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1. The purpose of this lecture is to illustrate a geometrical approach
to the momentum mapping theory as a generalization of the classical homo-
geneous formulation of Hamiltonian mechanics. We recall basic definitions
and results concerning Hamiltonian actions and momentum mappings. For
details, applications to mechanics and bibliography #e can refer to the
original works by Smale [1] and Souriau (2] and to Abraham and Marsden [3],
Marsden and Weinstein [4], Marle [5,6], Liberman and Marle [7].

Let G be a Lie group and (P,w) a symplectic manifold (we assume
that G and P are connected). A smooth action ¢:Gx P—+P of Gon P is
said to be symplectic if for each geG the difreoﬁorphism
Wg:P — P:p — ¥(g,p) is symplectic, i.e. qz; w = w (we assume that the



e
action is a left action: "Pg . "FE' = \Pgs,). Let ¥ be the Lie algebra of
the group G. It is the algebra of left (or right) invariant vector fields
on G, usually identified with the tangent space Te(G) at the identity e of

G. Let us denote by K the infinitesimal generator of ¢ corresponding to

X
the element X € % in such a way that [KX’KY] = K[X,Y]' The generators of
Y are symplectic (i.e. locally Hamiltonian) vector fields. If all genera-

tors are globally Hamiltonian we say that ¢ is a Hamiltonian action. Let

x* lea/ = -dHX. The

mapping J:P — ®* defined bv <X,J(p)> = H,(p) 1is called the momentum
X i L]

us denote by HX:P —+ R the Hamiltonian function of K

mapping of the Hamiltonian action .

The momentum mapping corresponding to a Hamiltonian action is only
defined up to a constant element of H" what is uniquely determined by a
Hamiltonian action is, first of all, a cchomology class of degree 2 of the
cohomology of the Lie algebra ? with respect to the trivial representation
in R. A 2-cocycle B is indeed defined by <XAY,B> = H[X,Y] - {HX’HY}’
since the right hancd side is actually a constant function on P. The change
J—J + A with A € 3* produces the change B + B + dA, being <X A Y,dA> =
- <[X,YJ],A>. Hence we remain in the cohomology class [B] determined by B.

If this class is zero, then tne action is said to be strongly Hamiltonian

and there is a momentum mapping for which {HX,HY] z H[X,Y]'

A Hamiltonian action generates also a cohomology class of degree 1
in the cohomology of the Lie group G with respect to the coadjoint re-
presentation in 3*. A 1-cocycle 6 is indeed defined by 8(g) =
J e %é(p) - Acig'1 o J(p), since the right hand side does not depend on the
choice of p € P. The substitution JJ + A produces the change
6 —» 6 + 4 - Ad;-1(A) and we remain in the cohomology class [§ ] deter-
mined by €@. The relation between the cocycles B and € is given by

<Y,Te B(X)> = <X A Y,B>, where T is the tangent functor and e the identity

of G. If the cohomolgy class is zero, then there is a coadjoint equivariant

momentum mapping J, 1i.e. a momentum mapping making the following diagram

commutative:
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2 The simplest example of a Hamiltonian action is represented by a
complete globally Hamiltonian vector field on a symplectic manifold (case
G = R).

Let T denote the time axis (T = R) and let us consider the manifold

P

T#(T) X Pa R xR X P with the symplectic form P g prg w - du A dt

where pr.:P — P, t:P —R (first factor, R = T), u:P —R (second factor) are

2
the canonical projections. The dynamics of a system whose phase space is P
is given by a submanifold M c P which is the image of a section
w.:T x P —+P of the canonical projection e:F-ﬂ-T X P. This submanifold is
represented by a function H:T x P -~-R (the Hamiltonian) as follows: M=
{(a,b,p) € P; b =-H(a,p)}. Since it is of codimension 1, M is necessarily
coisotropic. The characteristic distribution D' = Ti(M)c: T(M) (we use the

symbol ¢ for the symplectic polar operator) is locally described by the

equations [8]
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where (qi,pi) are canonical coordinates on P and (qi,pi,&i,ﬁi) are the
corresponding coordinates on T(P). These are the equations of motion in
the homogeneous formulation of Hamiltonian mechanics.

