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The Theory of Separability of
the Hamilton- Jacobi Equation and Its
Applications to General Relativity

SERGIO BENENTI AND MAURO FRANCAVIGLIA

1. Introduction

Since the beginning of general relativity theory, Einstein himself"’
realized the role that ‘“‘geodesics’ plays in his gravitational theory. General
relativity is in fact a field theory in which the physical object “‘gravitational
field” is described by a geometrical object, the metric tensor g of a
Lorentzian manifold V, assumed as a model of the physical world. Einstein
realized that, as an obvious generalization of the law of inertia, photons and
test particles should follow the geodesics of the given metric.

On the other hand, the knowledge of the geodesics of (Vy, g) is often
essential for a better understanding of the properties of V,, both at the local
(e.g., near a singular point) and at the global level. New impulse to research
in this direction came from the investigations of exact solutions of the
Einstein equations, some of which have recently attracted attention due to
their importance in problems of an astrophysical nature, e.g., the study of
collapsed objects or the study of cosmological models with symmetries.

It is always possible to integrate the geodesic equation of a given metric
numerically, i.e., to give the approximate solutions together with their
qualitative behavior. However, attention should be given to those particular
cases in which it is possible to apply direct methods to the study of geodesics
and their first integrals, or even more to reduce their determination to
integrals. This procedure is preferable for at least one reason: only the
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394 S. Benenti and M. Francaviglia

geometrical study of the geodesic equation allows the determination of
properties of space-time which often go far beyond the mere knowledge of
the geodesic structure. For example, to any first integral there corresponds a
conserved quantity together with a “symmetry.”

For the analytical solution of the geodesic equation in a pseudo-
Riemannian manifold (V,, g)t essentially two different methods are avail-
able: either through the knowledge of sufficient first integrals, or through the
knowledge of a complete integral of the so-called Hamilton-Jacobi equation
(HJ equation). For this second case the only method of finding such
complete integrals that nowadays seems to be available is the “‘method of
complete separation of variables,”” which amounts to the determination of a
complete integral which separates into a sum of functions of each single
variable. However, recent investigations by Woodhouse > have pointed out
that from the existence of a single variable that separates it is possible to
develop a constructive method for the determination of a certain number of
functionally independent first integrals. This provides a primary link
between the two approaches mentioned above. A second, deeper relation
between the complete separability of the HJ equation and the existence of
sufficient first integrals has been shown by the theory of ‘‘separability
structures” recently developed by one of us. The existence of a separability
structure on a pseudo-Riemannian manifold (V,, g) is, moreover, a neces-
sary condition for the complete separability of variables for several linear
second-order differential equations related to g, e.g., the Schrddinger
equation or the generalized Laplace equation.

As concerns general relativity, many problems related to the geodesic
equation and its first integrals have been successfully investigated with the
aid of spinor structures on space-time, by using the Newman—-Penrose
formalism® or its later refinements.”’ The use of these techniques is very
powerful and, for many of its applications, it seems to be unavoidable. One
can appreciate this by trying to reformulate in ordinary tensor language the
results obtained by means of the spinorial formalisms. However, those
problems belong to the domain of theoretical mechanics and, as such, they
should be dealt with in a more general framework. In fact, in spite of its
efficiency, the spinor approach does not allow one to distinguish those
properties that essentially depend on the hypothesis of a four-dimensional
Lorentz metric from those that, on the contrary, have a more general
significance.

From the above remarks it follows clearly that it is important to study
the separability of the geodesic equation and its first integrals from the most
general viewpoint, both for the purpose of providing a general theory and
T By “pseudo-Riemannian manifold” we mean a C* manifold with a nondegenerate metric g

of whatever signature. When the signature is (#, 0) (i.e., when g is positive definite) we shall
also use the term ‘“Riemannian manifold.”
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for the possibility of applying it fruitfully to particular cases. This purpose
will be accomplished by attacking the problem in a general pseudo-
Riemannian manifold (V,, g) of dimension n» > 1 and whatever signature.
We shall outline the historical evolution and the recent developments of the
problem of integrability of the HJ equation of geodesics by separation of
variables. In this paper we shall not enter in great detail into problems
involving more general Hamiltonians (e.g., t~dependent Hamiltonians, or
Hamiltonians with nonquadratic terms or with potentials) which do not have
a direct relevance to the geodesic equation. We shall instead direct some
attention to the properties related to the separability of a single variable and
also to the second-order equations already mentioned.

2. The General Theory of Separability

2.1. Separability Structures in Pseudo-Riemannian Manifolds

-9 and let

Let (P,,, w) be a 2n-dimensional symplectic manifold
H: P,, > Rbe a C™ function which we shall call the Hamiltonian.
To the Hamiltonian H we naturally associate a ‘‘Hamiltonian vector

field” X on P,, through the equation (5):
ixw =dH (2.1

The integral curves of X are locally determined by the integration of a
first-order system of ordinary_diﬁerential equations, that, in whichever
canonical coordinate system (g, p;), assumes the classical canonical formt:
dq' _oH  dpi_ _oH

dt  ap;’ dt aq'

As is well known, their integration may be replaced by the deter-

mination of a so-called “complete integral’’ W of the (reduced) HJ equa-
tioni:

(2.2)

oW
H(q\27) = 2.3)
aq
+ More precisely, equation (2.2) should be rewritten as
a' oA do_ oA
dt ap;’  dr aq"

(2.2)

where H = H (q', p:) is the local representation of H. Let 9 be a chart of coordinates (x'). 3; is
the vector field on % tangent to the coordinate line x', i.e., it operates as follows: given a C™
function f: V,, > R with local representation f in % we have

Biif*"aifz:—){i

For the sake of simplicity, we shall omit the distinction between f and f, leaving to the reader
the correct interpretation.
i Hereafter abbreviated as HJ equation.
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where W is a unknown function and 4 € R is a given constant.v By
‘“‘complete integral” we mean a regular n-parameter family of solutions of
(2.3):

W=W(@g';ci,...,cn) (2.4)

such that
2
det

#0 (2.5)

aq'ac;
The coordinates (q', p;) are called separable canonical coordinates for H
if the complete integral (2.4) assumes the form

W= .Zl Wilq's c1s - =5ch) (2.6)
In such a case we say that the HJ equation (2.3) is integrable by separation of
variables (or more simply separable) with respect to the coordinates (q', p:).
We stress that separability does not mean that a direct algorithm exists which
reduces the integration of (2.3) to the integration of n ordinary differential
equations for each W,, without any further information about the Hamil-
tonian H. As an example, the method of multiplying (2.3) by a suitable
separating factor (see Reference 7, p. 232) = does not cover all the possible
situations since there exist cases in which (2.3) is separable in spite of the fact
that the method above cannot be applied.
The analytical characterization of the canonical coordinates (g i Di)
which allows one to separate (2.3) for a given Hamiltonian H was given in
1904 by Levi-Civita,"® who proved the following result.

Theorem 2.1. The HJ equation (2.3) is separable with respect to the
canonical coordinates (q', p;) if and only if§

0HOH o°H oHOH o&°H

dp: 9p; 9q' 6q'  9p; 3p' oq" ap;
0H oH 9°H oHoH &°H

S i =0 (Vi# 2.7
aq' apl. api aql aql aql 8P: 3P/ ( (] ]) ( )

Here we shall be mainly interested in the following case: P,, is the
cotangent bundle T*V, of a manifold V,, with its canonical symplectic

+ h should of course be chosen among the regular values of H.

I Which in several recent papers has been considered as a prescription for separability of at least
one coordinate (see, e.g., References 8 and 9).

§ The above considerations on separability may be extended to the case of nonautonomous
(i.e., t-dependent) Hamiltonian systems, by requiring that also the ¢ coordinate separates.
Theorem 2.1 may be easily generalized to include such cases (see Reference 11).
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structure and there is a pseudo-Riemannian metric g on V,,. We consider the
Hamiltonian H whose local expression is

H(q', p:) = 38" (q")pip, (2.8)
where (q', p;) are natural canonical coordinates in T* V, [ie., (¢g') are
coordinates in V,]. The integral curves of the Hamiltonian vector field
associated with (2.8) define the ‘‘geodesic flow” of g in T*V,, i.e., their
projections onto V), are the geodesics of g parametrized by their affine
parameter ¢.

Local coordinates (x') in (V,, g) are called separable coordinates if the
canonically associated coordinates (x', p;) are separable canonical coor-
dinates for the Hamiltonian (2.8).

A classical problem is the following.

Problem 2.1. Find the most general (local) expressions g”(x*) such
that (x*) are separable coordinates.

This is a problem of analytical character. However, since the existence
of separable coordinates depends on the pseudo-Riemannian structure, we
should also consider the geometrical counterpart of Problem 2.1, namely the
following.

Problem 2.2. Find the (local) geometrical characterization of a pseudo-
Riemannian structure (V,, g) which allows the existence of separable coor-
dinates.

To better explain the nature and the meaning of Problem 2.2 we are
naturally led to introduce the following concepts. We denote by G the
contravariant tensor associated with g. The HJ equation for the Hamiltonian
(2.8) may be intrinsically written as follows:

G(dW,dW)=h (2.9)
which in a chart % < V, of coordinates (x') has the local representation
g oW oW = h (2.10)

The chart % is called a separable chart if the coordinates (x") are
separable.

Consider now a point x € V.. Let U, U’ be two separable charts around
x with coordinates (x') and (x"), respectively. We say that these two charts
are & compatible if the separated complete integrals W and W’ [associated
with the separable coordinates (x’) and (x'), respectively], coincide on some
open neighborhood %* of x (of course, with “* = % N U'). & compatibility
is an equivalence relation in the set of separable charts around any point x:
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each equivalence class will be called a (local) separability structure (around
the point x) of (V,, g).

