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Introduction

A symplectic reduction is a symplectic relation between two symplectic mani-
folds (Pp “)1) and (Pz’ mz) whose graph represents a surjective submersion from
a submanifold of P, onto P2. Symplectic reductions appear in the symplectic
formulation of various physical theories. It is known, for example, that the
Hamilton-Jacobi theory can be formulated in terms of generating functions of
symplectic reductions [1] [2]. Furthermore, the behaviour of reciprocal statical
or dynamical systems with singularities can be described by using symplectic
reductions [3]. Symplectic reductions appear also in the global framework for
higher order calculus of variations presented in [4].

Symplectic manifolds and symplectic reductions form a category which ex-
tends the category of symplectomorphisms. The aim of this article is to present
some general results concerning the category of symplectic reductions and related
functors.

1. Differentiable Relations

A differentiable relation is a triple p = (P}, Pz; R) where Pl, P2 are differentia-
ble manifolds and R is a submanifold of the product manifold P, x P,,. We call
P, P2 and R the domain, the codomain and the graph of the relation p respecti-
vely. Notation p : P, = P, and R = graph p is also used for a differentiable rela-
tion whose domain, codomain and graph are P, P, and R respectively.

Let p = (P, P2; R) be a differentiable relation. We denote by p’ = (P Pl;R’),
with R" = {(p,, p)) € P, x Pi(p, py) € R}, the transpose of p. Let K be a
subset of P|. We call the set

p(K)=ReoK={p,€Py; Ip, €K : (p;,p,)) ER}

the image of K by the relation p. In particular we call R o P1 and R! o P, the
image and the inverse image of p respectively.
The composition o o p = (P, P3; S o R) of two differentiable relations
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p = (P, P);R) and 0 = (P,, P,; S) is defined by
SeR ={(py,p,) EP xPy; Ap,EP,:(p,,p,) ER,(p,,P,) € S}.

In general S o R is not a submanifold of P, x P3, thus o o p is not a differentiable
relation.

A differentiable mapping p : £; P, is a particular case of differentiable rela-
tion. A differentiable relation p : P, — P, which is a mapping is not necessarily a
differentiable mapping.

2. Differentiable Reductions

We call differentiable reduction (or simply reduction) a differentiable relation
p = (P}, P,; R) such that R is the graph of a surjective submersion 5 : C =P, from
a submanifold C C P1 onto PZ' We say that p is the submersion associated with
the reduction p. For each point p, €EP, the set pf (Pz) is a submanifold of C,
thus a submanifold of Pl. We call such a submanifold a fiber of p. For each
fiber F we have

(2.1) dim F = dim C — dim P,,

From the well known properties of submersions it follows that if S C P, is a sub-
manifold, then p’(S) is a submanifold of P, and

(2.2) dim p*(S) = dim S + dim C — dim P, .

It can be easily seen that the composition of two reductions is again a reduction.
We conclude that the differentiable manifolds and differentiable reductions are the
objects and the morphisms of a category. We call this category the category of
reductions and we denote it by Z.

Elementary examples of differentiable reductions:

(i) a diffeomorphism;

(ii) a surjective submersion;

(iii) the transpose of an embedding.

(2.3) REMARK. A reduction is always the composition of a reduction of the type
(iii) and a reduction of the type (ii).

(2.4) REMARK. We can consider morphisms more general than the differentiable
reductions defined above. For example, we can abandon the requirement that
the submersion associated with the relation is surjective. On the other hand we
can define as local reduction any differentiable relation p = (Pl’Pz;R) such that
for each (p,, pz) € R there exist open neighborhoods U, and U, of p, and p, re-
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spectively, such that the relation (U;, U,; R N (U, x U,)) is a reduction. The state-
ments concerning reductions contained in the present paper can be extended
(with suitable slight modifications) to these more general types of relations.

3. Symplectic Relations

Let (P, w) be a symplectic manifold (P is an even-dimensional differentiable
manifold, w is a closed non-degenerate 2-form on P). We denote by (P, w)’ the
symplectic manifold (P, — w). Let K C P be a submanifold. For each x € P we
set

(T, K)f = € T,P; wAv,w)=0, Vue T K}

The submanifold K is said to be isotropic (resp. coisotropic, Lagrangian) if
(TXK)§ D T K (resp. (T.K)® C T.K, (TXK)§ = T_K) for each x € K. In these
three cases we have dim K < 1/2 dim P, dim K = 1/2 dim P, dim K = 1/2 dim
P respectively. The submanifold X is isotropic if and only if w[K= 0 (w| K deno-
tes the pull-back of the form w to K). The submanifold K is coisotropic if and
only if for each pair (f; g) of differentiable real functions on P which are constant
on K the Poisson bracket {f, g} vanishes on K.

The product of two symplectic manifolds (P, wl) and (P2, “"2) is the symplec-
tic manifold

(Pl’ “"1) X (Pz’ “‘"2) = (P, x P2, prf‘ w, + prz*wz),

where pr, : P, x P, P, (i = 1, 2) are the natural projections.

A symplectic relation from a symplectic manifold (2,, wl) to a symplectic
manifold (P, "“’2) is a differentiable relation p = (V28 Pz; R) such that R is a La-
grangian submanifold of (P, o.al)r x (P, w,). For a symplectic relation we use
the notation p = ((P;, “"1)’ (P2, wz); R)orp: (Pl, wl) = (P w,). The symplectic
relation p is said to be linear if (Pl, wl) and (Pz’ wz) are symplectic vector spaces
and R is a (linear) Lagrangian subspace.

It is known that a differentiable mapping p : P, = P, between two symplectic
manifolds (P,, wl) and (PZ’ wz) is a symplectic relation if and only if p is a local
symplectomorphism.

If ((Pl, wl), (Pz’ wz); R) is a symplectic relation, then for each (pl, p2) E€ER
the triple ((Tp] P,w |p), (szPz, w|p,), T(m,pz)R) is a linear symplectic rela-
tion. The following propositions are easily derived from the theory of linear
symplectic relations (see [5], [6], [7]):

(3.1) Let p : (P, w)) = (P, w,) be a symplectic relation. If p'(P,) (resp. p(P,)))
is a submanifold then it is coisotropic.
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(3.2) If the composition S°R of two symplectic relations is differentiable and
TSoTR = T(SoR),then it is a symplectic relation.

4. Symplectic Reductions

We call symplectic reduction a symplectic relation whose underlying differen-
tiable relation is a reduction. From the fact that differentiable reductions form
a category and from (3.2) (see also (11.6)) it follows that symplectic manifolds
and symplectic reductions are objects and morphisms of a category. We call this
category the category of symplectic reductions and we denote it by %% .

From the definition of reduction and from (3.1) we observe that the inverse
image of a symplectic reduction is a coisotropic submanifold of the domain.
We have the following more general statement:

@G Ifp =P w), Py wQ); R) is a symplectic reduction and if S is an isotro-
pic (resp. coisotropic, Lagrangian) submanifold of Py ), then p'(S) is an iso-
tropic (resp. coisotropic, Lagrangian) submanifold of (P, w).

Proof. We know that K = p(S) is a submanifold. For each (x, y) € R, the sub-
space T R c T sl (P x P) defines a linear symplectic relation. We have
T K= (T(x, » R)o (T S). From the theory of linear symplectic relations we know
that the image (or the inverse image) of an isotropic (resp. coisotropic, Lagran-
gian) subspace by a linear symplectic relation is isotropic (resp. coisotropic, La-

grangian). (Q.E.D.)