With each vector field X on T we associate a T-dependent Hamiltonian

vector field K, on P defined by the equation i w =z - dd, . (p), where
Kx(t,p) X,t

X

Hy t:P -+ R:p ~X(t)-H(t,p) (X(t)e R). The group R acts on T by trans-
?
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lations. This action can be transferred to P if for each generator

Xe R ¥ R: (i) the vector field K, is T-independent, (ii) Ky is complete.

X
The action « :R x P —+P generated by the vector fields Kx is symplectic
because these vectors are Hamiltonian. Condition (i) 4is in particular
satisfied when the Hamiltonian function H does not depend on T. In this
case the function H, interpreted as a mapping from P to 5' = R, is a
momentum mapping. Since R is commutative the action is of course strongly
Hamiltonian. If we add to H any function of time, then condition (i) is
still satisfied, but we have not a momentum mapping in the usual sense.

The action « can be constructed as follows. It can be seen that
the characteristics of M (i.e. the maximal connected integral manifolds of
the characteristic distribution) are projected by &£ to local sections of
the natural projection T x P =T (by "local section" we understand "union
of images of smooth local sections"). The completeness condition (ii) is
actually equivalent to the fact that these sections are global sections.
In this case, for any choice of twc elements t1,t e T we can define a

2

relation D C P x P by
t2,t1

(2) D 2 {{p,p. 1 &P Py {t, ;5. ) and (& ) belong to the image
tZ’tT 21 1779

2'P2
by the projection & of the same characteristic of M}.

It is evident that, under the assumption of completeness, this relation is
the graph of a diffeomorphism u(t % P —-P. It turns out that this re-
lation is a Lagrangian submanifold of the product (P,-«) x (P,w), so that
the diffeomorphism is symplectic. If L?tz,t1 depends only on the differ-
ence s = t2 - tl’ then we can define a symplectic action Y :R xP—P by
setting 4;(p) z qlo+s,t°(p) with t_e T arbitrarily chosen. This in-

variance property is actually equivalent to condition (i). Finally, one

can check that this action is the action generated by the vector fields Kx._

L 2R BN
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3. The homogeneous formulation of Hamiltonian mechanics admits a
natural generalization to Hamiltonian actions, which provides a geometrical
approach to the momentum mapping theory [8] [9]. Let T be a manifold,

(P, w) a symplectic manifold and M a submanifold of the symplectic manifold

(F,&) = (T%(T) x‘P,pr:cei + prsua), where pr1:§-—»T*(T) and pr2:§ —P are
the canonical projections, and GUT = d GT where HT is the Liouville 1-form

&
on T{T,.We assume that:

(A.1) M is the image of a section m:T x P+ P of the projection E z

7YT X idp:ﬁ.a-T x P (T, :T*¥(T) = T is the cotangent bundle projection).

T

(A.2) M is coisotropic in (P, &).

Assumption (A.1) means that M can be described by a mapping

H:T x P — T#{T) such that for each p ¢ P the mapping
Hp:T — T*#{T):t +~H(t,p)

is a section of ., (i.e. a 1-form on T):

T
M = {(h,p) e P; h = = H(TYT(h),p)].
As a conseguence we have a mapping

JiP — @1(T):p — Hp

(we denote by '§H(Q) the space of 1-forms on a manifold Q). We call H and

J the Hamiltonian and the momentum mapping associated with M respectively.

For each vector u ¢ T(T) we define the function

Hu:P — R:p l—-<u,Hp>.
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The Hamiltonian mapping H can be identified with the following

function (we can use the same symbol without danger of confusion):

H:T(T) x P =~ R:(u,p) F*HU(P).

This function is linear when restricted to each fibre of T(T). From this
point of view H can also be interpreted as a 1-form on T with values in the
space C (T;R) of smooth functions on T. We denote by dH the corresponding
differential (it is the differential "with respect to T").

With each vector field X € X(T) (we denote by X(Q) the space of

smooth vector fields on a manifold Q) we associate the following functions:

Hy = <X,H> :T x P —R:(t,p) w (t),H{t,p)>,

(3) EX:T*(T)~*-R:h > <X,h>,

}d

= (pr# # 7 lN—b
HX -(‘p..l EX + £ dx).P R.