With the above definitions, Problem 2.2 may be more precisely refor-
mulated as follows.

Problem 2.2'. Characterize from a geometrical viewpoint the existence
of a separability structure in (V,, g).

As a first step to answer Problem 2.2 we can give a preliminary classification
which divides all the possible separability structures in a (V,, g) into n + 1
different classes. We say that a separability structure is of class r (or a ,
structure) if 7 is the maximum number of ignorable coordinates that we can
find for each chart belonging to the given separability structure. Later on it
will become clear that this definition is well posed. At each point x € V,
there may exist none, one, or more than one separability structure for each
class r; of course 0 = r = n.

Among all the coordinate systems belonging to a given separability
structure of class r we shall call quasinormal separable coordinates those in
which the number of ignorable coordinates is exactly r. Moreover if among
all the coordinate systems belonging to a given separability structure there
exists at least one in which the coordinates are orthogonal (i.e., g” = 0 for
i # j) we shall say that the separability structure is orthogonal. We shall
realize later that the structures of class 0, 1, and 2 are always orthogonal.

2.2. The Historical Perspective on Separability

Several particular cases of Problem 2.1 were studied at the end of the

last century and at the beginning of the present one, after the famous

paper(m where Liouville discovered a large class of solutions (commonly

known as Liouville’s metrics). A conclusive result concerning the case of
orthogonal separable coordinates was given in References 13 and 14 by
Stackel, who proved the following theorem.

Theorem 2.2. If (x') are orthogonal coordinates the HJ equation with
potential U

38" GWyY-U=h (2.11)

is separable if and only if there exist functions U; and a regular n X n matrix

k
|le;]l such that
U =0 Vi, j:i #7)) (2.12a)

k
i =0  (Vi,jii#]) (2.12b)
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and such that we have
g'=¢, U=U¢ (2.13)

n

where ||¢'| is the inverse matrix.
k

The sufficiency of conditions (2.12a) and (2.12b) was previously proved
in References 15 and 16, respectively. We observe that in Reference 15
Stackel remarked that there exist n quadratic first integrals of geodesics

k= q?i(Pf)z (2.14)

One of these is obviously the kinetic energy integral (i.e., when j = n). Since
||(p || is regular the integrals k are vertically independent; moreover they turn

out to be in involution. We remark that the following holds.

Lemma 2.1."7 Let k:T*V, >R be n vertically independent
functions, which in coordinates (x') assume the form (2.14). Then they are in

involution if and only if the matrix ||<;,|| satisfies (2.12b).

Relying on Lemma 2.1 we can reformulate Stackel’s Theorem 2.2 (for
the case U = const) as follows.

Theorem 2.3. An orthogonal coordinate system (x°) is separable if and
only if there exist n vertically independent quadratic first integrals in
involution, which in coordinates (x') have the orthogonal form (2.14).

Here we need to recall some definitions. A contravariant symmetric
tensor (of order p) K" is called a Killing tensor (K tensor) if it satisfies

ViK' =0 (2.15)
The function k: T*V,, > R defined locally by
k=K""p,---p, (2.16)

is a (homogeneous pth-order) first integral of the geodesics.t The set of all
symmetric contravariant tensor fields of any order is a graded Lie algebra'®
under the so-called Schouten—Nijenhuis brackets,“g) defined as follows:

(K, K1"piy, = —{k, K} (217)

T A set of m functions (m = n):llc, ..., k: T*V, > Rare said to be vertically independent if the
restrictions of k to any fiber T¥ V,, are functionally independent (Reference 2, p. 15).

]
i The only exceptions to this convention shall be the correspondence through G (contravariant
metric) and H (kinetic Hamiltonian), due to ‘‘historical’ reasons.
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where s = (order of II{) + (order of Iz() —1 and {,} denote the Poisson
bracket. The K tensors constitute a subalgebra defined by

[K,G]=0 (2.18)

Two K-tensors K, K are said to be commuting if [I1<’ Izﬂ = 0 or, equivalently,
Ilc and 12c are in involution (i.e., if {llc, Izc} = 0).

As far as Theorem 2.3 is concerned, we observe that the vector fields o;
associated with the coordinates (x') are common eigenvector fields of the n
second-order K tensors K implicitly defined by (2.14). Conversely, if n

3

independent K tensors K have n common commuting orthogonal eigen-
'

vector fields X,T their components in the coordinate system generated by
]

X are given by
1

Ki=0_ #0 - K'=p (2.19)
J ] j

Again in virtue of Lemma 2.1, a geometrical counterpart of Theorem 2.3
can be formulated as follows.

Theorem 2.4. A Riemannian manifold (V,, g) admits locally an
orthogonal separability structure if (locally) there exist » commuting
independent second-order K tensors having in common n orthogonal
normalf eigenvector fields.

A similar statement has been given in Reference 2 in terms of closed
eigenforms (corollary on p. 31).§

A general framework for the solution of Problem 2.1 in its full general-
ity was given in 1904 by Levi-Civita, in a letter to Stickel."'” He considered
the Hamiltonian

H = %giipipi = (2.20)

and from Theorem 2.1 he deduced that if the HJ equation associated with
(2.20) is separable the same holds for the ‘“‘geodesic”’ Hamiltonian (2.8). We

i In the sequel, two contravariant tensor fields Il(and 12(shall be called independent if and only if

the corresponding functions 11( and 12< are vertically independent.

+ Which means orthogonal and hypersurface forming.

§ For the sake of completeness, we remark that the quoted corollary is not exactly the theorem
due to Eisenhart®” quoted in Reference 2, which moreover seems to be affected by
redundant hypotheses.
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remark that the same is true for Hamiltonians of the type
H =3g"pip; +I'pi - U (2.21)

related for instance to mechanical systems with +-dependent constraints or,
in general relativity, to problems involving external fields (see, e.g.,
References 8, 11, 21). This means that the conditions for separability of the
corresponding HJ equations can be obtained in two steps. First, consider the
geodesic problem associated with the Hamiltonian (2.8) and find the
separability conditions. Second, see if the remaining terms in the complete
Hamiltonian (2.20) [or (2.21)] are compatible, in a suitable sense, with the
stated separability of the geodesic equation. The first step is the core of
Problems 2.1 and 2.2 above; step two has a relatively simple solution (see
References 22 and 23). However, we should emphasize that the linear terms
I'p: and the potential U may depend directly on the metric g, so that further
conditions on g may arise in the second step.

When the Hamiltonian (2.8) is considered, the separability conditions
of Theorem 2.1 are precisely the integrability conditions of the following
system of partial differential equations:

8,-77',<=O, l;é]

1 6,—gﬂ7r,-7r1 (222)
8,«77,— STy e R
2 g T
where
m =W (2.23)

The discussion given by Levi-Civita in Reference 10 is based on the division
of the separable coordinates (x') (i = 1,..., n) into two separate classes.
Let o; be quadratic forms defined by

o; = dgym'm! (2.24)

A coordinate x' 1s called a first-class coordinate if o; is exactly divisible by
m'; otherwise, x' is said to be a second-class coordinate. For the sake of
simplicity throughout this section and Section 2.4 the following conventions
shall be adopted: second-class coordinates are labeled by indices from the
first part of the Latin alphabet (a, b, ¢); first-class ones by Greek indices
(a, B, v, . ..); Latin indices i, j, ... (from the second part of the alphabet)
shall denote any coordinate. The Einstein summation convention shall be
adapted to the above choices. Moreover, coordinates (x’) shall be arranged
in such a way that the first m belong to the second class (so that a, b, . . . range
from 1 to m) while the remaining ones are first class (so that a, B3, . . . range
from m + 1 to n). One of the two classes may be empty.
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The following first-order separability conditions on g were derived by
Levi-Civita:
augij = 09 vl,] =« (225)
g" dign =0
g 08 — 8" 3:gs =0 Vi, j,l #a;j,1#i;ins.7) (2.26)
g'" 0:igir — %g“i 98 =0
However, he was able to discuss completely only two particular cases: (i) the
case n = 2 (forany 0 = m = 2), in which his method leads in a simpler way to
the results previously obtained by Liouville,"> Morera®® and Stickel®”;
(ii) the case m = 0 (for any n), in which (V,,, g) turns out to be locally flat. We
shall see later that the case (ii) corresponds to the &, structures.

Actually, the integration of equations (2.25), (2.26) and of the further
second-order separability conditions found by Levi-Civita is a problem of
rather hard solution. An ‘‘indirect”” method to answer Problem 2.1 was
found in 1912 by Dall’Acqua.?® Relying on a previous conjecture due to
Burgatti(m and taking into account the above distinction for the coor-
dinates, he obtained the general form of the separate solutions of a separable
HJ equation associated with a Hamiltonian (2.20). He proved a theorem
which can be conveniently stated as follows.

Theorem 2.5. In a Riemannian manifold (V,, g) the HJ equation
associated with (3.10) is separable if and only if the functions (2.23) assume
the following form:

P . 2 1/2
T, — calt ((acg =& Uag_ U,)"’
(2.27)
8
T — Eal
8
a aB b
(ab=1,....,m;a,B=m+1,...,n), where &, ., v. and U, (respec-

B
tively, £,) are functions of the coordinate x“ only (respectively, x%), ¢

(i =1, ..., n) are arbitrary real constants.

