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1.- Introduction.

Let M be a differentiable manifold of dimension n and let H be a differentiable
function on the cotangent bundle T¥M. Let (U,(x‘)) be a chart on M (i.e. a coordinate
system (xf) defined on the open set U M) and let (T*U,(x‘;pf)) be the corresponding
canonical chart on T*M (<,f= 1,...yn)s With this chart we can associate the represen-

tative function H(x‘;pj) of H and the so called reduced Hamilton-Jacobi equation:

¢, 35, _
(1:1) H(x ’axj) e

where e is a real parameter.

A complete solution (or a complete integral) of (1.1) is an n-parameters family

S(x‘;cj) of solutions of (1.1) such that:

s
1.2) det (ax"ac’_) 7‘ 0 .
when a complete solution is known, one can directly find the integral curves of the
Yamiltonian vectorfield defined by the Hamiltonian H,by following a well known method.
We are mainly interested in those cases where equation (1.1) is completely sepa-
rable; i.e. it admits a complete solution which is a sum of functions depending on

a single coordinate:
(1.3) S(xéyej) = 5 (x'seg) + Sy (xTse)) + wun + 8 (x'5e4)

Although the conditions for the existence of such a kind of complete solution are
known (Levi-Civita, 1904 [1]), a detailed treatement of the separable case of the Ha-
milton-Jacobi equation is so far available only for certain classes of Hamiltonians,

Among them, we recall the quadratic Hamiltonians corresponding to the classical me-




chanical systems, including t-dependent constraints and velocity-dependent potenti
For a hystorical perspective on the separability of the Hamilton-Jacobi equation t
reader can refer to the review articles [2]and [3] .

For a better understanding of the separability conditions of equation (1.1), in
present paper we propose an approach based on the concept of separability structu
which seems to allow valuable simplifications. A separability structure is a famil
charts at a point x_ € M such that the corresponding equations (1.1) have complete
tegrals of the kind (1.3) representing the same family of functions on a neighborh
of x . From this point of view we analyze, in particular, the case of the geodesic
miltonian of a Riemannian manifold with definite or indefinite metric. (Throughout

paper we use the term Riemannian manifold in this generalized sense; when we want

distinguish explicitly between definite or indefinite metric we use the terms proc

Riemannian and pseudo-Riemannian manifold respectively). For the sake of simplicit

functions and manifolds are tacitly assumed to be smooth enough to assure the vali

of the results.

2,~Separability structures.

A solution of the Hamilton-Jacobi equation associated with the Hamiltonian H:T-

—+ R is a function S:U— R (where U is an open subset of M) such that:

where dS:M — T*M is the differential of S and Ce= ips T4M: H(p) = e} . Usuall
only regular values of the Hamiltonian are considered, so that Ce is a submanifo.
of T*M of codimension 1 (see for instance [4] ; p.49 and 204). In fact, inculsion
is the coordinate free translation of equation (1.1), and we call it (although rat.
improperly) the reduced Hamilton-Jacobi equation associated with the Hamiltonian H

the energy e.
A complete solution (or a sgmplete integral)of the Hamilton-Jacobi eguation ass

ted with the Hamiltonian H is a function $:0 — R on an open subset U of a P

duct manifold MxA XE , where E is the energy space (ExR) and A is a paramet
space of dimension n-1 (it is not necessary to specify here the nature of such a

ce: for further information see for instance[5]), such that each function Sc:Uc——a
obtained by fixing an admissible value c = (a,e)e AXE (Uc= ixe M: (x,c)e ﬁ}, S

= S(x,c)) is a solution of the Hamilton-Jacobi equation (2.1):
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(2.2) dsc(Uc) < ce

and the submanifolds Lc = dSc(Uc) y where c¢ covers all its admissible values, form
a (local) foliation of T*M.The latter requirement is in fact the geometric counterpart
of condition (1,2), where (ci) must be interpreted as coordinates on AxE (usually
one of the parameters (c,') coincides with e ), We notice that each leaf Lc of the fo-
liation is a section of the canonical projection TI’H:TW —— M and a Lagrangian sub-
manifold of T*M with respect to the canonical symplectic 2-form wM= dx‘Adp‘ . If we
consider the natural projection O‘M:MxA xE — M , the open set U = O'M(ﬁ) e M,
which is the union of the open sets (Uc), can be called the base domain of the comple-
te integral S:U —= R . Then, the foliation (Lc) generated by S is defined in an open
set U € T*M such that Tf"(ﬁ) =y,

(2.3) Definition.— A chart (U,(x‘)) on a manifold M is said to be separable with re-
spect to the Hamiltonian H:T*¥ — R if the corresponding Hamilton-jJacobi equation
admits a complete solution S whose base domain is U and such that

(2.4) a‘.al.s=o s t#S i (°)
Let us fix a point x_ e M and let us consider the set of the separable charts at Xgo

(245) Definition.— Two charts (U,(x‘)) and (Ut,(x<')) are said to be &p—comgatible with
respect to the Hamiltonian H at the point x.,e U N U', if they are separable and if the
corresponding separated complete integrals coincide in an open neighborhood U" of x_,
i.e, if the two corresponding foliations in T*M coincide in an open set " such that

"= (n
X,EU H(U ).

J—compatibility is clearly an equivalence relation in the family of the separable
charts at the point x  (which of course could be empty). Hence we are led to the fol-
lowing definition,

(2:6) Definition.- A separability structure (briefly; a cf—structure)at the point x|

is an equivalence class of charts which are /~compatible at x, with respect to the

Hamiltonian H,

(°) From now on we will use the following abbreviations: = a—i s ot 9 .
x P¢

W




For the cases of major interest to us none of the functions (3'H) vanishes

jdentically. Then we can consider the functions

o H
(2.7) Ry =~ )

possibly smoothly extended to those points at which the denominators are zero.

(2.8) Definition.- Let (U, (x%)) be a chart at the point x € M. We say that a coord
te xk is of first class at x, (with respect to the Hamiltonian H) if, in an open

of T*M which projects in a neighborhood of x, the corresponding function R, is 1i
on the fibers of TFM, et

(2.9) Ry= B, p; ’

where the functions (Bi‘) depend on the coordihates (x*) only. In particular, if th
functions (B;) vanish , i.e. if 9 H = 0, we say that the coordinate x* is ignorat

A coordinate which is not of first class is said to be of second class.
For the sake of simplicity we introduce the following convention.

