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S u m m a r y .  - See the Introduction. 

1.  - I n t r o d u c t i o n .  

Symplectic geometry has been successfully applied to the description of dynamics 
of mechanical systems [1]. Only systems without constraints have been treated. 
Our aim is an extention of the symplectic description of dynamics to systems with 
holonomic and non-h01onomic constraints. As a preliminary step we formulate in the 
present paper the statics of systems with constraints. 

Basic geometric concepts used in the description of systems with constraints are 
formulated in Section 2. The three subsequent sections deal with statics of systems 
without constraints, with holonomic constraints and with anholonomic constraints 
respectively. For the sake of simplicity only linear anholonomic constraints are con- 
sidered. This excludes systems with friction. 

This research was conducted at the Department of Mathematics and Statistics, 
the University of Calgary and was partly supported by the Consiglio ~azionale delle 
l~icerche of Italy and the 17ational Research Council of Canada. 

2.  - S ta t i c  s y s t e m s :  b a s i c  c o n c e p t s .  

We consider interacting mechanical systems in static equilibrium. Each system 
is assumed to have a clearly defined geometric con]iguration space with the structure 
of a differential manifold. For the sake of simplicity we assume that  configuration 
spaces are connected. 

Let Q be the configuration space of a static system. Finite displacements of the 
system will be represented in Q by elementary 1-chains [6]. A pair ([a, b], y), where 
In, b] is an interval in R and ~ is a differentiable mapping of an open neighbourhood 
of [a, b] in Q, is called a chain element. Two chain elements ([a, b], y) and ([a', b'], y') 

(*) Entrata in Redazione il 31 dicembre 1978. 
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are equivalent if 

(2.1) 
b b '  

for each l - form # on Q. An elementary chain is an equivalence class of chain ele- 
meffts. We write 

b 

c a 

b 

if ([a, b], 7) is a representat ive of the chain c. The integral f~,* # can be expressed 
b a 

as f(?)(t), # )d t ,  where ~(t) denotes the vector  tangent  to the curve ~, at  7(t). Infini- 

tesimal displacements are represented by  tangent  vectors. Tangent  vectors form 
the tangent  bundle TQ with projection 

(2.3) ~ : / ~ Q  - ~ Q .  

The freedom of performing displacements of the system may  be restricted. I f  no 
restrictions are present  we say tha t  the system is without constraints. Classification 
of constraints is best formulated in terms of infinitesimal displacements. Constraints 
in Q are represented by  a subset F of TQ satisfying the following integrabili ty requi- 
rement :  for each v e F there is a mapping 7: R -~ Q such tha t  ~(0) ~ v and ~)(t) e F 
for each t in an open interval  ]0, s[. An element o f / '  is called a virtual displacement. 
Constraints are said to be linear if for each q e Q the set F~ -~ 1 ~ n TqQ is a linear 
subspace of the tangent  space  TqQ at q. t n  th is  paper  we consider only linear con- 
strMnts. We also assume tha t  C = ~o(F) is a connected submanifold of Q. The intc- 
grability condition implies t ha t  F c TC. We say tha t  the constraints are holonomic 
if F - ~  TC. In  this case the submanifold C characterizes the constraints completely. 
I f  F =/= TC then  the constraints are SMd to be anholonomic. We shall always assume 
t h a t / ~  is a subbundle of TC, or, in other  words, tha t  F is a distribution on C. Anholo- 
nomie constraints are said to be integrable if F is a completely integrable distribution 
on C. In  all other cases the constraints are said to be non-holonomic. 

In  terms of finite displacements of the system compatible with constraints we 
define an equivalence relation in C. Two points q0 and ql are equivalent if the confi- 
guration of the system can be changed from qo to ql in a finite sequence of displace- 
ments compatible with constraints. A finite displacement described by  a chain c 
is compatible with constraints if for each representat ive ([a, hi, 7) of c the tangent  
vector  ~)(t) belongs to F for each t e [a, b]. Configurations belonging to the equivalence 
class [q] of q are said to be accessible f rom q. The distribution F induces a submodule 
of the Lie algebra of vector  fields on C. This submodule is a subalgebra if and only 
if F is completely integrable. In  any ease this submodule is contained in a unique 
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minimal subalgebra. Assuming tha t  this subalgebra is induced by  a distribution F '  
we have the following theorem [3]: con]igurations accessible ]tom a conliguration q ~ C 
1orm a maximal connected integral mani]old o1 1~'. 

We consider external  mechanisms interact ing with static systems. A mechanism 
is a device which can force a static system to assume any configuration compatible 
with constraints and can induce diplecements compatible with constraints. The 
energy transfered from a mechanism to a static system during a quasistatic displa- 
cement  induced by  purely mechanical interacton is called work. I t  is assumed tha t  
work performed by  ~ mechanism can be measttred. Work  performed in a vir tual  
displacement is called virtual work. Let  Q be the eonfigm'ation space of a static system. 
Assuming tha t  there are no constraints we say tha t  the system interacts with an 
external  mechanism with ]orce ] ~ T*Q if for each vir tual  displacement v ~ T~Q the  

corresponding vir tual  work is 

(2.4) w = - ( v , D .  

The mechanism acts on the system with force -- ]. The force ] is the reaction force 
of the system counter-balancing the force applied by  the mechanism. In  the presence 
of constraints E the formula (2.4) can not  be used directly to define the force of inte- 
raction between the system and ' t h e  external  mechanism. We define the generalized 

]orce ~ ~ 1 ~* by 

( 2 . 5 )  w = - ( v ,  qJ) 

for each vir tual  displacement v e F~, The force of reaction ] ~ T*Q can be determined 
indirectly f rom the knowledge of the force -- / applied to the system by the external  
mechanism. Wha t  force is produced b y  the external  mechanism can be found by  
lett ing the mechanism interact  with other  static systems. A typical  example of a 
mechanism is a spring: Once the spring constant  is measured it is easy to determine 
the force wh ich  the spring applies to a static system with constraints. For  each 
vir tual  displacement v e/"4 the force / ~ T*Q and the generalized force ~ E F* must  

satisfy 

(2.6) (v, ]J ---- (v, ~ J .  