Theorem 2.5 is actually the answer to Problem 2.1 for Riemannian
manifolds. However, it is rather surprising that Dall’Acqua did not go
beyond the mere statement of the theorem and he only gave the following
suggestion how to find the general form of a separable g (and U). Under the
additional hypothesis that relations (2.27) can be solved with respect to the

T Throughout this paper the notation n.s. = “‘not summed”’ will be used.
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constants ¢, we can obtain

B 3 aB 5
¢ = 0" [(ma — ut"ma)” = Ll € "myms + Ul
B a B

b

(2.28)

@
T«

LN
Il
Uy

B b
where [|£7|| and ||v°| are the inverse matrices of ||&, | and ||v,||. If we introduce

B b
the new constant &, defined by

2ho= Y ¢+ Y (¢ (2.29)
a=19 a=m+1 &
and we substitute (2.28) into (2.29) we obtain (with 7; = p;) a quadratic first
integral:

ho = %Kijpip]— -V (230)

Dall'Acqua stated explicitly that K7 and V solve Problem 2.1 (Reference
26, p. 10). However, this suggestion (which has been recently followed step
by step by Havas?®) is rather vague. First of all, we should observe that the
firstintegral (2.30) is not necessarily the energy integral, i.e., it is not possible
to identify a priori K7 with g” and V with the potential U. Moreover choices
other than (2.29) could be made: more generally we could choose a relation
of the form

a aB
2h0 = BC s {ch (2.31)
a afB
(with B and ¢, constants), or, more simply, choose the following:

2ho=c (2.32)

Furthermore, the requested solvability of (2.27) does not need to be
postulated in the context of the HJ theory, in which only complete integrals
have relevance. In fact the completeness condition (2.5) implies, through
(2.27), that

; 8
det [|v,|| - det [|&. ]| # O

From relations (2.28) we realize that, at least when g” is positive definite
[i.e., when (V,, g) is Riemannian], the separability of the HJ equation
implies the existence of m quadratic first integrals and m — n linear ones,
vertically independent and in involution. In this case a deeper discussion (see
Reference 29, Section 6; Reference 17, and subsequent comments in
Reference 30) shows that Problem 2.1 has the following solution.
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Theorem 2.6. The HJ equation associated with (2.8) is separable in a
a b aB
Riemannian manifold (V,, g) if and only if there exist functions &,, u, and ¢,

B
(respectively &,) of the coordinate x“ only (respectively x) such that the

8 b
matrices ||£.|| and |ju,|| are regular with inverses ||£°|| and II?“II, so that the

metric tensor g assumes the local expressions

(2.33)

v &

vé
g = £°EPU (L + Lut)
. otk
witha,b=1,..., m;a,B,v,6 =m+1,...,n.

For the sake of completeness, we remark that when considering the
Hamiltonians (2.21) the conditions (2.33) should be implemented by the
following conditions on U and /':

U= Uu’ (2.34)

IS=vau" (a n.s.) (2.35)

where ;a, Xa are functions of x* only.

We may observe that equations (2.33) can be formally obtained by
using (2.28) and (2.32) and taking K” = g” and V = U in the corresponding
equation (2.30). Equations (2.33) appear as particular cases of the solutions
given in References 21, 28, and 31; however, we should stress that whatever
solution is given to Problem 2.1 (as, e.g., the apparently more general one
given in Reference 17, which involves an arbitrarily large number of
arbitrary functions of a single variable) it can be reduced to a minimal form
which is nothing but (2.33), as proved in Reference 29, Section 6.

Before turning to Problem 2.2 it will be interesting to briefly recall the
essential steps of the proof of Theorem 2.5 given by Dall’Acqua. In fact,
analogous techniques have been used by Iarov-Iarovoi to deal with -
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dependent Hamiltonians and by Woodhouse to develop his theory of
“separable systems,””® which we shall review in Section 2.3.

Let xo € V, be a point; let % be a separable chart around X0, With
coordinates (x;) such that x'(x,) = 0, Vi. Let us consider the one-dimen-
sional submanifolds y; = {y € %[x’(y) = 0, Vj # i} (i.e., the ranges of the
coordinates curves x'). We define functions »; and g!(x") as follows:

u=Uly, gl'=g"v (2.36)
and constants ¢, and gg by
¢k = mie(xo), gg = gii(xo) (2.37)

Let us restrict to each y; the HJ equation. From the hypothesis of separabil-
ity we infer

gl (m)’ = 2fim, + @, —u, = h 2.38)
where
fi=-Xele, ®i=3 glee (2:39)
jEi Ll#i

Taking into account the distinction between first- and second-class coor-
dinates, equation (2.38) can be further elaborated by means of Levi-Civita’s
conditions (2.25), (2.26), which impose restrictions on the functions gf'. The
reasoning of Dall’Acqua applies in full generality only to the strictly
Riemannian case, since the explicit hypothesis g“* # 0is made; moreover, it
seems rather difficult to develop analogous methods when g** = 0 for at
least one index a.

As a counterpart of the “indirect” method described above a “‘direct’
approach to Problem 2.1 has been given in 1936 by Agostinelli,”” who
found the general solution for the case of orthogonal separability structures
in Riemannian manifolds (cf. References 32 and 33). Another direct method
has been developed by one of us in 1975, based on the concept of separabil-
ity structures. This method, which amounts to successive changes of coor-
dinates that preserve the separability structure and step by step simplify the
problem until Stickel’s Theorem 2.2 becomes applicable, leads at the same
time to solutions of both Problems 2.1 and 2.2, with the following theorems.

Theorem 2.7."7?°3%3% A Riemannian manifold (Vy, g) admits a &,
structure if and only if there exist (locally) r K vectors X and n — r K tensors

K which are independent and commuting, i.e.,
[X,)B(]=0, [X.K]=0, [K,K]=0  (Ya,b,a,B)
(2.40)
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and moreover there exist n — r independent orthogonal common eigen-
vectors X of the K tensors K such that
a a

[X,)b(]=0, [X, X]=0, gX, X)=0 (2.41)
witha,b=1,...,n—r;a,B=n—-r+1,...,n.

Theorem 2.8.°**% A Riemannian manifold (V,, g) which admits a &,
structure has locally two orthogonal foliations {W,} and {Z, _,}, where in the
induced metrics each integral submanifold W, is flat and the isometric
submanifolds Z,_, have an orthogonal separability structure.

The foliation {W,} is actually the foliation of the integral submanifolds
associated with the involutive distribution {X}, while the foliation {Z,_,} is

the complementary foliation associated with the involutive distribution {X}.
a
The flatness of each W, is an obvious consequence of the fact that the X are

commuting K vectors which generate an Abelian r-parameter group of
isometries acting on r-dimensional submanifolds. Theorem 2.8 suggests the
following definition.

Definition 2.1. A separability structure &, is said to be of class FE
(0 = k = n —r) if the induced (orthogonal) separability structure on Z, _, is
of class .

Of course, Definition 2.1 does not exhaust the possibility of further
classification: in fact the induced structure & on Z,_, may be a priori any
class #5 (with k' < n —r — k), and so on. The finest classification can be
hence given in terms of a finite sequence of integers, to define in an obvious
way separability structures of class ety

We also notice that the n vectors {X, )a( } form a local basis which is the

natural basis {3;} associated with certain quasinormal coordinates (y'), to
which we shall give the name of normal separable coordinates. The vectors ).(
are not uniquely determined: in fact the vectors )a( can be acted upon with an
arbitrary matrix A € GL(n, R), while each of the vectors X can be arbitrarily
rescaled by a factor ¢ (x“). An analogous remark holds alsao for the K tensors

K: in particular to each K we can freely add linear R combinations of
a a
symmetric tensor products of the K vectors X and the metric G. From this

remark it follows that one of the K tensors K can always be chosen to be the
. a
metric.
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Reverting to Problem 2.1, we observe that further simplifications can
be obtained by using the freedom of choice among the coordinates belong-
ing to a separability structure. For example, in any quasinormal separable
coordinate system the general form (3.23) simplifies to

aa

pe—y g =0 (a #0b)

g = —zau" (ans.) (2.42)
aB = il a
g 3 ({a = gafb)!;‘]

which amounts to putting ¢® = 8,5 in (2.33). A further simplification is

obtained by transforming ?o normal separable coordinates (yi), so that
(2.42) assume the form

g™ =u", =0 (a#i)

)
Il

(2.43)

B = a

(=3

g8 = {au
m

In normal separable coordinates the K tensors K appearing in Theorem 2.7
have the following components:

K=yt K'=0 (b#i)

a

(2.44)

K® =T
= {pu
a a

Components in general separable coordinates may be found in Reference
17

For pseudo-Riemannian manifolds the theory of separability structures
is not completely developed as for proper Riemannian manifolds. In fact,
difficulties arise when for some index of the second class we have g®* = 0.
This corresponds to the cases in which the ignorable coordinates of a chart
belonging to the given separability structure define a foliation of isotropic or
coisotropic submanifolds. In this case the extension of Theorems 2.6, 2.7,
and 2.8 is not immediate and, to our actual knowledge, it seems that some
separability structures exist that do not fit into the general scheme above.
These separability structures could be called degenerate separability struc-
tures. Those structures for which, in the pseudo-Riemannian case, Theorems
2.6-2.8 still hold will be called regular separability structures. However, we
should remark that the distinction between degenerate and regular
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separability structures is not always directly reflected in the form of the
metric tensor components. This fact is illustrated by the following
example.®”

Let (x') be coordinates in a pseudo-Riemannian manifold (V,, g) such
that the metric tensor components have the following form:

aa

g

W, =0  {i+a

gn'a' 0, ga'a = gaa{Z'uga'

g™ = g*¢Ff +287°0°

with a=1,...,m; a',b'=m+1,...,n—r; a,B=n—-r+1,...,n;
where (4“) is the mth line of a matrix ||%4“|| as in Theorem 2.6; ||| is a
m br

b’ b’

regular matrix with inverse ||£&.]; €., ¢ are functions of x* only;

*6 % are functions of x“ only. It can be checked that the coordinates are
separable. The r coordinates (x“) are ignorable and moreover the vectors
(3.) span submanifolds with degenerate induced metric. At first sight, this
could be interpreted as the signal that the coordinates (x") belong to a
degenerate separability structure. However, we can consider a new system
of coordinates (y') defined by the equations

dy® = dx°, dy® = & dx”, dy® = dx™ — {2 dx*

With easy calculations we can see that (i) the coordinates (y') are separable
and & compatible with the coordinates (x"); (ii) the n — m coordinates
(y“', y%) are ignorable; (iii) the coordinates (y') are normal separable
coordinates of a regular separability structure. Then we conclude that the
coordinates (y') belong actually to a regular separability structure.