(2.10) Convention.~ Second class coordinates are labeled by indices from the first
of the Latin alphabet (a,b,¢544.); those of first class by Creek indices (ut,f,f,..
Latin indices from the second part of the alphabet (/',i,]',...) are used when the a
distinction is not needed. The Einstein summation convention is adapted to the abo
choicé of indices; unless the symbol "n.s." appears together with 4 distinguished
dex. The coordinates of any chart at the point x  are assumed to be ordered in suc
way that the first m (0<ms=n) are of second class, while the others are of firs
class, so that the indices (a,by¢y..s) are assumed to range from 1 tomy (¢yp45ee

from mtl to n and (hy4,4,...) from 1 to n.

The distinction of coordinates into the two classes above (in the particular ca
of a quadratic Hamiltonian) dates back to Dall'Acqua [6].

When (2.4) holds, by derivation of (1.1) with respect to a coordinate xt , we c
(3¢H)c+ (a"H)c '),;7‘-50 , where ( )c me:ans the substitution pfn?fSC’ i.e. the ev
tion on the leaf Lc' Hence, even if 3'H = 0 at some point of Lc’ we can define
(R ‘-)c = 9‘;?‘-80 . Moreover,we notice that the separability conditions (2.4) are exa
the integrability conditionsof the following system of partial differential equati

(see Levi~Civita [1]):
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(2.11) %p=0 G#) s Zp=Ry .
The integrability conditions are represented by the identities
(2412) ani + ?"R’- R,=0 (#§ 5 4n.s.)
which, by (2.7)ycan be written as follows:

(2.13)  Fud 3,3 - U0 22H - QHaiH 2igH +2;HOH il = 0 (#) .

These are the so called Levi-Civita separability conditions.

Following the above convention, system (2.11) can be written:
(2:14) %pj =0 (#9), ar~R » AR=H p: -
However; we have identically

(2.15) B=0 , 28=0 ’

so that (2.14) contains an autonomous sub-system in the first class coordinates only:

=0 @i , A= p .

(2.16) %P,

In facty from (2.12) it follows in particular: 9~B; pPL+ B: R,=0 (an,s.),
which implies that R, is linear in the variables (p;), against the definition of second
class coordinate, unless B, = 0; hence also (2.15’)2 follows.

Since system (2.16) is linear in the r (= n - m) unknown functions (p,), in a neigh-

A
borhood of x, there exist r independent solutions, i.e. r? functions ({,) such that:

3 rd v 5
(2.17) 2i=0 @fp) , 2L, =Bl 4,
and
A
(2.18) det(£) # 0 ‘

Then we can consider a new coordinate system (y*) defined by the equations
-~ o ol &
(2.19) dy™= dx , dy'= 3, axP ;

It can be éasily checked that the new coordinates (y*) are &-compatible with (x*) and
that the coordinates (y®) are ignorable., Hence, since the coordinates are still of se-




cond classy; we have given a constructive proof of the following theorem,

(2.20) Theorem.~ In a f-structure there exist charts where all the first class

ordinates are ignorable.

Another important fact is that the number of first (or second) class coordinate:

is an invariant of a ¢ -structure.

(2.21) Theorem.~ Two f~compatible charts have the same number of first (or second

class coordinates.

Proof.- Let (x*) and (x¢') be ¢/~compatible coordinates at X,e Let (x*), (x2')
the coordinates of second class (@=1,.,..,m ja'=1,,,.,m') and (x%), (x*') those of
class. They give rise to the same complete integral: Z S, (x";ci) =Z¢. S‘-,(x"';cl-)
By derivation with respect to x® and x%', we obtain:

o _ >4 & !
gac ?xa.‘sd i Zq. 3{ fu. a{lsir * ‘f: % %S (¢ya'n.s.),

with {.”= 9; xi' and .f;=?)j,x‘: . This means that the following identities hold:

f; Ry = 5:,"3;' fi'pj, + f: R (oha'n.ss)

If ;:;4 0, it follows that R, is linear in the variables (p;-, ) (because R, is also

near in the (pﬁ} by definition), which is in contrast with the fact that x@! is of
cond class. Hence, it must be };'= 0 for each pair of indices (a',®), and (by symm
;= 0 for each pair (a,a'), It clearly follows that if m # m' the matrix (,‘:f') ca
be regular,which is absurd. (qe.e.d.
(2.22) Definition.- A separability structure at the point x, is said to be of clas:
(or a J:_—structure) if r is the number of the cooﬁiinates of first class at x_ in

representative chart.

Theorem (2.20) shows that in a ef;_—structure there exist charts with r ignor:
coordinates. The use of these charts, which we call guasi-normal separable charts,
lows of course valuable simplifications in the analysis of separability structures
without any loss of generality. On the other hand, since' second class coordinates
not be ignorable (by definition), and their number is invariant, it follows clearly

(2423) The class of a of-structure is the maximum number of ignorable coordinates




This provides in fact an alternative definition of class of a SP~structure (see
for instance [7]) which is not related with the definition of class of a coordi-

nate,

3.~ First integrals associated with a separability structure.

In this section we shall give a short outline of some properties of the first inte-
grals associated with a complete solution of the Hamilton-Jacobi equation in the case
of complete separability,

We have already pointed out that a complete integral is represented by a local fo-
liation (Lc) of Lagrangian submanifolds of (T¥M, wM) which are sections of the fibra-
tion TFM and where the Hamiltonian H is constant (the former requirement could be remo-
ved; see for instance [5] ). A complete integral can also be represented by a set of
real functions (F;) on an open set of T*M satisfying the following conditions, i) They

are vertically independent,i.e. they are not only functionally independent as functions

on T¥M but also, more particularly, functionally independent when restricted to the
fibers of T#. This fact is represented in natural canonical coordinates by the regu-
larity of the nxn matrix (F;). ii) The functions (F;) are in involution, i.e. their
Poisson brackets vanish identically: [F‘- ,171} = 0 , iii) The Hamiltonian H depends
functionally on the (F;): H =f(F;) or, equivalently, the Hamiltonian H is in involu-
tion with them: [H,F;S = 0, In fact, equations of the kind F; = c; , where ¢ = (c;)
covers a suitable open set of Rn, define a foliation on T*¥M of Lagrangian submanifolds
which are transversal to the fibers (i.e. sections of ’ITH) and on which the Hamilto-
nian H is constant. When such a set of functions is given, then the complete solution
S of the Hamilton-Jacobi equation corresponding to H is the integral of the equations
3,8 =S, , where the functions S (x“;cj-) are obtained by solving the system F; (x";pk)
= c; with respect to the (py): Py = S, (x“;cj-). Conversely, if S:l—+R is a
complete integral, we can obtain n functions (F;) satisfying the above conditions, by
solving the system p, =9 S with respect to the coordinates (c;) of AXE appearing in
the representation of S. We have of course H =F(F,;) if e =F(c") is the representa-
tive of the natural projection fE:AxE —+E,

Now, let us assume that S is completely separable in the coordinates (x'). By deri-

vation with respect to the variable x* of the identity F, (xi;aks) = c; we have:




(O F; )c - (Q'F‘;)c?x?‘lsc = 0 , This implies the identity:

(3.1) o, F, + 3F, R,=0 (% n.s.),
which can also be written:

(3.2) 5 F, ¥H - 3“F, 9H =0 (xn.s.).