I t  is clear tha t  the generalized force ~ represents the component  of force f capable of 

performing work. 

3.  - S ta t i c s  w i t h o u t  c o n s t r a i n t s .  

In  this section we give descriptions of the behaviour  of static systems without  
constraints interact ing with external  mechanisms. Four  different versions are care- 
fully analyzed in preparat ion of the discussion of constraints in subsequent  sections. 
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A. Con]iguration space ]ormulation. 

Let  Q be the configuration space of a static system. With  no constraints present 
the system 1)roduees a unique reaction force ] e T*Q in each configuration q e Q. 
This means tha t  the response of the system to mechanical interaction is characterized 
by  a ]orce ]ietd a on Q, or in other terms, a section 

o: Q -+ T*Q 

of the cotangent  bundle T*Q such tha t  ] ---- a(q) is the unique force corresponding 
to the configuration q. The field a describes the internal  react ion forces which must  
be balanced by  forces supplied by  an external  mechanism in order to maintain a 
static equilibrium configuration. The field a describes completely the response of 
the system to mechanical interaction;  it answers directly questions about  forces 
necessary to maintain a given configuration bu t  indirectly can be used to answer 
questions about  equilibrium configurations compatible with given forces and related 
questions. 

I f  v ~ TQ is a vir tual  displacement then  the corresponding vir tual  work is ex- 
pressed by  

(3.2) w = -- <v, a> = -- <v, ~(q)>, 

where q ~Q(v). I f  c is an  e lementary  chain representing a finite quasistatic displa- 
cement  then 

f (3.3) W _-- _ / a  
w2 

C 

is the corresponding work. 
We say tha t  the force field a is potential if the  1-form a is closed: d~ ---- 0. We 

say tha t  the  force field is conservative if a is exact.  A funct ion U: Q -+ R such tha t  
---- -- d U is called a potential energy ]unction. Let  us assume tha t  the system is 

isolated except  for mechanical interactions producing quasistatic displacements. I f  
the system is initially a t  q0 with internal  energy uo and undergoes a displacement c 
from q0 to q~ then  the internal  energy at  ql is 

(3.4) 

9~ o - -  f o "  . 
r 

I f  the system is conservative t h e n  

= _ ~ (3.5) W 
t J  

C 

and if U(qo) -~ Uo then  

= U(q,)- b~(qo), 

(3.6) ul = U(ql). 
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Thus a potent ial  energy function represents the internal  energy of the  system iso- 
lated from influences other  than  mechanical. Potent ia l  energy is defined up to an 
addit ive constant  whose value can be changed by  non-mechanical  interaction. I f  
the system is potent ial  bu t  not  conservative then  potent ial  energy functions exist  
locally in neighbourhoods of points in Q. 

B. Force space /ormulation. 

We shall call the cotangent  bundle T*Q the  /orce space and sha l l  denote i~ 
by  F.  The cotangent  bundle projecton will be denoted by  

(3.7) ~Q: F --> Q . 

There is a canonical 1-form v~Q on F defined by  

(3.8) <~, #Q> = <Tz~(~) ,  ~ ( ~ ) > ,  

where ~ is an element of T F  and ~ is the tangent  bundle projection 

(3.9) ~F: T F  -> F .  

The canonical 2-form wo on F is defined by  

(3.10) O)Q = dv~Q. 

I t  is well known tha t  (F, oQ) is a symplectie manifold (cf. [1]). 
The response of the static system to mechanical interaction is described by  a 

submanifold S of F.  An element ] e S is a force compatible with the configuration 
q = ~ ( ] ) .  I f  there are no constraints there is a unique force for each configuration. 
Hence,  S is the image of a section of the bundle F.  Displacements in F must  be con- 
rained in S and infinitesimal displacements in F are vectors tangent  to S. I f  ~ ~ T F  
is an infinitesimal displacement then  the wirtual work performed in this displacement is 

(3.11) w = - <~, ~ > .  

This follows directly f rom (3.8) and the definition of force. I f  ~ is an e lementary  
chain in F representing a quasistatie displacement then  

(3.12) W -~ -- f~Q 
C 

is the corresponding work. 
We say tha t  the static system is potential if S is a Lagrangian submanifold of 

the symplectie manifold (•, (%). We say tha t  the system is conservative if S is a 
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Lagrangian  submanifold  generated b y  a funct ion - -  U: Q - +  R. 

submanifold  S o f / 7  is a Lagrangian submani/old of (/7, coo) if [8] 

(i) dim (S) = �89 dim (17) = dim (Q), 

(ii) c%]S = O. 

We recall t ha t  a 

The symbol  coQ[S denotes the  restr ict ion of o)Q to the  submanifold  S. If t: S - ~ / 7  

is the canonical injection then  wQ1S = t 'c%. I f  U: Q -+ R is a diffcrentiable func- 
t ion on Q then  the  image S = im (--  d U) of the 1-form - -  d U: Q --~/7 is a Lagran-  
gian submanifold of (/7, coo) said to be genera ted b y  - -  U [7]. I n  Section ~ we shall 

introduce and  use a more general definition of generat ing functions of Lagrangian  
submanifolds.  