~

: - H®*E = E - #
We recognize that Hx = H By = Ey e H and that m¢ Hx

set characterized by the vanishing of all functions

= 0, so that M is the
HX'
A
that the function Ex is the Hamiltonian of the canonical 1lift X to T¥#(T) of
] s jfw = - W
the vector field X lX T dEx
The following general identity holds:

We also recall

(4) ({01 = H

el % Napn > SN =

[X,Y] ~ (Y,QHX> + (X,QHY>),

for each X,Y € X(T), where gﬁx denotes the differential of Hx interpreted
as a O-form on T with values on Ca?P,R), and {,]}] are the Poisson brackets
on Pand on T X P induced by & and w respectively. Since E-p =

id one can see that the coisotropy of M (assumption (A.2)) is char-

T x P’
acterized by one of the following two equivalent conditions:

(5) {HleY] = H[x'yl’
(6)  {H,By) = By oo

- <L gH> + CX,H D,
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for each X,Y € X(T). Because of the identity
> - <Y,dH> - H

(7) <X A Y,dH> = <X,dH

Y [x,Y]

equation (6) is equivalent to
(8) {Hy, Hy} + <X A Y,dH> = 0.
Condition (5) means that the mapping

¥(T) = C (F,R):X = H,
is a representation (i.e. a homomcrphism) of the Lie algebra #(T) in the
Poisson algebra on (P, & ).

Arguments of linear symplectic algebra show that the first component

v of a vector (v,w) € T( (M) belongs to the space (THP(Tt(T)))§, where

h,p)
£ = T]—’T(h)y i.e.

<V AV, aJT> = 0 for each v'e THp((Tt(T)).

The second component w is then uniquely determined by v through the equ-

ation
(9) i, w= - (THIE, wy)

(i denotes the interior product of a form by a vector, * denotes the linear

dual functor, and H_:P —-T{(T):ph*}ﬂt.p)).

t

It is remarkable the fact that, under assumption of coisotropy
(A.2), the Hamiltonian H (interpreted as a function on T(T) x P) is the
generating function of the infinitesimal symplectic relation Tf(M) c T(M)
associated with M (see [10]). This implies in particular that instead of

(9) we have the following simpler expression:
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(10) i,ws=- dHu(p), u s Tfr.r(v).
Further consequences:
(11) The image by the projection ¢ of a characteristic of M is a "local
section™ of the canonical projection T X P —T.
(12) The image by the projection T#(T) x P —T#(T) of a characteristic of M

is a "local section" of TVT (i.e. a "local 1-form").

(We recall that a characteristic of M is a maximal connected integral

manifold of the characteristic distribution T (M), and that by "local
section" we understand "union of images of smooth local sections".)
These projections could not be "global sections"™ since, for any two

fixed points t1 and t2 of T, a characteristic of M could not have or could
have many intersections with both fibres Tg (T) x P and T: (T) X P.
1 2
We assume that the following completeness condition is satisfied:

(A.3) The images by the projection ¢ of the characteristics of M are

"global sections" of the canonical projection T X P —T.

As a consequence, the image by the projection T#{T) x P —T#(T) of
the characteristics of M are images of 1-forms on T. Moreover, the re-
lation th,t1 defined as in (2) for each pair (t1,t2) € T xT is the graph
of a diffecomorphism (Ft t :P—P. On the other hand,. the relation Dt &

1 2
is the reduced set of the symplectic relation

1

D = {(h,p;h'p') € ? x P; (h,p) and (h',p') belong to the same

characteristic of M} e

with respect to the transversal coisotropic submanifold of (F;-JZ) x (3;55)

obtained by fixing the fibres over t1 and tz. It follows that Dt " is a
’

symplectic relation, thus ((b " is a symplectomorphism (see [10]; for

2’1
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the process of reduction see [11] [12] [13] [14]).

We call momentumr relation a submanifold M ¢ T#(T) x P satisfying

assumptions (A.1), (A.2) and (A.3). If a momentum relation is given, then:
(i) with each vector u € T(T) we associate a symplectic vector field K, on
(P, w)(the vector field whose Hamiltonian is Hu); (ii) with each pair
(t1,t2) € T x T we associate a symplectomorphism ‘{t % on (P,w)s (I)
with each vector field X & X (T) we associate a T-dependent Hamiltonian
vector field KX:T x P —+T(P) (defined by Kx(t,p) = Kx(t)(p)); (II) with
each diffeomorphism ?:T —+T we associate a T-dependent family of sym-
plectomorphisms on (P, w), (P(i 55 ¥ Lpi(t),t'

The following identities can be proved:
(13)  [Ky»K ] = K[x,y] - <X,dK > + <Y,dK >, for each X,Y € ¥(T),

where dK is the differential of K interpreted as a 0-form on T with

X X
values in the space of vector fields on P, and

QDI P & id ¢ = ¥ : o U
(1dT,t) - ST (gonz,t) (3, 0n(t) (g,t)’
for each pair of diffeomorphisms ;, 7 on T.