We emphasize the fact that in the last formula there is no summation with respc
to the index k, so that the Poisson bracket [1'} ,H} =3.F 9H - ?"F; 3, H is zero bec
each term of the sum is zero. Thus we are naturally led to consider something more

than the usual involution,

(3.3) Definition. Two functions F and G on T*M are said to be in separable involut

(briefly; in &-involution) with respect to the coordinates (x¢) if, for each inde
(3.4) 2 F3C-3"F 30 =0 (k n.s.).

Hence (3.2) means that each function F; and H are in -involution with respect
the separable coordinates (x¢). Moreover, this fact implies that the functions (F;
in o ~involution themselves: 3,F, 3*F;= -3'F; R3F; ="K o8]  (kn.s).

Conversely, let (F;) be a set of n vertically independent functions in f-involu
with respect to a coordinate system (x"). Since for each index Kk there exists at

a function F, such that BkF,‘ does not vanish identically, we can define the functi

—— 3., F‘,
(3.5) Ry == 3¢5

Hence, for each function F; . 3 F + eN F. R, = 0. Let § be a function generated by
family (F;) as shown at the beginning of this section, i.e. satisfying the equatic
F; (xi; B_S(x";c‘ )) = c; . By derivation with respect to x* we obtain: (J,_F; )c +

+ (3iF; )CQ‘.Q.SC = 0 , where, as in section 2, ( )c means the evaluation on the le:
generated by the function Sc obtained by fixing the value ¢ = (c;). Hence: (x n.s
0= @RR) + () 335, = GIF) (035, - §u(R)) + Since det(GIE.) £ 0,
follows QjQ‘tSc =8jk(Rk)c . Then,we have in particular 91 aksc = for jy‘k , which
that S is of the kind (1.3). As we know, such a function S is the complete integr:
the Hamilton-Jacobi equation corresponding to each Hamiltonian H functionally depe
on (F;) (in this case, as it is easy to check, H is in &-involution with each F;.

Hence we have proved the following theorem,




(3.6) Theorem.- Let (F;) be a set of n vertically independent functions on T*M. A co-

ordinate system (x¢) on M is separable with respect to a Hamiltonian H functionally

dependent on (F;) if and only if (F;) are in ¢’-involution with respect to (x¢).

It clearly follows that, if the functions (F;) are in &-involution with respect

to the coordinates (x;), they are in & —involution with respect to all coordinate sy-
stems which are y—compatible,with respect to H,at a point x; . In fact, these coor-
dinates give rise to the same complete integral (by definition of J—compatibility),
that is to say,to the same foliation represented by the functions (F"). Hence we con-
clude that to a &’-structure there corresponds a group of functions in &’-involution
of dimension n (i.e. generated by n independent functions). Furthermore we notice that
the c)’-structure is of class r if and only if, among the functions (3.5), there are
exactly r vhich are linear in the variables (p;).

4.~ Separability structures on Riemannian manifolds and normal separable coordinates.

By separability structure on a Riemannian manifold (M,g) we mean a of-structure

corresponding to the geodesic Hamiltonian, which is represented, in natural coordina-

tes (x";pj-),by a quadratic form:
. w=t o :

where (g‘j) are the contravariant components of the metric tensor g in the coordinates
(xi). 0f course, also the definition of first and second class coordinates is under-

stood to be taken with respect to this Hamiltonian,

Let us denote by 7 :TM — TiM the natural diffeomorphysm defined by the metric
tensor g. In natural coordinates (x¢;xi) and (x“‘;pi-) of ™ and T3 respectively, this
diffeomorphysm is represented by the equations p; = j;)'c‘: , where (gl~,;) are the co-
variant components of g, or by the inverse relations x*' = g/ pJ- . Let us denote by
1*f the pull-back of a function f:TM — R, i,e.: 1¥f = f o1 "

In the present case,the functions (2.7) are explicitly given by:

(4.2) R = -% —ai”i“‘:-‘-’hl’& ;

g*) Py
Of course R; is linear in the variables (p,-) (that is to say x* is a first class coor-
dinate) if and only if its pull-back




oh sk
y gk X
(4.3) l“’Ré =3 '—L'T_
is linear in the variables (J'cf), i.e, if and only if the quadratic polynomial J,g

is divisible by %, Hence:

(4.4) A coordinate x* is of first class at a point x e M if and only if, in a nei

hood of x,, 9;g.= 0 for each hk#<,

In particular,a coordinate x“ is ignorable when 2,gp, = 0 for each pair of indice:
(h,k). As it is well known, an ignorable coordinate corresponds to a Killing vect
field (briefly, a K-vector) on the Riemannian manifold (M,g), i.e. to a vectofiel.
satisfying the Killing equation Lxg = 0 (where Lx is the Lie derivative symbol)
As a consequence of (4.4),and accordingly to definition (2,22) and convention

we notice that:

(4.5) A & -structure at a point x, of a Riemannian manifold (M,g) is of class r i

only if in any representative chart there exist exactly r coordinates (x™) such t.

in a neighborhood of x :

(4.6) 9.4 Ehie = 0 (h:k#d) .
Therefore, theorem (2,20) has the following corollary ([8]),

(4.7) Theorem.~ If in a separable chart (U,(x*)) of a Riemannian manifold (M,g) e

tions (4.6) hold in a neighborhood of x & U for r coordinates (x*), then there ex
&/ -compatible charts at x, with r ignorable coordinates, If (M,g) admits at X, a
structure, then,in a neighborhood of x ,there exist r commuting K-vectors, indepe

at each point, or, equivalently, an Abelian r-parameters group of isometries acts

freely. In particular, if (M,g) admits a cy;l—structure at x, (n = dim M), then M

flat _8_._t' Xy

The quasi-normal separable charts (see the end of section 2) can be found by f
ing the constructive proof of theorem (2,20), where now the coefficients (B:) ha-

as it is easy to check, the following expressions:
k
4.8) ) = e oe. - § e e («nis.) .