To our knowledge the problem of characterizing and dealing with
degenerate separability structures is still open. For this reason in the
following we shall consider only regular separability structures. For the sake
of simplicity the adjective “‘regular’ shall be omitted.

2.3. Theory of Separable Systems

In this section we shall discuss in detail the theory of separable systems
developed by Woodhouse,® which provides a complementary viewpoint on
the problem of separability of the HJ equation for geodesics and which is
based essentially on the study of coordinate systems (x) in which a single
coordinate separates.

We shall first recall the basic definitions given in Reference 2, providing
also their interpretation in local coordinates. Let « be a closed 1-form and X
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a vector field in (V,, g), such that «(X) = 1. We define the projections
relative to (a, X) of a vector field Y and a 1-form 8 by

LY =Y -a(Y)X (2.45)
1B =B - B(X)a (2.46)

These definitions can be easily extended to any tensor T [of order (p, q)] as
follows:

J_T(Xl, .o .,Xq,al, e e ,a,,)
= T(_LXI, ety .LXq, _l_al, lejey _La,,), VXI, T ,Xq, Yy ey ap (247)

Let W be a complete (local) integral of the HJ equation of geodesics in
(V2 g). The integral W is said to be separable with respect to the pair (a, X) if

Lx(LdW)=0 (2.48)

where Lx denotes the Lie derivative along X. The integral W is said to be
trivially separable if, moreover,

Lx(dW)=0 (2.49)

In these cases the pair (a, X) is called a separable (respectively, trivially
separable) system.7 A separable system (e, X) is said to be orthogonal if
a -G = a;g" and X are linearly dependent.

A coordinate system (x') is said to be adapted to the separable system
(a, X) if

a=dx' and X =9, (2.50)

With respect to adapted coordinates (x'), equations (2.45)—(2.49) assume
the more familiar form:

1Y = ¥%a.,  a=2 .. .»nk (2.51)
1B = B, dx" (2.52)
LT =Tl 02, @ - ® 8, ®dxP1 @ - - ® dxPe (2.53)
*w
L, (3.Wdx*)=0—F——==0 (2.54)
dx dx
, >wW
L, dW)=0———=0, i=1,...,nt (2.55)
ax ox

 Woodhouse’s definition is more restrictive, since in Reference 2 G(a, a) # 0 is also assumed.
According to our subsequent discussion, this amounts to imposing g'' # 0 in a suitable
coordinate system (x') in which x' separates. This assumption is made in Reference 2 due to
the already recalled fact that Woodhouse’s analysis is analogous to Dall’Acqua’s method.
i Throughout this section Latin indices run from 1 to n, while Greek indices run from 2 to n.
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Condltlon (2.54) is obviously equivalent to the requirement of separability
of x', namely,

Wi(x') = Wilx") + W*(x®) (2.56)

while (2.55) amounts to requiring that x' separates linearly (i.e., x' is an
ignorable coordinate, or equivalently that X = g, is a K vector):

W(x') = cix' + W*(x°) (2.57)

Orthogonal separable systems are characterized by g'* = 0.

Let (dx', 3;) be a separable system and let S. be an integral surface of
dx' (i.e., a hypersurface of local equation x' = 7). Let W = W(x'; ¢;) be a
complete integral of the HJ equation, which separates with respect to
(dx', 8,). Define a function k(z,c;) by

k(r, ¢;) = k.(c;) = 0, Wi(x', ¢;)|S. (2.58)

Using the HJ theory the n constants of motion ¢; can be expressed as
functions of (x’, p;), so that the following first integral k. is obtained:

k.(x, pj) = k.(ci(x’, p))) # 0 (2.59)

A method of calculating k. without knowing W is the following, as discussed
in Reference 2, pp. 26-27 under the hypothesis g'' # 0. Let us restrict the
HJ equation to the hypersurface S. taking into account equation (2.56):

g (1, x k() + 2k.(c)g™ (1, x) 3. W* + g (7, x7) 8. W* 3,W* = 2h
(2.60)

But, using again the HJ equation g” ;W o,W = 2h, equation (2.60) can be
equivalently written as follows:

[k.(c:)]? + B2k.(c:) 9.W* + A" o;W 3,W = 0 (2.61)
where:

al( x-y

e e e Bl=0 (2.62a)
g nxY)

ij 1 ijr_k i oi _aB v

A ==p— oG ¥ 50 (1)) (2.62b)

s e

If in (2.61) we express the constants c¢; as functions of (x’, p;), then k. is
replaced by k.(x’, p;) [according to equation (2.59)] and we obtain the
following identity:

[k'r(xi’ pi)]2 + k'r(xis pl)Bl.:pa = Al.-]plp] = 0 (2-63)

By the Hamilton—Jacobi theorem, 8;W/c(x’, p;) is equal to p;.



Separability of the Hamilton-Jacobi Equation 411

For the sake of simplicity we put

Bip.=b, Al'ppi=a. (2.64)
and we rewrite (2.63) more economically as followsT:
k2+bk,+a,=0 (2.65)

The following discussion will be slightly different from the presentation
given in Reference 2. The identity (2.65) suggests that we consider the
following quadratic algebraic equation:

P+bf+a.=0 (2.66)

in the unknown f: T*V,, > R. Equation (2.66) has two real roots f, and f,
1 2

(possibly coinciding), since the identity (2.65) assures that one of them is the

(real) first integral k.: T*V, - R. For convenience, we shall take k. = f..
1

Now we must distinguish two cases: (i) f, is also a first integral (in particular if

f f,) (ii) only f. (# fT) is a first mtegral Let us take the Poisson brackets

of (2. 66) with the Hamlltoman H, to obtain the following equation:
2f{f,H} + bAf, H} + f{b,, H} + {a, H} = 0 (2.67)

Since f, = k. is a first integral, equation (2.67) gives the identity
1
{a., H} = —f.{b, H} (2.68)
1

Inserting (2.68) into (2.67) and performing some simple algebra, we get
{b- H{f - ) +{/,H}2f +b,) =0 (2.69)
Case (i). Since f. is a first integral, replacing f by £, in (2.69) gives
2 2

{b-, H}({, - (,) =0 (2.70)

If . # f., (2.70) gives immediately {b,, H} = 0. If on the contrary f. and f,
2 1 2 1

coincide, equation (2.66) tells us that the common value is —1b.. However, f-
1

is a first integral and {b,, H} = 0 follows as well. Hence in any case from
(2.68) it follows that

{a., H} = {b., H} (2.71)

T We stress that our equations (2.60) and (2.63) are, respectively, equations (4.29) and (4.34) of
Reference 2, p. 26.
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Case (ii). Since f. is not a first integral we have { f,, H} # 0. Since f, # f.
2 2 2 1
we have f, # —3b,. From (2.69) we obtain by replacing f with f,: {b,, H}
2 2
(f- = f+) # 0. Taking into account (2.68) it follows that
1 2

{a,H}#0, {b,H}#0 (2.72)
From (2.68), under hypothesis (2.72), we obtain
{a., H}
= —— 2.73)
i g (
which, after insertion into (2.66), yields
{a-rs H}2 = br{an H}{bﬂ H} & a?{b‘r’ H}2 =0 (2-74)

Identity (2.74) is a polynomial identity in the variables (p;), since a., b.,
{a., H}, and {b,, H} are polynomials, respectively, of degrees 2, 1, 3, and 2.
From (2.74) we easily infer that {b,, H} divides exactly {a,, H},T so that f, as
given by (2.73) turns out to be a linear first integral. :
From the discussion above we conclude that in case (i), the functions
(2.64) are two first integrals, one linear and one quadratic, to which there
correspond respectively a K vector B, and a K tensor A . given by (2.62); in case
(if) neither a, nor b.. are first integrals, but the quotient (2.73) provides a linear
first integral f. = k., which corresponds to a K vector X,. In a chart (x")

adapted to a 1separable system (dx', 3,), the closed 1-form dx' generates a
1-parameter family of hypersurfaces, which, without loss of generality, can
be taken to be {S.|7 € ]—¢, [}, ¢ > 0. Hence, for any r the existence of one
separable coordinate allows us to construct at least one first integral.

In Reference 2 the following two cases are considered: Case (1): for any
7 case (i) above holds. Case (2): for any 7 case (ii) above holds.