We present a basic example of symplectic reduction. Let C be a coisotropic
submanifold of a symplectic manifold (P, w). We call characteristic distribution
of C the involutive subbundle

(TC)§ - UXEC(TxC)§

of TC, and characteristic of C any maximal connected integral submanifold of
(TCO)S. Let us denote by P[C] the set of the characteristics. It is known that if
Pl ¢ has a differentiable structure such that the natural projection p.: C - P, is
a submersion, then there.exists a symplectic form on P[C], which we denote by
ey such that 52‘. Wi = W | C. In this case we say that (P, w) is globally redu-

cible by C. The symplectic form W0 is defined by the following equation:
(4.2) (Th o) ATp W), w ) = Av, w),
foreachu, vE Tx C. Let us define

(4.3) [Cl={(p.») EPx PP EC Y =p(P)
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The set [C] is the graph of p . interpreted as a subset of P x P[q. It can be proved
that

(4.4) pe=((P. @), (B> w3 [CD

is a symplectic relation [8]. Since p. is a (surjective) submersion, we conclude
that p, is a symplectic reduction. We call Pe the reduction with respect to C. We
call

4.5) (P, “")ICI = (P[C], wlc.])
the reduced symplectic manifold of (P, w) by C.

(4.6) Let p = (P, w), (P uO);R) be a symplectic' reduction and let p : C=P, be
the corresponding submersion. Then: (i) 5*w0 = ) [C; (ii) the fibers of p are
integral manifolds of the characteristic distribution of C; (iii) 2 codim C =
= dim P — dim P

Proof. For each (x, ) € R let us consider the linear symplectic relation T anP

TP T P defined by T R and the linear mapping T_p PEE, C— T P (we have
y = p(x)) For each pair of vectorsu, ve T, C we have (u T p(u)) (u p(u)) e
e T R Since T P is symplectic, {(u /\ v, w) — (T, p(u) /\T p(v), wy? = 0.
Thus (1) is proved. Let F = p'(y) be a fiber of p. Since p is a submers10n for each
x € F the linear relation T % P is an epimorphism (in the category of linear
symplectic relations). It fO]lOWS that (T C)¥ is the inverse image by T(x »n P of
the zero vector and that (*) dim (7, C')§ + dim T P =dim 7T, C. Hence we have
T FcC(T, 0)% and dim (T, 0% = dim C— d1mP On the other hand (see (2.1))
d1m F = dim C — dim P, thus TXF (TXC')§ and (ii) is proved. From equation
(*) above it follows that dim T P — dim TyP() — dim (TxC)§ = codim T, C. On
the other hand we have dim (TxC)§ = codim 7, C, thus dim 7 P — dim TyP0 =
= 2 codim TXC and equation (iii) is proved. (Q.E.D)

(4.7) Let p : (P, w) = (P, wo) be a symplectic reduction. For each submanifold
S C P,we have dim p'(S) —dim § = 1/2 (dim P — dim P).

Proof. We use (2.2) and part (iii) of proposition (4.6): dim p’(S) — dim § =
= dim C — dim P, = dim P — codim C — dim Py = dim P — 1/2 (dim P —
—dim Py —dim Py, (Q.ED.)

(4.8) Let p : (P, w) = (P wo) be a symplectic reduction with connected fibers
and let C be the inverse image of p. Then the symplectic manifold (P, w) is global-

ly reducible by C and there exists a symplectomorphism t : (P, w)(C] - (P wo)
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such that p = vo p,where p.is the reduction defined by C.

Proof. Since the fibers are connected, from proposition (4.6), part (ii), it follows
that each fiber of p is a characteristic of C.Thus there is a natural bijective map-
ping ¢ : P[C] P which associates with each y € P, the corresponding fiber. The
mapping ¢ induces from P, a differentiable structure on P, . such that the natural
projection p c' C - P{C] is a submersion. From part (i) of (4.6) it follows that
(Tp(u) N TH(), wy) = u Av, w) for each u, v € T, C, where p : C > P, is the
submersion associated with p. The left hand side of the last equation becomes
equal to (T(te po) W) AT(Le po) W), wy)=(TpH () A Tf)c(v), t*w). The right
one is equal to (Tﬁc(u) A T,SC(U), w[C]) (see definition (4.2)). This shows that
*wy = Wi (Q.E.D.)

€1
5. Lagrangian Submanifolds Generated by Forms

Let Q be a differentiable manifold. We denote by o TQ - Q and Ty T*Q »
— O the tangent and the cotangent bundle projections respectively. We denote by
BQ the Liouville I1-form on T*Q. We recall that 6 0 is defined by the equation

(5.1 w,0,)= (T wQ(v),'rT,Q(u)), vYv e TT*Q.
We consider on T*Q the canonical symplectic form

(5.2) Wy = db,

and we call the symplectic manifold

(5.3) IPQ = (T*Q, wQ)

the phase manifold of Q.
Let K C Q be a submanifold and let y be a 1-form on K. We define

(5.4) AQ:K, N ={peT*Q;q= 1o(P) €K, (u, p)=(u, 7), Yu€ TqK}.

(5.5) (i) The set L = %Q; K, v) is a submanifold of T*Q and dim L = dim Q; (ii)
the mapping 7 : L - K induced by Ty is a surjective submersion with connected
fibers; (iii) m*y = BQ | L.

Proof. (i) Let (g*) (¢ =1, ..., n) be local coordinates on Q such that X is locally
defined by equations q"7 =0@=1,...,1;1=codim K). From (5.4) we see that
L is locally described by the following n equations: qE =0,p, = -ya(qb) (a, b=
=1+1,...,n), where (g%, pa) are the canonical coordinates on T*Q associated
with (¢g%) and v, are the corresponding local components of vy (coordinates (¢*)
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can be interpreted as coordinates on K| thus y = 'yadq"). (ii) The mapping 7 is
clearly a surjective submersion. If g € K and p € n’(q), then from (5.4) it follows
that 7'(g) = p + (Tq K)° where (Tq K)? is the space of covectors vanishing on
Tq K. This shows in particular that the fibers are connected. (iii) For each p€ L
and for each v € TPL we have: (v, BQ) = (T 7(v), p) = (T 7(v), v) = (v, 7).

(Q.E.D.)

As a corollary of proposition (5.5) we have:

(5.6) The manifold UQ; K, ) is a Lagrangian submanifold of PQ if an only if
dy=0.

The following converse statement can be obtained by summarizing results de-
rived in [9]. A direct proof will be given in Section 8.

(5.7) Let L be a Lagrangian submanifold of a phase manifold PQ such that K =
=T, (L) C Q is a submanifold and the surjective mapping 7 : L - K mduced by

L zs a submersion with connected fibers. Then: (i) there exists a unique closed
1-form v on K such that GQ | L = m*v; (ii) L is an open submanifold of AQ; K, 7).

The 1-form 7 : T*K = K is called rhe generating form of L. Any (local) integral
function of v is called a (local) generating function of L.
Let us consider the following two particular cases of definition (5.4):

Q) =AQ2: 0, V),
(5.8) NK = (Q; K. 0)={pe T*Q;q = 1y(p) €K, (u,p)=0, Yu €T K}

0
qEK(T K)

The submanifold y(Q) is the image of the section v : @ = T*Q. The submani-
fold INK is called the conormal bundle of the submanifold K.

We say that a submanifold L of a cotangent bundle T*Q is homogeneous if
peL=rp€L, Yre€R. (This terminology differs from that used by other Au-
thors). We remark that INK is a homogeneous Lagrangian submanifold of PQ. In
the next sections we shall use the following

(5.9) LEMMA. Let L be a homogeneous Lagrangian submanifold of a phase mani-
fold PQ such that K = nQ(L) C Q is a submanifold. Then L = INK.