Another method of construction, of a pure algebraic character, will be shown belo
When investigating the relations between O‘f-—compatible coordinates, we notice
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as a general property of the o'f’-structures, that a rescaling of a coordinate x* (i.e.

8 reversible transformation of x"involving no other coordinate) preserves the class

of the coordinate and the separability.

(4.9) Theorem.— A chart (U,(x*)) is J’—comgatible with a given scparable chart (U',

(x#')) at a point x_€ UNU' if and only if the second class coordinates are simply re-

lated by a rescaling, i.e.:

(4.10) dxat = g'f (x*) dx* ;
(a suitable reordering of the coordinates is understood) and moreover
(4.11) dxet = 2% dxe ;

4

where functions (f:') satisfy, in a neighborhood of x,, the following equations:

(4.12) %3+ '3 pu =0 (A7) .

Proof.- i) If the two charts are of—compatible, they have the same number of first
(and second) class coordinates (theorem (2.21)). By usi_ng the same notations as in the
proof of theorem (2.21), we can see that: 3, 9’ S.= 9 J J' S, + ; ;’ (R"")c
for 47‘3 . Hence,the following identities hold:

(4.13) % f."'p,-, +,e‘."';.ﬁ'a'“.' P+ gj’;f"mﬂ, =0 “#D

where, of course, (B"‘ ) and (R', ) are defined as in (4.8) and (4.2) with respect to
coordinates (x¢!). S:lnce by the definition of second class coordinate we can see that
{‘-&j?' t*(R',, ) cannot be linear in the variables (x<'), it follows that equations
(4.12) necessarily hold as well as: ?.4’“'= 0, ;’ i =0 (4¥1',c'n s.). The
first set of these. equations simply means that each ;’"’ is function of x! only; the
second set implies that, for a f:Lxed index a'’, only one of the functions (;’ ") does
not vanish identically. Since f = 0 (see the proof of theorem (2,21), there exists

a second class coordinate x* which is simply related with x®' by a rescaling, ii) Con-
versely, if (4.10) - (4.12) hold, it is easy to check, by reversing the above reasoning,
that the two charts are 3—-compatib1e. (qee.d.)

We notice in particular that if (x"") are guasi normal separable coordinates (i.e.
(x%') are ignorable, hence B'p‘ = 0); for all & -compatible coordinates (x*) the fol-

lowing relations hold in a neighborhood of x_ , apart from a reordering and a rescaling:

11




(4.14) dxa! = dxe 3 dx#! = ;2' dx ¢ ’

where each 5:‘i§ function of x* only.
For a Hamiltonian such as in (4.1), Levi-Civita separability conditions (2.13)
polynomial identities in the variables (p,-). If we write them for second class cc

dinates x*# x" as follows:
(4.15) H (*H3,H - 3 H I *H) = H (3'HH - qura‘n) (a#b ,n.s.)

we observe (with Levi-Civita [1] ) that, since ¥H is not a divisor of 3, H, it

be a divisor of the polynomial
(4.16) FHIPH - I H FIH (4, n.s,)

Then, by the pull-back 1%, we see that x*= t%(2*H) must be a divisor of

iz b s
g3, ghx"x"—% & Q‘g,‘,,‘x”xh (a#b, n.s.)

This implies,in particular:
(4.17) 8" g, =0 (@#b; bk ab; bn,s,) .

Since x* is a second class coordinate, there exist at least two indices ‘,';. #b
such that ?‘g;"# 0 at some point of each neighborhood of x_ . If,moreover, ¢,/ #a
from (4.17) it follows g** =0 (*#%) in a neighborhood of x_. On the other hand,

exceptional case
(4.18) % By = 0 (ab; ‘.:]' #a,b)

is irrelevant because, as it is easy to see, we can always pass to J-compatible ¢
nates for which this no longer holds,while conditions like (4.18) are invariant,

second class coordinates are related by a rescaling. Hence:

(4.19) If (U,(x*)) is a separable chart, for two distinct coordinates x*, x® , of

cond class at x,y we have, in a neighborhood of x:

(4.20) g =0 (agb) ‘

Now we see that the polynomial (4.16), which is divisible by 2*H, simply reduces,
a neighborhood of x,, to ?"H 9*H , Since “H is not a divisor of ?°H, it foll

12




that 3, 3°H = £°*3*H, where £°° is a function of the coordinate (x!) only, and thus:

(4.21) ?bgu.' - fd.‘- ga.;. (‘l#b) )

Since in the last formila the function £°° does not depend on the choice of the index

< , we can see at once that:

(4.22) If (U,(x*)) is a separable chart, for two distinct coordinates x*, x* of second

class at a point x e U,. the following equations hold in a neighborhood of Xt

(4.23) eo,et = gt ?,,g"; @#b) .

In Dall'Acqua's paper [6], conditions (4.20) have been proved through cumbersome cal-
culations and under the assumption g**# O for each second class coordinate (which in a
proper—Riemannian manifold is certainly satisfied). We have followed here the very
simple proof given by Agostinelli in [9], in which,however the possibility of the ex-
ceptional case (4.18) is not considered. In fact,this obstacle cannot be overcome so
easily without the concept of separability structure and without knowing that second
class coordinates remain essentially unchanged ine)o—compatible charts.,

From proposition (4.19) and theorem (4.9) it follows in particular:

(4.24) The coordinates of a ef;—structure at a point x_ are uniquely determined, up

to a rescaling, and orthogonal (g%=0 for ¢#{) in a neighborhood of x.

(4+25) Remark.— When g is analytic, by (4.5) we notice that a coordinate is of first
class at each point of the domain of the chart if it is of first class at least at
one point (consequently, a second class coordinate at a point is of second class eve-
rywhere). Hence,the above results hold with respect to all points of the domain of a
separable chart, In other words, it is not necessary to work at a distinguished point,
This remark must be kept in mind also in the sequel.

Together with the first classification given by the class, for f-structures on
Riemannian manifolds we can intresduce a second classification by another integer in-—
variant! the index of the f-structure. Actually this second classification works non-
trivially only for of —structures on pseudo-Riemannian manifolds of class different

from the dimension.

(4.26) Definition.-The index of a f-structure at a point x, of a Riemannian manifold
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(Myg) is the number of the second class coordinates of any representative chart

which, in a neighborhood of x_, g¥= 0,

Notice that the definition makes sense because, in virtue of theorem (4.9), th
condition g*= 0 for a second class coordinate is invariant under y—compatible tr

formations.

