S BENENTI
Linear symplectic relations

1.0 INTRODUCTICN

This is a short report on a systematic study of linear symplectic relations
undertaken jointly with W.M. Tulczyjew. Preliminary results of this study
are contained in two papers [1, 2], to which we refer for the details omitted
here. Only finite dimensional real vector spaces are considered in this pre-
liminary approach.

1.1 LINEAR RELATIONS

A linear relation is a triple p = (P;,P,:R), where P, P, are vector spaces
and R is a (linear) subspace of the direct sum P, ® P,. The subspace R is
called the graph of the relation p. We shall use the notation R = graph p.
Spaces P; and P, are called respectively the domain and the codomain of p.

The usual composition of relations is adopted: if p = (Py,P;3R), o = (P;,P,;S)
are linear relations, we define oep = (Py,P3:;5°R) by setting

S°R={p16p3€P1®P3;3pz€P2:plepZER,pz@mES}.

We denote by L the category of linear relations, i.e., the category whose
objects and morphisms are respectively {real, finite dimensional) vector
spaces and linear relations composed as defined above. The category of vector
spaces and linear maps is obviously a subcategory of L. We denote by

HDmL (P1,P;) the set of all linear relations from P, to P,. The notation

p:P, = P, is also used instead of p € HomL(Pl,Pz). If K is a subspace of P,
the subset

p{K) = {p2 € Pp; 3 p1 € K: p1 & p2 € R}
: 5 t _ s
is a subspace of P,. The relation p~ = (P,,P13R"), where
RE = (p, @p, €P, @P,; p1®ps €RE,
is called the transpose (velation) of p. By setting Pt = P for every vector
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space P, we define a contravariant functor t:L -+ L which'p]ays the role of
duality in L: the transposition functor.' '

Some special morphisms of L are characterized by the following two theorems
related by duality (see [1], Section 3).

THEOREM 1 If p € HomL(Pl,Pg), the following four statements are equivalent:

(Z) p is a coretraction: 3 0 € HomL(PZ,Pl): gop = 1P1’
(22) p is g monomorphism: pca = p°f =a =B,

(222} plP2) = Py and pt(0) = 0,

H

(?:1.’) poep = |Pl.

THEOREM 1* If p € HomL(Pl,Pz) the following four statemenis are equivalent:

(Z) p is a retraction: 3 0 € HONL(PQ,Pl)I peg = 1P2’
(#4) p Zs an epimorphism: ocp = Pop = o = B, 7
(#é2) p(Py) = P, and p(0) = 0,

) ot
(iv) pep = 1P2'

We note that a Zinear map is characterized by the conditions Dt(Pz) = Py,
0(0) = 0. The above theorems imply, in particular, that an isomorphism of L
{which is by definition a retraction and at the same time a coretraction) is
a linear map, i.e., a linear isomorphism in the usual sense.

The following factorization theorvems can be proved (see [1], Section 5):

THEOREM 2 If p1 € HDmL(Pl,P) and p. € HomL(Pz,P), the following two state-

mente are equivalent:
(¢) 3y € Hom (P1,P2): p1 = p2°ys

(24) 02(0) < p1(0) and p1(P1) < p2(P2).

THEOREM 2* If p1 € HOWL(P,Pl) and pz € HomL(P,Pg), the following twe state-

ments arve equivalent




() 3y € Hom, (P,,P1): o1 = Yopa,s

(3) o5(0) < o%(0) and oF(Py) < pL(Py).

We recall that a subobjeci of an object P is by definition a monomorphism
whose codomain is P, while a quotient object of an object P is an epimorphism
whose domain is P. We say that two subobjects p,:P, » P, p,iP, » P of P are
fsomorphic (and we write p, ¥ p,) if there exists an isomorphism y € Hom (P,,P,
such that p; = p, o v (hence p; = p, © Yt). This defines an equivaiencg
relation in the set of subobjects of an object P. A reprasentative class of
subobjects of P is a selection of exactly one subobject in each equivalence
class. From Theorem 2 it follows that p, = p, if and only if p,(0) = p,(0)
and p,(P3) = p,(P,). Hence, each equivalence class of subobjects of P is
characterized by a pair (K,L) of subspaces of P such that L = K. Analogous
definitions and remarks apply to quotient objects of P.