Proof. Let us take the set C ={p € T*Q; 7rQ(p) eK)= w’Q(K). This set is a coiso-
tropic submanifold of IPQ. The characteristics of C are the equivalence classes
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of the following equivalence relation on C:
p~peqg=m,(p)=1,(P), p—pET,K".

The dimension of a characteristic is equal to codim K and the vectors belonging
to (TC)¥ are vertical with respect to the projection Ty ie.ve(TO)S=T -nrQ(v) =
= 0. Let us consider K as a submanifold of the «zero sectiony» of T#Q. Thus K
is an isotropic submanifold of IPQ contained in C and transversal to the characte-
ristics of C. By the global Cauchy theorem for the Hamilton-Jacobi equation (see
for instance [10], Theorem 5.3.30), we can observe that the Lagrangian submani-
fold NK = qu T qK)§ C C is the unique maximal Lagrangian submanifold
made of characteristics of C issued from K. On the other hand the homogeneous
submanifold L also contains K (interpreted again as a submanifold of the zero
section of 7*Q) and it is contained in C. We conclude that L is an open submani-
fold of INK. The projection 7 : L - K induced by To is clearly a submersion, thus
the set Lq =LN T;‘Q = 7' (g) is a submanifold for each q € K. On the other hand,
since L is homogeneous, each L is the union of 1-dimensional subspaces (or it is
the zero vector) of T*Q We conclude that L is a subspace of T;Q. Furthermore,
from L C INK it follows that Lq C(T K)O Both these spaces have the same
dimension, thus L = (T K)° for each q E K. This shows that L = INK.

(Q.E.D.)

6. Canonical Lift of Differentiable Relations

Let us consider the product @, x Q2 of two differentiable manifolds Q] and Qz'
The mapping

v:T*Q, x T*Q2—> ™Q,*Q,)
defined by
(6.1) (Quy, u), Y(pys p)) = —uy, p) + (uy, Dy,

where (u;, u,) € T(qqu) (Q,x0,),q,= wgl(pl), q, =1, (p,), is a symplecto-

morphism from (IPQI)r x PQ, onto P (Q, x Q).
For each submanifold 4 C Q1 X Q2 we define (see (5.8))

(6.2) NA = v {(INA) =
={(p1’p2)eT*Q] X T*Qz’(qp qz) = (‘”le'ngz) (PI:PZ) EA,
A}.

Since INA is Lagrangian and » is symplectic, N4 is a Lagrangian submanifold of

(PQ )" x PQ,.

(up,p))= (uz,pz) V(ul,u)e -
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(6.3) DEFINITION. Let o = (Q,, Qz; A) be a differentiable relation. We call the
symplectic relation

Pa = (PQ,, PQ,; NA)

the canonical lift of a.

The following properties hold:

(6.4) mp,° Pa=aom, ;
(6.5) P(a’) = (Pa)’;
(6.6) Pl, =1,

(we denote by 1,, the identity transformation on a manifold M).

According to the terminology adopted in Section 5 we say that a relation
between cotangent bundles p = (T*Ql, T*Qz; R) is homogeneous if (pys pz) IS
€R=(rp,,rp,) ER foreachr e R.

The composition of two homogeneous relations is again a homogeneous rela-
tion. The canonical lift of a differentiable relation is homogeneous. By using the
symplectomorphism », Lemma (5.9) provides the following general criterion for
checking if a homogeneous symplectic relation between phase manifolds is a
canonical lift.

(6.7) Let p = (PQ,, ]PQ2; R) be a homogeneous symplectic relation. If A =
= (1rQ1 X ﬂgl) (R) C Q,x Q2 is a submanifold, then p = Pa where o= (Q, QZ;A).

Lemma (5.9) is also used in the proof of the following theorem on the lift of
a composed relation.

(6.8) Let o : Q1 >0, and 8 : Q2 - Q, be differentiable relations. If fo o and
PB o P are differentiable, then IPf o Pa= IP(f o o).

Proof. Let us set & = (Q,, @,; A), B =1(Q,, @, B), R = graph Pa, S = graph PS.
For each (ql, q3) € B o A there exists a q, € Q2 such that (ql, qz) € A and
(g, 513) € B. We can interpret q,. q,, 4, as elements of the zero section of T*Q,,
T*Q,, T"*Q3 respectively. Thus we can write (¢,, ¢,) € R, (g, q,) €S. 1t follows
that (g, q3) € S o R. We conclude that B o A C (”Ql X an) (S o R). The inverse
inclusion is obvious. Hence Bo A = (*er1 X ﬂQz) (S o R). Since (S o R) is a ho-
mogeneous Lagrangian submanifold of IP(Q1 X Qz) which projects onto B o 4,
Lemma (5.9) implies (S o R) = IN(B o 4). (Q.E.D)
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7. The Phase Functor

(7.1) The canonical lift of a reduction is a symplectic reduction. Let G :é =0, be
the surjective submersion associated with a reduction o : Q - Q,and let p:C~
- T*Q, be the surjective submersion associated with p = Pa. Then

(i) graph Pa = {(p, pg) € T*Q x T*Q ;4 = my(p) € Q, gy = m,,_(py) = &q),
(u, p)= (Ta(u),po) Yu€e T Q}

(i) C={p€T*Q;q =my(P) € 0., p)=0, Yu € T,0 : Téu) = 0);
(iii) dim € = dim Q + dim Q,;

(iv) the mapping 7 : C - Q induced by Ty is a surjective submersion and M0 © p=
= 01 o,

(v) the fibers of p = P« are the equivalence classes of the following equivalence
relation on C:

p~p <= ton(p)=a&on(p),
(u, py= (@ p), Yu €T, 0, WE T, 0: Ta(u) = T&(w).

Proof. Expression (i) follows at once from definition (6.2). Let us denote by R
the graph of Pa. Let us take a covector Py € T* QO Let us choose a point g € Q
such that &(g) = g, and let us consider a decomposmon T Q =V eFE®F where:
V C T Q is the space tangent to the fiber of @ at g, E C TqQ is transverse to V, F
is a supplementary space of V@& E in TqQ The tangent mapping T'& provides a
natural isomorphism E = T OQO. Thus we have a natural isomorphism T;Q ~
~ V¥ e E* @ F* with E* = T:OQO. If we take an element p € T;Q such that
p=0® Py @2z, where z is an arbitrary element of F*, then from (7.2) we can see
that (p, py) € R. Further, for each u € TqQ such that u ~ u' ® 4" ® 0, where
u" € Ta(u), we have (u, p) = (Ta(u), py)- This proves that the image of Pu is
T*Q,and that the inverse image is the set C given in (ii). If (p, py: (o, ﬁn) €ER,
then from (i) we see that Py ;—)0 g T;"OQ0 where 4y = a o wQ(p) and that
(Ta(u), py) = (Ta(u), py), Yu € TqQ. Hence p, = p, and R is actually the graph
of a surjective mapping g« C — T*Q, We prove that C is a submanifold and that
p is a submersion by using local coordinates. Let us set m = dim Q, my= dim QO,
l—cod1mQWehavem>m0, — 1 =m, Let(q)—(q q)(z—l n;
a=1, o b d= I+1,...,m)be coordmates on Q such that Q is locally defmed
by equatlons q = 0. We can interpret (g%) as coordinates on Q. Let (qD) k=1,
., m) be coordinates on Q, and let q = a"(g”) be the local representation of
the submersion &. The rank of the (m — I) x m, matrix | @ a“ | is maximal, i.e.
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equal to m,, at each point. We denote by (q", p,;) and (q‘(';, p,,) the natural cano-
nical coordinates on 7*Q and T*Q0 associated with (q') and (qg) respectively.
From (i) we see that R is locally represented by the following m + m inde-
pendent equations:

