is free: $\lambda(g,t) = t \implies g = e = the$ identity of G.

Proposition 10.1. The set of transformations of T which commute with λ is a Lie group R isomorphic to G. The action of this group is transitive and free.

Proof. Since λ is transitive and free a differentiable mapping $\gamma:T \to G$ is defined by: $g = \gamma(t',t)$ if $t' = \lambda(g,t)$. We have:

$$\chi(t,t) = e$$
 , $\chi(t_3,t_2)$ $\chi(t_2,t_4) = \chi(t_3,t_4)$.

Hence,

$$(\gamma(t',t))^{-1} = \gamma(t,t'),$$

 $g_{\lambda}(t',t) = \gamma(\lambda(g,t'),t), \gamma(t',t)g^{-1} = \gamma(t',\lambda(g,t)).$

For each pair $(t_1, t_2) \in T \times T$ we take the differentiable mapping $f_{t_2}, t_1 : T$ $\rightarrow T$ defined by:

$$g_{t_2,t_1}(t) = \lambda(\chi(t,t_1),t_2).$$

From the properties of χ we derive:

$$\begin{array}{lll}
\S_{t,t} &=& \mathrm{id}_{T}, & \S_{t_{3},t_{2}} \circ \S_{t_{2},t_{4}} &=& \S_{t_{3},t_{4}}, \\
(\S_{t_{2},t_{4}})^{-1} &=& \S_{t_{4},t_{2}}, \\
\S_{t_{2},t_{4}}(t_{1}) &=& t_{2}, \\
\S_{t_{2},t_{4}}(t) &=& t \implies t_{1} &=& t_{2}, \\
\lambda_{g} \circ \S_{t_{2},t_{1}} &=& \S_{t_{2},t_{4}} \circ \lambda_{g}, \\
\S_{\lambda(g,t_{2}), \lambda(g,t_{4})} &=& \S_{t_{2},t_{4}}.
\end{array}$$

This shows that the mappings g_{t_2,t_4} form a group R of transformations of T commuting with the action λ , that the action of R is transitive and free and that there is a bijection between R and the set of orbits of the product action $\lambda \times_G \lambda$ on $T \times T$. Let us take a point $t_o \in T$ and define the transformation $g_g: T \to T$ by $g_g = g_{\lambda(g,t_o),t_o}$. We remark that $g_g(t_o) = \lambda(g,t_o)$ and $g_e = \mathrm{id}_T$. The calculation: $g_g \circ g_g = g_{\lambda(g,t_o),t_o} \circ g_{\lambda(g,t_o),t_o$

Remark. (a) With each $t_o \in T$ we associate a differentiable right action on T defined by:

$$g:G \times T \rightarrow T:(g,t) \mapsto g(t) = g_{\lambda(g,t_o),t_o}$$

This action is transitive, free and commutes with the action λ . The

explicit expression of φ is:

$$g(t) = \lambda_{\gamma(t,t_o)g \gamma(t_o,t)}^{\bullet}(t).$$

If g' is the action corresponding to $t'_{o} \in T$, then

$$g'_{g} = g_{g_{o}} g_{g_{o}}^{-1}$$
 , $g_{o} = \chi(t_{o}, t_{o}^{*})$.

Let $\tau \subset \mathfrak{X}(T)$ be the Lie algebra of generators of R and \widehat{R} the group of the canonical lifts of the elements of R.

Proposition 10.2. The following four properties are equivalent:

- (i) (P.2).
- (ii) M is invariant under the group $\hat{R} \times \{id_p\}$.
- (iii) For each Y $\in \mathcal{T}$, the vector field $\hat{Y} \times 0$ is tangent to M.
- (iv) For each $p \in P$, $\xi \in R$: $\xi^*(H_p) = H_p$ (the 1-forms H_p are R-invariant). Proof. Statements (ii) and (iii) are obviously equivalent. Equivalence of (ii) and (iv) follows from the identity $\xi^*(H_p)(t) = \frac{1}{2} e^{-1}(H(\xi(t),p))$ where $p \in P$, $t \in T$. Since the actions are transitive and free the Lie algebras ℓ and ϵ span separately the tangent space $T_t(T)$ at each point $t \in T$ and $\dim(\ell) = \dim(\tau) = \dim(T)$. Since the actions commute, for each $X \in \ell$, $Y \in \tau$, we have [X,Y] = 0 and $\{E_X,E_Y\} = 0$. Now the momentum relation can be defined by: $M = \{(h,p) \in \tilde{F}; \ \tilde{H}_X(h,p) = 0, \ \forall \ X \in \ell\}$. The Hamiltonian vector field $\hat{Y} \times 0$ is generated by $pr_1^*(E_Y)$ and it is tangent to M if and only if $\mu^*\{pr_1^*(E_Y), H_X\} = 0$, for each $X \in \ell$. The calculation