These facts lead in a natural way to the following construction of repre-
sentative classes of subobjects and quotient objects. The reduction of a
vector space P with respect to a pair (K,L) such that L g K is the linear
relation

red(P,K,L) = (P,K/L;R) 3
where
R={p@®uc€P®K/L;pc€Eul

The transpose relation redfP;K,L) is called the counter-reduction of P with
respect to (K,L). The set of counter-reductions of P and the set of reduct-
jons of P provide representative classes of subobjects and quotient objects
respectively.

The following theorem shows that each morphism of L is a composition of a
reduction, an isomorphism and a counter-reduction (see [11, Section 7).

THEGREM 3 (structure theorem) CLet p:Py > P, be a linear relation. There

exists a unique linear isomorphism pg such that

e t o o
o= redip . (p ) ,o(0)) ° P ° Ted(p iot(p,),0t(0))"

some of the functors known in the category of vector spaces and linear




maps can be extended to L.

The direct ewm fumctor: for any collection {Pi} of vector spaces

[
and a collection {pi = (Pi’P%’Ri)}i=1 5 i of linear relations, we define

@
“
-
n

L By = Py s L

n i
i=1 Pis @59 Pis @5 Ry).

In this way, a covariant functor Q?:} is defined for each integer n > 1. It

is easily shown that the sum @?:1 P is a monomorphism (or an epimorphism) if
and only if each oy is a monomorphism (or an epimerphism). In particular, we
have

x N
red, n . il n = @®. 4 red; s
(@;_q Pis @ g Koy @, Lo) — Tist TTN(PLKLLLL).

The algebraic duality functor: for a vector space P and for a Tinear
relation p = (Py,P,,R), we put

p* = dual space of P,
or = (pr,pe;R(")),
where
R(*) - * *, -
= W @Ul € P?. ©] P]_s V]J]_@ P2 S R! <p1:u1> - <p23uz>}- (1)

This defines a contravariant functor *:L + L (for the proof see [1], Section
8). From Thecrem 1 and Theorem 1* it follows that p* is an epimorphism (or a
monomorphism} if and enly if p is a monomorphism (or an epimorphism). More-
over, the following identity holds

-1

t
1

* -
red (P3K,L) 1

where ¢:L°/K° > (K/L)* is the natural isomorphism and

Ke = {u € P*; vk € K, <k,u> = 0}.




1.2 LINEAR SYMPLECTIC RELATIONS

A symplectic (vector) space is a pair (P,w), where P is an even-dimensional
vector space and w € (P A P)* is a non-degenerate 2-form. The form W is
called a sympiectic form on P. If K is a subspace of P, the subspace

K3 = {p € Ps<k A pow> = 0, Yk €K},
is called the symplectic polar of K. The following properties hold:

dim K + dim K§ = dim P,

§ §

K'el” = LcKk,

(K + L)% = k¥ n LS,

K§ i L§’

(K n L)’
k3% - k.

We recall that K is said to be Zsotropic. if K§ g»K, cotsotropic if I(§ < K,
Lagrangtan if K5 = K. In these three cases, we have respectively dim K <
3 dim P, dim K » } dim P, dim K = 3 dim P. Moreover, K is isotropic if and
only if w|K = 0, i.e., if w vanishes on exterior products of vectors belonging
to K.

If (Pyyw,)s (P,,w,) are two symplectic vector spaces, then (P,,w,) & (P,,uw,;
will denote the symplectic vector space (P, @ P,,(w,,w,)), where (w,,w,) is
the symplectic form defined by

Ap, ® pa) A (pl @ pa)s (ww2)> = <Py A Prawy> + <P A Phawz>s

where p,,.pi € P, and p,,p, € P,.
We say that a linear relation p = (P,,P,,R) is symplectic if its graph is
a Lagrangian subspace of (P,,-w;) @ (P,.w,). Hence, a linear sym@lecbic
relation is a triple ((P,,w;), (P,.w,):R), where (P, ,w,) and (P,,u,} are
symplectic vector spaces and R is a Lagrangian subspace of {Py,~w;) @ (P,.uw,).
A Tinear isomorphism p:P, » P, preserves the symplectic forms, i.e., |

<P(p1) A p(pi)’(‘b) = <p]_ A piaml>g

if and only if its graph is Lagrangian. Hence, symplectic relations are nat-
ural generalizations of symplectic isomorphisms.




