THE HAMILTON-JACOBI EQUATION FOR A HAMILTONIAN ACTION

S. BENENTI

Istituto di Fisica Matematica «J. Louis Lagrange», Università di Torino

0. - Introduction.

The purpose of this lecture is to construct a coisotropic submanifold suitable for a homogeneous representation of a Hamiltonian action $\varphi:G\times P\to P$ on a symplectic manifold $(P,\ \omega)$, and to write the corresponding Hamilton-Jacobi equation. Following a suggestion by W.M. Tulczyjew, we work on the symplectic manifold $(T^*G,\ \omega_G)\times (P,\ \omega)$ where ω_G is the canonical symplectic form of T^*G . The discussion is not restricted to Abelian actions. Our approach is based on the geometrical version of the Hamilton-Jacobi theory, connected with the theory of symplectic reductions ([2], [3], [4]), which is partially summarized in Section 1.

All manifolds and mapping are tacitly assumed to be of class C^{∞} . We use the following notation:

$\langle v, p \rangle$	evaluation of a covector p on a vector v .
$\langle v, \theta \rangle$	evaluation of a form θ on a vector v .
$T_{-}Q$	the tangent space at a point q of a manifold Q .
$T_{q}Q$ $T_{q}^{*}Q$	the cotangent space at a point q of a manifold Q .
$T\alpha:TQ\to TM$	the tangent mapping of a mapping $\alpha: Q \to M$.
$\tau_Q: TQ \to Q$	the tangent bundle projection of a manifold Q .
$\pi_Q: T^*Q \to Q$	the cotangent bundle projection of a manifold Q .
θ_Q^Q	the Liouville 1-form of T^*Q .
$\omega_Q = d\theta_Q$	the canonical symplectic form on T^*Q .
$d\theta$	the exterior differential of a form θ .
$i_X\theta$	the interior product of a form θ by a vector field X .
$\hat{L}_{X}\theta$	the Lie derivative of a form θ by a vector field X .
$\alpha^*\theta$	the pull-back of a form θ by a mapping α .
$\theta \mid K$	the pull-back of a form θ on a submanifold K .

1. - Homogeneous Systems.

We call homogeneous system a triple (P, ω, C) where (P, ω) is a symplectic

2 S. BENENTI

manifold and C is a coisotropic submanifold of (P, ω) . We call *characteristic distribution* of C the integrable subbundle

$$\dot{D} = \cup_{x \in C} (T_x C)^{\xi},$$

where ξ denotes the symplectic orthogonal, and *characteristic* a maximal integral connected integral submanifold of D. The relation

$$D = \{(x, y) \in C \times C; x \text{ and } y \text{ belong to the same characteristic.}\}$$

is a Lagrangian submanifold (may be immersed) of the product $(P, -\omega) \times (P, \omega)$; hence a symplectic relation on (P, ω) . It is a symmetric relation whose image is the submanifold C. We call D the Hamiltonian relation associated with the homogeneous system $(P, \omega; C)$. We denote by $P_{[C]}$ the quotient set of the caracteristic distribution of C, i.e. the set of the characteristics of C. The relation

$$[C] = \{(x, c) \in P \times P_{[C]}; x \in c\}$$

composed with its transpose $[C]^t$ gives D:

$$D = [C]^t \circ [C].$$

When the quotient $P_{[C]}$ has a differentiable structure such that the natural projection from C onto $P_{[C]}$ is a submersion, then C is called simplecticly regular and (P, ω) is said to be globally reducible by C. It is well known that in this case on $P_{[C]}$ a symplectic form is defined in a canonical way. We denote it by $\omega_{[C]}$ and we call $(P_{[C]}, \omega_{[C]})$ the reduced symplectic manifold. It turns out that [C] is a Lagrangian submanifold of $(P, -\omega) \times (P_{[C]}, \omega_{[C]})$ i.e. a symplectic relation from (P, ω) onto the reduced symplectic manifold. We call reduction any differentiable relation which is the graph of a surjective submersion. Hence [C] is a symplectic reduction.

Let us assume that (P, ω) is a cotangent bundle: $(P, \omega) = (T^*Q, \omega_Q)$. A regular solution (resp. a local regular solution) of the Haminton-Jacobi equation corresponding to the homogenous system $(T^*Q, \omega_Q; C)$ is a function $S: Q \to \mathbb{R}$ (resp. $S: U \to \mathbb{R}$, with U open subset of Q) such that $dS(Q) \subset C$ (resp. $dS(U) \subset C$). We can define non-regular solution (which represent Lagrangian submanifolds of C which are not images of section of T^*Q) by using Morse families (see [2]).

