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THE HAMILTON-JACOBI EQUATION
FOR A HAMILTONIAN ACTION
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Istituto di Fisica Matematica «J. Louis Lagrange», Universita di Torino

0. — Introduction.

The purpose of this lecture is to construct a coisotropic submanifold suitable
for a homogeneous representation of a Hamiltonian action ¢ : G x P> Pon a
symplectic manifold (P, w), and to write the corresponding Hamilton-Jacobi
equation. Following a suggestion by W.M. Tulczyjew, we work on the symplectic
manifold (T*G, c.JG) x (P, w) where wg is the canonical symplectic form of
T*G. The discussion is not restricted to Abelian actions. Our approach is based
on the geometrical version of the Hamilton-Jacobi theory, connected with the
theory of symplectic reductions ([2], [3], [4]), which is partially summarized

in Section 1.

All manifolds and mapping are tacitly assumed to be of class C” . We use the
following notation:

(v, p) evaluation of a covector p on a vector v.

(v, 8) evaluation of a form 8 on a vector v.

Tq o the tangent space at a point g of a manifold Q.
T:Q the cotangent space at a point g of a manifold Q.
Ta :TQ-»TM  the tangent mapping of a mapping & : Q — M.
o' T@->0 the tangent bundle projection of a manifold Q.
LA T*Q - Q the cotangent bundle projection of a manifold Q.
OQ the Liouville 1-form of T*Q.

wy = dé 0 the canonical symplectic form on T*Q.

do the exterior differential of a form 8.

iy6 the interior product of a form 6 by a vector field X.
L6 the Lie derivative of a form 6 by a vector field X.
o*f the pull-back of a form & by a mapping «.

0| K the pull-back of a form 8 on a submanifold K.

1. — Homogeneous Systems.

We call homogeneous system a triple (P, w; C) where (P, w) is a symplectic
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manifold and C is a coisotropic submanifold of (P, w). We call characteristic
distribution of C the integrable subbundle

D=y, T O,

where ¢ denotes the symplectic orthogonal, and characteristic a maximal integral
connected integral submanifold of D. The relation

D ={(x, y) ECx C; x and y belong to the same characteristic }

is a Lagrangian submanifold (may be immersed) of the product (P, — w) x (P, w),
hence a symplectic relation on (P, w). It is a symmetric relation whose image is
the submanifold C. We call D the Hamiltonian relation associated with the homo-
geneous system (P, w,; C). We denote by P[ 1 the quotient set of the caracteristic
distribution of C, i.e. the set of the characteristics of C. The relation

[Cl={(x,c) EPx P ;);x Ec}

composed with its transpose [CT gives D:
D=[CJ)-[C]

When the quotient Pl ) has a differentiable structure such that the natural
projection from C onto P 1 is a submersion, then C is called simplecticly regular
and (P, w) is said to be globally reducible by C. It is well known that in this
case on P[ c) @ symplectic form is defined in a canonical way. We denote it by
@iey and we call (P[ cy w[C]) the reduced symplectic manifold. It turns out
that [C] is a Lagrangian submanifold of (P, — w) x (P[C], w[C]) i.e. a symplectic
relation from (P, w) onto the reduced symplectic manifold. We call reduction any
differentiable relation which is the graph of a surjective submersion. Hence
[C] is a symplectic reduction.

Let us assume that (P, w) is a cotangent bundle: (P, w) = (T*Q, wQ). A
regular solution (resp. a local regular solution) of the Haminton-Jacobi equation
corresponding to the homogenous system (T*Q, Wy C) is a function S: @ - R
(resp. S : U~ IR, with U open subset of Q) such that dS(Q) C C (resp.dS(U) C O).
We can define non-regular solution (which represent Lagrangian submanifolds
of C which are not images of section of 7*Q) by using Morse families (see [2D)-

A regular complete solution is a differentiable function S : 4 x Q - IR on the
product of a manifold A with the manifold Q such that the family of Lagrangian
submanifold of 7*Q