Le t  a:  Q -+ /7  be the force field characterizing the  response of the  sys tem in the  

configuration space formulat ion and  let ~q c / 7  be the submanifold describing the  
response of the  sys tem in the  force space formulat ion.  Assuming S = im (a) we 

prove  the equivalence of the  two fo rmula t ions .  The proof is based on the  identities 

(3.13) a*v~o = a 

and  

(3.14) a ' e %  - -  d a .  

These identities follow f rom 

(3.15) <v, a*~o> = <Ta(v), ~Q> 

= <r~o(~(~)), ~(~o(v))> 

= <T(zQo~)(v), ~(vQ(v))> 

= <v, ~>, 

where v is an element  of TQ. 
An infinitesimal displacement  in F is called a virtual displacement if i t  is t angen t  

to S. I f  ~ e T/7 is a v i r tua l  displacement  i n / 7  and  v = Tzo(~) is the corresponding 

v i r tua l  displacement  in Q then  it follows f rom (3.13) t h a t  the v i r tua l  work eva lua ted  
f rom (3.2) is equal  to the  v i r tua l  work evalua ted  f rom (3.11). I n  fact  ~ = Ta(v). 
]~ence ,  

(3.16) <~, ~o> = <Ta(v), ~> 

= <v, ~ > .  
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If ~ represents  a finite displacement  in F conta ined in S and  if c represents  the  cor- 
responding displacement  in Q then  c = z~(~) and  ~ = a(c)~ and  formulae  (3.3) and  
(3.12) are easily seen to be  equivalent .  F r o m  (3.14) it follows tha t  the  definitions of 
po ten t ia l  sys tems and conservat ive  systems given in the configuration space formu-  

lat ion are equivalent  to the corresponding definitions in the  force space formulat ion.  
I f  the  sys tem is conservat ive and  S is genera ted b y  a funct ion - -  U: Q -+/~ then  U 

is a po ten t ia l  energy function.  Conversely, if U is ~ potent ia l  energy funct ion then  S 

is genera ted b y  - -  U. 

C. Con]iguration-energy space ]ormulation. 

The tr ivial  bundle E = Q •  will be  called the  con]iguration-energy space. An 

element  (q~ u) of E consists of a configuration q of a stat ic sys tem and its internal  

energy u. The two canonical project ions of E onto Q and R will be denoted b y  
Z: E --> Q and Q: E -~ R. The bundle E can be considered a principal ]ibre bundle [5] 

with base Q and structure group G equal  to the  addi t ive group R of real numbers .  
The group action is the  mapp ing  

(3.1~) g: E •  - ~ E :  ((q, u), s) ~-~ (q, u + s ) .  

tPor each s e G the mapp ing  E --> ;E: (q~ u) ~-> (q, u + s) will be denoted b y  g~. The 

group action is a one-paramete r  group of t ransformat ions  of E .  The induced vector  
field K is called the  ]undamental vector ]ield. We denote by  V(,,~) the space of vectors  

t angen t  to fibres of ~/ called verticat vectors. The distr ibution V---- [J V(~,~ c / ~ E  

is called the  vertical distribution or the  vertical subbundle of the  tangent  bundle TE.  
The fundamen ta l  vector  field K forms a basis of the  vert ical  distribution. 

A distr ibution H = [.J 11~.~)c T E  is called a connection in E is 
(q,u)~2 

(i) 11 is a supplement  of V in /~E, 

(if) Tgs(H)----1t for each s ~ G. 

We will refer to a connection H as the  horizontal distribution or the horizontal subbundle 
of T/i/. A 1-form 8 on E is called a connection ]orm i] 

(3.1s) (i) (K,  8) = 1 ,  

(3.19) (if) ~x~---- 0 .  

I f  8 is a connection fo rm then  the  characteristic distribution 

(3.20) H = {~ e TE; ;~, 8> = 0} 

of 8 is a connection in E.  Conversely, each connection H is the characterist ic  distri- 

but ion  of a uniquely determined connect ion fo rm 8. 

1 0  - .Annal i  d~ Matemat i ca  
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A vector  field f~: E -+ T E  is said to  be horizontal if (2~, 4> = O. For  each vector  
field X:  Q ~ TQ there is a unique horizontal  vector  field X: E--> T E  such tha t  
T x o X  -~ Xo Z. The field X is called the horizontal lilt of X .  

I f  ~ is a connection form then  the form 8 - -  d@ satisfies 

(3.21) (K ,  ~ - -  d@> = O 

and 

(3.22) s dg) = O. 

I t  follows tha t  there  is a 1-form 6 on Q such tha t  

(3.23) g*(~ = 4 - -  d@. 

The form (~ is defined by  

(3.24) (v, a> = (~, 4 -  de>,  

where v is a vector  tangent  to Q and ~ e T E  satisfies TZ(v ) = v. 
The differential d4 of the connection form 4 is called the curvature ]orm. 

(3.23) we have 
From 

(3.25) d~ = z*da.  

A connection H is said to be locally fiat if it is a completely integrable distribu- 
tion. The connection is said to be flat if H is completely integrable and the maximal  
connected integral manifolds of H arc images of sections of E. In  terms of the con- 
nection form 4 we have the following criteria: the connection is locally flat if and only 
if 4 is closed, the connection is fiat if and only if # is exact. The proof of the first 
criterion is based on t he  ident i ty  

(3.26) <[.2, 2.], 4> = s 2, 4> -- s 4 > -  <)IA 2, d4>. 