‘ It'can be shown that the compﬁs{tiOn of linear symplectic relations is
symplectic (for a direct proof see [2], Section 2; for a proof involving the
concept of symplectic reduction see [3]1). It follows that symplectic (real,
finite-dimensional) vector spaces and linear symplectic relations form a cat-
egory. We denote this category by S. We write p € HomS[(Pl,ml),(PZ,ma)) or
0:(Py,wy) > (P,,w,) to indicate that p is a linear symplectic relation from
(Py,w;) to (P,,w,). For each subspace K of P, we have (see [2], Section 2)

(e(kN® = oK), (4)

Hence, if K is coisotropic (or isotropic, Lagrangian) in (Py,w;), then o(K)
is coisotropic (or isotropic, Lagrangian) in (P,,w,}. In particular,

o(P) = (p(0))5. (5)

Hence, p(0) is isotropic and p(P,) is coisotropic.
We remark that a vector space 0 made of a unigque element can be trivially
interpreted as a symplectic vector space. For a symplectic relation
v:0 - (P,w), the space N = v(0) is isotropic and coisotropic at the same
time, hence it is a Lagrangian subspace of (P,w). Each Lagrangian subspace
N of (P,w) can be characterized in this way by setting graph v = 0 & N.
Since RY is a Lagrangian subspace of (P,,-w,) @ (P,,n:) if and only if R
is Lagrangian in (Py,-w,) ® (P,,w,), by setting (P,m)t = (P,w) for every
symplectic space, we define the transposition functor t in the category S.
Theorems analogous to Theorems 1, 1*, 2, 2* can be proved in § (see [2],
Section 3).

THEOREM 4 If o € HomS(Pl,ml), (P,,w,)). the following five statements ave

equivalent:
(Z) p Zs a covetraction: 3 ¢ € Homs(?z,wz), (Pr,wi)): Gep = 1P1
(ii) p ig @ monomorphism: poa = poR = o = B,
(ic2) p(P,) = Pu,
(i) p(0) = O,

t
(v) pop = 1P1'




THEOREM 4% I ﬁ € Homs((Pl’wl)’ (Pz,wz)), the'fblloming five statements are

equivalent:

(i} p 28 a retraction: 3 g € Homs((Pz,wz), (Pysmy)): poo = 1P{

(i2) p is an epimorphiom: oop = B°P = g = B,
[#d) plPy) = Pua
(v} pl0) = 0,
t
(v) pep = 1P2'

THEQREM 5 If p, € Homg((Pyswy)s (Psw)) and p, € Homg((Py o), (Pow)), the

following three statements are equivalent:
(z) 3y € Homg((Py ;) (Poswz))t p1 = p2oYs
(ii) pl(P1) < pa(pz)s

(112) pz(0) € p,(0).

" THEOREM 5% TIf 5, € Homs((P,w), (P1sw;)) and p, € Homs((P,w), (Posw,)), the
following three statements are equivalent:

() 3 veE HOmS((PZ,mz), (Pl,wl)}; oy = YoP2

(32) pt(P) < pr(Py),

(122) pb(0) < pl(0).

The discussion on subobjects, quotient objects and their representative
classes follows the same pattern as in the category L. We conclude, for
instance, that two subobjects p;:(P;,w;) » (Pew) and p,:(P,,w,) » (Pyw) are
isomorphic if and only if o,(P;) = p,(P,) or equivalently if and oniy if
p,(0) = p,(0) (see (5)). Moreover, as we already remarked, K = p,(P,) is
coisotropic (and p,(0) = (p,(P, )% is isotropic). Hence, each equivalent
class of subobjects of (P,y) is characterized by a coisotropic subspace of
(P,w). Guided by analogy with the category L, we expect that a répresentative
class of quotient objects (or objects) is made up-of linear symplectic
relations whose underlying linear relations are reductions (or counter-
reductions). One can see that these reductions are to be taken with respect
to pairs (K,L) of subspaces of P (with L < K) such that LS = K, which implies,
in particular, that K is coisotropic.




