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1. — Introduction.

Symplectic geometry has been successfully applied to the description of dynamics
of mechanical systems [1]. Only systems without constraints have been treated.
Our aim is an extention of the symplectic description of dynamics to systems with
holonomic and non-holonomic constraints. As a preliminary step we formulate in the
present paper the statics of systems with constraints.

Basic geometric concepts used in the description of systems with constraints are
formulated in Section 2. The three subsequent sections deal with statics of systems
without constraints, with holonomic constraints and with anholonomic constraints
respectively. For the sake of simplicity only linear anholonomic constraints are con-
sidered. This excludes systems with friction.

This research was conducted at the Department of Mathematics and Statistics,
the University of Calgary and was partly supported by the Consiglio Nazionale delle
Ricerche of Italy and the National Research Council of Canada.

2. — Static systems: basic concepts.

We consider interacting mechanical systems in static equilibrium. Each system
is assumed to have a clearly defined geometric configuration space with the structure
of a differential manifold. For the sake of simplicity we assume that configuration
spaces are connected.

Let @ be the configuration space of a static system. Finite displacements of the
system will be represented in @ by elementary 1-chains [6]. A pair ([a, b], y), where
[a, b] is an interval in R and y is a differentiable mapping of an open neighbourhood
of [a, b] in Q, is called a chain element. Two chain elements ([a, b], y) and ([a/, b'], ¥')

(*) Entrata in Redazione il 31 dicembre 1978.
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are equivalent if
[ 13
(2.1) fy*u = fy’*ﬂ

for each 1-form y on @. An elementary chain is an equivalence class of chain ele-
mernts. We write

(2.2) fﬂ = fby* I

([a, b], p) is a representative of the chain ¢. The integral f p* u can be expressed
a8 f {p(t), uy dt, where v(t) denotes the vector tangent to the eurve v at p(f). Infini-

tes1mal displacements are represented by tangent vectors. Tangent veectors form
the tangent bundle 7¢ with projection

(2.3) 70: TQ —@Q .

The freedom of performing displacements of the system may be restricted. If no
restrictions are present we say that the system is without constraints. Classification
of constraints is best formulated in terms of infinitesimal displacements. Constraints
in @ are represented by a subset I" of TQ satisfying the following integrability requi-
rement: for each v € I" there is a mapping y: R — @ such that 7(0) = v and p(t) e I
for each ¢ in an open interval 10, ¢[. An element of I'is called a virtual displacement.
Constraints are said to be linear if for each g €@ the set I,= I'N T,Q is a linear
subspace of the tangent space 7,0 at ¢. In this paper we consider only linear eon-
straints. We also assume that € = 7¢(I") is a connected submanifold of §. The inte-
grability condition implies that I'c TC. We say that the constraints are holonomic
it I'= TC. In this case the submanifold ¢ characterizes the constraints completely.
It I's= TC then the constraints are said to be anholonomic. We shall always assume
that I"is a subbundle of 7'C, or, in other words, that I"is a distribution on ¢. Anholo-
nomic constraints are said to be integrable if I' is a completely integrable distribution
on . In all other cases the constraints are said to be non-holonomic.

In terms of finite displacements of the system compatible with constraints we
define an equivalence relation in €. Two. points ¢, and ¢, are equivalent if the confi-
guration of the system can be changed from ¢, to ¢, in a finite sequence of displace-
ments compatible with constraints. A finite displacement described by a chain ¢
is compatible with comsitraints if for each representative ([a, b],y) of ¢ the tangent
vector y(¢) belongs to I' for each ¢ € [a, b]. Configurations belonging to the equivalence
class [¢] of ¢ are said to be accessible from ¢. The distribution I" induces a submodule
of the Lie algebra of veptor fields on . This submodule is a subalgebra if and only
it I' is completely integrable. In any case this submodule is contained in a unique
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minimal subalgebra,.' Agsuming that this subalgebra is induced by a distribution [
we have the following theorem [3]: configurations accessible from a configuration ¢ € C
form a maximal connected integral manifold of I".

We consider external mechanisms interacting with static systems. A mechanism
is a deviece which can force a static system to assume any configuration compatible
with constraints and can induce diplecements compafible with constrainfs. The
energy transfered from a mechanism to a static system during a quasistatic displa-
cement induced by purely mechanical interacton is called work. It is assumed that
work performed by 2 mechanism can be measured. Work performed in a virtual
displacement is called virtual work. Let @ be the configuration space of a static system.
Assuming that there are no constraints we say that the system interacts with an
external mechanism with force f e T:Q if for each virtual displacement » € 7,0 the
corresponding virtual work is

(2.4) w=—<0,7).