(1.2) ¢ =0,q5="q", p, = Py, 3,%"(q").
From (ii) it follows that C is locally represented by equations
(7.3) ¢ =0, p,=03,0"t,,

where (rK) are real arbitrary parameters. Hence C is a submanifold of dimension
m + mg and also (iii) is proved. We can give a _parametric description of C by
taking (q°, Pss tx) as parameters:

qi =fi(qa,P5’t,‘)v p; =f,-(qa,Pa,tK)-
We have:

(7.4) ff=q¢" =0, f,=0,a%, f=p,.
As a consequence, the mapping p : C - T*Q is represented by the equations

(1.5) a5=a@"), Py, =1,

which follow from the last equations in (7.2) and (7.3), taking into account that
the matrix 49 & | has maximal rank. Equations (7.5) define a submersion. We
conclude that p is a differentiable reduction. Statements (iv) and (v) follow at
once from the preceding discussion. (Q.E.D.)

Since the relation composed by two differentiable reductions is a differentiable
reduction, from propositions (6.8) and (7.1) it follows that

(7.6) If o : Q, = Qzand B: Q,— Q,are differentiable reductions, then IPg o Pa =
= ]P(ﬁ o 0!).

We conclude that the operator P which associates with each manifold Q the
phase manifold PQ = (T*Q, wg) and with each reduction « the canonical lift
Pa defined in (6.3) is a covariant functor from the category of differentiable
reductions to the category of symplectic reductions. We call P : # - ¥% the
phase functor.

(7.7) REMARKS. Diffeomorphisms and symplectomorphisms are isomorphisms
in # and ¥R respectively. If « is a differentiable reduction such that also o is
a reduction, then « is a diffeomorphism. If & : @ - Qs a diffeomorphism, then
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PPa is a symplectomorphism (see (6.5)). In this case expression (i) in proposition
(7.1) becomes

graph Pa = {(p, pp) € T*Q x T*Qy; 1, (py) = awe m,(p),

(u, py=(Ta(w), pg), Yu €T, ()0}

Hence the symplectomorphism Pe is defined by the equation
(7.8) (v, Pa(p)) = (T o (), p)
foreachpeT*Q andv e Tq Q, withg = nQ'(p). Thus we observe that
(7.9) Poa=T*a"!,
where T%* is the so called cotangent functor. This is a contravariant functor

which operates only on diffeomorphisms (see for instance [10], Ch. 3).

(7.10) Let ¢ : Q - Q, be a differentiable reduction and let « : é 0 be the
corresponding submersion. For each submanifold KO C-Qy and each 1l-form
Yp0n K0 the following identity holds:

(Pa)t (Q(QO’ Kol 70)) =UQ; K, v)
where K = o (K,) and v = &*y,| K.
Proof. Let us set Ly = 2Qp Ky 7y, L = 2Q; K, v), N= (P ) (L). Taking into
account definition (5.4) and proposition (7.1), part (i), we have:
(7.11)  L={peT*Q;q=my(p) €K, (u p)=T&(u), vy, Yu €T K};

Ly={p,€T*Qy;a, =1, (P € K, (s P0) = iy Te), Yy € T, Kok

(7.12)  N={p€T*Q;q=myp)€Q, Ip € L, :qy= 7, (P) =&(q),

(u, p) = (T&W), py), Yu ET,0}=

={p€T*Q:q=my(p)EK, Ip, € T*Q:q, =7, (py) =8(q) €K,
(g Do) = gy Vo), Yty € T, Ky, u, p) = (Talu), py), Vu € T, Q).

Let us take a covector p € N. We have g = WQ(p) € K and, for any u € TqK C
c TqQ, w, p) = Ta(u), py» = (Ta(u), ), since Ta(u) € T%KO. From (7.11) it
follows that p € L. This shows that N C L. Conversely, let us take a covector
p € L. We have g = 1rQ(p) € K. Let us take any vector u € Tq é such that Ta(u) =
= 0. The vector u is tangent to the fiber of & containing g; hence u € Tq K, be-
cause of the definition of K. From (7.11) it follows that (u, p) = (Ta(u), =0
This shows that p belongs to the inverse image of (Pa)’ (see (7.1), part (ii)). As
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a consequence, we have an image p, = (IPa) (p) for which the following holds (see
(7.1), part ()): g, = 7y (Py) = 8lq) and (u, p) = (Ta&(),py), VUET, Q. Hence,
for any vector u, € T K and for any vector u € T K such that Toz(u) = ugy We
have (see also (7.1)): (uo, po) =(Ta(u), py) =, p>= (Ta(u) Yo = g V). Now
we observe that all conditions in the last term of (7.12) are satisfied by the co-
vector p, thus p € N. This shows that L C N. (Q.E.D.)

If in the preceding proposition we assume 7y, = 0 or Ko =0 then we obtain,
as a corollary, the following two identities:

(7.13) (Pa)’ (NK,) = N('(K,)),
(7.14) (Pa)’ o 7,(Q,) = %Q; 0, &*yy).

If in particular « is a submersion (so that & = « and é = (), then (7.14) re-
duces to:

(7.15) (Pa)’ (7,(Q)) = a*y(Q).

In proposition (7.10) there is no particular assumption about the 1-form v,
When this form is assumed to be closed we obtain statements concerning Lagran-
gian submanifolds.

8. Special Homogeneous Symplectic Reductions

We remark that the canonical lift of a reduction is the composition of the lift
of the transpose of an embedding and the lift of a submersion (see (2.3) and
(7.6)). Let us consider in detail these two kind of homogeneous symplectic re-
ductions.

First kind. Let @, C Q be a submanifold of a manifold Q and let ¢ : @, — Q be
the natural embedding. We consider the reduction & = ¢ and the canonical lift
Pa. In this case expressions (i) and (ii) in proposition (7.1) become (set @ = Q@
a=a="1):

(8.1) graph Pa = {(p, py) € T*Q x T*Q; my(p) = 1y (Py) = 4
(W, py= tu, po), Vu €T, Qp},
(8.2) C = (Pa) (T*Qy) ={p € T*Q; my(P) € Q)

The fibers of P are the equivalence classes of the following equivalence relation
on C:

(8.3) p~pesmy(p)=my(P)=q,p —PE(T,0)°.
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Second kind. Let a : Q - Q be a surjective submersion. For the canonical lift
Pa the expressions (i) and (ii) in proposition (7.1) become:

(8.4) graph Pa = {(p, po) ET*Q x T*QO; oo TI'Q(p) = WQO(PO),
(u, py = (Ta(w), p), Vu € TnQ ®2)
(8.5) C= (]Poz)’(T*QO) =

={pET*Q;{u, p)=0, VuETﬂQ(p)Q : To(u) = 0}.

C is the set of the covectors which vanish on the vectors tangent to the fibers of
a. The fibers of P« are the equivalence classes of the following equivalence rela-
tion on C:

(8.6) p~p<=alg) = aq), withq = m,(p), g = m,(p),
{u, p)={, p), Yu e TqQ, ue TEQ :Tou) = Ta(u).

The fibers of Pa are connected if and only if the fibers of « are connected.