T If {b,, H} is irreducible the statement is trivial. If {b,, H} decomposes into two linear factors
(say by and b,), (2.74) gives {a,, H}({a,, H} — b.b1b>) = —a.b,°b,> which implies that both b,
and b, divide {a,, H}.

i These two cases do not cover all the possibilities. In fact the condition (2.72) which
characterizes case (ii) picks up an open subset of the interval ]—¢, £[, whose complement in
e, e[ is the closed set in which condition (2.71) characterizing case (i) holds. This closed set
can be a closed interval, an isolated point, a sequence with a limit point, or a finite union of
such objects. Even restricting ourselves to those three simplest cases, we observe that the first
leads to case (2) above; the second can be handled by eliminating the point and in the
complement case (1) holds; the third, although being somewhat pathological, does not seem,
however, to be a priori impossible. Hence the proof of Theorem 4.1 in Reference 2 suffers
from this limitation: it excludes a priori the third possibility, which unfortunately leads to a
difficult discussion and therefore we are obliged to avoid it. Limitations of this kind (which
appear also in the theory of separability structures in pseudo-Riemannian manifolds, see
Reference 35) do not affect the practical importance and the interest of the results obtained in
Reference 2.



Separability of the Hamilton-Jacobi Equation 413

Case (1). We can reduce this case to the case of an orthogonal separable
system. In fact the K vector —3B, is the orthogonal projection of 3, (through
the metric g) onto the hypersurface S.. Since a(B,) = 0, the vector

Z. =4, +13B, (2.75)

satisfies «(Z,) = 1 and moreover [d;, Z,] = 0. A direct calculation (or an
application of Reference 2, Corollary 2, p. 25, with b = 3) shows that (a, Z,)
is an orthogonal separable system.

The question now arises: how many independent quadratic first
integrals of the kind a, are generated by the existence of a single separable
coordinate in case (1)? Since the reduction to the case of orthogonal
separable systems can be performed as above, the problem is solved by the
following theorem of Woodhouse (Reference 2, p. 29).

Theorem 2.9. If (o, X)is an orthogonal separable system such that case
(1) holds, in the set {G; A, 7 € ]—¢, £[} the maximum number of indepen-
dent elements is equal to 1 + q(X), where q(X) is the conformal rigidity of
X.

[The number g(X) is defined as the maximum integer m such that G,
X ®X, LxG, L§(G, S L%”G are linearly independent over the set of
differentiable functions in V/,.]

Proof. Let us consider adapted coordinates (x') such that « = dx' and
X =9;. We shall give a proof under the hypothesis that the functions
g*?(x*) are analytic. Let us expand the tensor LG = g** 4, ® 9, in powers
of x', so that we obtain from (2.62b)
ij = T' r_«a
~gix)+ ¥ o' B2

e
As=7 Y [
g (T;X ) r=0

. 5:’,5',;]
(2.76)

1
x =7

Taking into account the identity
Lx(LG) = LxG +[LxG(a, a)IX ® X =2X N (LxG - a) (2.77)
(where N denotes the symmetrized tensor product), which reduces to
Lx(LG)=LxG +[LxG(a,a)]1X ® X (2.78)

when (a, X) is orthogonal, equation (2.76) reads as follows:

o 2
Aiizu—ly_[_G.‘_ s Lrsa| +pmxex] @79
g (r,x") r=o r! s

where B(7) is a suitable function of 7. If g(X) is the conformal rigidity of X,
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then the Lie derivatives LxG with m = q(X) + 1 are expressible as linear
combinations of the lower order ones, which proves the theorem. g

When (a, X) is not orthogonal the number q(X) + 1 is only a lower
bound: to the 1 + q(X) independent K tensors AY we must add a set of
generators of the minimal commutative subalgebra containing all the sym-
metric products B,, N B, (71, 72 € ]—¢, €[).

In Reference 2 it is also proved that the K tensors A” (7 € ]—¢, ¢[)
commute and have the common eigenform a = dx'.

Case (2). The discussion of case (2) is exhaustively given in Reference
2, p. 30 and concludes that the system (a, X) is trivially separable.

From the results of Woodhouse’s analysis it turns out that if in a
coordinate system (x') one coordinate (say x") is separable, it is adapted either
to a K vector (i.e., x" is ignorable) or to an eigenform of a K tensor. This is in
perfect agreement with the theory of (complete) separability structures
developed in Sections 2.1 and 2.2; we remark that the coordinate changes
that are implicitly performed in Woodhouse’s theory are essentially
equivalent to our transformations to normal separable coordinates. Wood-
house’s theory provides a very powerful method of constructing first
integrals of geodesics from the mere knowledge of a single separable
coordinate. In certain cases (e.g., the applications to general relativity; see
later and Reference 2, Section 6) it may also provide an alternative approach
to separability theory. The following problems are left open.

(I) extend the discussion to the case g“ = 0, which has relevance when g
is not positive definite.

(IT) suppose that (V,, g) admits a separability structure %, Choose a
representative coordinate system (x'). Pick one of the coordinates (x') and
associate to it a maximal number of K vectors and K tensors obtained as in
this section. What are the relations between these objects and the analogous
ones that define the given separability structure? A partial answer, valid for
orthogonal systems, is given by Theorem 4.2 of Reference 2 and its
corollary.

2.4. Separability of Second-Order Equations

Since the separability theory of the HJ equation for the geodesics of a
pseudo-Riemannian manifold (V,, g) is essentially a theory concerning a
suitable geometrical characterization of the metric tensor g, it is not surpris-
ing that the existence of a separability structure in a (V,, g) has a deep
relevance for analogous separability properties of other second-order
equations associated with g, besides the HJ equation itself. Among these
equations, a particularly important example is the family of equations

AV + k¥ =0 (2.80)
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(where AV = gii V.:V,;¥), which, according to the signature of the metric g,
are known as Laplace, Helmoltz, D’Alembert, Klein—-Gordon (or wave)
equations. Moreover, great interest is also given to the Schrodinger equa-
tion:

AV+(E-U)¥ =0 (2.81)

(U being a potential), which for U = const reduces to equation (2.80).

By complete separability of equation (2.81) or (2.80) we mean, as usual,
the existence of a solution ¥ depending in an essential way on n arbitrary
constants, which with respect to certain coordinates (x" separates as a
product ¥ =1I"_, W, (x"). Just as for the theory of separability of the HJ
equation, the study of analogous properties for equation (2.81) was initially
done in the restricted case of orthogonal coordinate systems. The first results
in this direction are, to our knowledge, those obtained in 1927 by Robert-

son,*® who proved the following theorem.

Theorem 2.10. Equation (2.8) is separable in an orthogonal coordinate
system (x') if and only if the components g" and the potential U satisfy the
requirements of Stdckel’s Theorem 2.2 with the additional condition

n

(det lles])? = _Ijl1 fx"e' (2.82)

where the f; are suitable functions.
Eisenhart later gave the geometrical counterpart of Theorem 2.10 by
proving the following.

Theorem 2.11.°°’ Condition (2.82) is equivalent to the following:

Several particular cases (Euclidean 3-space, conformally Euclidean 3-
spaces) were investigated in References 23, 37, and 38. In Reference 39
Forbat showed that the Schrodinger equation is separable in any Liouville
manifold (V,, g) with positive definite metric. General classes of solutions to
conditions (2.82) were studied by Agostinelli in Reference 40 and later
extended to nonorthogonal cases in Reference 41.

In the framework of the theory of separability structures, the following
result holds.

Theorem 2.12. In a Riemannian manifold equation (2.80) is separable
if and only if the manifold admits a separability structure in which the K

vectors X are eigenvectors of the Ricci tensor.
a
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Asfar as equation (2.81) is concerned, in analogy with what already was
encountered for the HJ equation with a potential U, additional conditions
on U have to be imposed along with the conditions of Theorem 2.12: it is
noteworthy that they coincide with conditions (2.34) (see Reference 42, pp.
28-29). Theorem 2.12 still holds for regular separability structures in
pseudo-Riemannian manifolds. Then we have the following corollary.

Corollary 2.1. In a Lorentzian space-time (V, g) which is a solution of
Einstein vacuum equations the existence of a regular separability structure
implies the separability of the wave equation (2.80).

In the proof of Theorem 2.12 given in Reference 42 it is shown that,
besides the existence of a separability structure, the condition that should be
imposed for separability of (2.80) is given in normal separable coordinates
by

35(8aC?%) =0 (Va # b,ans.) (2.84)
where:
2 =9'rs (2.85)

The statement follows from the important identity (again in normal coor-
dinates)T

Rab

3—( Y 9405 log g% + 8,0, log det llg"Bll>

c#a,b
=305(g.sC°%)  (Va # b,ans.) (2.86)

The separability of the Schrodinger equation (2.81) was also independently
investigated by Havas,”® who gave a set of necessary and sufficient condi-
tions on g” and U. It can be proved with some simple algebra that Havas’
conditions (A) (Reference 28, p. 1466) reduce in normal coordinates to

det g, = (et )’ TT £u(x") (2.87)

(where f, are suitable functions), which can be shown to be equivalent with
conditions (2.84). Of course conditions (2.87) generalize (2.82).

The classification and determination of all coordinate systems in which
the HJ equation [or more general equations like (2.81)] are separable is a
different problem, rather of analytic than geometric character. An extensive
investigation in this direction has been recently undertaken with valuable
results by Winternitz, Boyer, Kalnins, Miller, and others, in the framework
of Lie theory: see, e.g., Reference 43 and all references cited therein. In

T In equation (25) of Reference 42 a numerical factor is missing.
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these papers other second-order equations are also considered. Obvious
reasons of space do not allow us to discuss those results here.

For the sake of completeness we recall finally the recent review article
(on separability on Riemannian manifolds) by Huaux“* in which additional
“historical” references are to be found, together with a discussion of

problems in theoretical mechanics.