The mechanism acts on the system with force — f. The force f is the reaction force
of the system counter-balancing the force applied by the mechanism. In the presence
of constraints I" the formula (2.4) can not be used directly to define the foree of inte-
raction between the system and the external mechanism. We define the generalized
force p € I'y by

(2.5) w = — (v, p>

for each virtual displacement v € I',. The force of reaction f T:Q can be determined
indirectly from the knowledge of the force — f applied to the system by the external
mechanism. What foree is produced by the external mechanism can be found by
letting the mechanism interact with other static systems. A typical example of a
mechanism is a spring. Once the spring constant is measured it is easy to determine
the force which. the spring applies to a static system with constraints. For each
virtual displacement v & I', the force f e T;"Q and the generalized force pe F: must
satisfy

(2.6) o, = v, 9> .

It is clear that the generalized force ¢ represents the component of force f capable of
performing work.

- 3. — Statics without constraints.
In this section we give descriptions of the behaviour of static systems without

constraints interacting with external meehanisms. Four different versions are care-
fully analyzed in preparation of the discussion of constraints in subsequent sections.



142  S. BENENTI - W. M. TULCZYJEW: Geomelry of static mechanical systems, ete.

A. Configuration space formulation.

Let @ be the configuration space of a static system. With no constraints present
the system produces a unique reaction force fe TfQ in each configuration ¢e@.
This means that the response of the system to mechanical interaction is characterized
by a force field ¢ on @, or in other terms, a section

0:0Q — T*Q

of the cotangent bundle 7*@Q such that f = o(g) is the unique force corresponding
to the configuration ¢g. The field o describes the internal reaction forces which must
be balanced by forces supplied by an external mechanism in order to maintain a
static equilibrium configuration. The field ¢ describes completely the response of
the system to mechanical interaction; it answers directly questions about forces
necessary to maintain a given configuration but indirectly can be used to answer
questions about equilibrium configurations compatible with given forces and related
questions.

If veTQ is a virtual displacement then the corresponding virtual work is ex-
pressed by

(3.2) w = — (v, 0> = — v, 6(Q)>

where ¢ = 7¢(v). If ¢ is an elementary chain representing a finite quasistatic displa~
cement then

(3.3) 'W=—fo

i the corresponding work.

We say that the force field ¢ is potential if the 1-form ¢ is closed: do = 0. We
say that the force field is conservative if ¢ is exact. A function U:Q -> R such that
o =— dU is called a potential energy function. Let us assume that the system is
isolated except for mechanical interactions producing quasistatic displacements. If
the system is initially at ¢, with internal energy u, and undergoes a displacement ¢
from ¢, to ¢, then the internal energy at ¢, is '

(3.4) Uy =ty -+ W
= Uy— fa .
If the system is conservative then ’
(3.5) W=~ [o=Ule)~ Ua),
and if U(g,) = u, then ’

(8.6) uy = Ulg) -
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Thus a potential energy function represents the internal energy of the system iso-
lated from influences other than mechanical. Potential energy is defined up to an
additive constant whose value can be changed by non-mechanical interaction. If
the gystem is potential but not conservative then potential energy functions exist
locally in neighbourhoods of points in Q.

B. Force space formulation.

We shall call the cotangent bundle T%( the force space and shall - denote it
by F. The cotangent bundle projecton will be denoted by

(3.7 me: F —Q .

There is a canonical 1-form ¥, on F defined by

(3.8) @, Bop = (Tme(v), 7£(V))

where 7 is an element of TF and 75 is the tangent bundle projection
(3.9) tp: TF — F .

The canonical 2-form wqy on F is defined by

(3.10) wo = dd, .

It is well known that (F, wo) is & symplectic manifold (cf. [1]).

The response of the static system to mechanical interaction is described by a
submanifold § of . An element f € § is a force compatible with the configuration
g = mo(f). If there are no constraints there is a unique force for each configuration.
Hence, S is the image of a section of the bundle F. Displacements in F must be con-
tained in § and infinitesimal displacements in ¥ are vectors tangent to 8. If ve TF
is an infinitesimal displacement then the wirtual work performed in this displacement is

(3.11) w=— <7, .

This follows directly from (3.8) and the definition of force. If ¢ is an elementary
chain in F representing a quasistatic displacement then

(3.12) W= — fﬁo

is the corresponding work.
We say that the static system is pofential if § is a Lagrangian submanifold of
the symplectic manifold (F, wy). We say that the system is comservative if § is a
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Lagrangian submanifold generated by a funetion — U:Q — R. We recall that a
submanifold § of F is a Lagrangion submanifold of (F, wg) if [8]

(i) dim (8) = 1 dim (F) = dim (Q),
(i) wol8 = 0.

The symbol we|S denotes the restriction of w, to the submanifold 8. If 1: 8§ — F
is the canonical injection then wg|S = t*we. If U: @ — R is a differentiable fune-
tion on @ then the image § = im (— dU) of the 1-form — dU: Q@ — F is a Lagran-
gian submanifold of (¥, wy) said to be generated by — U [7]. In Section 4 we shall
introduce and use a more general definition of generating functions of Lagrangian
submanifolds.