shows that (iii) is equivalent to: $\langle Y, dH_X \rangle = 0$, for each $Y \in \mathcal{Z}$, $X \in \mathcal{L}$. This last equation is clearly equivalent to $dH_X = 0$, for each $X \in \mathcal{L}$, i.e. to (P.2). (Q.E.D.)

Remarks. (b) The equivalence of the four properties above does not involve the coisotropy of M. (c) The momentum mapping J has now values in the space of R-invariant 1-forms on T. (d) Because of (A.4) and (A.5), the

manifold T is diffeomorphic to G. There is one diffeomorphism for each fixed t_o \in T. It is defined by: $G \rightarrow T: g \mapsto \lambda(g, t_o)$. Then the action λ becomes equivalent to the left translation on G and the right action φ considered in Remark (a) to the right translation.

Conclusion. With the assumptions (A.1)-(A.5) and

(A.6) M is invariant under the action of the group $\hat{R} \times \{id_p\}$,

the pair (M, λ) gives the model for a Hamiltonian group action on a symplectic manifold (P, ω) [1] [7] [4].

References

- 1. R.ABRAHAM, J.E.MARSDEN, <u>Foundations of Mechanics</u>, Benjamin-Cummings, 2nd ed. (1978).
- 2. S.BENENTI, Symplectic Relations in Analytical Mechanics, Proceedings of IUTAM-ISIMM Symposium on "Modern Developments in Analytical Mechanics", Torino 7-11, June 1982.
- 3. S.BENENTI, The Category of Symplectic Reductions, Proceedings of the Meeting "Geometry and Physics", Firenze 1982, Pitagora (Bologna, 1984), 11-41.
- 4. S.BENENTI, The Hamilton-Jacobi Equation for a Hamiltonian Action, Proceedings of the Meeting "Geometrodynamics", Cosenza 1983, Pitagora (Bologna, 1984), 1-15.
- 5. S.BENENTI, W.M.TULCZYJEW, The Geometrical Meaning and Globalization of the Hamilton-Jacobi Method, Proceedings "Differential Geometrical Methods in Mathematical Physics", Aix-en-Provence, Salamanca 1979, Lecture Notes in Math. 836, Springer (Berlin, 1980), 484-497.
- 6. C.-M.MARLE, Symplectic Manifolds, Dynamical Groups and Hamiltonian Mechanics, in "Geometry and Relativity", a volume in honour of A.Lichnerowicz, Reidel (Dordrecht, 1976), 55-62.
- 7. C.-M.MARLE, Moment de l'action hamiltonienne d'un groupe de Lie; quelques propriétés, Proceedings of the Meeting "Geometry and Physics", Firenze 1982, Pitagora (Bologna, 1984), 117-133.
- 8. J.M. SOURIAU, Structures des systèmes dynamiques, Dunod (Paris, 1970).
- 9. W.M.TULCZYJEW, Les sous-variété lagrangiennes et la dynamique hamil-

- tonienne, C.R. Acad. Sci. Paris, 1976, 283-A, 15-18.
- 10. W.M.TULCZYJEW, Les sous-variété lagrangiennes et la dynamique lagrangienne, C.R. Acad. Sci. Paris, 1976, 283-A, 675-678.
- 11. W.M.TULCZYJEW, The Legendre Transformation, Ann. Inst. H. Poincaré 1976, 27, 101-114.
- 12. A.WEINSTEIN, <u>Lectures on Symplectic Manifolds</u>, CBMS Conf. Series, AMS 29 (1977).

This research is sponsored by Consiglio Nazionale delle Ricerche, Gruppo Nazionale per la Fisica Matematica.