THEOREM 6 Zet (P,w) be a symplectic space and L < K two subspaces of P.

There exists a symplectic form Y] on the quotient K/L such that

rEd(P'K L) ig symplectic if and only if L = K§.

The symplectic form ©rg] on K/K§ is defined by
<p A pl ’U-’> = <[p} A [pl]:m[K]>:

where [p] and [p'] denote equivalence classes of p and p' respectively.
Correctness of this definition is guaranteed by K being coisotropic.

Let (P,w) be a symplectic vector space and let K be a coisotropic subspace
of (P,w). The symplectic space

_ - §
{P,w)[K] = (P[K]’w[K]) = (K/K ,m[K]} (6)

is called the reduced sympleciic space of (P,w) with respect to K. The
symplectic relation

red(P,m;K):(P,m) -+ (P,m)[KJ,

. whose underlying Tinear relation is red(P,K K§), is called the symplectie
reduction of (P,w) with respect to K. For each subspace N of P we put

N[K] = red(P,w;K)(N) ={ue P[K}; 3pe€EN:peE ul. (7)

We have a structure theorem analogous to Theorem 3.

THEOREM 7 Let p:(P1,m) * (P,,0,) be a linear symplectic velation. Then

there exists a unique eymplectic isomorphiem py such that
p = red! ° pp © red t
(Paswz;D(Pl)) (Pl,wl;p (Pz)).
1.3 FUNCTORS

A number of functors can be introduced in the category S. Some of these
arise from analogous functors in L.

(a) Direct sum functor
We have already defined the direct sum (Py,w,) @ (P,,0,) of two symplectic
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~$paces. This definition can be extended in a natural way to a sum of an
arbitrary number of symplectic spaces, It turns out that the direct sum of
5ymp1ectic relations is symplectic. Hence, the direct sum is a covariant
functor in S.

(b) Symplectic duality functor
If {P,0) is a symplectic space, there exists a natural isomorphism B:P + P*
defined by <p,8(p"')> = <p' Ap,w>. We introduce the symplectic form

QA =wo (B_‘I A8“1)

in P. The symplectic space (P*,R) is called the dual symplectic space of
(P,w) and is denoted by (P,w)*, If K is a subspace of P,

K™ = K™°, (8)

It follows that K is coisotropic (or isotropic, Lagrangian) in (P,w) if and
only if its dual polar K° is isotropic (or coisotropic, Lagrangian) in (P,w)*,
Let (P1,m,) and (P,,w,) be two symplectic vector spaces. If R is a sub-

space of P1 @ P,, Tet R(*) denote the subspace of P* ® Pt defined as in (1).
Let us consider the symplectic spaces (Pi,-wi) @ (P,,w,) and (P,,~w,)* @
(P1,w1)*. It can be proved that the fo]]oWing identity holds (see [2],
Section 5):

RUNE . @H™, (9)

*
It follows that R( ) is Lagrangian if and only if R is Lagrangian. 0On the
*
other hand, we recall that, by definition, R( . graph p*, where R = graph p.
Hence, if p is symplectic then the dual relation p* is symplectic. Conse-
quently,
*:(PQM) ¥ (P:UJ)*

*:p‘* D*
defines a contravariant functor in S.

(¢) Phase functor

Let Q be a vector space. We denote by ) the canonical eymplectic form on




Q @ Q* defined by
dqgeu)alg' @ u'),mQ> =<q',u> - <q,u'> (q.q' €Q,u,u' €Q¥). (10)

We call the symplectic space

Pho=1(0® Q*,wQ)

the phase space of Q.
For each pair (A,B) of subspaces of Q, we have identically

(AeB)® -8 oA, (1)

where the symplectic polar § is taken with respect to the canonical form
W Thus, A ® B° is coisotropic {or isotropic, Lagrangian) if and only if
BEA(OY‘BEA,B=A).

Let a:Q, + Q, be a Tinear relation. Let us define

Phao=a6 a*t.

It can be proved that Ph o is a symplectic relation from Ph Q1 to Ph Q, (see
[2], Section 5), MWe call Ph o the covariant Lift of o.

Using the functorial properties of ® , *, t, we note that Ph 1Q = 10 o Q*
and that Ph o o Ph B = Ph(a@oB). Thus, Ph is a covariant functor from L to
S: the phase functor.