Let ¢: @ — F be the force field characterizing the response of the gystem in the
configuration space formulation and let ScF be the submanifold describing the
response of the system in the force space formulation. Assuming § = im (¢) we
prove the equivalence of the two formulations.” The proof is based on the identities

(3.13) *e= ¢
and
(3.14) 0*we = do .

These identities follow from

(3.15) (v, %o = (Ta(v), o>
= (Tro(To(v)), ve(To(v))>
= (T (7e00)(v), 6(70(v))>
= v, 63,

where v is an element of T¢Q. i

An infinitesimal displacement in F is called a virtual displacement if it is tangent
to §. If v TF is a virtual displacement in F and v = Twy(®) is the corresponding
virtual displacement in @ then it follows from (3.13) that the virtual work evaluated
from (3.2) is equal to the virtual work evaluated from (3.11). In fact 7 = To(v).
Hence,

(3.16) . @, 9oy = {T'o(v), Dop
= <'07 G*ﬁ'o>
= <{v, ).
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If ¢ represents a finite displacement in F contained in 8 and if ¢ represents the cor-
responding displacement in @ then ¢ = my(€) and ¢ = o(¢), and formulae (3.3) and
(3.12) are eagily seen to be equivalent. From (3.14) it follows that the definitions of
potential systems and conservative systems given in the configuration space formu-
lation are equivalent to the corresponding definitions in the force space formulation.
If the system is conservative and S is generated by a function — U:Q — R then U
is a potential energy function. Conversely, if U is a potential energy function then S
is generated by — U.

C. Configuration-energy space formulation.

The trivial bundle F = @ xR will be called the configuration-energy space. An
element (¢, u) of E consists of a configuration ¢ of a static system and its internal
energy %. The two canonical projections of # onto ¢ and R will be denoted by
v: B —@Q and o: H — R. The bundle ¥ can be considered a principal fibre bundle [5]
with base § and structure group G equal to the additive group R of real numbers.
The group action is the mapping

(8.17) g: EXG — B: ((q,u), 8) = (g, u - 3) .

For each s € G the mapping ¥ - ¥: (¢, 4) > (¢, v + s) will be denoted by g,. The
group action is a one-parameter group of transformations of H. The induced vector
field K is called the fundamental vector field. We denote by V, ,, the space of vectors
tangent to fibres of # called wertical vectors. The distribution V=) V. cTE

(¢,u)eE
is called the vertical distribution or the vertical subbundle of the tangent bundle TE.

The fundamental vector field K forms a basis of the vertical distribution.
A distribution H = {J H, c TE is called a connection in E if

(g, )8

(i) H is a supplement of V in TE,
(ii) Tg,(H) = H for each sec (.

We will refer to a connection H as the horizontal distribution or the horizontal subbundle
of TE. A 1-form é on F is called a connection form if

(8.18) (i) K,éy=1,
(3.19) (i) £.6=0.

If & is a connection form then the characteristic distribution
(3.20) H = {p e TH; <, 6> = 0}

of & is a connection in E. Conversely, each connection H is the characteristic distri-
bution of & uniquely determined connection form é.

10 - Annali di Malematica
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- A vector field X: E — TE is said to be horizontal if (X, 6> = 0. For each vector
field X:Q — TQ there is a unique horizontal vector field X: F — TE such that
TyoX = Xoy. The field X is called the horizontal lift of X.

If & is & connection form then the form &— dg satisfies

(3.21) (K,6—dg>=0
and
(3.22) Lp(6—do) = 0.

It follows that there is a 1-form ¢ on ¢ such that
(3.23) yfo=6—dp.
The form ¢ is defined by

(3.24) {vy 0y = b, 6~ dgy,

where v is a vector tangent to @ and ? € TH satisfies Tx(?)) = 0.
The differential dé of the eonnection form & is called the curvature form. From
(3.23) we have

(3.25) a6 = y*do .

A connection H is said to be locally flat if it is a completely integrable distribu-
tion. The connection is said to be flat if H is completely integrable and the maximal
connected integral manifolds of H are images of sections of F. In terms of the con-
nection form & we have the following criteria: the connection is locally flat if and only
if ¢ is closed, the connection is flat if and only if & is exact. The proof of the first
criterion is based on the identity

(3.26) (X, 718> = £(T, 6> — LR, 6> — (RN T, d5) .

if d6 = 0 then [X, 7] is & horizontal vector field if X and ¥ are horizontal. Hence,
the distribution H satisfies the criterion for complete integrability. Conversely,
if H is integrable then (XA ¥, dé) = 0 if X and ¥ are horizontal. Let X and ¥ be
horizontal lifts of fields X and Y respectively. Then (XAY, d¢d = 0 rince
(XA\Y,déy = 0. Consequently, do = 0 and dé = y*do = 0. To prove the second
criterion we assume that ¢ is exact and é = dU. Then the mapping B — E: (q, u) —
— (¢, f7(q, u)) is a diffeomorphism preserving fibres of E. The mapping U:E->R
defines a fibration of E. Fibres of this fibration are integral manifolds of H and are
sections of the bundle #. Conversely, if H is integrable and the maximal integral
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manifolds are sections of F then there are functions U: E — R constant on integral
manifold and satistying (K,dU> =1. To construct a function U we select an in-
tegral manifold and interpret it as the graph of a function U:Q — R; U is defined by

N

(3.27) U=9p— Uoy.