A regular complete solution is a differentiable function $S: A \times Q \to \mathbb{R}$ on the product of a manifold A with the manifold Q such that the family of Lagrangian submanifold of T^*Q

$$\{L_a = dS_a(Q); a \in A\}$$

form a foliation covering C and the natural projection from C onto the quotient A is differentiable. We remark that dim $A = \dim Q - \operatorname{codim} C$. We have the

following version of the Jacobi theorem: If $S: A \times Q \to \mathbb{R}$ is a regular complete solution of the Hamilton-Jacobi associated with the homogenous system $(T^*Q, \omega_O; C)$, then the relation

$$R = \{ (p, b) \in T^*Q \times T^*A; (p, -b) = dS(q, a), (q, a) = (\pi_Q \times \pi_A)(p, b) \}$$

is a symplectic reduction from (P, ω) onto (T^*A, ω_A) . If the fibers of R are connected, then R is isomorphic to the reduction [C], i.e. there exists a symplectomorphism $\gamma:(P_{[C]}, \omega_{[C]}) \to (T^*A, \omega_A)$ such that $R = \Gamma \circ [C]$, where $\Gamma = \operatorname{graph} \gamma$. It follows that

$$D = R^t \circ R$$
.

The definition of local regular complete solution can be given in a natural way. Let C be locally defined by independent equations

$$C^a(q^i, p_i) = 0$$

 $(a = 1, \ldots, r; r = \text{codim } C; i, j = 1, \ldots, n; n = \text{dim } Q)$, where (q^i) are local coordinates on Q and (q^i, p_j) are the corresponding canonical coordinates on T^*Q . A local complete solution has a local representative $S(a^k, q^i)$, where (a^k) are n-r parameters, satisfying the Hamilton-Jacobi equation

$$C^a\left(q^i, \frac{\partial S}{\partial a^i}\right) = 0$$

and the condition

$$\operatorname{rank}\left(\frac{\partial^2 s}{\partial a^k \partial a^i}\right) = n - r,$$

which means that the Lagrangian submanifolds L_a form a foliation.

The classical homogeneous formulation of Hamiltonian dynamics represent a basic example of homogeneous system (see for instance [2], [4]).

2. - Group Actions.

If $\varphi: G \times P \to P$ is an action of a Lie group G on a manifold P then for each $(g, p) \in G \times P$ we set:

$$\varphi_g : P \to P : p \mapsto \varphi(g, p),$$

 $\varphi^p : G \to P : g \mapsto \varphi(g, p).$

We denote by X^{φ} the infinitesimal generator of the action φ corresponding to an element X of the space T_eG , where e is the identity in G, identified with the

Lie algebra \mathcal{F} of the left invariant vector field on G. The vector field X^{φ} is defined by:

$$X^{\varphi}: P \to TP: p \mapsto T\varphi^p(X).$$

In particular we denote by

$$\lambda: G \times G \to G: (g, g') \mapsto gg',$$

$$\rho: G \times G \to G: (g, g') \mapsto g'g$$

the left and the right action of G onto itself respectively. The Lie algebra structure on $\mathcal T$ is defined by the equation

$$[X, Y]^{\lambda} = -[X^{\lambda}, Y^{\lambda}].$$

For any action $\varphi: G \times P \rightarrow P$ we have

$$[X, Y]^{\varphi} = \mp [X^{\varphi}, Y^{\varphi}],$$

with - (resp +) sign if φ is a left (resp. right) action, i.e. if $\varphi_g \circ \varphi_{g'} = \varphi_{gg'}$ (resp. $\varphi_g \circ \varphi_{g'} = \varphi_{g'g}$ for each $g, g' \in G$. In the following discussion the group G is assumed to be connected.

3. - Hamiltonian Actions.

Let (P, ω) be a symplectic manifold. An action $\varphi: G \times P \to P$ is said to be a symplectic action if $\varphi_g^* \omega = \omega$ for each $g \in G$. A momentum mapping corresponding to a symplectic action $\varphi: G \times P \to P$ is a differentiable mapping $H: P \to \mathcal{F}^*$ such that, for each $X \in \mathcal{F}$:

$$i_{X^{\varphi}}\omega=-dH_{X},$$

where

$$H_Y: P \to \mathbb{R}: p \mapsto \langle X, H(p) \rangle.$$

A Hamiltonian action is a symplectic action $\varphi: G \times P \to P$ on a symplectic manifold (P, ω) which admits a symplectic mapping H such that, for each $X, Y \in \mathcal{F}$:

$$\{H_X, H_Y\} = \mp H_{[X,Y]},$$

with - (resp. +) sign if φ is left (resp. right). The Poisson bracket $\{,\}$ is here defined by

$$\{f_1, f_2\} = i_{X_1} i_{X_1} \omega,$$

where X_1 and X_2 are the vector fields defined by $i_{X_k}\omega = df_k$ (k=1,2). We call H the Hamiltonian mapping of the action φ . If the group G is Abelian H is

determined up to a constant value in \mathcal{F}^* .