3. Separability Structures in Space-Time

In this part of the paper we shall discuss the role that the separability of
the HJ equation plays in the context of general relativity. We shall briefly
outline the main results concerning separable space-times and their
geometrical properties, as well as certain other fields of research which have
common interest in the problem of separability.

The first clear application of the problem to general relativity was when
Carter*” succeeded in integrating the geodesic equations for the Kerr
metric“® by means of separation of variables. Later, relying on certain
assumptions suggested by the particular case of the Kerr metric, Carter
discovered a whole family of vacuum and electrovac space-times which
allow (complete) separability of the uncharged or charged geodesic equa-
tion.”” Since Carter’s paper, there have been contributions to the subject
and we shall try here to reduce them to a common denominator which is (and
cannot be something else) the theory of separability structures.

3.1. Separability Structures %,_, and Carter’s Separable Space-Times

Since separability structures are primarily classified through the
number r of K vectors that they involve, with 0 < r < 4, there are five
essentially different types of separability structures &, in a four-dimensional
manifold (V,, g). We shall devote our initial interest to the separability
structures of class 2: they are mainly the ones investigated in Reference 8.

From the general theory it turns out that a great role is played by the
number of K tensors. For this reason, this section will contain results
referring to the more general case of a separability structure«of class n — 2 in
a pseudo-Riemannian manifold (V,, g) (n = 3), which we recently discussed
in Reference 30.

In Reference 30 we first pointed out that in norma# separable coor-
dinates (y') the metric tensor g reduces to its canonical form:

gri= e (a=1,2) (3.1

e ¢1+ @2
g¥=0 (a #1i) 3.2)
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g™ = : (580 + £53%0) la B =3, n) (3.3)

¢1t+ @2
Here the coordinates y* are ignorable; ¢, ¢., and {2° are functions of the
coordinate y“ only, subject to the requirement that det [|g”| # 0. Once the
canonical form above is known, the K tensor K, which together with g and
the K vectors X=9/dy“ defines the separability structure, may be alge-

braically computed (in normal coordinates), and is given by

K“ =¢2—‘Ill’ Kzzled’z (3.4)
¢1+ @2 Y1+ @2

K¥=0 (a #1i) (3.5)

K* = (£TPUe2 — £3P0201) (3.6)
¢1t+ @2

The arbitrary functions ¢, may be freely rescaled without affecting the
separability structure (e.g., by taking ¢;> = ¢,” = 1; see Reference 30).

Moreover a manifold (V,,, g) with a &, _, structure admits (according to
Theorem 2.8) two orthogonal local foliations { W,,_»} and {Z,}, where W,,_,
are flat submanifolds of codimension two of V,, and Z, are two-dimensional
isometric submanifolds of V,, with an orthogonal separability structure in
the induced metric g|Z,. This induced metric is simply given by (3.1) and it
appears in the classical Liouville form.""* In Reference 30 the following has
been proved.

Proposition 3.1. A separability structure &,_,in (V,, g) is of class #x_»
(k =0, 1, 2) if and only if among the two functions ¢; and ¢» exactly k are
constant.

By taking n = 4, the above gives a classification of four-dimensional
metrics with a &, structure. Further on n = 4 will be assumed.

In his 1968 paper,® Carter investigated space—times ( Vs, g) in which
the HJ equation for (charged) geodesics is separable under suitable hypo-
theses. In this section we shall remain (accordiggly to the spirit of this paper)
in the framework of uncharged geodesics and vacuum solutions of Einstein
field equations. In his analysis, Carter relied on three main assumptions: (I)
space-time admits two commuting K vectors (or equivalently an Abelian
two-parameter group of isometries); (II) the symmetry group is invertible
(see Reference 47) with non-null surfaces of transitivity; (III) the HJ
equation is separable (in a coordinate system adapted to the group of
symmetries) after multiplication of the whole equation by a separating factor

T See Definition 2.1.



Separability of the Hamilton-Jacobi Equation 419

U.t A bit of discussion should be made on these hypotheses, to better
understand their relevance, their meaning, and their relations with
separability structures. In Reference 8 it was noticed that (according to
References 47 and 48) hypothesis (II) does not impose restrictions on
stationary axisymmetric Einstein—-Maxwell space-times. However, hypo-
thesis (III) requires implicitly that (Vy, g) admit a %, structure (it in fact
requires the existence of a separated complete integral of the form given in
the T footnote immediately above). Hence, the theory of separability
structures tells us that both (I) and (II) are contained in (III) (see Theorem
2.7) and have to be considered as redundant. Moreover separability is not a
priori equivalent to a ‘“‘routine prescription’ to explicitly separate the HJ
equation (cf. Section 2.1). In particular it is not a priori true that separate
integrals can be always obtained after multiplying the HJ equation by a
suitable separating factor. For this reason it could be argued that (III) is
more restrictive than the requirement of %, separability.f However, the
canonical form (3.1)—(3.3) assures us that the separating factor U always
exists in the form

Uy', y?) = e1(y") + e2(y?)

for any &,_, structure in any (V,, g). Hence, the above three hypotheses are
collectively equivalent to the requirement that (V,, g) admits a &, separability
structure.

By relying on them, Carter deduced in fact the form of the metric tensor
which is given by equation (48) of Reference 8. It is not hard to see that
Carter’s form (48) is actually equivalent to the canonical form above. Carter
then proceeded by imposing other conditions and finally obtained a whole
class of vacuum and electrovac space-time (possessing a &, structure): we
shall in a moment come to discuss these further conditions. Carter’s space—
times fall into three main families [A], [B], and [D] (which are listed in
Reference 8, p. 282). We easily understand that these three families
correspond to the three possible structures &5, the correspondence being
given by [A]le 5, [Blo %5, and [D]< ¥3 We stress that this
classification is not a consequence of Einstein equations but a direct
consequence of &, separability.

Carter’s condition (IIIS) was the requirement that also the (charged)
Schrdédinger equation is separable (in the coordinate system which allows
separability of the HJ equation). Recalling Theorem 2.12 and Corollary 2.1

1 This means that, choosing coordinates (y’) with y ', y2 ignorable, a complete separate integral
of the form W = c,y' + c,y% + Wi(y?) + Wa(y*) has to be found by substituting W into the
H1J equation.

1 This argument was in fact raised by Matravers in Reference 49, who did not realize that
Carter’s conditions are in fact equivalent to separability (in our %, sense); Cf. also Reference
50.
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we know that (a) for Einstein vacuum solutions Schrodinger separability is
equivalent to HJ separability; (b) for nonvacuum solutions Schrodinger
separability is equivalent to HJ separability if, moreover (in normal coor-
dinates),

R12 = 0 (37)

In Reference 8 Schrodinger separability was proven to be equivalent to a
certain condition on the metric {equation (70) of [8]}, which in terms of the
canonical form (6.1)-(6.3) can be stated as

det[|£5%¢1 + 3P0 = (@1 + ¢2)76162 (3.8)

where 6; and 6, are suitable functions of y' and y?, respectively. The above
facts (a) and (b) were independently realized by several authors, who proved
them by relying on particular four-dimensional versions of the proof given in
Reference 42.7 It is rather important to notice that &, separability allows
one of Einstein’s vacuum equations to become a purely algebraic one.
Carter’s hypothesis (IV) was a rather complicated one, and it was
suggested by the charged orbit case. It turns out, however, to be equivalent
to the conditions
detl2?l=0 (a=1,2) (3.9)

(see References 8, p. 289, and 30). These are rather simplifying conditions
which definitely make the subsequent study of Einstein equations easier:
they pick out a subfamily of space-times known as Carter’s separable
space—times. We do not know if (3.9) is a true restriction to &, separability of
solutions to Einstein equations, i.e., whether &, separable Einstein space-
times with det [|£3?|| # 0 exist (for at least one index a).i The geometrical
meaning of (3.9) is given by the following.

Proposition 3.2. In an &%, separable four-dimensional manifold (Vy, g)
the metric tensor g (written in normal coordinates) satisfies conditions (6.9)
if and only if the Segre characteristic of the K tensor (3.4)-(3.6) is [(11)(11)],
i.e., if K" has two double nonvanishing eigenvalues.

Proof. From (3.1)—(3.6) it follows that
det |[K7 — Ag"|| = —¢ntbar + A ) (@2 — A)
x {y det [£%](@2 — 1)* + ¢3 det [|¢3° (01 + 1)

— [P G + PG - 2005 e + A ) (@2 — M)}
(3.10)

+ We just list a series of references: 9, Theorem 2; 51; 52, p. 1311; 53, p. 187; 54; 55; 56, p.
55 (Section 3). The fact that Schrodinger separability is superfluous was first realized by
Debever in Reference 57.

i The Kerr space-time does satisfy (3.9).
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This gives the twice-repeated eigenvalues
AV=-¢;, AP=¢, (3.11)
if and only if (3.9) holds. (Q.E.D.)

As a consequence we realize that the above hypotheses on the Segre
characteristic of K" is perfectly equivalent with Carter’s hypothesis (IV);
moreover the following holds.

Corollary 3.1. In a four-dimensional manifold (Vy, g) with a %, struc-
ture satisfying (3.9) the eigenvalues A" and A® can be taken (locally) as
coordinates if and only if the separability structure is of class %5.

Proof. The proof is a straightforward consequence of (3.9), (3.11), and
Proposition 3.1. 0

The hypothesis on A" and A® expressed by Corollary 3.1 has been
largely used in the literature (cf. References 53 and 54), although not in their
proper meaning and without a clear understanding of their true content.