if d4---- O then IX, 2.] is a horizontal  vector  field if X and 2. are horizontal.  Hence, 
the distribution H satisfies the criterion for complete integrabili ty.  Conversely, 
if H is integrable then  <XA/?, d4> = 0 if 2~ and /? are horizontal.  Let  2~ and 2. be 
horizontal  lifts of fields X and ~z respectively. Then ( X A Y ,  da>----0 since 
(XA Y, dd} = 0. Consequently, d~ = 0 and d4---- Z*da = 0. To prove the second 
criterion we assume tha t  4 is exact  and 4 = d0 .  Then the mapping E -> E :  (q, u) ~-> 
~-~ (q, U(q, u)) is a diffeomorphism preserving fibres of E.  The mapping 0 :  E -+ R 
defines a fibration of E .  Fibres of this fibration are integral manifolds of H and are 
sections of the bundle E.  Conversely, if H is integrable and the maximal  integral 
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manifolds are sections of E then  there are functions 0 :  E -> R constant  on integral 
manifold and satisfying <K, dr)> = 1. To construct  a funct ion ~7 we select an in- 
tegral  manifold and interpret  it as the graph of a function U: Q -~ R;  0 is defined b y  

(3.27) U = @-- Uo Z . 

The form dU is a connection form for the connection H since <K, dU> ~ 1 and 
(~, d/)> = 0 for each horizontal  vector  ~. I t  follows tha t  ~ = d~) since the connec- 
t ion form is unique. F rom (3.23) and (3.27) it  follows tha t  a -~ -- dU. 

In  order to obtain a description of the response of a static system we consider 
infinitesimal quasistatic displacements in E induced by  purely mechanical interac- 
t ion with an external  mechanism. Each displacement ~ e T E  consists of a displa- 
cement  v = TZ(~ ) in Q and an energy increment  <~, d@}. The energy increment  is 
equal to the vir tual  work. We postulate tha t  the vir tual  work performed in the 
displacement v is 

(3.28) w = - < v ,  z >  = - < + ,  ; ~ * a > ,  

where a is a 1-form on Q. F rom 

(3.29) (+, dq> = - <+, X ' a >  

we conclude tha t  ~ belongs to the horizontal  distribution H associated with the con- 
nection form 

(3.30) (~ ---- ~q ~ g * a .  

The connection H characterizes the response of the system to mechanical interaction. 
A 1-chain ~ in E representing a finite quasistatie displacement f rom (q0, u0) to 

(ql, ul) induced by  purely mechanical interact ion is horizontal.  This means tha t  
if ([a, hi, )~) is a representat ive of ~ then  the tangent  vector  ~(t) belongs to H for 
each t r [a, b]. Tile work performed in the displacement is 

(3.31) w = -  

where e ---- Z(~). This work is equal to the energy increase 

(3.32) ui-- Uo = f d e  
$ 

The static system is said to be potential if H is locally fiat. The system is said to 
be conservative if H is fiat. I f  the system is potent ia l  and interactions other  than  
purely mechanical are excluded then  only displacements within integral manifolds 
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of H are possible. Transitions between integral manifolds can be induced by  non- 
mechanical interactions. I f  the system is conservative then  each maximal  integral 
manifold is a section of E and hence the  graph of a funct ion U: Q ~ R. Each  func- 

t ion U is called a potential energy ]unction. 
Equivalence of the configuration-energy space formulat ion and the configuration 

space formulat ion is easily estabilished by  identifying the 1-form a introduced in (3.23) 

with the force field (3.1). 

D. ~orce-energy space ]ormulation. 

]Jet F = T*Q be the force space of a static sys tem.  The trivial bundle /~  = ~ •  
will be called the ]orce-energy space. An element {], u) of ~ consists of force ] and inter- 
nal energy u. The two canonical projections o f /~  onto F and R will be denoted by  
~: ~ -~ F and ~: E -~ R. The bundle $ is a principal fibre bundle with base ~ and 
structure group G -~ R. The fundamenta l  vector  field induced by  the group action 

(3.33) d: B x e  ~ B :  (q, u), s) ~ (1, u + s) 

will be denoted b y / ~ .  There is a canonical connection form o n / ~  defined by  

(3.34) ~ ~-- d~ -]- ~*va~, 

where v% is the canonical 1-form on ~.  The curvature  form is 

(3.35) (5 = d~ = ~*c%, 

where ~% is the canonical 2-form on/~.  The horizontal  distr ibution associated with 
will be denoted b y / t .  

The response of the static system is described by  a submanifold ~ c/~.  We assume 
tha t  the response depends on mechanical parameters  only and not  on the internal  
energy. I t  follows tha t  ~ is invariant  under  the  action of the s t ructure  group. IIenc% 

(3.36) 

where S is a submauifold o f /~ .  Since there  are no constraints the submanifold S 

is the image of a section of the bundle F .  
We consider infinitesimal displacements in E.  Each  displacement ~ e T ~  con- 

sists of a displacement ~ ~ T~(~) in F and an energy increment  <~, d~>. The displa- 
cement  ~ is called a virtual displacement if it  is t angent  to S. I f  ~ represents a quasi- 
static vir tual  displacement induced by  mechanical interact ion then  the energy in- 
crement  <~, d~> is equal to the  vir tual  work 

(3.37) w ~ -- <~, V~Q> 

= _ < ~ ,  ~ * ~ o >  �9 
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F r o m  

(3.38) 

it follows tha t  ~ is horizontal.  Since ~ is tangent  to ~ we conclude tha t  ~ e TS  n / t .  
A 1-chain 6 in ~ representing a finite quasistatic displacement from (]o, u0) to 

(]1, ul) induced by  purely mechanical  interact ion is horizontal.  The work performed 
in the displacement is 

(3.39) w = - = - f z . o  , 

c C 

where ~ -~ ~(6). This work is equal to the energy increase 

(3.40) u l -  u0 = [ d  5 . 
6 

The static system is said to be potential if the  distribution Y~ n / t  on S is com- 
pletely integrable. The system is said r be conservative if TS  n / - I  is completely 
integrable and maximal  connected integral manifolds are sections of the bundle 

~ S • R. We note  tha t  ~ is a principal fibre bundle with base S and s t ructure  

group G = R. The distribution T~  n / t  is a connection in S and ~IS is the corres- 
ponding connection form. The system is potent ial  if and only if the connection is 
locally flat. 