(d) Tangent functor

If (P,w} is a symplectic space, then TP = P @ P has a natural symplectic form
© such that the isomarphism 1P @®B:P®P~+P@P* is symplectic. The form @
is defined by

a+b)a(ced),> =<cab,w -<aad,ww> (a,b,c,de?P). (12)
We call the symplectic space
T(P,w) = (TP,&)

the symplectic tangent space of (P,w),
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If p:(P1,w) » (Py.w,) is @ Tinear symplectic relation then
To=p@®p

is a symplectic relation from T(Py,w,) to T{P,,w,). The relation Tp is
called the tangent relation of p.

Properties T1P = 1TP’ T(oep) = To » Tp can be proved, thus T is a covar-
iant functor in S,

A1l covariant functors defined azbove transform epimorphisms into epimor-
phisms and monomorphisms into monomorphisms. The contravariant functor of
symplectic duality transforms epimorphisms into monomorphisms and monomor-
phisms into epimorphisms. With respect to reductions, we have the following
properties (recall that 2 means Zeomarphic in the sense described in Section
1.2):

n
red n . N =8, ., red .
(e 121(P1,w1), @® i=1 K'l) i=1 (P‘i’mi’Ki)’

~ t
red*p wsk) = T8((p,w)*ike)?
Phred(p.a,8) = "®d(ph 0;A @ B°)”
T red P

(Powsk) - "E(T(P0)5TK) "

The composition properties of these functors are investigated in [2].

1.4 GENERATING FORMS OF LAGRANGIAN SUBSPACES

Let (P,w) be a symplectic vector space. A special symplectic structure of
(P,w) is a symplectic isomorphism of (P,w) onto a phase space of a vector
space Q:

$:(P,w) > Ph Q.

It is convenient to represent a special symplectic structure by the pair
(Q,%) or by (Q,(E)), where T:P > Q and v:P + Q* are the linear epimorphisms
obtained by the composition of ¢ with the natural projections of Q @ Q* onto
Q and Q* respectively. The following identities are satisfied: ¢o(p) = n(p) @
v(p) and
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<p A P',w) = (’H(P')a\)(P)) he <TI'(P):\)(P')>'- (13)

This last 1dentify follows directly from the definition of symplectic iso-
morphism (3) and from the definition of the canonical symplectic form wq (10).
A pair (L,L) of Lagrangian subspaces of (P,u) 15 said to be a Lagrangian
Splzttzng if L and [ are transverse, i.e., if L + L P or, equivalently, if

Lal = 0. If {(Q,¢) is a special symplectic structure of {P,w) then

@'1(0 =) 0),¢'1(0 ® Q*)) is a Lagrangian splitting of (P,w). Conversely, a
Lagrangian splitting (L, L) gives rise to a special symplectic structure in
the f011ow1ng way. Let w:P - L be the progectaon onto L with respect to L
and let T:P + L be the projection onto L with respect to L, Let us consider
the linear map v:P + L* defined by

<I,v(p)> = <mlp)Aal,w>, LEL, peEP.

Since L and L are lLagrangian and transverse, it turns out that the Tinear
map ¢ = (g) defined by ¢(p) = n(p) @ vw(p) is an isomorphism from P to L & L*.
Moreover, identity (13) is satisfied. Thus (L,(g)) is a special symplectic
structure of (P,w).

Let (Q,(g)) be a special sympTectic structure of (P,w). The linear map
f:P - P* defined by

<p',e(p)> = <ulp*),vip) (14)

has the following properties:

a(p') = 0=<p',0(p)> =0, vpeP, (15)
(we say that 6 is vertieal with respect to the projection 7) and

<p',0(p)> - <p,8(p*)> = <p A p' . (16)

Conversely, let (P,w) be a symplectic space, m:P + Q a linear surjective map
such that dim Q = 3 dim P and 0:P + P* a linear map satisfying (15) and (16).
If v:P + Q* is the linear map defined by (14), then (Q,(g)) is a special
symplectic structure of (P,w).