In Section 5 we use the following

LEMMA. — Let $H: P \to \mathcal{T}^*$ be the Hamiltonian mapping of a Hamiltonian action $\varphi: G \times P \to P$ on a symplectic manifold (P, ω) . If $0 \in \mathcal{T}^*$ is a regular value of H, then $C = H^{-1}(0) = \{p \in P; H(p) = 0\}$ is a coisotropic submanifold of (P, ω) invariant under the action φ . The characteristics of C (i.e. the maximal connected integral manifolds of the characteristic distribution of C) are orbits of φ restricted to C.

Proof. — By definition of regular value the mapping $T_xH:T_xP\to T_0\mathscr{T}^*\simeq \mathscr{T}^*$ is a surjective for each $x\in C$. It is known that in this case C is a submanifold of P and that codim $C=\dim G$. If (X_α) $(\alpha=1,\ldots,m;m=\dim G)$ is a basis of $\mathscr T$ and (μ^α) is the corresponding dual basis of $\mathscr T^*$, then $H(p)=H_{X_\alpha}(p)\mu^\alpha$ and the functions (H_{X_α}) have independent differentials at each point of C. The submanifold C is defined by the independent equations

$$H_{X_{\alpha}}=0\ (\alpha=1,\ldots,m)$$

and it is characterized by the following conditions:

$$p \in C \iff H_X(p) = 0, \ \forall X \in \mathcal{T}.$$

Since

$$\{H_{X_\alpha},\,H_{X_p}\}\big|\ C=H_{[X_\alpha,X_\beta]}\big|\ C=0,$$

C is coisotropic. Furthermore, for each X, $Y \in \mathcal{T}$ we have: $L_{X\varphi}H_Y = i_{X\varphi}dH = -i_{X\varphi}i_{Y\varphi}\omega = \{H_X, H_Y\} = H_{[X,Y]}$. Hence $L_{X\varphi}H_Y \mid C = 0$. This shows that each infinitesimal generator X^{φ} is tangent to C; thus C is invariant. In particular we have:

$$i_{Y\varphi}\omega \mid C = -dH_{X} \mid C = 0.$$

This shows that the vectors (X^{φ}) span the caracteristic distribution of K. In particular the vector fields (X^{φ}_{α}) are independent at each point of C. A characteristic of C is a set of points which can be joined by a finite sequence of integral paths of vector fields (X^{φ}) . On the other hand it is known that, for any action of a connected group G on a manifold P, a point $\overline{p} \in P$ belongs to the orbit $\varphi(G, p)$ of a point $\overline{p} \in P$ if and only if \overline{p} can be joined to p by a finite sequence of paths which are images of integral curves of the infinitesimal generators X^{φ} . It follows that an orbit coincides with a characteristic. (Q.E.D.).

4. - Canonical Lift of Actions.

The canonical lift of an action $\psi: G \times Q \rightarrow Q$ is the action which we denote by

$$\hat{\psi}: G \times T^*Q \to T^*Q,$$

defined by

$$\langle w,\, \hat{\psi}_{g}(p)\rangle = \langle T\psi_{g}^{-1}(w),p\rangle,$$

where $p \in T*Q$, $w \in T_{\psi(g,q)}Q$ and $q = \pi_Q(p)$. For each $g \in G$ we have

$$\varphi_{\mathbf{g}}^* \theta_{\mathbf{Q}} = \theta_{\mathbf{Q}}$$

Hence $\hat{\psi}$ is a symplectic homogeneous action on the symplectic manifold (T^*Q, ω_Q) . For each $X \in \mathscr{T}$ we introduce the mapping

$$(4.1) J_X^{\psi}: T^*Q \to \mathbb{R}: p \mapsto \langle X^{\psi}, p \rangle.$$

It is known that

$$J_X^{\psi} = i_X \hat{\psi} \, \theta_Q$$

and that

$$-\,dJ_X^\psi=i_X\,\widehat{\psi}\;\omega_O^{}\,.$$

This last equality shows that the mapping

$$J^{\psi}: T^*Q \to \mathcal{T}^*$$

defined by

$$(4.2) \qquad \langle X, J^{\psi}(p) \rangle = \langle X^{\psi}, p \rangle = \langle T\psi^{q}(X), p \rangle,$$

for each $X \in \mathcal{F}$ and $p \in P$, where $q = \pi_Q(p)$, is a momentum mapping of the symplectic action $\hat{\psi}$. We remark that (4.2) implies:

$$J^{\psi}(p) = (T_e \psi^q)^*(p), \quad q = \pi_Q(q),$$

where $(T_e \psi^q)^*: T_q^*G \to T_e^*G$ is the dual of the linear mapping $T_e \psi^q: T_e G \to T_a G$. It can be shown that the following identity holds for each $X, Y \in \mathcal{F}$:

$$\{J_X^{\psi}, J_Y^{\psi}\} = \mp J_{(X, Y)}^{\psi},$$

with the already mentioned choice of the sign. This means that the canonical lift $\hat{\psi}$ of any action ψ is a Hamiltonian action with Hamiltonian mapping J^{ψ} defined in (4.2).