(L, = dS,(0);a € 4}

form a foliation covering C and the natural projection from C onto the quotient
A is differentiable. We remark that dim A = dim Q@ — codim C. We have the
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following version of the Jacobi theorem: If S : A x @ - R is a regular complete
solution of the Hamilton-Jacobi associated with the homogenous system (T *Q,
Wg C), then the relation

={(p.b) ET*Q xT*4;(p,~b) =dS(q,a), (q.a) = (my x7 ,)(p, b}

is a symplectic reduction from (P, w) onto (T*A, w,). If the fibers of R are
connected, then R is isomorphic to the reduction [C], i.e. there exists a symplecto-
morphism vy : (P[c], w[C|) - (T*A, w, ) such that R =Te [C], where T’ = graph ¥.
It follows that

D=R'-R.

The definition of local regular complete solution can be given in a natural
way. Let C be locally defined by independent equations

4, p)=0
@=1,...,rpr=codimC; i j=1, , n; n = dim @), where (q') are local
coordmates on Q and (g, p) are the correspondmg canonical coordinates on
T*Q. A local complete solutlon has a local representative S(a q'), where @)
are n —r parameters, satisfying the Hamilton-Jacobi equation

8
ot 2o
aq’

and the condition

dls
rank .)=n—r,
aa* aq’

q

which means that the Lagrangian submanifolds L, form a foliation.
The classical homogeneous formulation of Hamiltonian dynamics represent
a basic example of homogeneous system (see for instance [2], [4]).

2. — Group Actions.

If ¢ : G x P> Pis an action of a Lie group G on a manifold P then for each
(g, p) €G x P we set:

¢, :P=>P:pb g p),
¢P G P gy p).

We denote by X the infinitesimal generator of the action ¢ corresponding to
an element X of the space T,G, where e is the identity in G, identified with the
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Lie algebra 7 of the left invariant vector field on G. The vector field X? is defined
by:
X¥:P>TP:pb TP (X).
In particular we denote by
A:GxG->G:(gg)gg,
p:GxG->G:(g.8)g

the left and the right action of G onto itself respectively. The Lie algebra struc-
ture on 7 is defined by the equation

X, Y =—[X*, Y2
For any action ¢ : G x P — P we have
[X, Y] =5 [X¥ Y¥],

with — (resp +) sign if ¢ is a left (resp. right) action, i.e. if Py © Ppr = Pppr (resp.

Py © g = Pprp for each g, g’ € G. In the following discussion the group G is

assumed to be connected.

3. — Hamiltonian Actions.

Let (P, w) be a symplectic manifold. An action ¢ : G x P — P is said to be
a symplectic action if cp;w = w for each g € G. A momentum mapping cor-
responding to a symplectic action ¢ : G x P - P is a differentiable mapping
H : P -9 * such that, foreach X €7

where

Hy :P->R:pb (X, H(p)).

A Hamiltonian action is a symplectic action ¢ : G x P— P on a symplectic mani-
fold (P, w) which admits a symplectic mapping H such that, for each X, Y €7

3.1 By Hyd=%8 3 oy

with — (resp. +) sign if g is left (resp. right). The Poisson bracket {, }is here de-
fined by

. hl =iy iy @,

where Xl and X, are the vector fields defined by ika =df, (k=1, 2). We call
H the Hamiltonian mapping of the action y. If the group G is Abelian H is
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determined up to a constant value in 7 *.
In Section 5 we use the following

LEMMA. — Let H : P > * be the Hamiltonian mapping of a Hamiltonian action
¢ : G x P> P on a symplectic manifold (P, w). If 0 ET* is a regular value of H,
fhen C = H1(0) = {p € P; H(p) = 0} is a coisotropic submanifold of (P, w)
invariant under the action ¢. The characteristics of C (i.e. the maximal connected
integral manifolds of the characteristic distribution of C) are orbits of y restricted
to C.