Equivalence with the force space formulat ion is established by  identifying the 
submanifold S introduced in (3.36) with the submanifold S used to describe the re- 
sponse of the system in force space. Let  S be the image of ~ section (~: Q - .  zv. Then 

(3.41) 5 : ( a •  

is a connection form on E describing the  response of the static system in configura- 
t ion-energy space terms. In  order to show tha t  ~ is a connection form we prove tha t  

(3.42) ~ ~ d@ -~ Z*a. 

The proof is based on the commut~t iv i ty  of the diagram 

R 

(3.43) E a •  ~ 

O ~.F 
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We have 

(3.44) (a x 1R)*v~ = (a x 1R)* 45 -1- (a x 1R)* ~*ar 

Hence,  ~ -~  d~ + g*a. 
We note  tha t  following (3.34) the connection form of the connection T~q (~/~ 

is given by  

(3.45) 

and the curvature  form is 

(3.46) o~lZ = (21Z)*o,olS. 

I t  follows tha t  the connection is flat if and only if S is a Lagrangian submanifold, 
i.e. the  system is potent ial  in the sense of the force space formulation. I f  the system 
is conservative in the sense of the force space formulat ion then S is a Lagrangian 
submanifold generated by  a function -- U: Q -* R. F rom 

(3.47) ~o1~ = -  ( ~ o l s ) *4v  

and (3.41) it follows tha t  

= 4 ( 5 1 ~ -  ~o(~oTS)o(~l~)) .  

Hence, the connection form ~]S is exact  and the connection is fiat. This means tha t  
the system is conservative in the sense of the force-energy space formulation. Con- 
servative in the sense of the force-energy space formulat ion then maximal  integral 
manifolds of TLq n / t  are sections of ~. I f  one of these sections is interpreted as the 
graph of a function ~ :  8 -* R then  we have 

(3.49) ~ l S  = 4 ~ .  

Since S is the image of a section there  is a function U: Q -~ R such tha t  

(3.50) 

F r om 

(3.51) 

= -  ( - o l s ) * 4 ~  

it follows tha t  8 is generated by  the function -- U: Q --> R. 
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4. - Statics w i t h  h o l o n o m i c  constraints .  

In the  present  section we consider a static system whose configuration is con- 
strained to remain in a submanifold C of the configuration space Q. Four  different 
descriptions of the response of the system to mechanical interaction are given. The 
four descriptions correspond to the descriptions presented in Section 3. Geometric 
structures defined in Section 3 are used in the present section. 

A. Config~tration space ]ormulation. 

To each point  q of the constraint  submanifold C c Q there corresponds a unique 
generalized force ? ----- a(q) ~ T~ C. The mapping 

(4.1) ~: ~ ~ T ' C :  q ~  a(q) 

is a differential 1-form on C. The form g characterizes the response of the system 
to mechanical interaction. With  the constraint  submanifold C interpreted as the 
configuration space the description of systems with holomomie constraints is formally 
the same as the configuration space description of systems without  constraints. 

I f  v ~ TC is a vir tual  displacement then the corresponding vir tual  work is 

(4.2) w = -  <v, a>.  

The work performed in a finite displacement represented by  a 1-chain c in C is 

(4.3) w = - f ~ .  
c 

The static system is said to be potential if (r is closed, the system is said to be con- 

servatione if a is exact.  I f  the system is conservative and a -~ -- d U then  the func- 
t ion U: C -+ R is called a potential energy ]unction. 

The description given here is incomplete since no direct information about  reac- 
t ion forces is given. A more complete description is provided in the force space for- 
mulation. 

B. _Force space ]ormulation. 

The response of the static system is described in force space by  a submanifold 
S c / #  which projects onto C:zQ(S) = C. For  each q ~ C  the set S ~ =  S ( 3  T~Q 

is the set of reaction forces which the system can produce in configuration q. We 
assume tha t  S~ is a eoset i n  T*Q of the subspace (T~C) ~ = {a e T ' Q ;  <v, a> ~-- 0 

for each v e T~C}. :Each set S~ defnes  a generalized force ~ = ~(q)s  T* C such 
tha t  <v, (r(q)> = <v, ]> for each vir tual  displacement v e TqC and each force / ~ S~: 
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We assume tha t  the mapping 

(4.4) o~: C ~ T* C: q ~ (~(q) 

is differentiable. The dimension of S is equal to the dimension of Q. 
The vir tual  work performed in a vi r tual  displacement ~ e T S  is 

(4.5) 

The formula 

(4.6) 

w ---- - <e, ~>. 

W = -- f0~ 
C 

gives the work performed in a finite displacement represented by  a 1-chain g in S. 
We say tha t  the static system is potential if S is a Lagrangian submanifold. We 

say tha t  the  system is conservative if N is a Lagrangian submanifold generated by  a 
function -- U: r -+ R. This means tha t  

(4.7) ~ =  { /e /~ ;  q==d/)er <v,/> = -  <v, dg>  for each veTor 

The function U: r -+ R is called a potential energy /unction. 
A relation between the configuration space formulat ion and the force space for- 

mulat ion is obtained by  identifying mappings (4.1) and (4.4). If  the 1-form g is given 
then S is obtained from 

(4.s) S = {1 e /~;  q = zd / )  e r <v, 1> = <v,a> for each v e T~r 

The relation 

(4.0) eols  = ( ~ l s ) * ~  

is derived f rom 

(4.10) <% ~> = <T=d~), ~(5)> 

= <T=dh), ~> 

= <~, * 

where S is a vector  tangent  to S. I t  follows from (4.9) tha t  e%fS = 0 if and only if 
is closed. This implies tha t  the definition of potent is l  systems given in the configu- 
rat ion space formulat ion is equivalent  to the definition in the force space formula- 
tion. Comparing (4.7) and (4.8) we see tha t  the configuration space definition of con- 
servative systems is equivalent  to  the force space definition. 
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C. Configuration-energy space formulat(on. 