The form dU is a conneetion form for the connection H since (K,dU» =1 and
(#, 40y = 0 for each horizontal vector #. It follows that & = dU since the connec-
tion form is unique. From (3.23) and (3.27) it follows that ¢ = — dU.

In order to obtain a description of the response of a static system we consider
infinitesimal quasistatic displacements in F induced by purely mechanieal interac-
tion with an external mechanism. Hach displacement ¥ € TE consists of a displa-
cement v = Ty(v) in @ and an energy increment {7, dg)>. The energy inecrement is
equal to the virtual work. We postulate that the virtual work performed in the
displacement v is '

(3.28) w=— {v,0) =— (B, y*a),
where ¢ is a 1-form on ¢. From
(3.29) b, dgy = — B, g*o)

we conclude that © belongs to the horizontal distribution H associated with the con-
nection form

(3.30) & =1dq + y*c.

The connection I characterizes the response of the system to mechanical interaction.

A 1-chain é in F representing a finite quasistatic displacement from (g,, #,) to
(g4, 4;) induced by purely mechanical interaetion is horizontal. This means that
it ([e, b], §) is a representative of ¢ then the tangent vector $(¢) belongs to H for
each { €[4, b]. The work performed in the displacement is

(3.31) W=—[o=—[y0,

where ¢ = y(¢). This work is equal to the energy increase

(3.32) Uy — Uy = fdg .

The static system is said to be polential it H is locally flat. The system is said to
be conservative it H is flat. If the system is potential and interactions other than
purely mechanical are excluded then only displacements within integral manifolds
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of H are possible. Transitions between integral manifolds can be induced by non-
mechanical interactions. If the system is conservative then each maximal integral
manifold is a section of F and hence the graph of a function U:@ — R. Each func-
tion U is called a potential energy function.

Equivalence of the configuration-energy space formulation and the configuration
space formulation is easily estabilished by 1dent1fymg the 1-form ¢ introduced in (3.23)
with the force field (3.1).

D. Force-energy space formulation.

Let F = T*Q be the force space of a static system. The trivial bundle £ = FxR
will be called the force-energy space. An element (f, u) of B consists of force f and inter-
nal energy %. The two canonical projections of E onto F and R will be denoted by
%: B — F and §: § — R. The bundle £ is a prineipal fibre bundle with base F and
structure group G = R. The fundamental vector field induced by the group action

(3.33) _ §g:Ex@ »E’:((]‘, u), 8) > (f, u -+ 8)

will be denofed_ by K. There is a canonical connection form on £ defined by
(3.34) - § = dg + 7*da,

where ¢ is the canonical 1-form on F. The curvature form is

(3.35) = df = 7*w

where w, is the canonical 2-form on F. The horizontal distribution associated with 8
will be denoted by H.

The response of the static system is deseribed by a submanifold Sc E. We assume
that the response depends on mechanical parameters only and not on the internal
energy. It follows that S is invariant under the action of the structure group. Hence,

(3.36) 8= 8xR=7Y9),

where § is a submanifold of F. Since there are no constraints the submanifold S
is the image of a section of the bundle F.

We consider infinitesimal displacements in . Bach displacement #e TH con-
sists of a displacement ¥ = T%(%) in F and an energy increment (¥, dg). The displa-
cement ¥ is called a virtual displacement if it is tangent to S. If ¥ represents a quasi-
static virtual displacement induced by mechanical interaction then the energy in-
crement (¥, dg> is equal to the virtual work

(3.37) w = — B, B>
= — (B, 7*00) -
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From
(3.38) (B, dg)> = — B, x*Do>

it follows that & is horizontal. Since # is tangent to § we conclude that 5 e TS N H.

A 1-chain & in S representing a finite quasistatic displacement from (fo, %) to
(f1, 4;) induced by purely mechanical interaction is horizontal. The work performed
in the displacement is

(3.39) \ W————_fﬁo————fx*ﬁo,

where ¢ = ¥(¢). This work is equal to the energy increase

(3.40) Uy — Uy = f dg .