Finally we emphasize the following fact:

(15) The momentum relation M defines two subsets of ‘51(T) which we denote
by [M(M) and A(M): M(M) is the set of 1-forms whose images are the

projections to T#(T) of the characteristics of M, A(M) is the set of the

forms Hp, p € P.

y, Let £ c X(T) be a Lie algebra of vector fields on T. Formula (13)
shows that if dK, = O for each X ¢ £ (i.e. if K, is a vector field on P)
then the mapping ¢ —4-)5H(P,60):x P‘Kx is a representation of the Lie

algebra £ in the Lie algebra ifH(P,uJ) of Hamiltonian vector fields on P.
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Let us call condition

(WD) gk, =0 , ¥xed,

the weak invarisnce property of M with respect to £, and

(S1) gH, =0 , Yxeg,

the strong invariance property of M with respect to & .

It 4is evident that (SI) implies (WI). The inverse is not true in
general: the case of T-independent Hamiltonian vector field defined by a
T-dependent Hamiltonian is an example.

We remark that if (SI) holds, then (from (6))

A

(16) {HX ,Hx }

for each X1,X
1 2

= H 7
[x1,x2] ’ 2

i.e. the mapping

L — C”(P, w)iX r—vHx
P d
is a representation of the Lie algebra € in the Poisson algebra C (P,«’).
We assume from the beginning that the Lie algebra £ is transitive
(at each point t € T the vectors of < span the whole tangent space Tt(T))
and free (X¢€ € , %(t) = 0 imply X = 0). We have dim(£) = dim(T).

For each X ¢ € we define a vector field ix on P by
(n ﬁx(h,p) = (X(h),K (t,p))

where ¢t = 1TT(h) and i is the canonical 1lift of X. The vector field Ex
differs from the Hamiltonian vectorfield ﬁk generated by ﬁi by a vector
vertical with respect to the brojection E More precisely, for each

vector (v,w) tangent to Pata point (h,p), we have:
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~ A s
<(v,w) A (Kx - Kx),cv> = <U,QHX>(p)

where u = T WT(V). From this formula we can see that (SI) holds if and
only if ﬁ& = ﬁx for each X e £ , i.e. if and only if for each X € ¢ the
vector field ﬁ* is tangent to M. Since ﬁk is tangent to the characteristics
of M (because ﬁi is constant (= 0) on M), it follows that:

(18) (SI) holds if and only if each vector field X with X € £ is tangent
to the images of the 1-forms [ (M), i.e. dy M = O for each ue ["(M) and

X e€ (we say that the 1-form u is ¢ -invariant).
/

It can be shown that:

(19) The set of vector fields <~ e ¥(T) which commute with each element of
the transitive and free subalgebra £ ¢ ¥(T) is a Lie subalgebra isc-

morphic to Af, transitive and free.

This remarkable fact yields the following further characterization
of (SI) which is more effective then (18) since it does not require the

knowledge of the characteristics of M (see [10]):

(20) (SI) holds if and only if for each Y € Z the vector field (¥ x 0) is

tangent to M, or, equivalently, dYHp = 0 for each Ye * and pe P (the

forms of A(M) are Z -invariant).

Because of the identity dY — diY + in, from the last proposition we

see that (SI) is also equivalent to

(21) dH, + i,8H = 0, for each Y €

Y

From (7) and (8) it follows that
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(22) {HY1’HY } + H[Y1,Y2] = 0, for each ¥ ,,Y, €%2.

2

The vector fields {%;X € £} and {¥;Y ¢ %) span two integrable
distributions on T#(T) of rank equal to dim(T). We denote them by L and R
respectively. Their integral manifolds are images of the £ -invariant and
%2 -invariant 1-forms respectively. Since € and - commute, from the
identities 0 = E

= {EX'EY} s = <X,dE_> = (Y,dEx> = XX A Y, > we see

(x,Y] Y T

that:

(23) The space of ¢ -invariant (resp. « -invariant) forms is the linear

dual rxz * of the space 2z (resp. the linear dual ¢Z% of & ).