With  the constraint  submanifold C in terpre ted as the configuration space the 
description is formally the same as tha t  given in Section 3.C. The response of the 
system is characterized by  a connection H on the trivial bundle C = C• The 
connection form v~ defines on C a 1-form (~: C --> T*C which should be identified with 
the 1-form r of the configuration space formulation.  Also in this case the descrip- 

t ion is incomplete. 

D. Force-energy space formulation. 

In  the force-energy space ~ --  F • R the response of the static system is charac- 
terized by  a submanifold S = S •  c 8 ,  where S is a snbmanifold of iv projecting 
onto the constraint  submanifold C: z Q ( S ) =  C. The only difference between this 
description and tha t  given in Section 3.D is tha t  S is no longer a section of ~.  As 
in Section 3 we introduce a connection T~  ( ~ / t  and we say tha t  the system is conser- 
vative if T~  ~ / t  is flat. We say tha t  the system is potential if T~  ~ / t  is locally fiat. 
The proof tha t  these definitons are equivalent to the  corresponding definitions of 
the force space formulat ion follows the pa t t e rn  of the proof given in Section 3 with 
only minor modifications. 

5. - Statics w i th  a n h o l o n o m i c  constraints .  

As was stated in Section 2 anholonomic constraints are represented by  a distribu- 
t ion F on the configuration space Q such t h a t / ~ c  TC a n d / 7 #  T G where C = r~(F) 
is a connected submanifold of Q. Wi thout  significant loss of generali ty we will assume 
tha t  C = Q. I f  we also assume tha t  the minimal subalgebra of vector  fields on Q 
containing fields of vectors belonging to F defines again a distribution _P' on Q then  
by  Chow's theorem [3] maximal  connected integral manifolds of / '  are accessibility 
classes. By  an accessibility class we unders tand the set of configurations accessible 
f rom one of the configurations in the set. Since F=/= TQ, there  are three possibilities: 

(i) r ' =  r ,  

(if) F '  V=/7 and / "  =/= TQ, 

(iii) F ' =  TQ. 

Case (i) corresponds to integrable anholonomic constraints. Since there  is no pos- 
sibility of passing from one accessibility class to another  without  breaking the con- 
straints each accessibility class can be analyzed separately as a holonomic constraint  
submanifold. Case (if) is the case of non-holonomic constraints. In  the case (iii) we 
have completely non-inegrable non-holonomie constraints. Since non-holonomic con- 
straints are completely non-integrable on each accessibility class separately, only 
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case (iii) will be considered. The fo l lowing 'assumpt ions  are made  throughout  the 

present  section: 

(5.1) Pr  ~ Q ( P ) : Q ,  P ' = T Q .  

A. Con]iguration space ]ormqzlation. 

Let  _P be a distr ibution on Q and let F* denote the  vector  bundle dual to / ' .  

differentiable section 

A 

(5.2) a: Q --> P* 

will be called a 1-]orm de/ined on I'. The space of such sections will be denoted b y  

AI(F) .  The space of 1-forms on Q will be denoted b y  ~*(Q). We have  ~*(Q) = A~(TQ) 
Let  # be a 1-form on Q. We denote b y  #]/" the element  of AI( / ' )  obta ined b y  

restr ict ing # to T'. The linear mapp ing  # ~ # I F  maps  ~*(Q) onto A~(F). Indeed  
if (~ is an element of A~(F) then  a 1-form # e 3~*(Q) such t h a t / ~ ] F  ----- (~ can be defined 

b y  choosing a supplement  F ~ of T' in TQ (c.f. [4]) and  imposing conditions: # I F  = o, 
# l P s =  0. We denote b y  C(g) the set of 1-forms on Q m a p p e d  onto o eAl (F ) .  An 

element  of C(g) will be called a representative of (~. We have  

(5.3) e(a) - (~ e :~*(Q); <v, ~> = <v, ~> for each v e / ' } .  

A 1-form (~ e AI(F) is said to be  closed if there is a representa t ive  # e C(o) such 
tha t  d# = 0. A 1-form a e At(P) is said to be exact if there  is a differentiable func- 

t ion U: Q ~ R such t h a t  - -  dUe  C((~). 
Let /~  be a 1-form on Q such tha t  # ] P  : 0 and  d# ---- 0. I f  X and I r are sections 

of F then  

(5.4) <[x, ~], ~> = <xA y, d~> + < Y, d<X, ~>>-- <X, d<Y, ~>> 

:0, 

I t  follows tha t  conditions ~lP = 0 and  d# ---- 0 imply  # I T ' =  0. Taking assumptions  
(5.1) into account  we have  # = 0. I t  follows tha t  a closed 1-form o e AI(T ') has a 

unique closed representat ive.  
Le t  P represent  constraints  imposed on a static mechanical  system. The response 

of the  sys tem to mechanical  interact ion is described b y  a 1-form 

(5.5) o: Q -->/~* : q~->o(q) 

defined o n / L  For  each q ~ Q, ~ - -  o(q) is the unique generalized force corresponding 

to q. 
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If  v E/~ is a vir tual  displacement then  the corresponding vir tual  work is 

(5.6) w = - (v,  a )  = - (v,  # ) ,  

where # is any  representat ive of a. The work performed in a finite displacement 
compatible with constraints and represented by  a 1-chain c is 

(5.7) W~-- f #  
C 

for any  # ~ C(a). Each representat ive of c is an integral curve of F. 
The static system is said to be potential if ~ is closed. The system is said to be con- 

servative if ~ is exact.  A funct ion U: Q -~ R such tha t  -- dUE C(a) is called a porch- 
energy function represents the internM energy of a conservative system with non- 
holonomie constraints if the system is isolated except for mechanical interactions 
producing quasistatic displacements. Since dU is uniquely determined by  ~, the 
potent ial  energy function is defined up to an addit ive const~mt. 