(4427) Remark.- It could happen that for some second class coordinate x* the condi
g**= 0 is satisfied on a closed submanifold of M containing Xgs Or at x, only, In

present paper we do not consider such a kind of c‘ip—structures, which we can call s

gular,

From now on we adopt, together with (2.10), the following convention concerning

cond class coordinates,

(4.28) Convention.— A &jsd-stmctue is a (non singular) c)?—structure of index d
This abbreviation is used only when it is necessary to specify the index, eﬁ’;‘-str\;
res (n =dim M ! no second class coordinates) have of course to be considered of i
zero. Second class coordinates are labeled by &,5,2,,., if £%# 0,044, and by &

ees if, on the contrary, git= Oysss » Second class coordinates are assumed to be
dered in such a way that @, g,z,u. range from 1 to m-d and E,E,E,... range frc

d+1 to m (m being the total number of second class coordinates), When the distir
into these two sub-classes is not needed, we use the unaffected indices a,b,c,..
which range from 1 to m, Summation convention is adapted to this choice unless the
bol "n,s," appears together with a distinguished index,

(4429) Theorem.~ In a Jc.d—structure on a Riemannian manifold (M,g) there exist c
. 3

(Vy(y*)) with r ignorable coordinates (y*) (¢ =m=1,4¢4yn ; m =n-r) such that {

the metric tensor components (H) the following conditions hold (&= 1,,,.,m-d

m—d-l-l,...,n-r):
(4430) T F0 , F =0 (FZD) , T =0

Proof.- Let (U, (x¢)) be a quasi normal separable chart of a cf;d-«stmct\u*e at
point x_& M. Let (x*) be the ignorable coordinates (theorem (2,20)) and g‘.l. the cc
nents of g, If g*¥ # 0, from (4,23) it follows in particular: 9, (% (g3) ") =0 1
b # &, This means that, in a neighborhood of xgyand for each pair of indices (&,«)

there exists a function 9; of x& only, such that: gz" = 9; ga; (@n.s.). Then
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can define new coordinates (y*) at x, by the equations: dy? = dx* , dy®= dx* -
- 9; dx®, Thesc coordinates are clearly ép-compatible (compare with (4.14)) and,in
particular,(y¥) are ignorable., The corresponding components (ﬂ) satisfy conditions
(4:30) since: “g" = g** and Eg“ = g% ;gu= 0 (% n.ss)s (qeeods)

(4431) Definition.- A chart satisfying the conditions of theorem (4.29) is called
normal separable chart; the corresponding coordinates are called normal separable

coordinates.

In normal separable coordinates the matrix (g) has the following form:

.‘h 0
m-d ?‘ 0 0

0 ®
(4.32) d 0 0 3
r 0 T s

For f-structures of index 0 (as in proper-Riemannian manifolds) the central rows

and columns disappear.

(4.33) r 0

(4.34) Remark.- We emphasize that separable coordinates (y*) are normal separable co-

ordinates if and only if: i) all first class coordinates are ignorable, ii) for each
second class coordinate y® such that g**# 0,and for each ignorable coordinate y*,
g 0,
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5.~ The general form of the metric tensor components in separable coordinates.

In order to construct a method of integration by separation of variables of the
geodesic Hamilton-Jacobi equation of a Riemannian manifold it is necessary to know
the general form of the contravariant components of a metric tensor in separable c
dinates. This general form can be easily obtained by the above considerations on s

rability structures.

(5.1) Definition.- Let (“P’) be a nxn matrix of functions of n variables (x¢) (
dysee = 1y0003n)4 We say t:hat (‘f”) is a Sttlckel matrix in the variables (x%) if i
is regular everywhere and if each element \f’, of the inverse matrix (\f’ )(defined
the equations ‘P Lf = J <> ‘f‘ ‘f’-’ = fs’ ) is a function of the variable

corresponding to the 1ower index only.

A matrix of this kind appears in the statement of Stickel's theorem [9] on the
parability of orthogonal coordinates (see section 7). Actually, StHckel matrices a
closely related with questions concerning separability structures not only in this

particular cases

(5.2) Theorems~ In normal separable coordinates (y%) of a c}:.d-structure on a
2

mannian manifold (M,g), the contravariant components ('€) of g have the following

form:

< o ab

g =0 (#3) , ‘S =0
(5.3) : .

?".‘i“ . : o (Bns.) "g"=g:bg¢

(m=n-r ;&=1,,,,ym-d a\,r"=m—d+ 1,000,m ; &,p=m+1,.04,n) vhere: i) (g‘)

the m-th row of a Stdckel matrix (E‘) in the variables (y*), ii) (9:) and (f,‘:ﬁ) a

functions of the variable corresponding to the lower index onlv.

Proof 4= (5.3)1 , are already known by theorem (4.29)(see (4.30)). Hence, in nor
3

separable coordinates the Hamilton-Jacobi equation becomes:

«p

as 2 A
(5.4) E(%S) + 2€23,535 + 235735 = 2 "

Since the coordinates (y*) are ignorable, the complete integral has the form:

n-v

(5.5) s = Z, 50%c) + oyt .
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We can always assume that (c;) = (c jc.), i.e. that the r constants of motion (c,)
corresponding to the ignorable coordinates coincide with r of the parameters (c;) and,
moreover, that one of the remaining parameters (c,) coincides with 2e: for instance,

c,, = 2e. From (4.22) it follows in particular:
& 3 LY an
(56) § a8 =€ (FY .

For a fixed index & there exists at least one index s, say for instance /4 = n, such
that ‘E‘;‘ 0 (otherwise det(‘é) = 0); hence, by (5.6): Db(ag'l (EE‘)—‘) =0 (b#3), This

means that for each index & there exist r functions (8f) of y® only, such that

(5.7) T o= B yd (Bnsy)

where y2is a suitable function which does not depend on the index « (we can choose

in particular 3’== g&" ; hence 9£== 1), If we set
(5.8) ug = (35 , ug= 2,635, ,

from (5.4) it follows:

B!

(5.9) ug+ 4% uz+ Eo % = m ’

By derivation of (5.,9), with respect to ¢, , we obtain

x b b

(5.10) T Ut ¥t ug= S s
where:

b Ju

) ug = ac==zasa-a-——as& "

(5.11 b

b 2 ugz 3

Ya = ac~ 9 3_— %S5 .