(24) Lg z R, R%:L: the distributions L and R (and the corresponding

integral manifolds) are simplecticly dual.
We can express (18) and (20) as follows:
(25) (SI) &> T(M) c 2% & AMM) c £%.

We remark that from the last condition it follows that Hp c /% ¥ peP,

i.e. that the momentum mapping J takes its values in [%* C QH(T).

L B B

5. Let A:G xT T be an action of a Lie group G on the manifold T.
For each g € G we denote by Ag the diffeomorphism T — T:t ~ A(g,t). We
assume from the beginning, for the sake of simplicity', that this action is
transitive and free. Let us consider the following property:

(FWI) for each g ¢ G and t ,tl £ T

: ¢
"F)(B(t:i),t.:l )g(tl),t.ﬂ

Identities (14) show that the mapping
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¢:6 x P—~P:(g,p) = ¥ (p),
X Ag(to),to

where t° is an arbitrarily chosen element of T, is a symplectic action of G
on (P,w). Going back to the definition of the vector fields K, and the

symplectomorphisms ‘{)tz’t'l, one can see that if £c X(T) is the Lie algebra
of generators of ], then the vector fields Ky with X € £ are the genera-
tors of Y. Hence (FWI) is the finite counterpart of the infinitesimal
weak invariance property (WI).

A definition of finite strong invariance should be given in terms of

"generating functions™ of the symplectomorphisms ‘Ft We adopt here a

t.
i S
different approach. Let us consider the mapping @:G X P— P defined by

(26) ¥ (g;h,p) = (Ag(p), LFAS(t),t(p))

where t = TTT(h) and ﬁg is the canonical lift of Ag:T-+ T. This mapping
is an action of G on P because of (14), and for each X ¢ ¢ the vector

”~

field ﬁx defined in (17) is a generator of Y. We consider the property

(FSI) M is invariant under the action @ 3

After the discussion which leads to (18) we see that this property is the
finite counterpart of (SI) where ¢ is the Lie algebra of generators of the
action A . There is a characterization of (FSI) which involves the

momentum mapping J:P —*@1(T).
(27) (FSI) holds if and only if (FWI) holds and the diagram

P ——= & P

(28) J J
-1
*g
70 e 1)
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is commutative.
Now we use the fact that the action Ais free and we can prove a

proposition analogous to (19):

(29) The set of transformations of T which commute with A is a Lie group E

isomorphic to G. The action of E is transitive and free.

We define an element o u ® E for each pair (t1,t2) €T XT by
2’1

= A
-9t t (t) ( y(t,tj),tz)
2’1 _

where @’:T x T+ G is the differentiable mapping defined by the condition

g-=4t',t) if - t' = A(g,t). It can be shown that Pt
2' 1

= \ for each g ¢ G. Hence there is exactly one element of E
Ag(tz),d (t1)

for each orbit of the product action of Gon T x T. We can fix a point

t ¢ T and set
o

Q:GXT»TN&Q¥+§A(t)t(U.
g o'’

It follows that ¢ is a transitive and free action commuting with A . The
Lie algebra <«z cX(T) of generators of this action does not depend on the
choice of to (while the definition of ¢ does). It is clear that Z coin-
cides with the Lie algebra associated with the Lie algebra £ of generators
of \ according to proposition (19). Finally, instead of proposition (16)

we have:

(30) (FSI) holds if and only if M is invariant under the action of the
group £ x {idP), where E is the group of the canonical 1lifts of the ele-

ments of E.

Since the action A is transitive and free, the manifold T can be

identified with the group G by fixing an element to of T. The action A
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becomes equivalent: to.the left translation on G and the action e to the
right one. The use of the manifold T instead of G shows in particular that
the above considerations does not involve the distinguished identity ele-

ment e € G.

Starting from the definitions of momentum relation and in discussing
the invariance properties with respect to a transitive and free Lie algebra
or a transitive and free action, we have found the peculiar properties of
the momentum mapping in the case of a strongly Hamiltonian action. We
remark that in this geometrical approach both Lie algebras of left and
right invariant vector fields and both spaces of left and right invariant
1-forms of the group are involved. Although they are isomorphic, they play
a different role.