Proof. — By definition of regular value the mapping 7. H : T, P > T, T* o TH
is a surjective for each x € C. It is known that in t}ns case C is a submamfold
of P and that codim C = dim G. If (X)) (a = 1, , m; m = dim G) is a basis
of  and (u®) is the corresponding dual basis of 5’7 *, then H(p) = qu(p),u?’
and the functions (Hxa) have independent differentials at each point of C. The
submanifold Cis defined by the independent equations

Hxa =0(a=1,...,m)
and it is characterized by the following conditions:
PECe=H,(p)=0, VXET.
Since
{Hy,, Hy }| s - A N |€=0,

C is coisotropic. Furthermore, for each X, Y € J we have: Ly ,Hy = iy dH =
= —iypiypw ={Hy, Hy} = Hiy.yy Hence Ly oHy | C = 0. This shows that
each infinitesimal generator X¥ is tangent to C; thus C is invariant. In particular
we have:

iyow|C= —dHy | C=0.

This shows that the vectors (X¥) span the caracteristic distribution of K. In
particular the vector fields (X¥) are independent at each point of C. A charac-
teristic of C is a set of points which can be joined by a finite sequence of inte-
gral paths of vector fields (X¥). On the other hand it is known that, for any
action of a connected group G on a manifold P, a point p € P belongs to the
orbit (G, p) of a point p € P if and only if p can be joined to p by a finite
sequence of paths which are images of integral curves of the infinitesimal gene-
rators X¥. It follows that an orbit coincides with a characteristic. (Q.ED.).
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4. — Canonical Lift of Actions.
The canonical lift of an action ¢ : G x @ — Q is the action which we denote by
Jz G xT*Q » T*Q,
defined by
w, ¥, () = (TY; (W), p),
wherep ET*Q, w € Tw @
v 0p =10,

)Q andg = Ty (p). For each g € G we have

Hence J} is a symplectic homogeneous action on the symplectic manifold (T*Q,
Wy ). For each X € 9 we introduce the mapping

(4.1) JY :T*Q->R :pb (XY, p).
It is known that
T4 =iy§ b
and that
—dl§ =iyjw,.
This last equality shows that the mapping
JY:T*Q > T*
defined by
(4.2) (X, J¥ (p) = (XY, p) = (TYI(X), p),

for each X € J and p € P, where q = Ty (p), is a momentum mapping of the
symplectic action . We remark that (4.2) implies:

(4.3) TV (p) = (T )*(p), q=my(q),

where (7, y9)* : T;G - T*G is the dual of the linear mapping T, yi 7,6~
T b G. It can be shown that the following identity holds foreach X, Y €7

(4.4) b W CATE S -

with the already mentioned choice of the sign. This means that the canonical
lift J/ of any action  is a Hamiltonian action with Hamiltonian mapping J¥
defined in (4.2).

Now, let us look at the lifting operation of actions from the point of view
of the theory of symplectic reductions [3]. We remark that any action ¢ : G x
x Q - Q is a surjective submersion, hence a reduction. We can apply to ¢ the
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phase functor IP. We obtain a reduction.
Py . T*G x T*Q - T*Q
(which is not a mapping) such that the diagram

Py
T*G x T*G T*Q

Tg Xy T,

v
GxQ 0
commutes. Moreover, the inverse image C of the reduction Py is a coisotropic
submanifold of the symplectic manifold (T%(G x Q), wg Q). We use here the
natural identification TG x T*Q =~ T*(G x Q). The graph of IP(y) is defined as
follows (see [3], Section 8):

(4.5) graph Py ={(h, p, p) ET*G xT*Q x T*Q; p(g, q) =q', g = ;)
q=my(p),q" =7y(p),(u, V), (h, P = (TY(w, v),p",
Y(u, v) € T(g'q)(G x Q)}.

We have the following:
THEOREM 1. — Let ¢ : G x Q - Q be a left action. The graph of PV is the
submanifold
V={(h, p,p)ET*G x T*Q x T*Q; Y(g,p) =p', g = n; (h),
Je(h) =¥ (p)},
where @ : G x T*Q — T*Q is the canonical lift of Y and J° :T*G - T *,JV :
T*Q —  * are the Hamiltonian mappings of the canonical lifts of the right
action p : G x G- G and of y respectively (see definition (4.2)).
Proof. — In (4.5) we have
(TY(u, v),p"y = (T, @), p) + TV (), P
If we choose u = 0 then we have:
(v, py=(TY, (). p, YVvETQ,
or, equivalently:

(TY; @), py= ' pY, W' ETLQ.
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If we choose v = 0 then we have:
(4.6) (u, y =(TY?(w),p",  Vu€TG.
Hence:
u, ) = (T2 (), ¥, (p))
= (TY;! o TY @), p)
= (T, ! ° ¥9)w), p).
Let us set u = XP(g) = Tp3{X) where X € 7. Since | is a left action we have
Yyl oyl o pf = ya
and we can write:
(ToF(X), by = (T(Y " © Y2 © pf) (X), p)
= (TY9(X), p).
This means that
(XP(g), h) = (X¥ (q), p),
or, according to definition (4.2):
4.7) JP(h) =JY (p).

It follows that graph Py C V. We remark that, conversely, equation (4.7) implies
(4.6). Hence:

(TY(u, v), p'y = (TP, V), p'y +(TY4(u), p"
= (T, W), ¥ (p)) + u, by
=(Ty; ' o TY, ), p) + (u, b)
= (v, p) + {u, h).
This proves that ¥ C graph IPy. (Q.E.D.)

COROLLARY. The inverse image of the reduction Py is the coisotropic sub-
manifold

C={{h, p) ET*G x T*Q,; J*(h) =J¥ (p)}.

5. — Homogeneous System Corresponding to a Hamiltonian Action.

Let ¢ :G xP—Pbe a Hamiltonian left action on a symplectic manifold
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(P, w) with Hamiltonian mapping H : P - 7 *. The Corollary in the last section
suggests to introduce the following objects:

P=T*GxP,
(5.1) @ =priwg +priw,
C={(h,p) ET*G x P;J?(h) = H(p)},

where pr, : P> T*G, pry ¢ P - P are the natural projections and J® :T*G -9 *
is the momentum mapping of the lift of the right action p on G:

(X, J?(h)) =(Tp¥(X),h), g = ‘ﬂg(h), Xed.
We expect that C be a coisotropic submanifold of (P, w) representing the action .
THEOREM 2. — The triple (1?", w; C) defined in (5.1) is a homogeneous system
whose Hamiltonian relation is
(5.2) D={(hph', p)EPxP: (hp), (' pHEC
0, (P) =0, (P),g =75 (h),g' =75 (h)} .

The symplectic manifold (P, &) is globally reducible by C. The corresponding
symplectic reduction is isomorphic to the reduction

(5.3) R={(h p p)EPxP;(h,p)ECP = ¥, (P),g =g (h)}
and
(5.4) graph ¢ = (m; x lp X lp)(R).

Proof. — Let us consider the following mappings:
5.5 ¢:GxP>P:(g hp)r (b h), e, p)
' H:P-J* :(h, p)bJ°(h) — H(p).

The mapping ¢ is clarly a right symplectic action on (P, w) with infinitesimal
generators

X% =(X?,—X%), XEZ.
Because of the definition of momentum mapping, we have for each X €.J:
dHy = pridl%, —pridHy
=—priiypwg +priiyew

= —z'X;;CJ.
Here Hy(h, p) = (X*, (h, p)) = (XP, h) — (X, p). This shows that H is a
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momentum mapping of @. Moreover, foreach X, Y € J:

Hy, H, ={prJ5 —priH,, pr}J% —priH,}

=pri{Je. J% | + pri{H,, Hy)

=prilix.y)— P38 x v

= H{ X, Y)
This shows that @ is a Hamiltonian action with momentum mapping H. Since

» . T*G -9 * is a surjective submersion, also H is a surjective submersion. Thus

all u €.7* are regular values of H. In particular 0 € 77* is a regular value and we
can apply the Lemma of Section 3 to the present case. It follows that C = H1(0)

is a coisotropic submanifold whose characteristics are orbits of @, i.e. they are
equivalence classes of the following equivalence relation on C:

(h,p)~ (', p)=3ZEG:(n',p") = §;(h, p),
= 32€G:h = pyh), p' =& ().

But ' = ﬁf(h) implies g' = g& where g' = m;(h'), g = n;(h). Hence g = g g,
so that:

(o)~ (', p)=p' =g, —1,(p).g" =75 (h"),g =7 (h).