The static system is said to be potential if the distribution TS N H on § is com-
pletely integrable. The system is said to be comservative it TS N H is completely
integrable and maximal connected integral manifolds are sections of the bundle
§ = 8§ xR. We note that S is a principal fibre bundle with base § and structure
group G = R. The distribution 78 N H is a connection in § and §|S is the corres-
ponding connection form. The system is potential if and only if the econnection is
locally flat.

Equivalence with the force spa,ée formulation is established by identifying the
submanifold 8§ introduced in (3.36) with the submanifold S used to describe the re-
sponse of the system in force space. Let S be the image of a section ¢: @ — F. Then

(3.41) ¢ = (o xX1g)*D

is a connection form on E deseribing the response of the static system in configura-
tion-energy space terms. In order to show that & is a connection form we prove that

(3.42) 6 =do + y*o.

The proof is based on the commutativity of the diagram

(3.43) ox1g
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We have
(8.44) (oX1p)*d = (0 X 1)*dg + (o X1p)* P
. — d(QO(O‘XIR)) 4 X*O'*ﬁ’o
= dg + g0 .

Hence, ¢ = dp 4 y*o.
We note that following (3.34) the connection form of the connection TS N H
is given by

(3.45) I8 = gl + (718)* 8|8
and the curvature form is
(3.46) |8 = (718)* w8 .

It follows that the comnnection is flat if and only if § is a Lagrangian submanifold,
i.e. the system is potential in the sense of the force space formulation. If the system
is conservative in the sense of the force space formulation then § is a Lagrangian
submanifold generated by a function — U: @ — R. From

(3.47) Bol8 = — (7e|8)*dU
and (3.41) it follows that

(3.48) 18 = dglS — (718)*(mel8)* aU
a(

Hence, the connection form §|S is exact and the connection is flat. This means that
the system is conservative in the senge of the force-energy space formulation. Con-
servative in the sense of the force-energy space formulation thén maximal integral
manifolds of 78 N H are sections of §. If one of these sections is interpreted as the
graph of a function U: § — R then we have

(3.49) D8 = dl .

Since § is the image of a section there is a function U: @ — R such that

(3.50) U = — Uo(n,)8) .

From

(3.51) Bel8 = — d(To(m,|8))
= — (wol8)*aT

it follows that § is generated by the function — U: @ — R.
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4, — Statics with holonomic constraints.

In the present section we consider a static system whose configuration is con-
strained to remain in a submanifold C of the configuration space ¢. Four different
descriptions of the response of the system to mechanical interaction are given. The
four descriptions correspond to the descriptions presented in Section 3. Geometric
structures defined in Section 3 are used in the present section.

A. COonfiguration space formulation.

To each point ¢ of the constraint submanifold ¢ c @ there corresponds a unique
generalized force ¢ = a(g) € T, C. The mapping

(4.1) 6: C—T%C: g alq)

is a differential 1-form on C. The form ¢ characterizes the response of the system

to mechanical interaction. With the constraint submanifold C interpreted as the

configuration space the description of systems with holomomic constraints is formally

the same as the configuration space description of systems without constraints.
If v e TC iy a virtual displacement then the corresponding virtual work is

(4.2) w=— {v, 6).
The work performed in a finite displacement represented by & 1-chain ¢ in C is

(4.3) W:—fa.

The static system is said to be potential if ¢ is closed, the system is said to be con-
servatione if o is exact. If the system is conservative and ¢ = — U then the fune-
tion U: € — R is called a potential energy function.

The description given here is incomplete since no direct information about reac-

tion forces is given. A more complete description is provided in the force space for-
mulation.

B. Foree space formulation.

The response of the static system is described in force space by a submanifold
S c F which projects onto C: mo(8) = C. For each ge C the set S,= SN T,Q
is the set of reaction forces which the system can produce in configuration q. We
assume that S, is a coset in‘T:‘Q of the subspace (7,0)°= {ae T:Q; {v,ay =10
for each ve T,0}. Each set §, defines a generalized force ¢ = o(q) € T C such
that <v, ¢(q)> = <(w, f> for each virtual displacement v € T,C and each force f € §,:
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We assume that the mapping
(4.4) o: 0 - T%0: q — 0(q)

is differentiable. The dimension of § is equal to the dimension of Q.
The virtual work performed in a virtual displacement v e T'S is

(4.5) w = — (v, B¢ .
The formula '
(4.6) W= — f 9%

gives the work performed in a finite displacement represented by & 1-chain ¢ in §.

We say that the static system is potential if 8 is a Lagrangian submanifold. We
say that the system is conservative if § is a Lagrangian submanifold generated by a
funetion — U: ¢ — R. This means that

4.7 - S={feF; g=m(f) € C, <v, > =— {(v,dU) for each ve T,0}.

The function U: ¢ — R is called a potential energy fumction.