It can be shown that conversely (see [9]), starting from a strongly
Hamiltonian action, a momentum reilation satisfying the invariance proper-
ties and representing the given symplectic action can be constructed.
Hence, momentum relations provide the homogeneous model for strongly Hamil=-

tonian actions.

6. We construct now a model for Hamiltonian actions including weakly
Hamiltonian actions. We consider a principal fiber bundle T:S -+ T with
structural group R (S and T are assumed to be connected). We denote by
Z:R xS —~3S the action of the group R on S and by Z its infinitesimal
generator. A connection for such a principal fibre bundle is a 1-form

o € dﬂ(S) satisfying equations

All connection forms are given by

£31) o' = of + TEA
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where A e & (T). Since i,dx =0, d,dx =0, there exists a closed

YA
2-form B on T such that dx = T*B. The 2-form B is the curvature of the
connection o« . The curvature B' of the connection form &' = &« + T¥A is:

(32) B' = B + daA.

Let us consider the coisotropic submanifold C of T#(S) defined by
C = {k ¢ T®(8); <Z,k> = 1}

(C is coisotropic because of codimension 1). The characteristics of C are
orbits of the canonical 1lift % ‘of the action . The coisotropic sub-
manifold C defines a symplectic reduction. It turns out that the reduced
manifold, i.e. the set of the characteristics, is isomorphic to T*(T).

With each ccnnection form X we associate a mapping »:C — T¥(T)

defined by
(33) <v, x(k)> = <w,k>

where k € C, V ¢ Tt(T)’ t s Wil 8= Ws(k) and w is the horizontal lift
of v, i.e. the vector defined by equations <w, &> =z 0, T (w) = v,

It can be shown that (see [15]):

(34) The mapping » is a surjective submersion whose fibres are char-

acteristics of C,
and

€ w # s w
(35)  »x%( p*+ T TB) sIC

where ws = d 95 is the canonical symplectic form on T¥(S) (Bs is the

Liouville form).
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Hence, the mapping » defines a symplectic reduction isomorphic to
the reduction associated with C: the reduced symplectic manifold of

(T'(S),cbg) by C is symplectomorphic to (T*(T), T ) where

= % B,
o wT+1rTB

We see that the canonical symplectic form LUT is "varied" by the term
T'TB.
The analogous mapping x! corresponding to the choice

o' = o + T®*A of the connection form is
(36) M' = M+ AT,

Let us choose a connection « and take the corresponding reduction
mapping X . Every connection form «' can be "reduced" according to the

following property:

(37) If &' is a connection, then the image by )¢ of the set «'(S) is the

image of the 1-form A on T defined by (31).

Indeed we have (see the definition of x ): v, (x'(8))> =
Wy x'(s)> = <w,«(s) + T*A(s)> = <v,A> since <w,%¥ > = 0.

We say that A in the reduced form of «' by the connection &,

We note that the reduced form of « by itself is the zero form.

Let M c T*(S) x P be a momentum relation: assumptions (A.1), (A.2)

v
and (A.3) (Section U4) hold for M. We make the following further assumption:
(A.2') M is contained in the coisotropic submanifold C x P.
The characteristics of C x P are pairs of characteristics of C and

points of P. The characteristics of M are union of characteristics of C.

The vector field Z x O is then tangent to the characteristics of M. Let us
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denote by ['(M) the set of 1-forms defined by projecting to T*(S) the

characteristics of M (see (15)).

(37) The 1-forms of (M) are connection forms of the principal fibre

bundle %:S —+T.

Condition izd = 1 is a consequence of (A.2') while dze< =0 (i.e.

Z*x = o) is a consequence of the fact that 2 1is tangent to «(S).
Property (37) is equivalent to (A.2').

Let § be the Hamiltonian function of M and 1let Hp be the 1-form

corresponding to the point p ¢ P. Let A(ﬁ) be the set of these 1-forms

(see (15)). It can be shown that

(38) The 1-forms ép are connection forms of the principal fibre bundle

m:S->T.

Hence with respect to the chosen connection x, for each p € P we

have the following decomposition of Hp:

v
3 H = x Y
(39) p + p!
where Hp is the reduced form of ﬁp.

It is remarkable the fact that

(40) The reduced set M = () X idP)(ﬁ)
(i) is the image of a section of the projection &= TFT X idP;
(ii) is a coisotropic submanifold of (T*#(T), o) x (P,w);

(iii) satisfies the completeness condition.