This proves that the Hamiltonian relation corresponding to the homogeneous
system (P, &; C) is the set (5.2). Since the restriction of J® to the space TG =
= J* is the identity, an equivalence class [(h, p)] represented by an element
(h, p) € C has a unique representative (u, p') € T*G x P, where:

n=Hp"),p' = ¢,(p).g =7g(h).
As a consequence, the submanifold of C
M = (TYG x P) N C = graph H

is a representatlve of the quotient P (C] of C by the characteristic foliation.
This means that (P, &) is globally reducible by C and that the reduced symplectic
manifold can be identified with (M, & | M). Moreover, since M is the graph of the
momentum mapping H : P TG, the mapping 7 : M - P induced by the natural
projection of TXG x P onto P is a diffeomorphism. For each vector u € T .MC
CT (TG x P) we have a unique decomposition 4 = a + b, with a € TP and
b E T(T:G). For two vectors u, =a + b1 and u, =a, + b2 decomposed in this
manner we have: (u; A u,, @) = (@, Aa,, w) + by A by, wg ) Since the fiber
TG of T*G is a Lagrangian submanifold, we have (b, A b,, w;) = 0, thus
(U, Auy, @) ={a; Aa,, w): This shows that & | M = 7*w, i.e. that (M, @| M)
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is symplectomorphic to (P, w). Finally, we remark that graph (7 - 0), where
o : C — M is the natural projection, coincides with the relation R defined in (5.3),
and that (5.4) is an obvious consequence of (5.3). (Q.ED.)

REMARKS. — From equation J?(h) = H(p) and
JP(h) = (T, p8)*(h), g = mg (h),

(see property (4.3)) it fellows that the submanifold C is the image of a section
I' : G x P P of the fibration 7 x lp : P> G x P, where

T, p) = ((T,e%)*)"! o H(p), p).
Moreover, if consider the natural isomorphism
L:T*G>T* x G :h> (JP(h), mg (R)),
then we have
(tx1lpx1p)R)={(u,8& P, pPVET*xGxPxP,
P’ = ¢, (p), u = H(p)}.

This submanifold has been considered in [1], Exercise 5.31, p. 422, where the
fact that H is a coadjoint equivariant momentum mapping seems to be under-
stood.

6. — Local Coordinate Representation.

Let (g%) be local coordinates in a neighborhood of the identity e in G and
let (g%, hﬂ) be the corresponding canonical coordinates on T*G (Greek indices
run from 1 tom = dim G). We have a natural basis (X = o/og* [e) of Jand a
dual basis (u*) of T*: (X, p%) = Sﬁ.

Let (¢', pf) be local canonical coordinates of (P, w) (Latin indices run from 1
to n = 1/2 dim P). We have local representations of the following type:

& =dh, Adg* +dp A dq',

JO = Jghap",

H=Hyf,
where J g are functions of coordinates (g*) only such that
(6.1) det (J3) #0,

and Hﬂ are functions of coordinates (g’, pl.). An analogous representation holds
for the momentum mapping J*. The submanifold C is then locally described by
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equations of the kind:
(6.2) Jg@"h, —Hy(q', p) =0.
If (3 g are the structure constant of G,

[X,. X, =CL.X,,

then equations (3.1) for the Hamiltonian momentum mappings J* and H assume
the form

5 5 _ 6
(6.3) Jgan,r .i:am.l‘3 = C§7Ja:
where 8 = 9/9g*, and
(6.4) {H,, Hp }=— CgﬂHv’
respectively.

From the preceding discussion we know that equations (6.3) and (6.4) express
the coisotropy of C.

7. — The Hamilton-Jacobi Equation.

Let us assume that (P, w) = (T*Q, wo ). We have a natural identification (2, &) ~
~ (THG x @), wg 0 ). We use local coordinates (g') of Q and the corresponding
canonical coordinates (g, p,.) on T*Q. A function § : G x @ — R is a regular
solution of the Hamilton-Jacobi equation corresponding to the homogeneous
system (F, @; C) if dS(G x @) C C. This means that locally we have (see (6.2)):

oS . oS

(7.1) J;’(g") a?n —Hp(q,' a—q[)= 0.
Condition (6.1), (6.3) and (6.4) are integrability conditions of this equations.
Thus this Hamilton-Jacobi equation admits local regular solutions everywhere.