A relation between the configuration space formulation and the force space for-
mulation is obtained by identifying mappings (4.1) and (4.4). If the 1-form ¢ is given
then § is obtained from

(4.8) S={feF; g=myf) €0, v,y = (v, 0> for each ve T,C}.
The relation
(4.9) DlS = (nQ]S)*G
is derived from
(4.10) : Ty Gy = (T'me(v), 75(V))
= {T'mq(v), 0>
= ¥, 75;0> ’

where ¥ is a vector tangent to S. It follows from (4.9) that welS = 0 if and only if ¢
is closed. This implies that the definition of potential systems given in the configu-
ration space formulation is equivalent to the definition in the force space formula-
tion. Comparing (4.7) and (4.8) we see that the configuration space definition of con-
servative systems is equivalent to the force space definition.
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C. Configuration-energy space formulation.

With the constraint submanifold € interpreted as the configuration space the
deseription is formally the same as that given in Section 3.C. The response of the
system is characterized by a connection H on the trivial bundle § = ¢ x R. The
connection form ¢ defines on € a 1-form ¢: ¢ — T*C which should be identified with
the 1-form ¢ of the configuration space formulation. Also in this case the descrip-
tion is incomplete.

D. Force-energy space formulation.

In the force-energy space B = F X R the response of the static system is charac-
terized by a submanifold § = §x R c £, where 8 is a submanifold of F projecting
onto the constraint submanifold C: my(S) == €. The only difference between this
deseription and that given in Section 3.D is that § is no longer a section of F. As
in Section 3 we introduce a connection T8 N H and we say that the system is conser-
vative it T8 N H is flat. We say that the system is potential if TS N H is locally flat.
The proof that these definitons are equivalent to the corresponding definitions of
the force space formulation follows the pattern of the proof given in Seetion 3 with
only minor modifications.

5. — Statics with anholonomic censtraints.

As was stated in Section 2 anholonomie constraints are represented by a distribu-
tion I” on the configuration space @ such that I'c 7C and I'5= TC, where C = 7o(I')
is a connected submanifold of . Without significant loss of generality we will assume
that ¢ = Q. If we also assume that the minimal subalgebra of vector fields on ¢
containing fields of vectors belonging to I" defines again a distribution I on @ then
by Chow’s theorem [3] maximal connected integral manifolds of I" are accessibility
classes. By an accessibility class we understand the set of configurations accessible
from one of the configurations in the set. Since I's~ TQ, there are three possibilities:

(i) I"=T,,
(i) I'"s I and I TQ,
(iil) "= T¢Q.

Case (i) corresponds to integrable anholonomic constraints. Since there is no pos-
sibility of passing from one accessibility class to another without breaking the con-
straints each accessibility class can be analyzed separately as a holonomic constraint
submanifold. Case (ii) is the case of non-holonomic constrainis. In the case (iii) we
have completely non-inegrable nomn-holonomic constraints. Since non-holonomic con-
straints are completely non-integrable on each accessibility class separately, only
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case (iii) will be considered. The following assumptions are made throughout the
present section:

(6.1) Ir+TQ, wl)=¢, I'=TQ.

A. Configuration space formulation.

Let I' be a distribution on @ and let I'* denote the vector bundle dual to I. A
differentiable section

(5.2) : g:Q = I'*

will be called a 1-form defined on I'. The space of such sections will be denoted by
AYI™M). The space of 1-forms on @ will be denoted by X*(Q). We have X*(Q) = AYTQ)

Let u be a 1-form on . We denote by ull" the element of AY(I") obtained by
restricting p to I. The linear mapping u+> ul|l” maps X*(Q) onto AYI"). Indeed
if ¢ is an element of A7) then a 1-form g € L*(Q) such that y|l" = ¢ can be defined
by choosing a supplement I™ of I"in 7Q (c.f. [4]) and imposing conditions: u[l" = o,
ull= 0. We denote by C(g) the set of 1-forms on @ mapped onto ¢ € AYI"). An
element of C(s) will be called a répresentative of 0. We have

(5.3) C(o) = {u e X*Q); <, u> = {v, o) for each vel}.

A 1-form ¢ € AYI") is said to be closed if there is a representative u € C(¢) such
that duy = 0. A 1-form ¢ € AY(I") is said to be ewact if there is a differentiable func-
tion U: ¢ — R such that — dU e C(o).

Let u be a 1-form on @ such that y|I'= 0 and du = 0. If X and Y are sections
of I' then

(5.4) X, Y], Uy = (XN, duy - <Y7 aX, ;u>>'_ <X7 Y, /">>
=40.

It follows that conditions u|l"= 0 and dyu = 0 imply u|/"= 0. Taking assumptions
(5.1) into account we have y = 0. It follows that a closed 1-form ¢ € AYI") has a’
unique closed representative.