Reductions of these two kinds are used in symplectic geometry (see for in-
stance [11], [12]) and in the analysis of the behaviour of mechanical systems
with constraints and singularities (see the examples given in [3]). These reductions
are applied to regular Lagrangian submanifolds and the corresponding images,
under suitable conditions, are Lagrangian submanifolds. The reduced Lagrangian
submanifolds may have singularities. Examples: (i) Let 0, be a submanifold of a
manifold Q and let « : 0, = Q be the natural embedding. Let L C T*Q be a
Lagrangian submanifold generated by a function G : @ — IR. It can be easily
seen that the reduced set LO = IP /(L) is the Lagrangian submanifold of T”‘Q0 ge-
nerated by the function G = G | Q. (ii) Let a : @ — Q) be a surjective submersion
and let C C T*Q be the inverse image of P« (see (8.5)). Let L C T*Q be a Lagran-
gian submanifold generated by a function G on Q. If the intersection of L with
C is clean, then G is called a Morse family and the set Pa(L) is «immersed» La-
grangian submanifold of 7*Q (see [12]). It is known that a Lagrangian submani-
fold of a cotangent bundle can always be described, at least locally, by Morse
families ([13], [11], [12])-

A further example of application of the above results concerning the canonical
lifting is given by the following proof of proposition (5.7).

Proof of (5.7). Let C be the inverse image of the canonical lift IPr : P L — IPK.
We have (see (8.5)):

C={y€T*L;u,y>=0,YueT, ,L:Tr(w) =0}
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Since the fibers of 7 are connected, also the fibers of IPw are connected, hence
they coincide with the characteristics of C (proposition (4.6)). The 1-form 6 =
= 6 |L is closed (L is Lagrangian) and (u, 8) = 0 for each u € TL such that
Tn(u) 0 because of the definition of GQ Hence the manifold M = 6(L) is a
Lagrangian submanifold of PL contained in C. We know that any Lagrangian
submanifold contained in a coisotropic submanifold is the union of integral
manifolds of the characteristic distribution (absorption principle). In the pre-
sent case the characteristics coincide with the fibers of Pw, thus M is reducible,
ie. the set N = Pr (M) is a Lagrangian submanifold of IPK. Moreover, if z, z €
€T, K N N, then the fibers F, = (IP7)’ (z) and £ = (IP7)" (z) are characteristics
of C contained in M. These ﬁbers project onto the fiber 7' (k) (see (6.4)). Since
the fibers of 7 and P7 have the same dimension (use part (iii) of (7.1)) and M is
the image of a section of =7,, we have necessarily Fz = F,, hence z = Z. This
shows that N is the image of a section v : K= T*K of m. Since N is Lagrangian,
the 1-form 7 is closed (proposition (5.6)). Since (PrY N) =M, N = y(K),M =
= 0(L), from the identity (7.15) it follows that 6 = 7*v. Finally, let us take a
covector x € L. For each vectorv €T L we have (Tw(v), v) = (v, T*y)=(v,0)=

= (v, 0 o) = {TIm, V), Trug W) =(Tm, (v) x). This shows that x € 2(@; K, v) hence
that L 15 contamed in Q(Q K, v). (Q.E.D.)

9. Tangent Prolongation of Forms

Let (1>P denote the exterior algebra of a differentiable manifold. We say that a
linear mapping 6 : ®p~> Ppp is a derivation of degree r with respect to the tangent
projection T, : TP — P if

9.1) degree ¢ = degree ¢ + 7,

9.2) Slo A y) =8 Ari¥ + (= 19 ¥ rxp A 5y
A derivation iy, : ®p=> ®pp of degree — 1 is defined by setting

(9.3) i, f=0

for each differentiable function f : P— IR, and

94) ipp0) =, 9} (ETP)

for each 1-form ¢ on P. It follows that fora (k + 1)form ¢ (k= 1) i, ¢ is defined
by the equation

(9.5) (wll‘\.../\wk,iTsO)=(v/\u1/\.../\ukup)

where v = TTP(wl) =...=Tpg wk) and u, = T’I’P(Wl), coou, =T TP(Wk).
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A derivation d . : @, > &, of degree 0 is defined by the commutator of i, and
the differential operator d:

(9.6) dp=dip+i,d
We have:
(9.7 dd,= d,d.

These derivations were defined in [14] and [15). The main properties are sum-
marized in the following identities:

(9.8) iy=X"%ip,

(9.9) Ly=X*d,,
(9.10) ipo* = (Ta)* i,
(9.11) dToc* = (Ta)* ) J.

where X is a vector field, « a differentiable mapping, L the Lie derivative, i ¥ the
interior product.

Identities (9.8) and (9.10) are trivial when applied to functions. Because of
the well known properties of the Lie derivative and the interior product, it is
sufficient to prove them for a 1-form ¢. We have respectively:

X¥ipp) =ippe X=X, o) =iy

(Ta)*(ip9) (V) = iy o Ta(v) = (Ta(v), p) = (v, a*p) = (ipa*p) (V).
Identity (9.9) follows from identities L, = iXd +d iy, (9.6) and (9.8). Identity
(9.11) follows from (9.10) and (9.6).

Let (x") be local coordinates on a manifold P and let us denote by (x', x') the
corresponding fibered coordinates on TP. By the definitions (9.4) and (9.6)
we have:

(9.12) ipdx' = X',  dydx'=dx'.
By using (9.2) adapted to i, and d, we can obtain, for example, the following
local representations:

(9.13) d.f=3,rx

(9.14) i0=0% (0=0dx)

(9.15) i@ = w,; X dx (w=1/2 Wy dx' Adx'),
(9.16) dp6 =205 dx/ +0,d

We shall use the following lemma:
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(9.17) LEMMA. Let m : P = M be a submersion. If a 1-form 0 is vertical with re-
spect to m, Le if Tn(v) = 0 = (v, 8) = 0, then dTH is vertical with respect to
Tm:TP—>TM, ie. TTa(w)=0=(w, d .0)=0

Proof. A simple proof can be given by using local coordinates. Let (x' 5 (x x?)
be local coordinates on P adapted to the submersion 7; the fibers of 7 are locally
defined by x? = const. A vertical 1-form 6 has a local coordinate representation
of the form 9 =0, dx® . From (9.16) it follows that d,, 0= 3 3 X8 dx® + 6, dx®,

Since (x?, x?; x%, xX?) are coordinates of TP adapted to T, we see that d 0 is
vertical. Q. E D)

10. Tangent Symplectic Manifolds

Let (P, w) be a symplectic manifold. The 2-form dw on TP is closed: ddTw =
=dpdw = 0 (see (9.7)). Let (q%, P, q°, pa) be the fibered coordinates on TP
associated with canonical coordinates (¢®, pa) on P. By using (9.2) and (9.12)
we obtain the following local coordinate representation:

(10.1) d1w=d;3a/\dq“ +dp, Adq®.
This shows in particular that d,w is non-degenerate. Thus dw is a symplectic
form on 7P. We call the symplectic manifold

T(P, w) = (TP, dpw)

the tangent symplectic manifold of (P, w).

(10.2) REMARK. The local coordinate representation (10.1) shows that the
ordered set of coordinates (g%, q%; p,» P,) is a canonical coordinate system for
T(P, w).

A first motivation of the definition of tangent symplectic manifold is illustra-
ted by the following proposition, whose proof simply consists in the application
of formula (9.9) to the symplectic form w.

(10.3) A vector field X : P — TP on a symplectic manifold (P, w) is symplectic
(locally Hamiltonian), i.e. L,w =0, if and only if the image X(P) is a Lagrangian
submanifold of T(P, w).