Since Carter’s space-times are ¥, separable it is obvious that they admit
at least one K tensor independent of the metric g (which is actually given by
(3.4)—(3.6)). It was in fact through this property for the Kerr space-time that
Walker and Penrose were led to open a whole field of research on space-
times with K tensors”®: we shall devote Sections 3.2, 3.3, and 3.4 to this.
Even if the relations between separability and K tensors were already
somewhat hidden in earlier works (e.g., References 59 and 26), the clear link
between them was only established with the theories of separability (in
either form of “complete separability” or also Woodhouse’s theory of
‘“‘separable systems’’). Nevertheless, the existence of K tensors for Carter’s
space—times was known before the appearance of these theories.t

Carter’s family of space-times was reconsidered in 1969 by
Debever,”” who dealt with them by means of his ‘“‘isotropic-forms formal-
ism.” In Reference 57 the hypotheses (I), (II), and (III) of Carter were
translated in a slightly different language. Hypothesis (III) was actually
weakened to a ‘““‘conformal hypothesis’’ which corresponds to separability of
the null geodesics only (see Section 3.4). Additional hypothesis that (Vy, g)

T The existence of K tensors in type-D space-times was investigated in Reference 57, where,
however, no relation with Carter’s space-times was exploited. To our knowledge, the first
place where this existence was neatly pointed out is Reference 49: we may observe that,
moreover, (2.18) in Reference 49 bears some resemblance to the canonical form of g. This
fact was later recalled in References 52-54.
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is a type-D space-time then led to an equivalent determination of Carter’s
space-times, under the stronger hypothesis of separability of all geodesics.™

3.2. Killing Tensors in Type-D Space-Times

Motivated by Carter’s results on space-times with an Abelian two-
parameter group of isometries, investigations on K tensors on type-D
space-times were begun by Walker and Penrose in Reference 58 and later
continued together with Hughston and Sommers.®** The choice of type-D
space—times reflected the previously known fact that any type-D space-time
admits two (or four) K vectors (cf. References 65 and 66; see also 67). The
interrelationship between the Petrov form of the Weyl tensor, these K
vectors, and the (possibly existent) K tensor were clarified mainly by
Sommers.®**? In their investigations the above authors were naturally led
to consider objects known as conformal Killing tensors (CK tensors).

A CK tensor of order p in a (V,, g) is a p-covariant symmetric tensor
field K;,...;, such that there exists a (p — 1)-covariant tensor field H,...;,
with the property

V(iKix"'ip) = gu"lH'lZ"'ip) (3.12)
If (V,,g) has Lorentzian signature, (3.12) implies that the function
k: T*V, > R defined by

k=K""%p, - p (3.13)

P

is a first integral for null geodesics.i The algebra of CK tensors was deeply
investigated by Geroch."'®

To study the above interrelationship, wide use was made of the New-
man-Penrose formalism.” It turned out to be important to introduce an
object called a Killing spinor of order 2 (K spinor). A K spinor ypc is a
solution of the following equation§:

Vaaxse) =0 (3.14)

T Debever proved in fact that “conformal separability” implies the existence of two geodesic
shear-free congruences (Reference 57, Theorem 1). This fact is strictly connected with the
analogous result which appears when the existence of a K tensor with Segre characteristic
[(11)(11)]is assumed (see Section 3.3). The link between these two independent hypotheses is
hidden in condition (3.9). Debever’s results imply also that any vacuum type-D space—time is
conformally related with some member of Carter’s family (see also Section 3.4).

i For this reason CK tensors will enter the theory of separability of the null geodesic HJ
equation (see later).

§ Throughout the present section the Battelle Convention is adopted.“’s’ Equation (3.14) is
usually also referred as a ‘‘twistor equation,” although the terminology is appropriate only in
flat space. The concept of a K spinor can be generalized to define the so-called D(p, q)-K
spinors. These objects have recently been investigated in connection with the theory of
heavenly space-times (see References 70 and 71).
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Any K spinor gives rise to a constant of motion for null geodesics (Reference
63, p. 20); in particular the tensor

Pu(x) = xaBXa's' (3.15)

turns out to be a trace-free CK tensor. The following was shown in
Reference 63.

Proposition 3.3. A vacuum space-time admits a K spinor xap if and
only if (V4, g) is (a) Minkowski space-time; or (b) a plane-fronted gravita-
tional wave (of type N ; see Reference 69); or (c) a type-D space-time.

It was also shown there that an electrovac type-D space-time admits a
K spinor, provided the Maxwell tensor has two eigendirections aligned with
those of the Weyl tensor. This hypothesis shall be assumed throughout
(Reference 63, p. 26).

CK tensors also arise for another (not less important) reason:

Q; = K, — i(TrK)g; (3.16)

is a CK tensor.”® Sommers’ results and (3.16) imply the following.
Proposition 3.4. Any type-D space-time admits a CK tensor.

This result was already known to Walker and Penrose, for vacuum space—
times (Reference 58, Theorem 1); they also showed that the CK tensor is
irreducible™ if the space-time has less than four K vectors.

The existence of a K spinor x4 in any type-D space-time explains why
all these solutions have at least two K vectors. In fact it can be shown that the
complex vector

£ =Va®xsa (3.17)

is a complex K vector for (V,, g). If &, & are independent the real and
imaginary parts provide two real independent K vectors®>®?; the case
& = £ will be discussed below.

As far as K tensors are concerned, Hughston and Sommers investigated
the following problem: for which type-D space—times does there exist a scalar

K such that the tensor
Kii(x) = Ps(x) + %Izgij (3.18)

+ A CK tensor (respectively, a K tensor) K is reducible if there exist CK vectors (respectively, K
vectors) é’(a =1,2,...,N)such that
N

K=G+ T Aa(XNX)

a,b=1

for some nonvanishing set of constants A 4.
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is a K tensor? A first equivalent condition was given in Reference 60: it was
proved that from the equation V 4* xsc) = 0 it follows that the principal
spinors of ypc generate two geodesic shear-free congruences and that

CD)—3/2

©aB = (XcpX XAB

satisfies Maxwell’s equations. Written ¢ p = @0(aip), it turns out that the
stress energy tensor has the form 7; = f-3P,-,-(x), where f = ((pqE)_”z. Then
the existence of a function F* such that P; = V,F* is equivalent to the
existence of a function F such that

I(in,»,Vif =V.F

where [,n are the vectors associated with the geodesic shear-free
congruences. Later®"®® the solution was given in the following terms: first
we write the Weyl spinor ¥ sgcp = Yo(a05icip) and we show that " sgcp =
¢3/20(A03icim satisfies the equation V4 T spcp = 0. We then introduce a
scalar a byz

a=vp P

The scalar K exists if and only if
VK =367 Via + ¢ V] (3.19)

The following result was so given.

Proposition 3.5. The scalar K and the K tensor K;;(x) exist for any
type-D solution apart from the C metric and its twisting generalizations (see
References 65 and 728§).

We can now discuss the degenerate case & = &. In §uch a case the K
tensor K;;(x) exists (Reference 63, p. 30); the scalar K turns out to be
K = -3¢ '+ @ ") # 0. Then the vector

ni = Kij(X)fj (3.20)

is a K vector, again in virtue of (3.14) and (3.17). If n; and ¢ are independent
we have then two real K vectors. If #; is zero or proportional to & it is
possible to prove that space-time admits other K vectors (a detailed
examination of several cases has been given in Reference 63, pp. 34-46 and

+ We notice that whenever such K exists, then K=Tr (K). The question is then equivalent to
asking for which space-times is the vector P; defined by VP;, = Pgy a gradient. See
References 58, p. 271; 60, p. 306; 63, p. 49.

i In vacuum space-times ¢ = ¢*?anda = 1. The argument above does not apply directly; cf.
Reference 63, p. 50, and Reference 98.

§ In those metrics nevertheless a CK tensor exists (Proposition 3.4). Those metrics, in fact,
admit separability of the null geodesic equation; separated solutions were obtained in
Reference 72, equation (33). See also Section 3.4 and the T footnote on p.425 below.
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Appendix F). The main conditions for linear dependence of & and 7; are
given in terms of Newman-Penrose coefficientsby # =7 =0o0rp =u =0
(Reference 63, pp. 38-39). They were not discussed in Reference 61,
however, and an alternative proof has recently been given by Collinson and
Smith.””

In Reference 62 it was, moreover, shown that whenever K;;(x) exists it
commutes with £ and £ commutes with 7, i.e.,

[K(x),€]1=0, [&£n]=0 (3.21)

The above results have of course relevance to the problem of %, separabil-
ity. In a recent paper”’* the following was shown.

Proposition 3.6. All vacuum type-D metrics that admit the K tensor
K;i(x) admit also a &%, separability structure.

This follows from Theorem 2.7, since it can be shown that [K (x), n] = 0 and
the conditions on the eigenvectors of K (x) are satisfied (see Reference 74).

Separability of type-D space-times was also investigated by Wood-
house in Reference 2, Section 6. It is not hard to understand how Wood-
house’s results fit into the scheme of complete &, separability, due to the fact
that the dimension is four and two ignorable coordinates exist.

3.3. Further Results on Space-Times with K Vectors and K Tensors

We have already stressed the relevance of K vectors and K tensors for
the existence of separability structures; they are, in a sense, prerequisites for
the separability of a space-time. Several papers have dealt with space-times
with K vectors: among them we recall References 67 and 76.

K tensors in a general pseudo-Riemannian manifold (V,, g) were
investigated in Reference 59; they received renewed attention after the
paper of Walker and Penrose®® and after a differently motivated investiga-
tion by Geroch."® A short account on them appeared in Reference 64.
Stationary K tensors in static spherically symmetric space—times were also
investigated in Reference 77.