Let I represent constraints imposed on a static mechanical system. The response
of the system to mechanical interaction is deseribed by a 1-form

(5.5) 0:Q —I'*: g1 0(q)

defined on I'. For each g €@, ¢ = o(q) is the unique generalized force corresponding
to gq.
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If veI'is a virtual displacement then the corresponding virtual work is
(5.6) W= — 0, 0) = — {V, i),

where u is any representative of ¢. The work performed in a finite displacement
compatible with constraints and represented by & 1-chain ¢ is

(5.7) W=fﬂ’

for any u € C(o). Each representative of ¢ is an integral curve of I

The static system is said to be potential if ¢ is closed. The system is said to be con-
servative if o is exact. A function U:Q — R such that — dU e C{o) is called a poten-
energy function represents the internal emergy of a conservative system with non-
holonomic congtraints if the system is isolated except for mechanical interactions
producing quasistatic displacements. Since dU is uniquely determined by o, the
potential energy function is defined up to an additive constant.

For reasons stated in Section 4.A the configuration space description of the response
of a gystem with non-holonomic constraints is incomplete.

B. Force space formulation.

In the force space ¥ = T*Q the response of a static system is described by a
submanifold Sc . An element f of § is a reaction force compatible with the con-
figuration ¢ = my(f). The submanifold § projects onto Q: ny(8) = @, and for each
geQ the set S, = SN T.Q is a coset of the space I'° = {a e I.Q; (v, a) = 0 for

each ve T,}. If p is the rank (1) of the bundle I, then dim (S) = 2n — p.
We consider the following subbundle of T'§:

(5.8) I'={eT8; Tny@wel}.

The rank of I'is n. A vector v € TS is said to be vertical if Trg(v) = 0. Vertical vectors

belong to I. The canonical 1-form #, on F induces the 1-form $,|I" defined on I

Elements of I’ represent infinitesimal quasistatic displacements compatible with

constraints. A finite displacement compatible with constraints is represented by a

1-chain ¢ with the property that each representative of ¢ is an integral curve of I
The virtual work performed in a virtual displacement 7 ¢ I" is given by

(5.9) w=— {B, o).

(1) The rank of a vector bundle is the dimension of its fibres.
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For a finite displacement represented by ¢ the corresponding work is given by

(8.10) W=— [8,.

The 1-form 9, in formulae (5.9) and (5.10) can be replaced by any other representative
of Go|I.

The static system is said to be potential if 9o|I" is closed. If the system is poten-
tial then there is a unique 1-form € C(9,|") such that di = 0. The system is said
© to be conservative if G|l is exact. If the system is conservative then there is a func-
tion U: § — R such that — dU € C(9,|I"). From (5.10) we obtain

(3.11) W= f al = U(f) — U(fy) ,

if ¢ represents a displacement from f, to f,. It follows that I represents the internal
energy of the system.
A 1-form ¢ on I' is defined by

(5.12) <, 0()> = <o, f>

for each ¢ @, each eI, and each fe 8,: If u is a representative of ¢ then i =
= (7o|8)* u is a representative of 9o|I". Indeed, for each 7 e I', we have

(5.13) : Uy (ol 8)* )y = (Tmq(®), p>
= <0, >
= (v, 0)
and
(5.14) By B> = {Tmo(0), T5(0)>
= {0, >
= (v, 0>,

where v = Tno(v) and f = (7). 3
Let the system be potential and let 7 be the unique closed representative of d¢|f.
I# X: 8 — TS cTF is a vertical field then
(5.15) (X, @y = <X, 9
. = (TngoX, tp0X>
=0
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and

(5.16) fxi=X-di+ &KX, 5> =0.
It follows that there exists a 1-form u on @ such that

(8.17) G = (mol8)*p .

Let v be a vector in I" and let 7 € I’ be any vector such that Try(v) = v. Then

(5.18) vy > = b, iy = <0, Bop

and it follows from (5.14) that u is a representative of o.
If the system is conservative and i = — dU then there is a function U:Q — R
such that U = Uo(m,|8) and u = — dU. Formula (5.11) leads to

(.19) W= Ulq) — Ulgo)

where g, = 7o(f,) and ¢, = mo(fy). The function U is a potential energy function. The
submanifold S is determined by this function and the distribution I

(3.20) S={feF; (v,f>=— {v,dU) for each ve I, where ¢ = my(f)} .

Formula (5.20) is a generalization of

(6.21) S =im(—aU) = {feF; {v,f> =— {v,dU) for each ve T,Q, where
q = 7o(f)}

different from the generalization contained in the formula (4.11). Formulae (5.21),
(4.11) and (5.20) are different versions of variational principles for conservative static
systems. ‘

The construction of the 1-form ¢ in (5.12) provides a link between the force space
formulation and the configuration space formulation. The subsequant discussion
demonstrates the equivalence of the definitions of potential systems and conservative
systems in these two formulations.