This means that M is a momentum relation on T#(T) x P, but with
respect to the varied symplectic structure G on T#(T). We call M the

reduced momentum relation of ﬁ corresponding to the connection .
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The Hamiltonian H:T x P — T#(T) of M is defined by H(t,p) = Hp(t)
where Hp is the reduced form of ﬁp (see (39)).
M is a coisotropic submanifold since it is the image by a symplectic
relation of a coisotropic submanifold. The identity (4) holds also if in
the first term the Poisson brackets are those corresponding to the varied

symplectic structure 0 . Let us denote them by { , }c . The identity
et ~ - ~ ~ ."_, s "
{HX,HYIE {HX,HY} + &%o priX A Y,B

holds for each X,Y e¢ X¥(T). Consequently, by a reasoning analogous to that
of Section 3, we conclude that the coisotropy condition (5) is unchanged

while (6) becomes:

= - t = * /
(41) {HX,HY} = H[X’Y] <Y,9Hx> + <x,gdy> prT<X A Y8,
or (use (7))
(42) {HX,HY} + <X A Y,dH> = - pr;<x A Y,B

for each X,Y ¢ X (T).

The reduced momentum relation M generates two sets of 1-forms on T
which we denote by ["(M) and A(M) according to (15). It is clear from the

previous discussion that:

(43) IM(M) (resp. A(M)) is the set of the reduced forms of "(M) (resp.
AlM)).

For each pair (s.,s,) e S xS, a symplectic relation D is
172 8,13,
defined by considering the characteristics of M. Because of the complete- —
ness condition these relations are graphs of symplectomorphisms ¢; s on
]
1

(P,w). The fact that M is contained in C x P (assumption (A.2')) implies

the following invariance property:
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Dgr(sz), Zr,(s1) . D82,51

for each r,r' ¢ R. This means that Ds o depends only on the fibres of T
2050
and we can define, for each (t1,t2) € TxT,

(44) D =D

where s, are s, are arbitrarily chosen in the fibres over t.1 and t2. It is

remarkable the fact that the relation D so defined coincides with the

L.t
relation determined by the reduced coisofro;ic submanifold M as in (2).

As a consequence, the completeness condition (A.3) also holds for M.
From the definition (44) of th,t1 we see that these relations (and the
corresponding symplectomorphisms) do not depend on the choice of the con-

nection &« .

Tis For the reduced momentum relation M remarks analogous to those at

the end of Section 3 hold (namely, (i), (ii), (I), (II), and formulae (13),
(14)). We consider a free and transitive Lie subalgebra £ = -fT e &0T)

and the invariance property (SI) (Section 4): QHX =0, T X e «ZT. If (SI)

holds, then we have a representation of -5& in the space ih(P,aJ) of the
Hamiltonian vector fields on (P,w) (according to (13)). However, in the
present case, we have different characterizations of (SI).

Let * be the transitive and free algebra of vector fields on T

T
commuting with ﬂT according to proposition (15). Let ls be the subspace
of *(S) over R spanned by the infinitesimal generatof Z and the horizontal
lifts Xh of the vector fields X € gT (TTe Xh = XeT™ and <Xh,°(> = 1).

From the general identities
h h ,h h
(45) [2,x) =0 , [X,,X;]= [X),X,)7 = TWECX A X,,B> 2,

for each x,x1,x2 € Z(T), we see that ls is a transitive and free Lie
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subalgebra of ¥(S) if and only if the following invariance property holds:

(CI) The curvature B of the chosen connection o is -tT-invariant, i.e.

dB=0,¥Ye Ty i:e. <X A X;,B> = const., Jy‘x1,x e ET.

X 2

1

This condition means that B is a 2-cocycle on the Lie algebra 3T.

Let H :SxP >R be tne function defined as in (3);. Since
&P, x> = 0, % B (s,p) = <xh(s).§p> . <xh(s),1T*Hp+oL> .
<X(Tr(s)),Hp> = Hx(Tf(s),p§. For the function ﬁz:s X P —-R an analogous
calculation shows that ﬁz(s,p) = 1, since <Z,TT*HD> = 0 and <Z,o¢> = 1.