This fact has suggested the following general principle of reciprocity for dyna-
mics [14): the vectors tangent to the trajectories of a system of particles form a La-
grangian submanifold of T(P, w) where (P, w) is the «phase spacey of the system.
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Let us denote by {,} P and by {, }TP the Poisson bracket on (P, w) and T(P, w)
respectively. Let us denote by f : TP - R the natural extension to 7P of a func-
tionf:P->R (f=fo 7p). For any pair (f, g) of differentiable functions on P
we have:

(10.4) {ﬁé}rsz,
(10.5) (£, dTg}TP={f§}p,
(10.6) diif glp=1df d &}rp-

These identities can be proved by direct calculation in local canonical coordina-
tes on the basis of remark (10.2). An intrinsic proof would require further re-
marks on the derivation d. which we omit here for the sake of brevity.

For a differentiable function f : P > R we have d,f(v) = (v, df), for each
v € TP. Hence:

(10.7) If K C P is a submanifold, then a differentiable function f : P— R is con-
stant on K if and only if d.f| TK = 0.

(10.8) If K is an isotropic (resp. coisotropic, Lagrangian) submanifold of a sym-
plectic manifold (P, w), then TK is an isotropic (resp. coisotropic, Lagrangian)
submanifold of T(P, w).

Proof. Let us apply to w the identity (9.11) for the natural injection ¢ : K — P.
We have d. t*w = (Ty*d,w,, ie. dj(w |K) =d,w |TK. If w |K =0, ie. if K
is isotropic, then d, w |TK = 0 and TK is isotropic in T(P, w). If K is in parti-
cular Lagrangian, then 7K is also Lagrangian, since dim 7K = 2 dim K =dim P =
= 1/2 dim TP. Let K be locally defined by equations f*=0(x =1, ..., ) where
f% : U - R are independent differentiable functions on an open subset U C P. It
can be easily verified that the functions d,.f* and f“ on TU are independent.
Moreover, proposition (10.7) shows that equations f* = 0, df* = 0 define
TK N TU. If K is coisotropic, then {f“,f‘G}PlK NU=0(pB=1,...0.From
(10.4), (10.5), (10.6) it follows that {f*, f*},,. {7*, dpf*},p and {d [, d )},
vanish on TK N TU. This shows that TK is coisotropic. (Q.E.D.)

11. The Tangent Functor
Let p = (P,, P2; R) be a differentiable relation. Let us consider the natural
diffeomorphism

(11.1) p:T(Plez)—>TP1xTP2.
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We know that
(11.2) P’z;v,°“=Tp’P,- (i=1,2).

(For any pair of sets (Ml’Mz) we denote by pr, . :M1 X M2—>M'. (i=1, 2) the na-
tural projections). We call !

(11.3) Tp = (TP, TP2; u(TR))

the fangent lift (or the tangent relation) of p. In this definition the tangent mani-
fold TR is interpreted, in a natural way, as a submanifold of TP, xPZ). The fol-
lowing three properties hold:

(11.4) tp,0 Tp=potp, TN = (Tp), Tlp=1p.

We remark that if p is in particular a mapping then 7p is the so called «tangent
mapping» (or «differential») of p.

(11.5) The tangent lift of a reduction is a reduction

Proof. Let p = (P, P,; R) be a differentiable reduction and let p : C ~ P,be
the corresponding surjective submersion. Since R = {(p1= Pz) EP x Pz; p, €C,
py = I)(pl)}, we have w(TR) = {(v;,v,) ETP, x TP;v, €TC, v, = Tﬁ(vl)}. Hence
K (TR) coincides with the graph of 7'p interpreted as a submanifold of T P x TPZ‘
It is known that the tangent mapping of a surjective submersion is a surjective

submersion. Hence Tp is a reduction. (Q.E.D.)
(11.6) If p : P = Pyand o :P2—> P, are reductions, then To o Tp = T(o o p).

Proof. Let us denote by p : C, > P,,0:C,~> P, 0op: C— P, the surjective sub-
mersions associated with p, 0, o o p respectively. We have C = 5’(6’2). Letp:C—
- C, be the restriction of p to C. It follows that graph 0 o p = graph G o p =
= graph ¢ ° p (considered as a submanifold of P1 X Pz)' Hence: graph T(0 o p) =
= T(graph o o p) = T(graph ¢ © p) = graph T(o o 3) = graph TG o Tp. On the
other hand, graph 7o o Tp = {(v}, v,) € TP x TP; Jv, € TP,: (v}, v,) € graph Tp,
(v,, ¥y) € graph To} = {(v), v) €TP x TPy;  3v, € TP, (v}, v,) € graph TP,
(,, v,) € graph T'G}. We observe that v, € TC,, thus that v, € TC. Hence:
graph To o Tp = graph To o Tp. (Q.ED.)

Propositions (11.5)and (11.6) show that the operator T which assigns to each
differentiable manifold P the tangent manifold 7P and to each reduction p the
tangent lift Tp is a covariant functor T : # — Z in the category of reductions.

Let (Pl, wl) and (st ""2) be two symplectic manifolds. By using properties
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(9.11) and (11.2), we derive:
T((Py, w)) x (P, w,)) =T(P, x P, pr;,*1 W, +prp w,)
= (T(P1 X Pz), dT (pr‘;j‘l w, + pr;fz ""2))
= (T(P1 X Pz)’ (TprP,)* drwl + (Tpr},z)* dT“’z)

= (T(Pl X PZ)’ #*(P";}:l dTw1 +pr;’}!2d7‘w2))

On the other hand we have T (Pl, wl) X T(Pz, ‘*’2) = ((TPl x T Pz)' pr}";,,l dTwl +
+ pr;"ﬁdrwz). Hence we observe that the natural diffeomorphism u (11.1) is
a symplectomorphism from T((Pl’ wl) X (Pz’ wz)) to T(Pl, wl) X T(Pz, “"2)' From
proposition (10.8) it follows that if R is a Lagrangian submanifold of (P, —w,) x
X (Pz’ “’2)’ then p(TR) is Lagrangian in (T(Pl, wl))r X T(Pz, w2). In other words:

(11.7) The tangent lift of a symplectic relation is a symplectic relation.

From the preceding discussion we conclude that the tangent operator T is
also a functor T : A — S in the category of symplectic reduction. (For
the sake of simplicity we use again the same symbol T).

12. Natural Equivalences

(12.1) Let Q be a differentiable manifold. There exists a unique differentiable
mapping %t TT*Q - T*TQ satisfying the following conditions:

(12.2) T © O =Ty,

(12.3) dTBQ =a6 BTQ.

The mapping % is a diffeomorphism and it is defined by the following equation:
(12.4) (u, aQ(W)) ={v, a’TGQ),

where w € TT*Q, aQ(w) € T;TQ, u€eT, 70, z = TaQ(w), and v € TTT*Q is any
vector such that Trreg W=wandu=TT wg(v).

Proof. Since @ 0 is vertical with respect to Tos d,b 0 is vertical with respect to T1rQ
(see Lemma (9.17)). As a consequence the right hand side of (12.4) does not de-
pend on the choice of the vector v projecting onto ¥ by means of TTWQ. Hence
(12.9) is correct and defines a mapping satisfying (12.2). We prove that %, is
a diffeomorphism by using a local coordinate representation. Let us consider the
following coordinate systems naturally associated with coordinates (g®) on

Q:
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(¢*,p,) on T*Q
(%, ¢% on TQ,
(12.5) @*,p,:9%p,) on TT*Q,
(qas 4u§ la> ma) on T*TQ,
(g%, q" 84", 8q") on TTQ.