According to the general theory, a regular complete solution is a function
S :A4 x G x @ - R satisfying the conditions described in the introduction. Here
we have dim 4 = dim Q = n, since T*A4 has the same dimension of the reduced
manifold T*Q (see Theorem 2).

A local regular complete solution is a function S(a', g%, ¢') satisfying the
Hamilton-Jacobi equation (7.1) together with the condition:

928 9’8
(7.2) rank -, —— ) = dim Q.
9g*dd’ 9q’dd’

However, if we take the derivative of equation (7.1) with respect to a coordinate
a, then we find:
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3H, a2s %8s

— - 4 I8 = =,
ap]. dq’da' 0g*ad'

Since (J;) is a regular matrix, we see that condition (7.2) is simply equivalent
to the following one:

3%s
(7.3) det( _ _);eo
0q’ 0a'

The Jacobi theorem assures that the reduction R associated with C is locally
described by equations:

as 95 as
G S e BT
Then the equations:
oS as
(7.9 bl.=—a—a~i, p; = a—q’

describe the action ¢. Because of condition (7.3), we can locally solve the first
n equations (7.4) with respect to the (¢°). Then, after the substitution in the
second part of (7.4), we obtain functions of the kind:

ql' = wi(gal ajs bk):
D; = \a,‘(ga» ai- bk)

These are local representative of the action .

8. — An Alternative Construction.

There is another way of constructing a homogeneous system corresponding
to a Hamiltonian action, slightly different from that presented in Section 5 and
which is a natural generalization of the usual homogeneous system associated
with a Hamiltonian flow, as shown in the Example given below.

Under the same hypotheses of Section 5 we still consider the symplectic
manifold

(P, &) = (T*G x P, priwg +pr;2*m),
but, instead of(S.l)3 we take
C={(h, p) EF;JM(h) + H(p) = 0},

by using the momentum mapping J* of the canonical lift of the left action
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A on G. A theorem analogous to Theorem 2 can be proved. The proof follows
the same pattern. Instead of mapping (5.5) we take

$:GxPxP:(gh p) g h), g p),
H:P>T* :(h, p)t>J*(h) + H(p).

It turns out that gis a left Hamiltonian actionon (P, &) with Hamiltonian mapping
H, hence that C = H10)is a coisotropic submanifold whose characteristics are
orbits of @. It follows that the Hamiltonian relation corresponding to the new
homogeneous system (P &;0)is:

={(h,p. k', p") EPx P; (h,p),(h", p") EC,
Gl ) =g p) g=T50), &' =7 (n)},
and that the corresponding symplectic reduction is:
R={(h,p.p)EPxP; (hp)E Cp'=¢; (D), g =7;(h)}.
Property (5.4) does not hold in this case. Instead we have:
(mg x 1, x 1,)(R) ={(g, p. ) EGxPxP; p=y,(p)}
The Hamilton-Jacobi equation is locally represented by the system:

oS as
(7.1) Jo(g") — +H(q. .)=.0,
og" aq’
where the regular matrix (J;‘) corresponds to the left moment mapping; J* =
=J% uf.
o

EXAMPLE. — Let G = R and ¢ : R x P — P be a symplectic R-action on (P, w).
We have 7= R. For X = | €7, the infinitesimal generator X¥ of ¢ is the Hamil-
tonian vector field corresponding to the symplectic flow. If this vector is globally
Hamiltonian with Hamiltonian H : P - R, then the action is Hamiltonian with
Hamiltonian momentum mapping H. Since the group is Abelian we have J? =
=J* =J withJ :T*G =R? >J* =R :(t, ) > h. Foreacht,s, €G = R,
A ,(s, h) = (s + t, h). Moreover, P=T*GxP= {(t h,p) ER? xP},& =dh Adt +
+ w (abuse of notation) and C ={ (¢, h, p) € P: h + H(p) = 0}. We obtain the
known homogeneous representation for a (complete) globally Hamiltonian
vector field.
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