We can think of these functions as O-forms on S with values in
c®(P,R) and denote by dH h? QHZ the corrisponding differentials (d is
essentially the differentia§ with respect to S). The above calculation
shows that the invariance property (SI) for the reduced momentum relation M

is equivalent to dH = O, ¥ X e ifT and that QHZ = 0 is identically

h
X
satisfied. Hence (SI) is equivalent to

v
(s1') di =0 , ¥ Ve <L,

i.e. to the strong invariance of M with respect to gS'

All the results (concerning M and £ ) of Section 5 hold with refer-

ence to M and ZS. If (CI) holds, then we can introduce the Lie algebra

’ZS of vector.-fields on S commuting with fs. According to proposition

(19), this algebra is transitive, free and isomorphic to 'eS' We remark

that )ZS is does not coincide in general with the Lie algebra spanned by Z

and by the horizontal lifts Yh of vector fields Y belonging to the algebra
T& which commutes with ‘CT'
According to (18) and (20), we have that:

(46) Invariance property (SI) is equivalent to one of the following two_

conditions:

(1) each form )S: € F(ﬁ) is ‘es-invariant (i.e. r'(ﬁ) C’Lls).
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(ii) (SI) holds and for each p € P the 1-form ﬁp is ig-invariant (i.e.

A M) c £y,

Condition (i) is equivalent to d 0, ¥ Xe -@T. By applying

the Lie derivative d h to the equality o+ 'n*g’ where /4 € (M) is

X
the reduced form of 4, we see that

xh%; :
i

(47) (SI) holds if and only if each reduced form 4 € [M(M) satisfies

equations
i = ‘h/ i
(48) d, 4 +i,B=0 , xe £,

We have also an effective characterization of (SI), which is similar

to (20):

(46) (SI) holds if and only if (CI) holds and dyH = 0 for each p & P and

P
Ye Z, (i.e. H) is Zg-invariant, i MM e JC,;).

The proof of these propositions is based on the following remarks.
Let 4 = & + W and V=o + T*y be €s—invariant and ks-invariant
respectively. The manifolds é7(S) and Y(S) are symplecticly dual (or
"orthogonal®™), if they intersect, since KS and QS commute. Since the
reduction » is symplectic, the manifolds 4(T) and »(T) are orthogonal
with respect to the reduced symplectic form O . Equation (48) means that
the vector field ﬁ + i, where i is defined by if u& =,-TT;iXB, is tangent
to 4{(T). Since (f A (f + f),6‘> = 0, it follows that ? is tangent to
¥ (T), hence de’ = 0. .

Following the pattern of Section 5 we can now pass to the "finite"
analysis by considering an action 1:G X T —T of a group G on T. We leave_
this out of the present lecture; however, we remark that in this way we
get a geometricaI'interpretation of the 1-cocycles associated with a Hamil-

tonian group action. By assuming that A is transitive and free and by
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choosing an element of T we obtain an identification G ~ T and CT becomes

the Lie algebra & af generators of the left translation. Equation (48)

G
written for a group G is integrable if and only if B is closed and left

invariant. Solutions are in general "local" 1-forms. Assuming that they
are global sections, let us take the solution 4 for which y(e) = 0. It

can be seen that the mapping 6:G — £* defined by
(50) P(g)g) = %(g)

satisfies the cocycle equation: Blgg') = A'_1( B(g')) + P(g). Hence
the solutions of equation (48) are the geomgtrical counterparts of the
1-cocycle on G (with respect to the coadjoint 1left representation \¥)
associated with the 2-cocycle B. By taking the Lie derivative with respect
to a vector field Y &€ X (1.6 a generator of the right translations

G
G xG—G:(g,g") b»g'g'1) we obtain:

dd. g =0 , Y56l % 8%

G

The 1-forms on G solutions of this equation (in particular the solutions
such that #4(e) = 0) represents the 1-cocycles of G, following the defini-

tion (50).

This lecture contains results of a joint research program with
W.M.Tulczyjew supported by Consiglio Nazionale delle Ricerche, Comitato
Nazionale per le Scienze Matematiche, Gruppo Nazionale per la Fisica Mate-
matica. I would like to acknowledge the hospitality of Collége de France
(October 1983) where the research on this subject w - initiated. I would
like to thank Professor A.Lichnerowicz and Professor C.-M.Marle for stimu-
lating discussions. I would like to thank the Scientific Committee and the_
Organizers of this meeting, in particular Professors A.Ribeiro Gomes and
J.A.Pereira da Silva, for their kind invitation and their warm hosbitality

in Coimbra.
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