Now, let us look at the lifting operation of actions from the point of view of the theory of symplectic reductions [3]. We remark that any action $\psi : G \times Q \to Q$ is a surjective submersion, hence a reduction. We can apply to ψ the

phase functor IP. We obtain a reduction.

$$\mathbb{P}\psi: T^*G \times T^*Q \to T^*Q$$

(which is not a mapping) such that the diagram

commutes. Moreover, the inverse image C of the reduction $\mathbb{P}\psi$ is a coisotropic submanifold of the symplectic manifold $(T^*(G \times Q), \omega_{G \times Q})$. We use here the natural identification $T^*G \times T^*Q \cong T^*(G \times Q)$. The graph of $\mathbb{P}(\psi)$ is defined as follows (see [3], Section 8):

$$(4.5) \qquad \text{graph } \mathbb{P}\psi = \{ (h, p, p') \in T^*G \times T^*Q \times T^*Q; \varphi(g, q) = q', g = \pi_G(h) \}$$

$$q = \pi_Q(p), q' = \pi_Q(p'), \langle (u, v), (h, p) \rangle = \langle T\psi(u, v), p' \rangle,$$

$$\forall (u, v) \in T_{(g, g)}(G \times Q) \}.$$

We have the following:

THEOREM 1. — Let $\psi: G \times Q \rightarrow Q$ be a left action. The graph of $\mathbb{P}\psi$ is the submanifold

$$\begin{split} \Psi = & \big\{ (h,\, p,\, p') \in T^*G \times T^*Q \times T^*Q; \, \hat{\psi}(g\,,\, p) = p',\, g = \pi_G(h), \\ J^\rho(h) = J^\psi(p) \big\}, \end{split}$$

where $\hat{\psi}: G \times T^*Q \to T^*Q$ is the canonical lift of ψ and $J^{\rho}: T^*G \to \mathcal{F}^*$, $J^{\psi}: T^*Q \to \mathcal{F}^*$ are the Hamiltonian mappings of the canonical lifts of the right action $\rho: G \times G \to G$ and of ψ respectively (see definition (4.2)).

Proof. - In (4.5) we have

$$\langle T\psi(u,v),p'\rangle = \langle T\psi_g(v),p'\rangle + \langle T\psi^q(u),p'\rangle.$$

If we choose u = 0 then we have:

$$\langle v,\, p\rangle = \langle T\psi_g(v),\, p'\rangle, \quad \forall v\in T_q\, Q,$$

or, equivalently:

$$\langle T\psi_g^{-1}(v'),p\rangle=\langle v',p'\rangle, \quad \forall v'\in T_{q'}Q.$$

If we choose v = 0 then we have:

$$(4.6) \langle u, h \rangle = \langle T \psi^q(u), p' \rangle, \forall u \in T_{\mathfrak{p}} G.$$

Hence:

$$\begin{split} \langle u,\,h\rangle &= \langle T\psi^q(u),\,\psi_g(p)\rangle \\ &= \langle T\psi_g^{-1}\,\circ\,T\psi^q(u),\,p\rangle \\ &= \langle T(\psi_g^{-1}\,\circ\,\psi^q)(u),\,p\rangle. \end{split}$$

Let us set $u=X^{\rho}(g)=T\rho^{g}(X)$ where $X\in\mathcal{T}$. Since ψ is a left action we have $\psi_{\sigma}^{-1}\circ\psi^{q}\circ\rho^{g}=\psi^{q}$

and we can write:

$$\begin{split} \langle T \rho^{g}(X), h \rangle &= \langle T(\psi_{g}^{-1} \circ \psi^{q} \circ \rho^{g}) \, (X), p \rangle \\ &= \langle T \psi^{q}(X), p \rangle. \end{split}$$

This means that

$$\langle X^{\rho}(g), h \rangle = \langle X^{\psi}(q), p \rangle,$$

or, according to definition (4.2):

$$(4.7) J^{\rho}(h) = J^{\psi}(p).$$

It follows that graph $\mathbb{P}\psi \subseteq \Psi$. We remark that, conversely, equation (4.7) implies (4.6). Hence:

$$\begin{split} \langle T\psi(u,\,v),\,p'\rangle &= \langle T\psi_g(v),\,p'\rangle + \langle T\psi^q(u),\,p'\rangle \\ &= \langle T\psi_g(v),\,\hat{\psi}_g(p)\rangle + \langle u,\,h\rangle \\ &= \langle T\psi_g^{-1}\,\circ\,T\psi_g(v),\,p\rangle + \langle u,\,h\rangle \\ &= \langle v,\,p\rangle + \langle u,\,h\rangle. \end{split}$$

This proves that $\Psi \subset \operatorname{graph} \mathbb{P} \psi$. (Q.E.D.)

COROLLARY. The inverse image of the reduction ${\rm I\!P}\psi$ is the coisotropic submanifold

$$C = \{ (h, p) \in T^*G \times T^*Q; J^{\rho}(h) = J^{\psi}(p) \}.$$

5. - Homogeneous System Corresponding to a Hamiltonian Action.