Since det(s—a S) = det(s—as) # 0, the m>m matrix (u ) = (“a’“a.) is everywhere regu-
lar except on the surfaces c,‘9 = 0, However,these surfaces do not belong to the domain
of definition of the complete integral S, since, as we shall see in the next section,
they represent singularities for the integration of (5.4). If (\g‘) is the inverse ma-

trix of (\'5‘), from (5.10) it follows
ax z a a
(5012) B ™ "'l, ’ ‘r - E .

n the other hand, by derivation of (5.9) with respect to c, and Cp s We obtain:
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(5.13) T = SPE+ 3y

with

B _ 9 ug
(5.14) o ?c,, "

From (5.7), (5.12) and (5.13) expressions (5.3) follow, By (5.8), (5.11) and (5.14

we see that conditions i) and ii) are satisfied. (qee.d.

(5.15) Theorem.- Let (U, (xi)) be a separable chart of a v&:.d—structure at a point

3

of a n-dimensional Riemannian manifold (M,g). In a neighborhood of x_ the contrava

riant components (g"J') take the following form:

git = ";‘,; s &%= 0 , 5“” 0 (afb) ’

(5.16) gnd - g« 9:‘ B‘. (o n.s.) 5
n
L/ - o p ys a
g*t f ‘f “ ";" ’

(m=n-r ;@=1,,,4,m-d § 3=m-d+1,,ue,m ja,b =1,...,m RN 3',6 =m-1,...

_0_1: the variable correSponding to the lower index only.

Proof.- Let (y4) = (y%,y%) be normal separable coordinates of the given &-stru
re, Since all second class coordinates (y®) are ignorable, by (4.14) we observe th
for any other cf-—compatible coordinate system (x"), apart from a suitable reorderi
and rescaling of the second class coordinates, the following relations hold in a n
borhood of x:

o .
(5.17) dyt=dxt ,  dyt= F axt

where each function f depends on the variable x* only, The rxr sub-matrix (;’P
(2 ) is regular: det(f ) = det( ) # 0; hence,the inverse matrix (gﬂ) is a Stlck
matrix, Let (g’f) and (é) be the contrava.r:lant components of g in the coordinates
(x‘) and (y¢) respectively, The following relations hold:

b
gt= T , &%= g"‘(s-i“ )

" o ¥ ol ‘.
&= § 3’(7{*“?.{!18-& ¢ -8 .




Since (y¢) are normal separable coordinates, by theorem (5,2) we have:

iz = ab
g = m* 5 gt 0 g= 0 (#Y ,

(5.18) . fs
Po ot0-f 08 -5.6f

b
P
-

expressions (5.16) follow. (qeedds)

The contravariant components of a metric tensor with respect to separable coordina-
tes could be presented in many other forms, appparently more general than the one de-

scribed in theorem (5.15) (or (5.12)) (for the case d = 0, see for instance [8],[11],

{121, [13])s It seems that (5,16),and (5.3) for normal separable coordinates, provide
the simplest representation, For instance, in [11] we obtained for 'E the expressions
'éb = ;:Pg"+ el vhere (&f) are constant. However, if we set Z:P= Z_" U, +€:’
we obtain the expression ‘g" = S:"’ u*, vhich is of the same kind given in (5.3)3.
Again with the reference to the case d = 0, in [12] the components (g®*) are given

in the form g°%® = é__: z"‘ s where (z‘) is still a StHckel matrix in the second class
variables (x*). We can thus consider a more general expression like g** = Koy e
where (k®) are constant (compare with the t—dependent case considered in flJ]j. Actual-
1y this form can be obtained automatically, following the same proof as in theorem
(5.2)without the non restrictive assumption ¢, = 2e. On the other hand, apart from
what concerns the separability structure theory, the equivalence of the two represen-

tations follows directly from the following theorem on Stlckel matrices.

(5.19) Theorem.- Let (y*) be a Stéckel matrix in the m variables (x*). For any ele-
ment (k*)eR™ different from zero, there exists a Stickel matrix (E‘), still in the

variables (x*), such that n k® z"' o

b b
Proof.- Let us take a regular mxm constant matrix (k,) such that k, = k¥, Let us
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L
consider the inverse matrix (l:’“) and let us set 1‘:, = IE‘ V. « Notice that “‘1 is
function of the corresponding variable x* only; moreover,the matrix (i_) is obviot
regular, since it is a product of two regular matrices: Hence,the inverse matrix

A b L
is a St#ckel matrix, and moreover :1" = k,,t'"‘ s so that ,I;l“= k_\:"‘ = k"\g‘ « (qee.d.

Let us consider a chart (U,(x%)) on (M,g) and let us assume that it is separab.
(Levi-Civita conditions (2.13) are satisfied for the geodesic Hamiltonian (4.1)).
implies the existence of a complete integral of the kind (1.3). In order to reduc.
Hamilton-Jacobi equation to a system of separated equations, we can proceed as fo
First of all we must recognize the class of each coordinate at a point x_ e U (de
tion (2.8), proposition (4.4)): When this is done, we know the class and the inde:
the ¢/-structure determined by the chart at x (the class and the index could be
pendent on the choice of the point Xy)e Then, we check if the chart is a normal
parable chart (theorem (4.29), remark (4.34)). If the answer is negative, we can
normal separable chart in two steps: i) by reduction to a quasi normal separable
(i.e. to a maximal number of ignorable coordinates), following the method describ
the proof of theorem (2,20); ii) by passing to normal separable coordinates thr
a coordinate transformation of the kind described in the proof of theorem (4.29).
could also proceed as follows: i) detecting, by a suitable algebraic process, the
functions (2%), (9:), (g:;) (and possibly (?“') too) representing the metric tensor
ponents as g.,n (5.16); ii) performing a coordinate transformation of the kind (5.1
where (i) are obtained by inverting the matrix (;‘F") and (fg), (f‘) by reversing
relations (5.18), When we are in normal separable coordinates, we can apply the f:

ing theorem,

(641) Theorem.~ If in a coordinate system (y*) the contravariant metric tensor cc

nents (g) are in the form (5.3), then a complete integral of the kind (5.5) is o

nable by the integration of the following separated system of ordinary differenti
equations:

dsx\? “p L
(?y_“) + 5,-. CuCy = cC Uz ,

(6.2)
< dS o b
20_,9;‘ d—y—:+ ga’; cucﬂ = c uz .
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Proof.- By (5.3) we can write equation (5.4) as follows:
(6.3) E" P, = 2e »
vhere:
(6.4) b = (25)" +g::ﬁ°-tcp y Py=20,6;3s + Z:“’-tc/’ y Ca= AUS .
Equation (6.3) is satisfied by

(6.5) = ¢ u.

ds
where (c,)e K" c_ = 2e. Equations (6.5) are nothing but (6.2), since 3,S = -,
3 ™ (h dy‘_

It can be directly verified that, when the real parameters (cyjc,) range in a suitable

domain of R , the solution of the geodesic Hamilton-Jacobi equation obtained by equa-

tions (6.2) is complete. (qeeed.)