For  reasons s tated in Section 4.A the configuration space description of the response 
of a system with non-holonomie constraints is incomplete. 

B. t~orce space ]ormulation. 

In the  force space F ~ T*Q the response of a static system is described by  a 
submanifold S c F.  An element ] of S is a reaction force compatible with the  con- 
iiguration q ---- ~ ( ] ) .  The submanifold S projects onto Q: ~Q(S) ~ Q, and for each 
q e Q the set So = S m T:Q is a ooset  of t h e  space  r ~ = {a ~ T ' Q ;  <~, a> = 0 for  

each v e T~}. I f  p is the rank  (*) of the bundle F, then dim (S) = 2n -- p. 
We consider the following subbundle of TS: 

(5.s) r = {~ e T s ;  r~Q(~) e r } .  

The rank  of /~ is  n. A vector  ~ e TS  is said to be vertical if T~Q(~) -~ 0. Vertical vectors 
belong to /~. The canonical 1-form v~Q on F induces the 1-form ~o[/~ defined on r .  
Elements  of /~ represent infinitesimal quasistatic displacements compatible with 
constraints. A finite displacement compatible with constraints is represented b y  a 
1-chMn ~ with the proper ty  tha t  each representat ive of ~ is an integrM curve of/~.  

The vir tual  work performed in a vir tual  displacement ~ e F is given by  

(5.9) w : - -  (~ ,~o} .  

(1) The rank of a vector bundle is the dimension of its fibres. 
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For a finite displacement represented by ~ the corresponding work is given by 

(5.1o) W = - f ~ .  
V 

The 1-form ~ in formulae (5.9) and (5.10) can be replaced by any other representative 
of ~QIP. 

The static system is said to be potential if ,~1/~ is closed. If  the system is poten- 
tim then there is a unique 1-form fi e r  such tha t  dfi ~- O. The system is said 
to be conservative if v~ol_P is exact. I f  the system is conservative then there is a func- 
tion U: S -+ R such tha t  -- d U e  C(~ol_P ). From (5.10) we obtain 

(5.11) w = f a d  = U ( / ~ ) -  U(/o) , 

if ~ represents a displacement from ]o to /1 .  I t  follows tha t  U represents the internal 
energy of the system. 

A 1-form a on P is defined by 

(5.12) <v, a(q)> = <v, 1> 

for each q e Q, each v e Nq and each / e  Sq: If  # is a representative of a then fi ---- 
-~ (~QIS)*# is a representative of v~lP. Indeed, for each ~ e F, we have 

(5.13) 

and 

(5.14) 

<~, (=~1~)*~> = <T=~(~), ~> 

= <v, #> 

= <v, a> 

<% ~Q> = <T=Q(~), ~(~)> 

= <%/> 

= <% a>, 

where v -  Tx~(~) and / - ~  zF(v). 
Let  the system be potential  and let fi be the unique closed representative of ~ l r .  

I f  X :  S ---> T S  c T2'  is a vertical field then 

(5.15) <2 ,  p> = <2,  ~> 

--0 
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and 

(5.16) s = X = dfi + d i X ,  fi} = 0 .  

I f  follows tha t  there exists a 1-form # on Q such t h a t  

(5.17) Z = (~QIS)*~ �9 

Let  v be a vector  i n / ~  and  tet ~ E F be any  vector  such t ha t  T~Q(~) ~-- v. Then 

and it follows f rom (5.14) t h a t / ~  is a representa t ive  of o. 

I f  the  sys tem is conservat ive  and  fi ~ - -  dU then  there is a funct ion U: Q -+ R 

such t h a t  U ~ Uo(7~IS) and  # ---- - -  dU. Formula  (5.11) leads to 

(5.19) W ~- U ( q l ) -  U(qo), 

where q0 ~-- Z~(]0) and  ql ---- ~(]1).  The function U is a potential energy ]unction. The 
submanifold S is determined b y  this function and  the  distr ibution F :  

(5.20) S : (] ~ ~ ;  (v, ]~ : -- (v, dU~ for each v e Fq, where q ---- zQ(])} . 

~o rmula  (5.20) is a generalization of 

(5.21) S--~ i m ( - - d U ) ~ - -  { ] ~ v ;  ( v ~ ] ~ - - -  (v~dU~ for each v~T~Q~ where 

q = #~(1)} 

different f rom the generalization contained in the  formula  (4.11). ~ormulae  (5.21), 

(4.11) and  (5.20) are different versions of var ia t ional  principles for conservat ive stat ic  
systems.  

The construct ion of the  1-form a in (5.12) provides a l ink between the  force space 
formula t ion  and  the configuration space formulat ion.  The subsequant  discussion 

demonst ra tes  the equivalence of the  definitions of potent ia l  sys tems and conservat ive 
sys tems in these two formulat ions.  