In particular, if (P,w) = Ph Q with its natural special symplectic struc-
ture, then P* 2 Q* @ G and 6{g ® u) =u ® 0,
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Let G:C +~ R be a quadrafic fbrﬁ on a vector space C. - The map
8G:C x C +R:{a,b) » Gla+b) - 6(a) - G(b)

is bilinear and symmetric, Let dG:C > C* be the differential of G defined
by

<a,dG(b)> = 8G{a,b), a,b € C.

It is selfadjoint, due to the symmetry of &G: <a,dG(b)> - <b,dG(a)> = O,

Let (Q,(G)) be a special symplectic structure of a symplectic space (P,w)
and let G:C +~ R be a quadratic form on a subspace C of Q. It can be shown
that

N=1{peP; m{p) € C and <c,v(p)> = <c,dG{n(p})>, ¥Yc € C} (17)

C. The quadratic form G:
Q, we have

is a Lagrangian subspace of (P,w) and that m(N)
C > R is called the generating form of N. If C

H

N = {p € P; v(p) = d&(n(p))},

and N is said to be regular with respect to the given special symplectic
structure, In this case, #{N) = Q.

Conversely, each lLagrangian subspace N has a unique generating form that
can be constructed as follows. Let us consider the function W:N * R defined
by (see (13))

W(p) = 3 <m(p),v(p)> = % <p,6(p)>. (18)

This function is a quadratic form on N constant on fibres of 7|N, i.e., %(p)
= m(p'} = W(p) = W(p'). We call W the proper form of N with respect to the
special symplectic structure (Q,(E)). A quadratic form G is induced on the
space C = w(N):

G(c) = 3 <c,v(p)> = W(p), vpent(c)n N | (19)

This is the generating form of N.
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1.5 GENERATiNG FORMS OF LINEAR SYMPLECTIC'RELATIONS

M1 m
Let (le(vl)) and (Qa,(v:)) be special symplectic structures of two symplectic
spaces (P, u,) and (P,,w,) respectively. On the sum (Pl,ﬂpl)_@ (Py 3w, ) we
~have the special symplectic structure

e, [ 0 I} (20)

("\)1 D \)2)

where n:Q} @ QF -~ (Q; @ Q,)* is the natural isomorphism. The generating form
of a symplectic relation p:(Py,w,) + (P,.w,) With respect to the symplectic
structures (Q,, (Ei)) and (Qz,(ﬂg)) is by definition the generating form of
graph o with respect to the special symplectic structure (20). Taking into
account the remarks of the preceding section, we see that a quadratic form
F:D - R, where D is a subspace of Q, ® Q,, generates a linear symplectic
relation p through the formula

graph o = {p, & p, € P, ® P,; m,(p,) ® 7.(p,) € D and
<q; @ q,, dF(m, (p,) @ ﬂa(pa))> = - {qy,vilp )>
* <Q2s\)2(pz)>s vVaq, ®q;, € D}.

Conversely, the generating form F:D + R of a given linear symplectic relation
p 1s defined as follows:

0
Flq, @ q,)

M ® (gr‘aph D),
= i§ <q1"—’1(p1)> + & €q, ’Va(pa)>s

il

v p, ®p, € (m ©m,)%D) n graph o.

We remark that the subspace D of Q, ® Q, can be interpreted as the graph of a
linear relation §:Q, » Q,. We call § the base relation of p with respect to
the given special symplectic structures.

Symplectic relations generated by zero forms are of particular interest.
The following three lemmas can be proved (see [2], Section 9).

LEMMA 1 Let (Q,,¢:)5 (Qy:0.) be special symplectic structures of tuwo symplec—

tic spaces (Pyowy)s (Posws). 4 linear symplectic relation p:(Py,w,) (P, .uw,)
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is generated by the szero form on a subspacé D 0, if and only if there
- ewists a linear relation §:Q; > Q, such that the following diagram of rela-

tions is commutalive

$1
(Plawa) —_— Ph Ql

|

o J/Phﬁ
$2

(P, 0, ) =—————————>Ph Q, .
In thic case, § ic the base relation of p:D = graph p.

LEMMA 2 ZLet g:(P,w) - (?P‘,t’:}) be an epimorphism generated by a zerc form with
respect to apecial symplectic structures (Q,9) and (ﬁ,$). There sxist two
subspaces A and B of Q, with B c A, such that $(K) = A @ B°, where K denotes
the coizotropic subspace Ct(a). The base relation K:Q + 6 of T is an epi~

morphism and

A = «%Q), B = «¥(0), A° = k*(0), B° = x*(Q).