Since 0, = p, dq* we have d GQ =p,dq* + p,dq®. Let usset w = (¢%,p,:4% D )-
We have z = T (w) (g% g*) and we can write &, (w) (g% q%; I, ma) where
(t,m ) must be expressed as functions of (¢%, p_; q p ). An arbxtrary vector
u E T TQ is represented by (g% g°; 8§q°, 8q%) where (6q°‘ *84“) are arbitrary
numbers. It follows that {u, % w)) = 86¢° I+ 8q*® m, . Any vectorv € T TT*Q
such that u = TTm,(v) is represented by (q p,. 4% b, 8%, dp,, 8q°%, &p ).
Hence (v,dTO )= 6q p, + 8¢° p,. We conclude that

(12.6) Le=f B =D
Thus % acts on coordinates as follows:
(12.7) &y (@%p,34%p,) P (@, 4% D, P

and it is clearly a diffeomorphism. For a mapping o satisfying condition (12.2)
the following diagram is commutative:

Trreg
TTT*Q ———— TT*Q

TTw
Ta a
Tr*7, LEy
TT*TQ ——— T*TQ —— T1Q
Hence for each v € TTT*Q we have:
(v, a*6 ) = (Ta(v), 9
= (TrrTQ ° Toz(u), TT*TQ(TO‘(U)))
= (T(nppe @) ©), AT p7ap @)
=(T Tﬂ'Q(U),OI(TTT.Q(U)))

= (u, aw)),
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where w = fn,Q(u), u= T(Ter) (v). This shows that if the mapping « satisfies
also condition (12.3), then a = % The same calculation with o = % shows

that a, satisfies (12.3). (Q.ED)

By differentiating (12.3) we obtain:
(12.8) dTwQ = 0‘5 Wro -

Hence % is a symplectomorphism from TIPQ to PTQ.

(12.9) Let (P, w) be a symplectic manifold. There exists a unique bundle mor-
phism Bp ;- TP — T*P such that

(12.9) ipw= 5(’;@)919'

This morphism is an isomorphism and it is defined by the equation

(12.11) (u, ﬁ(},'w)(v))=(v/\u,w),

where u, v € TP and 7p(u) = 7p(v).

Proof. We observe first of all that (12.11) defines a bundle isomorphism. Fur-

thermore, we remark that for a bundle morphism § : TP - T*P the following
diagram is commutative:

Trp
TTp ———— TP
T8 g r
T +p g
TT*p T T . P

Hence, for each w € TTP, we have:
(w, B* 8,) = (TB(w), 0,,)
= (Tr(TBOW)), 77 THW)))
= (T 7,(w), BT, (W))).
On the other hand, from the definition of Iops it follows that

(w, ipw) = (T W) AT 75(w), w).
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The comparison of these equalities shows two things: that if for the bundle
morphism B we have iy @ = §* 0, then § = B(p..)» and conversely that E(P,w) sa-
tisfies (12.10). (QE.D)

From (12.10) we derive
(12.12) dTw=ﬁ$,,u)w

Hence B(P. ©) is a symplectomorphism from 7(P, w) to IP(P).

The general theory of the Legendre transformation described in [16] and [17]
makes use of the symplectomorphisms % and ﬁ( w) described above. According
to the general principle quoted in Section 10 the dynarnlcs of a reciprocal mecha-
nical system is represented by a Lagrangian submanifold D of the tangent sym-
plectic manifold T(P, w) of a suitable «phase space» (P, w). If (P w) is a phase
manifold, i.e. if (P, w) = PQ, then 4 = % (D) and B = Bp (D) are Lagrangian
submanifolds of the phase manifolds IPTQ and PT*Q respectlvely. The functions
or the Morse families generating A and B are respectively the Lagrangian and the
Hamiltonian of the mechanical system.

In this section we show how the symplectomorphisms % and 6(1,,“) give rise
to natural equivalences (see [18], Ch. 1, Section 4) between functors defined
on the category of reductions, by proving the following propositions.

(12.13) For any differentiable relation o : Q1 ->Q,we have

(12.14) O an) (graph TP 0) = graph P70,
i.e. the following diagram of relations is commutative:

an

———— P10,

TPQ,

(12.15)
TIPo PTo

%o,

TPQ, —— PTQ,

(12.16) For any symplectic relation p : (P, wl) = (P, wz) we have
(12.17) Bep, wy) * B, w,y (81aph Tp) = graph Pp,

i.e. the following diagram of relations is commutative. -
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ﬁ(Pls“Jl)
T, ) ————— PP

(12.18)
Tp Pp

B(szwz)

TR,w,) ——— * BP,
When applied to reductions the two propositions above show that:

(12.19) The mapping which assigns to each differentiable manifold Q the sym-
plectomorphism o, is a natural equivalence between the functor TP R - SR
and the functor PT : B~ SR .

(12.20) The mapping which assigns to each symplectic manifold (P, w) the sym-
plectomorphism ﬁ(P ) is a natural equivalence between the functor T : SR —
- SR and the functor P : SR - SR .

Note that in this last proposition the phase functor IP is considered on the
category of symplectic reductions.
We use the following lemmas.

(12.21) LEMMA. For any submanifold S of a manifold Q we have on(T]NS) =
= INTS.

Proof. Since % is a symplectomorphism and TINS is Lagrangian, aQ(T]NS) is La-
grangian. Furthermore, because of (12.2), Tro (oc (TINS)) = Tm (TlNS) =

thus % (TINS) projects onto TS. Let us use the coordmate notatlon (12.5) and let
us assume that S is locally defined by equationsg? =0 @ =1,...,1). Thus TINS
is locally represented by equations ¢ = 0,p,= O,q = 0,pa = 0 (a =l+1,.:.,n)
and a, (TINS) by ¢* = 0,4 =0, I, =0,m, =0 (see (12.7)). This shows that
aQ(T]NS) is a homogeneous submamfold of IPTQ. Thus % (TINS) = INTS by

Lemma (5.9). (Q.E.D.)

(12.22) LEMMA. For any Lagrangian submanifold R of a symplectic manifold
(P, w) we have ﬁ(},,w) (TR) = INR.

Proof. ﬁ(P (TR) is a Lagrangian submanifold of IPP which projects onto R. Sin-
ce ,B(P is a vector bundle morphism and TR is homogeneous, the submanifold
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(TR) is homogeneous, thus it coincides with INR because of Lemma (5.9).

(Q.ED))

3(?.1.0)

(12.23) Notation. If 01 and 82 are k-forms on manifolds M1 and M2 respectively,
then we set

(61, 02) = prj"’a‘,1 91 + pr]ff2 92.

This is a k-form on M1 X Mz'

(12.24) LEMMA. For any pair of differentiable manifolds (Q,, @,) the following
identity holds:

¢o (an xan)o Mo Tv_1=onle2,
where:
v T*Q, > T*Q,~> T*Q,x 2,
is the diffeomorphism defined in (6.1),
w2 T(T*Q, x T*Q,) »T*TQ; x IT*Q,
is the natural isomorphism (see (11.1)),
¢ : T*TQ, x T*TQ, > T*T(Q, x Q)
is the diffeomorphisms defined by the equation
(T Hw, w), 8z, 2,)) = —(wy, 2)) + {wy, 2))

for each w, € TTQ, and z; € T*TQi such that TTQ,-(Wi) = ”TQ,-(zz’) Gi=1,2,
where

&,p:T(leQZ)-»TQl)(TQ2

is the natural diffeomorphism.