In section 3 we pointed out that a complete integral S can be also represented by
n equations of the kind F; = c; , where (F;) are n vertically independent functions

in involution, From this point of view we can observe, through (6,4) and (6.5) (which

gives ¢, = E‘cb‘), that:

(6.6) In normal separable coordinates (y*) the complete integral S is defined by the

n functions:

X L] a
Fo= ye) + 2y np + \c"c::{‘p‘pp )

(6'7)

Fg - p&

where (p;) are the corresponding momenta.

By the general theory developed in section 3 we also know that functions (6.47)
are vertically independent and in Ff —involution with respect to the coordinates (y<)
(and to any other ¢f-compatible system), Therefore we realize that the function
group associated with a g'f;—structure on a Riemannian manifold is generated by r linear
first integrals and n-r (homogeneous) quadratic first integrals. These first integrals

are of course determined up to reversible transformations of the kind:

(6.8) Bl = kiF, + kPR F, . Fi= ks K .
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where all the coefficients are constant,

The above remarks can be translated in terms of Killing vectors and Killing tenc
a 3:_-structure at a point x, of a Riemannian manifold gives rise (in a neighborhoc
x,) to r K-vectors (see also theorem (4.7)) and n-r K-tensors of order 2, which cc
mute in the Schouten-Nijenhuis Lie algecbra of the contravariant symmetric tensors

If the contravariant components (‘2) in normal separable coordinates are known, -
ing a StHckel matrix (\:‘) and the functions (83), (3P) entering the representatio
(5.3) is a pure algebraic problem, When these functions are known, by (6.7)1 one
can immediately write the quadratic first integrals associated with the & -struct
(from the choice c,, = 2e it follows in particular F,_ = 2H), or the corresponding

K-tensors:

(6.9) K, =u"2:8% +y G002 +2,0%) +y* 3P y@3, (= :—yq) .

However, the problem of finding the matrix (\é“) can be simplified by knowing how t
express, in a simple manner, the elements of a generic Stdckel matrix (of the requ:
order) in terms of functions depending on a single variable, that is to say by knos
what can be called a canonical representation of a St#ckel matrix of a certain ord:
A canonical representation of a Stlckel matrix is of course obtainable by the alget
relations between its elements and the elements of the inverse matrix, which are i
deed functions of a single variable (definition (5.1)), For instance (see [14]),

2X2 Stickel matrix (E‘), such that E’ # 0 and g’ # 0, can always be represented as

follows:
e N L oA
ul = _."4_/1;__. 5 u? = _%__ 5
4 "Pg*’tﬂz = “P"""?z

vhere (Y],4,) and (Y,,Y,) are functions of x' and x? respectively.

The so called canonical forms of the K-tensors (in particular, of the metric ter
sor) corresponding to a p}:_ m-st:ruc:t:ure correspond to canonical representations o
the Stickel matrices of order m. Canonical forms for ¢ -structures of class n-2 ar

n-3 are discussed in [14] and [15] respectively, in the case of index zero,
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7+~ Orthogonal separability structures.

The separability of the geodesic Hamilton-Jacobi equation can be considered in the
particular case of orthogonal coordinates: g‘f= 0 for ‘#7 + The first fundamental
result in this field was obtained by Stlickel at the end of the last century [9, 16] .
(In fact, he considered a more general Hamiltonian including an additional "potential"
function, as suggested by mechanics). Bearing in mind definition (5.,1), StHckel!s theow

rem can be stated as follows:

(7.1) Theorem.—~ An orthogonal coordinate system (x';) is segarabl if and only if g"'
= ‘P‘ , where (‘f’ ) is the row of a Stuckel matrix ('*f’ ) in the variables (x%).

this case the functions F, = ’~P (p“ are first integrals in involution and verti-

ally independent.

The second part of this theorem can be considered as a corollary of the following

proposition concerning Stickel matrices.,

(7.2) A nxn matrix ("f") of Cl real functions of n variables (x‘:) is a St#ckel ma-

trix if and only if the functions F,_ = ‘fL (p,_)! are vertically independent and in

involution,

It is clear that functions (F) are interpreted as functions on the cotangent bun-
dle of the dumain of definition of the matrix, and moreover that they are vertically
independent if and only if the matrix is regular (we exclude of course the points of
the zero section: p, = 0)., If we assume that (F,) are in involution, we see at once
that they are in particular in y;-in:olution, hence: 9 ';f’. 2"‘. = J; h‘f{ :f': (€ n.s.)
If we multiply this relation by 'f, {f, (which are the elements of the inverse matrix,
see definition (5.1)), by the summation over the repeated indices h and k ,we obtain:
5( "P % \5 = J ‘1" %Y 3 hence, by setting in pa.rticula.rm=0 it follows:

cS = 9, ‘f’e y lee. 2. ’-{"= 0 for <# £ , This means that ﬂ is a function of
only, hence that ((P“) is a StHckel matrix. Conversely, if (‘P ) is a St#ckel matrix,
the followj.ng identities hold: 3, '~P1= 2 '{’ “3; ‘ﬂ, tpi (4 nes.)s Then' 3 w cp‘

‘f’ \P X ‘f,., ‘P’ and the Poisson bracket {F, sF, } vanishes.
From the point of view of the separability structures theory, the subject acquires

new aspects,

(7+3) Definition.~ A &f-structure on a Riemannian manifold is said to be orthogonal if
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it contains orthogonal separable charts, i.e. if there exist representative charts

with orthogonal coordinates,

By theorem (4.7), proposition (4.24), definition (4.26) and theorem (4.29) we s.

at once that:

(7.4) 1) ¢ -structures of class n=dimM and O are orthogonal; ii) #-structu:

of class 1 and index O are orthogonal; iii) orthozonal -structures have index 0

The last statement is a consequence of the fact that among the orthogonal coord.
tes of an orthogonal ¢-structure we can find normal separable coordinates, If (x“
are orthogonal separable coordinates of a é:-structure, the first class coordinate:
(x*) are defined by the conditions: 9, g;i= 0 (or, equivalently, ?‘g“= 0) for ¢:
On the other hand, the functions (&‘:) defined in (4.8) reduce simply to:

(7.5) Bf = 5P B, 5 B, = g %guu (st n.s.).