Let $\varphi: G \times P \to P$ be a Hamiltonian left action on a symplectic manifold

 (P, ω) with Hamiltonian mapping $H: P \to \mathcal{T}^*$. The Corollary in the last section suggests to introduce the following objects:

(5.1)
$$\begin{cases} \widetilde{P} = T^*G \times P, \\ \widetilde{\omega} = pr_1^*\omega_G + pr_2^*\omega, \\ C = \{(h, p) \in T^*G \times P; J^p(h) = H(p)\}, \end{cases}$$
 where $P_1 = \widetilde{P} \times T^*C$ are $F_2 = \widetilde{P} \times P$ are the natural and

where $pr_1: \widetilde{P} \to T^*G$, $pr_2: \widetilde{P} \to P$ are the natural projections and $J^\rho: T^*G \to \mathcal{F}^*$ is the momentum mapping of the lift of the right action ρ on G:

$$\langle X, J^{\rho}(h) \rangle = \langle T \rho^{g}(X), h \rangle, \ g = \pi_{g}(h), \ X \in \mathcal{T}.$$

We expect that C be a coisotropic submanifold of (P, ω) representing the action φ .

THEOREM 2. — The triple $(\tilde{P}, \tilde{\omega}; C)$ defined in (5.1) is a homogeneous system whose Hamiltonian relation is

(5.2)
$$D = \{ (h, p, h', p') \in \widetilde{P} \times \widetilde{P}; (h, p), (h', p') \in C, \\ \varphi_{g}(p) = \varphi_{g'}(p'), g = \pi_{G}(h), g' = \pi_{G}(h') \}.$$

The symplectic manifold $(\tilde{P}, \tilde{\omega})$ is globally reducible by C. The corresponding symplectic reduction is isomorphic to the reduction

(5.3)
$$R = \{ (h, p, p') \in \widetilde{P} \times P; (h, p) \in C, p' = \varphi_{\sigma}(p), g = \pi_{G}(h) \}$$

and

(5.4) graph
$$\varphi = (\pi_G \times 1_p \times 1_p)(R)$$
.

Proof. - Let us consider the following mappings:

(5.5)
$$\begin{cases} \widetilde{\varphi} : G \times \widetilde{P} \to \widetilde{P} : (g, h, p) \mapsto (\widehat{\rho}(g, h), \varphi(g^{-1}, p)) \\ \widetilde{H} : \widetilde{P} \to \mathcal{F}^* : (h, p) \mapsto J^{\rho}(h) - H(p). \end{cases}$$

The mapping $\tilde{\varphi}$ is clarly a right symplectic action on (P, ω) with infinitesimal generators

$$X^{\widetilde{\varphi}} = (X^{\widehat{\rho}}, -X^{\varphi}), X \in \mathscr{T}.$$

Because of the definition of momentum mapping, we have for each $X \in \mathcal{F}$:

$$\begin{split} d\tilde{H}_X &= pr_1^* dJ_X^\rho - pr_2^* dH_X \\ &= - pr_1^* i_{X} \hat{\rho} \, \omega_G \, + pr_2^* i_{X^\varphi} \omega \\ &= - i_{X} \tilde{\varphi} \, \tilde{\omega}. \end{split}$$

Here $\widetilde{H}_X(h, p) = \langle X^{\widetilde{\varphi}}, (h, p) \rangle = \langle X^{\widetilde{\rho}}, h \rangle - \langle X^{\varphi}, p \rangle$. This shows that \widetilde{H} is a

momentum mapping of $\widetilde{\varphi}$. Moreover, for each $X, Y \in \mathcal{T}$:

$$\begin{split} \widetilde{H}_{X}, \, \widetilde{H}_{Y} &= \{ \, pr_{1}^{*}J_{X}^{\rho} - pr_{2}^{*}H_{X}, \, pr_{1}^{*}J_{Y}^{\rho} - pr_{2}^{*}H_{Y} \} \\ &= pr_{1}^{*}\{J_{X}^{\rho}, \, J_{Y}^{\rho} \, \} + pr_{2}^{*}\{H_{X}, \, H_{Y} \} \\ &= pr_{1}^{*}J_{\{X,Y\}}^{\rho} - pr_{2}^{*}H_{\{X,Y\}} \\ &= \widetilde{H}_{\{X,Y\}}. \end{split}$$

This shows that $\tilde{\varphi}$ is a Hamiltonian action with momentum mapping \tilde{H} . Since $J^{\rho}: T^*G \to \mathcal{F}^*$ is a surjective submersion, also \tilde{H} is a surjective submersion. Thus all $\mu \in \mathcal{F}^*$ are regular values of \tilde{H} . In particular $0 \in \mathcal{F}^*$ is a regular value and we can apply the Lemma of Section 3 to the present case. It follows that $C = \tilde{H}^{-1}(0)$ is a coisotropic submanifold whose characteristics are orbits of $\tilde{\varphi}$, i.e. they are equivalence classes of the following equivalence relation on C:

$$\begin{split} (h,\,p) \sim (h',\,p') &\iff \exists\, \bar{g} \in G \colon (h',\,p') = \widetilde{\varphi}_{\bar{g}}(h,\,p), \\ &\iff \exists\, \bar{g} \in G \colon h' = \widehat{\rho}_{\bar{g}}(h), \ p' = \varphi_{\bar{g}}^{-1}(p). \end{split}$$