C. COonfiguration-energy space formulation.

In the present subsection we use geometric structures introduced in Section 3.C
and part 4 of the present section. The concept of a connection on F = @ X R is gene-
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ralized in the following zdeﬁnition. A distribution " on E is called a p-connection
on E if

(i) I' projects onto a distribution I" of dimension p on Q: Ty([) =T,
(ii) I’ does not contain vertical vectors: if » € I and Ty(v) = 0 then v = 0,

(iii) I’ is invariant under the group action g: Ty [y = I for each s G = R.

An n-connection is a connection on E. Let I be a distribution on F of dimension n
and let ¢ be a 1-form defined on I'. The distribution

(5.22) F={®eTE; v=Ty®) eT, <{v,dg) = — <{v, 0D}

is & p-connection on F. Conversely a p-connection I defines uniquely a distribution
I'=1T x(ﬁ) and a 1-form ¢ defined on I'. The form ¢ is defined by (v, 0> = — <{v, do)
where v is a vector in I" and ¥ is a vector in such that 7(v) = v.

Let u be a 1-form on Q. The form g = dgo -+ y*u is a connection form, let H
denote the corresponding connection on E. We have the following obvious relations:

a) I'c H if and only if ue C(o),

b) if 'c H then (lN'cH'.

THEOREM. — Let I" be a distribution on Q and ¢ a 1-form on I. Let I" be the distri-
bution defined by (5.22). If I''= TQ then o is closed if and only if () is a connec-
tion (necessarily locally flat); ¢ is exact if and only if (L) is o flat conmection.

ProOF. — Let (I') be a connection and let & = dg + y*u be the corresponding
connection form. Since (I") is locally flat we have dfi = 0. Hence, du = 0. It fol-
lows from the relation @) above that u is a representative of 0. Hence, o is closed.
Conversely if ¢ is closed and g is the closed representative of ¢ then u defines a locally
flat connection H which containes I. From the relation b) it follows that (Iyc H.
Since I"= T¢ implies _T%((f)’) = TQ, (I') must be a connection equal to H. The
second part of the theorem follows immediately from the discussion of flat connec-

tions in Section 3.C.

In order to obtain a deseription of the response of a static system with non-holo-
nomic constraints I' in the configuration-energy space F = @ X R we consider infini-
tesimal displacements in ¥ induced by purely mechanical interaction with an external
mechanism. Each displacement o € TH consists of a displacement v = Ty(@) in Q
and an energy increment <%, do>. The displacement v must belong to the distribution I'
the energy increment must be equal to the virtual work. We postulate that the vir-
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tual work performed. in the digplacement v is
(5.23) w=— {v,0),
where ¢ is a 1-form defined on I From

(5.24) @, dp> = — {w, o)

we conclude that o belongs to the distribution I” defined by (5.22). The p-connec-
tion I7 describes the response of the system to mechanieal interaction.
If u is a representative of o and ¥ is a virtual displacement then the virtual work is

(5.25) w = — (o, pu) .

A finite displacement induced by purely mechanical interaction is represented by
a horizontal 1-chain ¢ in H: each representative of ¢ is an integral curve of I. The
corresponding work is

(5.26) W= [gn=u—u

if é represents a displacement from (q,, ¢,) t0 (¢4, ;).

The static system is said to be potential if (")’ is a connection. The system is
said to be conservative if (I) is a flat connection.

Equivalence of the configuration-energy space formulation with the configuration
space formulation is obvious. We emphasize the importance of the Theorem as pro-
viding an effective criterion for the form ¢ to be closed (cf. [21).

D. Force-energy space formulation.

In the force-energy space F = F X R the response of a static system is described
by a submanifold

(5.27) 8§ = 8xR =549,

where Sc F is a submanifold with properties stated in force space formulation.
The distribution I” defined by (5.8) is used again in the present subsection. We de-
fine a p-connection

(5.28) I'=1{5eT8; 5= 17®) el & df> = — @, F}

on the trivial bundle § = § x R. Elements of I" represent virtual displacements in Z.
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The virtual work corresponding to a virtual displacement ¥ e I' is given by

(5.29) w = {3, dg) = — (TZB), Doy = — <&, 7"ty

where [ is any representative of 9,|I". A finite displacement is represented by a horiz-

ontal 1-chain & The corresponding work is

(5.30) W:—Iz*ﬁzfdg“zul— o

if & represents a displacement from (fy, u,) to (fy, u,).

~

The static system is said to be potential if (")’ is a connection. The system is said
to be conservative if (I") is a flat connection. The equivalence of these definitions
with those given in the force space formulation is demonstrated by applying the
Theorem stated in part C to the 1-form 9" defined on I' and the trivial bundle
8 = §xR. This version of the Theorem provides an alternate criterion for the 1-
form ¢ to be closed. This criterion corresponding the usual integrability criteria for
systems of partial differential equations (cf. [4]) is much more complicated than

the criterion formulated in part C.
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