Proof. Let us denote by « the mapping at first side of the identity in question.
Because of proposition (12.1) it is sufficient to show that: (a) 7, © @ =
= Ter, (b) d, GQ = a*6,,, where Q = 0, x ¢,. Let us consider the following
diagram:

e
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TT*Q, x Q,)
Ty—1 (1)
T(T*Q, x T*Q,) T(Q, x Q,)
I (2)
v}
|
TT*Q x TT*QZ
Tan X Tﬂ'Q2 \
QX %, 3) TQ, xTQ,
T*7Q, x T*TQ, Tro, X "1,
¢ 4) g !
l " J
T@,xQ7)
T*T(Q, x @,) > TQ,xQ)
3 . . i —1
The subdiagram (1) is commutative, since (7r01 X ”o,) o P = M0, x0q" The

subdiagram (2) is commutative because of property (11.2) satisfied by the na-
tural diffeomorphisms u and . The subdiagram (3) is commutative because
of the characteristic property (12.2) for %, and %, The subdiagram (4) is com-
mutative because of the definition of {. Thus the whole diagram is commutative
and in particular equality (a) holds. For proving (b) we show that the following
four identities hold:

(12.25) $*0r0, xan = 019, Omp,):
(12.26) (g, % @ )* (O 070 ) = (dpb, . d70, ),
(12.27) uHdpy . drb, ) =drl0,,0,),

(12.28) df—085,0,) = (Tv)*d, 6,

Let us take a pair (u;, “2) € TT*TQ, x TT*TQ22 T(T*TQ, x T‘*TQE) and let us
set w, = T‘II'TQ.(M!.), z, = TT.TQ,(u,.) (i =1, 2). Since the subdiagram (4) is com-
1 1
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mutative we have:

(p 4, 83019, x0y)) = (T8 1)), Opg, g,
= TT7, x0y) ° T8, U9 Trarg, v,y © T8y, 1))
=(Tg 1o Tlmy x M) Gy, ), § 0 Trupy  per, Gty )
=Ty~ 'wy, wy, §(z;,2,))
=—(wy, ) +(w,, 2,)
== ATrpy (W), Tragg W) + Ty (W), Trugy (4))
=—(u,, BTQ,) + Cuy, GTQz)' ‘

This proves (12.25). Identity (12.26) directly follows from the characteristic
property (12.3) for %, and %, Identity (12.27) is a consequence of (9.11)
and (11.2):

WHdpbo,,drbo) = H*Prireg, O, + Priveg,bo)
= Prereg,° W* 0y + (propeg ¥ 6,
- (TprT,,Q])* BQI + (TprT.‘Qz)* BQ2
= dTpr:,"f,,Ql 6Q1 -+ (1':,,13.";,,(226‘[22
= dT(BQ,’ ng)'
Now, let us consider the diffeomorphism » defined in (6.1). For each pair
(v, UZ) ET(T*Q, x T*QZ) = TT*Q, x TT”‘Q2 we have:
(g v), %0, 50 =(T¥(v},0,),0, o)

={(Tr o Tv(v,,v.), T

192 Tre@, x 0y © V01 V)

01x02
=Ty 0,° )WLV Ve Trey oy (V0,0

=A(Try @), T, W), UTreg (V) Tray ()
== (Tmy WD, @) +(Tmy (), Tray (V)

=— (v, 8, )+ (w6, ).

(5}
This shows that

(12.29) v*0 (—0.,6

Q1x02 " Qz)
Hence, by using (9.11) we obtain:

(T)*dp0py o =dp v* 0, o =d;

01

(-6, .0

Q1x0> 2’ Qz)’
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and also (12.28) is proved. (Q.E.D.)

(12.30) LEMMA. For any pair of symplectic manifolds (Pl, wl), (Pz, w,) the fol-
lowing identity holds:

o Bip, wpy X Bipy g o M= Bip,— o) x Ppws)

where U : T(P1 X P2) = TP x TP2 is the natural diffeomorphism and v : TP, x
x T¥P, = TH(P, x Pz) is the diffeomorphism defined as in (6.1).

Proof. Let us denote by f the mapping at the left hand side of the identity in
question. This mapping is a bundle isomorphism. Because of proposition (12.9)
it 1§ sufficient to show that iT(— W, wz) = ﬁ*B},I <Py’ i.e. to show that:

(12.31) v*BPl oy = = 6’P1,9P2),
(12.32) (ﬁ(Plvwl) X 5(},2’ wl,))”‘(6‘},1, 3},2) =(ipw;, ipw),
(12.33) u*(irwl, iT“’z) =i(w, w,).

Identity (12.31) coincides with (12.29). Identity (12.32) directly follows from
the characteristic property (12.10). The proof of (12.33) is similar to that of
(12.27) and uses formula (9.10) instead of (9.11). (Q.E.D.)

Now we can prove propositions (12.13) and (12.16).

Proof of (12.13). Let us set S = graph o. Identity (12.14) can be written as
follows:

(0, % & ) (W(TNS)) = N o(T5),
or
(g, x o, ) (T~ H(NS)) = ¥~ (N(ATS))),

where u, v and ¢ are the diffeomorphisms considered in Lemma (12.24) and
v o T”‘TQl X T”‘TQ2 - THTQ, X TQz) is the diffeomorphism defined as in
(6.1) (with Q'. replaced by T*Qi,i =1, 2). However, ¢~ 1(IN(‘,o(TS))) =¢ I(INTS),
where ¢ is the diffeomorphism already considered in Lemma (12.24). Hence:

(ap X0, )opo Tv~ (TINS) = ¢ (INTS).

This equality is true because of Lemma (12.24) and Lemma (12.21) (for @ =
= Q1 X QZ)' (Q.ED.)
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Proof of (12.16). Let us set R = graph p. Identity (12.17) can be written as

follows:

Bep,, wy) * By, wy) WIR) = ~1(NR),

where w and v are the diffeomorphisms considered in Lemma (12.30). This iden-

tity is true because of Lemma (12.30) and Lemma (12.22). (Q.E.D.)

List of Symbols

{v, p? evaluation of a covector p on a vector v.

(v, 0 evaluation of a form 6 on a vector v.

Pry, :MI X M2 M, the cartesian projections (i = 1, 2).

o*@ the pull-back of a form § by mapping c.

0K the pull-back of a form 6 on a submanifold K

ys the symplectic polar of subspace V of a symplectic
vector space.

yo the dual polar of a subspace ¥ of a vector space, i.e.

p' = (Py, P;R")
oop=(P,PySeR)

p(K)=RoK
TqQ

Ty
70700
T T2~ 0
9Q

wQ=d0

v:T*Q, x T*Q2—> TQ, x
u: TP, xP)—> TP, x TP,

AQ; K, )

INK

NA = v }(INA4)
PQ = (T*Q, w,)
Pa:1PQ, - IPQ,
®p

ir:®p>&pp
dp:®p~> @pp

T(P, @) = (TP, dp @)

the set of covectors annihilating V.

the transpose of a relation p = (P, P,, R).

the composition of two relations p = (P PZ;R) and
6 = (2, Py 5).

the image of a subset K C P, by a relation p = (P,
P, R).

the tangent space at a point ¢ of a manifold Q.

the cotangent space at a point ¢ of a manifold Q.

the tangent bundle projection of a manifold Q.

the cotangent bundle projection of a manifold Q.
the Liouville 1-form on T*Q (see (5.1)).

the canonical symplectic form on T*Q.

Q2) the diffeomorphism defined in (6.1).

the natural diffeomorphism.

see (5.4).

the conormal bundle of a submanifold K (see (5.8)).
see (6.2).

the phase manifold of Q.

the canonical lift of a relationa : @, = Q.

the exterior algebra of a manifold P.

the derivation of degree O defined in (9.3-5).

the derivation of degree 1 defined in (9.6).

the tangent symplectic manifold of (P, w).
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