But $h'=\hat{\rho}_{\bar{g}}(h)$ implies $g'=g\bar{g}$ where $g'=\pi_G(h'), g=\pi_G(h)$. Hence $\bar{g}=g^{-1}g',$ so that:

$$(h,p) \sim (h',p') \Longleftrightarrow p' = \varphi_{g'} - 1_{g}(p), g' = \pi_{G}(h'), g = \pi_{G}(h).$$

This proves that the Hamiltonian relation corresponding to the homogeneous system $(\tilde{P}, \tilde{\omega}; C)$ is the set (5.2). Since the restriction of J^{ρ} to the space $T_e^*G = \mathcal{F}^*$ is the identity, an equivalence class [(h, p)] represented by an element $(h, p) \in C$ has a unique representative $(\mu, p') \in T_e^*G \times P$, where:

$$\mu = H(p'), p' = \varphi_{\mathbf{g}}(p), \mathbf{g} = \pi_{G}(h).$$

As a consequence, the submanifold of C

$$M = (T_e^*G \times P) \cap C = \operatorname{graph} H$$

is a representative of the quotient $\widetilde{P}_{[C]}$ of C by the characteristic foliation. This means that $(\widetilde{P}, \widetilde{\omega})$ is globally reducible by C and that the reduced symplectic manifold can be identified with $(M, \widetilde{\omega} \mid M)$. Moreover, since M is the graph of the momentum mapping $H: \widetilde{P} \to T_e^*G$, the mapping $\pi: M \to P$ induced by the natural projection of $T_e^*G \times P$ onto P is a diffeomorphism. For each vector $u \in T_xM \subset T_x(T_e^*G \times P)$ we have a unique decomposition u = a + b, with $a \in TP$ and $b \in T(T_e^*G)$. For two vectors $u_1 = a_1 + b_1$ and $u_2 = a_2 + b_2$ decomposed in this manner we have: $(u_1 \wedge u_2, \widehat{\omega}) = (a_1 \wedge a_2, \omega) + (b_1 \wedge b_2, \omega_G)$. Since the fiber T_e^*G of T^*G is a Lagrangian submanifold, we have $(b_1 \wedge b_2, \omega_G) = 0$, thus $(u_1 \wedge u_2, \widehat{\omega}) = (a_1 \wedge a_2, \omega)$. This shows that $\widetilde{\omega} \mid M = \pi^*\omega$, i.e. that $(M, \widetilde{\omega} \mid M)$

is symplectomorphic to (P, ω) . Finally, we remark that graph $(\pi \cdot \sigma)$, where $\sigma: C \to M$ is the natural projection, coincides with the relation R defined in (5.3), and that (5.4) is an obvious consequence of (5.3). (Q.E.D.)

REMARKS. – From equation $J^{\rho}(h) = H(p)$ and

$$J^{\rho}(h) = (T_{\rho}\rho^{g})^{*}(h), \ g = \pi_{G}(h),$$

(see property (4.3)) it fellows that the submanifold C is the image of a section $\Gamma: G \times P \to \widetilde{P}$ of the fibration $\pi_G \times 1_p: \widetilde{P} \to G \times P$, where

$$\Gamma(g, p) = (((T_{\rho} \rho^{g})^{*})^{-1} \circ H(p), p).$$

Moreover, if consider the natural isomorphism

$$\iota: T^*G \to \mathcal{T}^* \times G: h \mapsto (J^\rho(h), \pi_G(h)),$$

then we have

$$(\iota \times 1_P \times 1_P)(R) = \{(\mu, g, p, p') \in \mathcal{F}^* \times G \times P \times P;$$
$$p' = \varphi_g(p), \mu = H(p)\}.$$

This submanifold has been considered in [1], Exercise 5.31, p. 422, where the fact that H is a coadjoint equivariant momentum mapping seems to be understood.

6. - Local Coordinate Representation.

Let (g^{α}) be local coordinates in a neighborhood of the identity e in G and let (g^{α}, h_{β}) be the corresponding canonical coordinates on T^*G (Greek indices run from 1 to $m = \dim G$). We have a natural basis $(X_{\alpha} = \partial/\partial g^{\alpha}|_{e})$ of \mathscr{T} and a dual basis (μ^{α}) of $\mathscr{T}^*: \langle X_{\alpha}, \mu^{\beta} \rangle = \delta^{\beta}_{\alpha}$.