LEMMA 3 Wwith the notations of Lemma 2, if N is a Lagrangian subspace of
(P,w) generated by G:C + R, the Lagrangian subspace C(N) of (E‘,G) i3 gen-
erated by G:C > R, where

~

¢ = k(C),

5o " . (21)
G(a) = Gla), v q € *(q) n C,

and

C={geCnA;vcecnsBs, <,dG(q)> = 0}. (22)

Let K be a coisotropic subspace of (P,w) and let (P,w) K1 be the reduced
space (see (6)). If a special symplectic structure (Q,9) of (P,w) is given
in such a way that ¢(K) = A @ B°, we can assign a special symplectic structure
on (P,w)[K] such that the generating form of the reduction red(P,w;K) is zero.
A natural choice of such a special symplectic structure is provided by the
symplectic isomorphism ¢[K] defined by the commutative diagram
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(Pyw) >Ph Q
red(p w3k) Ph red(o:a,8)
(P,w [K] > Ph A/B

We call (A/B,¢[K]) the reduced special symplectic structure of (Q,¢) with
respect to K. If a Lagrangian subspace N of (P,w) is generated by a form
G:C +~ R, the generating form of the reduced Lagrangian subspace ¢[KJ will be
denoted by G[K] C[K} +R. The construction of this form is described by Lemma 2
In formulae (21) and (22), we have ¢ = C[K]’ G = G[K] and k = red(o;A,B)

Of particular interest are the following two special cases.

(1) If ¢{K) = A®Q* (i.e., B = 0) then (P’w)[K] is isomorphic to

Ph A and N[K] is generated by the restriction of G to C n A:G[K] = G|C n A.

(2) If ¢(K) = Q @®B° (i.e., A = Q) then (?’w){K] is jsomorphic to Ph Q/B.
The generating form of N[K] is given by

C[K] = k(C),

where k:Q » Q/B is the natural projection.[b] denotes the equivalence class
of b, and

={qeC;vceCnB, <, dG(q)> =

1.6 COMPOSITION OF GENERATING FORMS AND LEGENDRE TRANSFORMATION

THEOREM 8 rLet G C + R and G C + R be the generating forms of two syn@lec—
tic relations, i (Pl,wl) (Pz,wz) and a:(P,,w,) = {Py,u,), with respect to
special symplectic structures (Ql,(m)), (Q, ,(m)), (QJ,(HS)). Let the com-

posed relation Gop:(Pi,w1) + (P;,uw,} be generated by G, - O"’ +~R. Then
C = c_ ),
Top Prla(CGOO) a3

Gyop (G2 @ G3) = 6.(01 ©q,) + Gy(g, ®95),Va1 @0, ®q; €C

where pris:Q1 @ Q, ® Q; > Q1 ® Q; Zs the natural projection and
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anp ={q ®q,®q, €Q, ®Q, #0,;q, ®q, € Co‘ 9, © g, € C,

<0 © g!,6 (a @ 9,)> + <} @ 0,46 (o, @8> =0, (24)
vg €Q:08q; € CD, g, @ 0 € Co}'

This theorem can be proved as follows (see [2], Section 9; for another
approach see [4]). Let us set

(P,lﬂ) (P]_,'CO],) e (PQ’UJZ} & (Pa ,'wz) @ (P3 ;w:,);
(Pon) = (Pyym0y) © (Pypisg):

These two symplectic spaces have special symplectic structures (q,(")) and
v

(@,(7)), where
LY

=0, 80 ®Q29Q3l Q=0 8Q;,
m =T 9112 97‘2 @'JT3; ;= 'IT]_@T!'S,
v = no(-\)l (2] Vo @ “V, @D US)’ V= ﬁot-\’]_ @ \)3)!