We know by the general theory developed in section 2 that these functions do not d
pend on the second class coordinates (x*)(see (2.15)2). Now, the integrable system
(2416) becomes: '«?,‘p,s =0 (f;éu),'a_‘p* =B, p, («n.s.), hence each B, is a function
the corresponding variable x% only, Thus,we conclude that the process shown in th
proof of theorem (2,20) for finding ignorable coordinates simply reduces to a resc.

of the first class coordinates:
(7.6) dy* = (exp [ Bydx*) dx¥ (« n.s.)

By leaving the second class coordinates unchanged (y®= x*) , we obtain normal sepa
ble coordinates (y':) which are still orthogonal. Then, accordingly to theorem (5.2

the corresponding contravariant components (g ) can be put in the form:
Aa - a ol i .y
(7.7) E=a" 5 858 =gly

where (a‘) is a row of a Stickel matrix (E") and (z_") are functions of the coordi
corresponding to the lower index only,
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8.~ Separability structures with zero index.

The existence of separability structureson a Riemannian manifold is characterized
by some local geometrical properties of the manifold itself, In this last section we

consider the case of ¢f-structures with zero index,

a n—-dimensional Riemannian manifold (M,g) there exists
5 in a neighborhood of x_, the following conditions

(841) Theorem,~ At a point x_

(=g 8

a c):;o—structu.re if and only
hold:

i) there exist r K-vectors (X,) and n-r K-tensors of order 2 (K,) which commute:
[x_t,x,,] =0, [X,K]=0, [K,K]=0 . (a,b=1,000,n-1; ayp=n-r+1,e003n),
and such that the corresponding first integrals are functionally independent;

i1) the K-tensors have n-r common eigenvectorfields (X,) such that the n vectors

(X;) = (Xa3X4) €= 1,..0yn) are linearly independent and, moreover, g(X,,X;) =0 for
ifaand [X,,X;]=0;

iii) for each vector X,, in the set (X;) there are two vectors different from X,

such that ang (x,;,xj-) #0.

Proof.- Let us assume that conditions i) and ii) are satisfied., The vector fields
(X;) give rise, in a neighborhood of x_, to a coordinate system (x*) such that %=X,
and gao= 0 for ¢#a, Since (9,) are eigenvectors of the K-tensors (Ko), their compo-
nents (Ki") satisfy the conditions K:‘= 0 for b#i . If (p;) are the momenta corre-
sponding to the coordinates (x"), then F, K:} (p.')a + K:Pp‘pﬁ and E, =p,  are the
first integrals corresponding to the K-tensors (K,) and the K-vectors (X,) respective-
ly. The commutation relations [F.“ ,F‘.} =0 imply 3.‘ F, = 0, hence D‘K:|’= 0 and

% K:f-= 0. Since we have also 9;F, = 0, the matrix (J;F D‘F’-) has maximal rank if and

. i’
only if the matrix (3"1“") has maximal rank. Thus,the hypotesis of independence of (F;)
implies the vertical independences On the other hand, the commutation relations

ZF‘ ,F‘} =0 can be written as follows:

dd dd dd o8 d
O KKy = 9 K K] )(p‘fpd- (CRsg -34"5"‘:)2(1}‘94 - e

This implies:

3 x:‘K:‘ - K K:'* =0 , 3K! K:" -3 K:"x:“ =0 (d n.s.)
Hence: 3, F, ?dF‘ =34 F o F, (d nes.). Then we can see that all the functions

(F;) are in & —involution with respect to the coordinates (x':). Since they are also
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vertically independent and [H,F; 5 = 0, by theorem (3.6) it is proved that the co
dinates (x%) are separable, In particular the coordinates (x¥) (which correspond t
the K-vectors (x,l)) are ignorable, hence of first class., The remaining coordinates
(x*) are of second class because of condition iii) , which can now be written: 3, g
= 0 for at least a pair of indices 'r',j #a (see definition (4.4)). Then the coord
nates (x‘.) define a &-structure of class r and index 0 ,

Conversely, if at x, thert? exists a eb:;o—structure, we can consider a normal
parable coordinate system (x*). Then the vectors X; =3; and the n-r K-tensors
constructed by the method shown in section 6 (see formula (6.9) with no index of t

kind & )obviouslvy satisfy conditions i), ii) and iii). (qeedds)

(8.2) Remark.- Condition iii) guarantees that the class of the of-structure defi
by conditions i) and ii) is exactly the number of the K-vectors (X.). Without this
dition the class could be greater, Let us assume, for instance; that for a vector

condition iii) is not satisfied. This means of course that the corresponding coord
te x* is of first class. Since g*“= 0 for 4#a (x* is "orthogonal" to the remaini
coordinates), by following a reasoning analogous to that described in the last par
of the preceding section, we can conlcude that there exists a rescaling of the coo
nate x* leading to an ignorable coordinate, or, in other words, that there exists

function f, , depending on x* only, such that f,X, is a K-vector which still comm
with the remaining vectors (X;,4#¢), Hence,condition iii) in theorem (8.1) can be

stituted by the following one: iii') for each vector X, there exists no function f
such that Lg,fa =0 for ifa. and L 0.

fﬂxtg 0

(8.3) Remark.- Conditions i), ii) and iii) in theorem (8.1) can be used to define
cy;_;o-structure in a global sense,

The K-vectors (X,) occurring in theorem (8.1) define on M a local foliation of
dimensional submanifolds which are flat in the induced metric (in fact they are th
orbits of the Abelian group of local isometries considered in theorem (4,7)). On t
other hand, vectors (X,_) define a complementary orthogonal foliation of (n-
dimensional submanifolds, which are of course isometric; the induced metric is
Bae dx'® dx™ , being (x™) the orthogonal coordinates corresponding to vectors (X,,
The contravariant components of the induced metric coincides with the correspondir
components (g®*) of g, and, by theorem (5.2) restricted to the case of index 0, th
have the form g** = u® vhere (g") is a line of a StHckel matrix, Hence, by Sticke
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theorem (7.1), we can see that the coordinates (x*) are separable in the induced me-
trics Thus, we have proved the following theorem (see also [17]).

(844) Theorem,~ A n-dimensional Riemannian manifold vhich admits a cf. o—structure

3

(at a point x,) has (locally) two orthogonal transversal foliations, one made of r-

(n-r)-dimensional isometric submanifolds admitting an orthogonal ¢’-structure.
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