Let (q^i, p_j) be local canonical coordinates of (P, ω) (Latin indices run from 1 to $n = 1/2 \dim P$). We have local representations of the following type:

$$\begin{split} \widetilde{\omega} &= dh_{\alpha} \wedge dg^{\alpha} + dp_{i} \wedge dq^{i}, \\ J^{\rho} &= J^{\alpha}_{\beta} h_{\alpha} \mu^{\beta}, \\ H &= H_{\alpha} \mu^{\beta}, \end{split}$$

where J_{β}^{α} are functions of coordinates (g^{α}) only such that

$$(6.1) det (J_{\beta}^{\alpha}) \neq 0,$$

and H_{β} are functions of coordinates (q^i, p_j) . An analogous representation holds for the momentum mapping J^{λ} . The submanifold C is then locally described by

equations of the kind:

(6.2)
$$J^{\alpha}_{\beta}(g^{\gamma})h_{\alpha} - H_{\beta}(q^{i}, p_{i}) = 0.$$

If $C_{\alpha\beta}^{\gamma}$ are the structure constant of G,

$$[X_{\alpha}, X_{\beta}] = C_{\alpha\beta}^{\gamma} X_{\gamma},$$

then equations (3.1) for the Hamiltonian momentum mappings J^{ρ} and H assume the form

$$(6.3) J_{\beta}^{\alpha} \partial_{\alpha} J_{\gamma}^{\delta} - J_{\gamma}^{\alpha} \partial_{\alpha} J_{\beta}^{\delta} = C_{\beta \gamma}^{\alpha} J_{\alpha}^{\delta},$$

where $\partial_{\alpha} = \partial/\partial g^{\alpha}$, and

$$(6.4) {H_{\alpha}, H_{\beta}} = -C_{\alpha\beta}^{\gamma} H_{\gamma},$$

respectively.

From the preceding discussion we know that equations (6.3) and (6.4) express the coisotropy of C.

7. - The Hamilton-Jacobi Equation.

Let us assume that $(P, \omega) = (T^*Q, \omega_Q)$. We have a natural identification $(\tilde{P}, \tilde{\omega}) \simeq (T^*(G \times Q), \omega_{G \times Q})$. We use local coordinates (q^i) of Q and the corresponding canonical coordinates (q^i, p_j) on T^*Q . A function $S: G \times Q \to \mathbb{R}$ is a regular solution of the Hamilton-Jacobi equation corresponding to the homogeneous system $(\tilde{P}, \tilde{\omega}; C)$ if $dS(G \times Q) \subseteq C$. This means that locally we have (see (6.2)):

(7.1)
$$J^{\alpha}_{\beta}(g^{\gamma}) \frac{\partial S}{\partial g^{\alpha}} - H_{\beta}\left(q^{i}, \frac{\partial S}{\partial q^{i}}\right) = 0.$$

Condition (6.1), (6.3) and (6.4) are integrability conditions of this equations. Thus this Hamilton-Jacobi equation admits local regular solutions everywhere.

According to the general theory, a regular complete solution is a function $S: A \times G \times Q \to \mathbb{R}$ satisfying the conditions described in the introduction. Here we have dim $A = \dim Q = n$, since T^*A has the same dimension of the reduced manifold T^*Q (see Theorem 2).

A local regular complete solution is a function $S(a^i, g^{\alpha}, q^j)$ satisfying the Hamilton-Jacobi equation (7.1) together with the condition:

(7.2)
$$\operatorname{rank}\left(\frac{\partial^2 S}{\partial g^\alpha \partial a^i}, \frac{\partial^2 S}{\partial q^j \partial a^i}\right) = \dim Q.$$

However, if we take the derivative of equation (7.1) with respect to a coordinate a^i , then we find:

$$\frac{\partial H_{\beta}}{\partial p_{i}} \ \frac{\partial^{2} S}{\partial q^{i} \partial a^{i}} + J^{\alpha}_{\beta} \ \frac{\partial^{2} S}{\partial g^{\alpha} \partial a^{i}} = 0.$$

Since (J^{α}_{β}) is a regular matrix, we see that condition (7.2) is simply equivalent to the following one:

(7.3)
$$\det \left(\frac{\partial^2 S}{\partial q^i \partial a^i} \right) \neq 0.$$

The Jacobi theorem assures that the reduction R associated with C is locally described by equations:

$$b_i = -\frac{\partial S}{\partial a^i}, \quad h_\alpha = \frac{\partial S}{\partial e^\alpha}, \quad p_j = \frac{\partial S}{\partial a^j}$$

Then the equations:

(7.4)
$$b_i = -\frac{\partial S}{\partial a^i}, \quad p_j = \frac{\partial S}{\partial a^j}$$

describe the action φ . Because of condition (7.3), we can locally solve the first n equations (7.4) with respect to the (q^i) . Then, after the substitution in the second part of (7.4), we obtain functions of the kind:

$$q^{i} = \varphi^{i}(g^{\alpha}, a^{j}, b_{k}),$$

$$p_{i} = \varphi_{i}(g^{\alpha}, a^{j}, b_{k}).$$

These are local representative of the action φ .