and n:Q* @ Q2 @ Q¥ © QF > Q*, ﬁ:Qf @ Q* » Q* are the natural isomorphisms.
Let us consider the symplectic epimorphism z:(P,w) - (P,w) whose graph is

graphz= {(p, @ P, © p} @ p,) @ (pi @ p}) € P @ s
Py = Pis P2 = P2 Ps = Psl

It turns out that if N = graph p & graph ¢, then z(N) = graph (cep). More-
over, it can be seen that ¢= 3'1 o Ph k o ¢, where :Q » a is the base
relation of ¢ and ¢ = (:). $ = (T). This implies (Lemma 1) that ¢ is gen-
erated by a zero form. According to Lemma 2 and Lemma 3, the generating

farm of N is G:C » R, where
c=C ®cC_,
P a
G((a; @ q,) @ (a; ®95)) = G (4 ®q.) + G (q; @q,).
The generating form of ¢(N) will be exactly the generating form of oep, sO

that formulae (23) and (24) follow from (21) and (22}, through some obvious
identifications.
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Another version of formulae (23) and (24) can be given. Let us introduce
the subspace

= priz(c) npris(C) <0 @0, @0,

and let

be the natural extensions of Gp and G_ respectively (i.e., Gp(ql ©q, ®q,) =
6 (a; @9.). G (g @, @0;) = 6(a, ®qy)). If we set

G=6_ +G
p O

it turns out that the space

Coop = (01 ® 0. ®0; € C; <0 @®q; ®0,d6(q; ®q, ®q,)> =0, (25)

v0a@g @0c¢l)

coincides with the space defined in (24) and that (23) can be written in the
form

& o(0 @0,) = G(q, ®q, ®qs)s VQy 9, ®qs € C. (26)

These formulae can be easily extended to the composition of more than two

symplectic relations (see [2]}, Section 9).
 From the law of composition of generating forms of symplectic relations,

we can derive the so-called Legendre transformation for a Lagrangian space,
i.e., the relation between the generating forms of a Lagrangian subspace with
respect to two different special symplectic structures. This will represent the
linear version of the general Legendre transformation given in [5]. »

We recall (see Section 1,2) that a Lagrangian subspace N of a symplectic
space (P,w) is canonically represented by a symplectic relation vi0 + (P,u),
where graph v = 0 ® N. The trivial space 0 has a trivial special symplectic
structure given by the identification of 0 with Ph 0 = 0. Let us consider a
diagram of the following type:
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41 b2
Ph Q, Ph Q,

where (Q;,¢,) and (Q,.¢,) are special symplectic structures of (P,u). We
can apply Theorem 8 (i.e., formulae (23), (24) or (25), (26)) to the compos~
ition of v and 1?’ observing that the generating forms of v have an obvious
identification with the generating forms of N. The following theorem can be
~ established.

THEOREM 9 Zet G:C > R be the generating form of the identity relation 1p of
a symplectic space (P,w), with respect to two different special symplectie
structures (Qy,¢;) and (Qy.¢,) of (Pow). If 6,:C, +R is the generating form
of a Lagrangian eubepace N of (P,w) with respect o (Q14¢,), the generating
form G;:C; > R of N with respect to (Q,,0,) is given by the following formu-

lae:
C. = pry(C),
6.(9,) = G(a; ® q,) + G,(q,), Vvqg, ®q, € C,
where
C=1{q, ®9q, € [s<ql @ 0,dG(qy © )5 + <q!.d6,(q.)> = 0, vq: @ 0€C},
C=pri(C,) N C=1{q +q, €C; q, €C,}
and pri:Q, 0Q, ~ Q; (i = 1,2) denote the natural projections.

By analogous reasoning, we can obtain the Legendre transformation for
symplectic relations, i.e., the law of transformation of the generating form
of a symplectic Tinear relation when the special symplectic structures are
changed in its domain and its codomain. For details, see [2], Section 10,

We conclude with some remarks about the proper forms of the identity
relation 1P and Lagrangian subspaces of a symplectic space (P,m). Let
01:P + P* and g, :P » P* be the vertical maps associated with the special
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symplectic structures (01,¢1} and (Q,,¢,) of (P,w) respectively (see (14),
(15) and (16)). It can be seen that 8, - 0, is selfadjoint; hence it is the
differential of a quadratic form W:P > R,

62 -91 = dw.

It turns out that W considered as a form on the diagonal of P @& P is the
proper form of graph 1P. Moreover, if Wi and W, denote the proper forms of
a Lagrangian subspace N of (P,w), from (18) it follows that

W, - Wy = W|N.
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