C. Configuration-energy space formulation. 

I n  the  present  subsection we use geometr ic  s tructures in t roduced in Section 3.C 
and pa r t  A of the  present  section. The concept  of a connection on E = Q x R is gene- 
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ralized in the  following :odcfinition. A distr ibution /~ on E is called a p-connection 
o n E i f  

(i) _P projects  onto a distr ibution 1" of dimension p on Q: TX(/~) = F, 

(ii) /~ does not  contain vert ical  vectors:  if ~ e / ~  and  TZ(~ ) = 0 then  ~ = 0, 

(iii) f is invar iant  under  the  group action g: Tg~(IP) -~ 1~ for each s e G = R. 

An n-connection is a connection on E.  L e t / " b e  a dis tr ibut ion on E of dimension n 

and  let a be a 1-form defined on 1". The distr ibution 

(5.22) /~ = {~ e ~ ;  v = TX(~) e T, ;v,  de> = --  ;v,  0>} 

is a p-connect ion on E.  Conversely a p -connec t ion /~  defines uniquely a distr ibution 

1" = T~/(/~) and  a 1-form a defined on 1". The fo rm a is defined b y  (v, o} ---- - -  (v, d~} 
where v is a vector  in 1" and  ~ is a vector  in such t ha t  T(v) -~ v. 

Let  # be a 1-form on Q. The fo rm fi = d~ -~ Z*# is a connection form~ let H 
denote the  corresponding connection on /~ .  We  have  the  following obvious relations:  

a) Y c H  if and  on ly  if # e C(a), 

b) if /~ c H t h e n  (/~)'c H ' .  

THEOrEm. - Zet 1" be a distribution on Q and a a 1-]orm on 1". Zet F be the distri- 
bution de]ined by (5.22). I] Fr= TQ then ~ is closed i] and only i] (1~)' is a connec- 
tion (necessarily locally ]lat); ~ is exact i] and only i] ([~)' is a fiat connection. 

P~ooF.  - Le t  (/~)' be a connection and  let fi = d~ + ~/*# be the  corresponding 

connection form. Since (/~)' is locally flat we have  dfi = O. Henc% d# = 0. I t  fol- 
lows f rom the re la t ion  a) above  t h a t  # is a representa t ive  o f  o. Henc% ~ is closed. 

Conversely if ~ is closed and/~ is the  closed representa t ive  of a then  # defines a locally 
flat connection H which containes 1". F r o m  the relat ion b) it follows tha t  (/~)'c H.  
Since F ' =  TQ implies TZ((/~) ') = TQ, (/~)' mus t  be  a connection equal  to H.  The 

second pa r t  of the  theorem follows immedia te ly  f rom the discussion of flat connec- 

tions in Section 3.C. 

I n  order to obta in  a description of the  response of a stat ic sys tem with  non-holo- 
nomic constraints  1" in the  configurat ion-energy space E = Q • R we consider infini- 
tesimal  displacements  in E induced b y  pure ly  mechanical  in teract ion with a a  external  

mechanism.  Each  displacement  ~ e T E  consists of a displacement  v = TX(v) in Q 
and an  energy increment  (~, d~}. The displacement  v mus t  belong to the  distr ibution 1", 
the energy increment  mus t  be equal  to  the  v i r tua l  work. We  pos tu la te  t h a t  the  vir- 
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tual  work performed in the displacement v is 

(5 .23)  w = - (v ,  a } ,  

where ~ is a 1-form defined on F. F ro m  

(5 .24)  ( ~ ,  a @  = - (v ,  ~> 

we conclude tha t  ~ belongs to the distribution /~ defined by  (5.22). The p-connec- 
t i o n / ~  describes the response of the system to mechanical interaction. 

I f  # is a representat ive of ~ and ~ is a vir tual  displacement then the vir tual  work is 

(5.25) w = -- (v, Z ' tO  �9 

A finite displacement induced by  purely mechanical interact ion is represented by  
a horizontal 1-chain ~ in E :  each representat ive of d is an integral curve of/~. The 
corresponding work is 

f (5.26) W ~-- -- ~g*/t ~-- u l - -  u0 

if d represents a displacement f rom (qo, Uo) to (ql, ul). 
The static system is said to be potential if (/~)' is a connection. The system is 

said to be conservative if (/~)' is a flat connection. 
Equivalence of the configuration-energy space formulat ion with the configuration 

space formulat ion is obvious. We emphasize the importance of the Theorem as pro- 
viding an effective criterion for the form ~ to be closed (ef. [2]). 

D. Force-energy space /ormulation. 

In  the force-energy space /~  = F x R the response of a static system is described 

by  a snbmanifold 

(5.27) ~q = ~ x R = ~r 

where S c F is a submanifold with properties s tated in force space formulation.  
The distribution 1~ defined by  (5.8) is used again in the present subsection. We de- 
fine a p-connection 

(5.28) 

on the trivial bundle N = S • R. Elements of _P represent  vir tual  displacements in/~.  
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The vir tual  work corresponding to s vir tual  displacement ~ e F is given b y  

(5.29) w = <~, ~ >  = - < T ~ ( ~ ) ,  ~ >  = - <~, ~ * Z > ,  

where fi is any representat ive of ~QIP. A finite displacement is represented by  s horiz- 
ontal  1-chain ~. The corresponding work is 

if ~ represents s displacement f rom (/o, uo) to (/~, u~). 
The static system is said to be potential if (/~)' is a connection. The system is said 

to be conservative if (/~)' is u fist connection. The equivalence of these definitions 
with those given in the force space formulat ion is demonstra ted by  applying the 
Theorem stated in par t  C to the 1-form 0oIP defined on /~ and the trivial bundle 

---- S X R. This version of the  Theorem provides an al ternate  criterion for the 1- 
form ~ to be closed. This criterion corresponding the usual integrsbil i ty criteria for 
systems of part ial  differential equations �9 (cf. [4]) is much  more complicated than  
the criterion formulated in par t  C. 
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