8. - An Alternative Construction.

There is another way of constructing a homogeneous system corresponding to a Hamiltonian action, slightly different from that presented in Section 5 and which is a natural generalization of the usual homogeneous system associated with a Hamiltonian flow, as shown in the Example given below.

Under the same hypotheses of Section 5 we still consider the symplectic manifold

$$(\widetilde{P}, \widetilde{\omega}) = (T^*G \times P, pr_1^*\omega_G + pr_2^*\omega),$$

but, instead of (5.1), we take

$$C = \{(h, p) \in \widetilde{P}; J^{\lambda}(h) + H(p) = 0\},$$

by using the momentum mapping J^{λ} of the canonical lift of the left action

14 S. BENENTI

 λ on G. A theorem analogous to Theorem 2 can be proved. The proof follows the same pattern. Instead of mapping (5.5) we take

$$\widetilde{\varphi}: G \times \widetilde{P} \times \widetilde{P}: (g, h, p) \mapsto (\widehat{\lambda}(g, h), \varphi(g, p)),$$

 $\widetilde{H}: \widetilde{P} \to \mathcal{F}^*: (h, p) \mapsto J^{\lambda}(h) + H(p).$

It turns out that $\tilde{\varphi}$ is a left Hamiltonian action on $(\tilde{P}, \tilde{\omega})$ with Hamiltonian mapping \tilde{H} , hence that $C = \tilde{H}^{-1}(0)$ is a coisotropic submanifold whose characteristics are orbits of $\tilde{\varphi}$. It follows that the Hamiltonian relation corresponding to the new homogeneous system $(\tilde{P}, \tilde{\omega}; C)$ is:

$$\begin{split} D = & \{ (h, p, h', p') \in \widetilde{P} \times \widetilde{P}; (h, p), (h', p') \in C, \\ \varphi_g^{-1}(p) = & \varphi_{g'}^{-1}(p'), \ g = \pi_G(h), \ g' = \pi_G(h') \}, \end{split}$$

and that the corresponding symplectic reduction is:

$$R = \{(h, p, p') \in \widetilde{P} \times P; \ (h, p) \in C, \ p' = \varphi_g^{-1}(p), \ g = \pi_G(h)\}.$$

Property (5.4) does not hold in this case. Instead we have:

$$(\pi_G\times 1_P\times 1_P)(R)=\{(g,p,p')\in G\times P\times P;\ p=\psi_g(p')\}.$$

The Hamilton-Jacobi equation is locally represented by the system:

(7.1)
$$J^{\alpha}_{\beta}(g^{\gamma}) \frac{\partial S}{\partial g^{\alpha}} + H_{\beta}\left(q^{i}, \frac{\partial S}{\partial q^{i}}\right) = 0,$$

where the regular matrix (J^{α}_{β}) corresponds to the left moment mapping; $J^{\lambda}==J^{\alpha}_{\beta}h_{\alpha}\mu^{\beta}$.

EXAMPLE. — Let $G = \mathbb{R}$ and $\varphi : \mathbb{R} \times P \to P$ be a symplectic R-action on (P, ω) . We have $\mathscr{T} = \mathbb{R}$. For $X = 1 \in \mathscr{T}$, the infinitesimal generator X^{φ} of φ is the Hamiltonian vector field corresponding to the symplectic flow. If this vector is globally Hamiltonian with Hamiltonian $H : P \to \mathbb{R}$, then the action is Hamiltonian with Hamiltonian momentum mapping H. Since the group is Abelian we have $J^P = J^{\lambda} = J$ with $J : T^*G = \mathbb{R}^2 \to \mathscr{T}^* = \mathbb{R} : (t, h) \mapsto h$. For each $t, s, \in G = \mathbb{R}$, $\widehat{\lambda}_t(s, h) = (s + t, h)$. Moreover, $\widetilde{P} = T^*G \times P = \{(t, h, p) \in \mathbb{R}^2 \times P\}$, $\widetilde{\omega} = dh \wedge dt + \omega$ (abuse of notation) and $C = \{(t, h, p) \in \widetilde{P}; h + H(p) = 0\}$. We obtain the known homogeneous representation for a (complete) globally Hamiltonian vector field.

References.

[1] ABRAHAM R. and MARSDEN J.E., Foundations of Mechanics, Benjamin-Cummings,

- 2nd ed. (1978).
- [2] BENENTI S., Symplectic Relations in Analytical Mechanics, in Proceedings of IUTAM--ISIMM Symposium on «Modern Developments in Analytical Mechanics», Turin, June 7-11, 1982 (in print).
- [3] BENENTI S., The Category of Symplectic Reduction, in Proceedings of the International Meeting «Geometry and Physics», Florence, October 12 15, 1982 (in print).
- [4] BENENTI S. and TULCZYJEW W.M., The Geometrical Meaning and Globalization of the Hamilton-Jacobi Method, in Lecture Notes in Math. 836 (1980), pp. 9-21.

Received September 26, 1983.