It is of clear importance, also in order to better realize how many
different separability structures may exist in a given (V,, g), to know how
many linearly independent second-order K tensors could there exist. The
maximal number M,(n) of second-order K tensors in a (V,,g) was
computed in 1946 by Thomas,”® who proved that

Ms(n) = 5n(n +1)*(n +2) (3.22)

T The C metric and its twisting generalizations are in fact the only vacuum type-D metrics that
do not belong to Carter’s family (this is clear from the table given in Reference 75).
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The subject was later taken up again in Reference 79, where a new proof of
(3.22) was given and the following was shown.7

Proposition 3.7. (i) M,(n) is attained in all spaces of constant curva-
ture; (ii) in those spaces the K tensors are reducible (see T footnote on page
423 above).

It is also relevant to know the number M, (n) of linearly independent K
tensors of order r (r > 2). In Reference 63 it was elegantly proved that if K is
a K tensor of order r its covariant derivatives of order s = r + 1 can be
expressed as linear combination of the covariant derivatives of order a = r.
This gives an implicit counting procedure (see Reference 63, p. 17).%

This fact opens the question of integrability conditions and structural
equations for K tensors, i.e., the search for explicit relations that such K
tensors should satisfy together with their successive covariant derivatives.
Integrability conditions (up to the third order of differentiation) for the
Killing equation VK, = 0 were first investigated in Reference 80, where a
proof of (i) in Proposition 3.7 was also obtained. An equivalent set of
conditions was then given in Reference 81.§ Integrability conditions of the
fourth order were later given in Reference 82, where it was also proved that
in four dimensions the converse of Proposition 3.7(ii) also holds.

Proposition 3.8. If M,(4) = 50 is attained, then (Vy4, g) has constant
curvature.

In relativity the so-called Killing—Yano tensors (briefly: KY tensors) are
also relevant. A KY tensor f; is a skew symmetric tensor such that

Vufi +Vifn =0 (3.23)
It is clear that if f; satisfies (3.23), the squared tensor
Ki(f) = f'fu
satisfies Killing’s equations. The relevance of such objects to relativity is
suggested by the fact that Carter’s K tensor of Kerr metric is in fact the

square of a K tensor.®*** Relationships between such objects and appli-
cations to general relativity have been recently investigated by Collinson.

T An alternative shorter proof of (3.22) was given in Reference 63, where (ii) was also proved
for flat manifolds.

i Similar results for K spinors in (V,, g) are given briefly in Reference 70.

§ Although in Reference 81 an explicit statement is made that the dimension of the manifold is
4, the structural equations obtained are valid for any (V,, g). In Reference 81 there appears a
newer proof of the fact that in four-dimensional flat space the maximal number M,(4) = 50 is
attained.
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He determined the necessary and sufficient conditions that an irreducible K
tensor K;; should satisfy in order to be the square of a KY tensor f;;. One of
these conditions requires that K;; be a tensor of type D1 [2, 2] according to
the classification given in Reference 85, i.e., that K; is diagonalizable over R
and its Segre characteristic is [(11)(11)] (see Reference 84, Theorem 2).t
Existence of KY tensors in algebraically special space-times was studied in
Reference 86, where the following was proved.

Proposition 3.9. (i) Empty space-times of Petrov type I, II, or III do
not admit KY tensors; (ii) the only empty type-N space-times that admit a
KY tensor are the plane-fronted gravitational waves. Moreover, each
plane-fronted gravitational wave admits exactly two linearly independent
KY tensors.i

As far as type-D space-times are concerned the following is claimed in
References 84 and 86.

Proposition 3.10. The only vacuum type-D space-time that does not
admit a KY tensor is the twisting C solution (i.e., Kinnersley type IIIB; see
Reference 65). Whenever the KY tensor exists, it is unique.

However, it turns out that the result is incorrect in the case of the C
metric, since this metric admits neither a K'Y tensor nor a K tensor.§

We now turn to discuss recent results on space—times with a K tensor of
Segre characteristic [(11)(11)]. Following Hauser and Malhiot we shall
restrict our attention to the case when both the eigenvalues of Kj; are not
constant (i.e., the most obvious generalization of ¥5-separable space-times;
cf. Corollary 3.1).

A first important property of such space-times is that they admit two
geodesic shear-free null congruences (say k; and m;), generated, respec-
tively, by two independent eigenvectors of K;;|| : for vacuum space-times this
implies that they are of type D.

Let us denote, respectively, by A and u the eigenvalues of K;; the above
hypothesis requires that dA A du # 0. In References 52 and 53 the follow-
ing is then proved.

7 This is a striking relation between the existence of KY tensors and Carter’s separable
space-times.

i We remark that this result can be understood from a different viewpoint: in Reference 73,
Section 3 it is shown that a KY tensor f;; corresponds to a (symmetric) K spinor F4 g such that
VB, Fap + VA5 Fg 4 = 0. Hence, Proposition 3.3(b) applies to give (ii).

§ The form of the K tensor for type-D metrics is given in Reference 84, p. 314. This form is,
however, incorrect for the C metric: see the forthcoming paper Reference 98.

|| This result has been independently proved in References 52, 54, 84. In a null tetrad
(ki, mj, 1;, ;) the K tensor K;; reads: K;; = A (kim; + kjm;) — (4,1 + ©it;).
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Theorem 3.11. Whenever a space-time (Vy,, g) admits a K tensor K;; of
Segre characteristic [(11)(11)] and nonconstant eigenvalues A and u, or it is
conformally related to one such space-time, then its metric necessarily has
the form

1, 2 3 4\q2 2, 5
dSZZ%ezgpz{(dx) +[H1(dx +J2 dx )] +E<dx)

E:. A E,
H,(J, dx> + dx4)]2 H, dx*(J, dx> + dx4)}
- +4(1 — 3.24
E[ A i E-A K24
where %ez" is a conformal factor (constant whenever space-time admits

Ki); p’=A—p, A=A(x"), p=px?; E, H,, and J, (a=1,2) are
functions of x* and x®*?only; A = 1 — J,J, # 0; e isasignrelated to A and u
(we have ¢ = sgn (du - dA) when u is chosen to be the eigenvalue related to
the tetrad leg ¢;).T

From the metric (3.24) one can easily read off directly the K tensor K;;
[see Reference 53, equations (2), (3), and (35)]. The metric (3.24) is a
genuine generalization of Carter’s separable metrics; it is noteworthy that
formally (3.24) and Carter’s metrics [equation (77) of Reference 8] have
exactly the same general form: however, besides A and u, the functions
involved in (3.24) depend upon two variables rather than one only as in
Carter’s metrics. From the theory of separability structures we easily
understand that the only ¥,-separable metrics among (3.24) are just
Carter’s ones [it is in fact enough that the metric tensor g is reducible to the
canonical form (3.1)-(3.3)].

As in Reference 53 we define §, and 8, by

(1+¢?) aJ,
= — 25
e 7. P T i)
E.H. aJ ,
8, = e — (3.26)

(1+¢2)pAH, ox’

Then four essentially different cases arise: (I) §; # 0, 8, # 0. In this case the
metric is generally not separable [the functions J, depend upon certain real
numbers o,; see Reference 53, equation (36a)]. However, all Carter’s
separable metrics fall into a subclass of this class (characterized by o, = 0);
(IT) &, # 0, 8> = 0. This corresponds to metrics that are partially separable
with respect to the coordinates x* and x* (x* is actually ignorable, since
d/3x* turns out to be a K vector); (IIT) 6, = 0, 8, # 0. As in case (II), with x'
and x’ replacing x” and x* (these two cases have been classified in Reference

T The functions A = A(x') and w= p.(xz) can be locally used as coordinates in place of x'and
x2 (cf. Corollary 3.1). See in fact References 52 and 54, p. 546.
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55); (IV) 81 = 6, = 0. In this last case (Reference 53, p. 193) the HJ
equation for geodesics is decomposable, in the sense that it admits complete
integrals of the form

W= W(x', x°) + Wa(x? x*

(See also Reference 55, Table I.) In this last case, in fact, the metric tensor is
also conformally decomposable (i.e., it can be written as a sum of two
quadratic expressions involving, respectively, the coordinates (y', y?) and
('y3, y4), (yi) being suitable coordinates, which is multiplied by a conformal
factor depending on all y’). This can be easily seen by relying on equations
(36d) of Reference 53 and (3.24); in fact we find the following.

(a) Fore =0:

1 dx'

2 2 4
ds’ 2—92002{(m) +H1(x‘,x3)(dx3)2+4H—2(x 1.
1 ’

B0 dx? dx“}
(3.27)

which can be transformed to a conformally decomposable form by a change
of coordinates x' = y', x> = y°, x* = o(y', yh, x* = yi3 yY.
(b) For e = £1:

2

1 e
ds® = _equz{[Lﬂ] + Hy(x', x°)(dx?)?

2 El(xl,
+ E[LJZ — eH(x? x4)(dx4)2} (3.28)
E>(x%, x%) S '

which is already in Kasner’s form.

Some other connections between the existence of separability struc-
tures and the existence of a K tensor with the above properties can be
deduced from the results of References 52 and 54. Instead of decomposing
K;; along a null complex tetrad (as in the || footnote on page 427 above) we
can also choose an orthonormal frame (7, X, Y, Z) in which K;; decomposes
as followsz:

Ki =A-TT, + XX;) + u(Y:Y; + Z.Z)) (3.29)

The eigenspaces spanned, respectively, by (7, X) and (Y, Z) are mutually
orthogonal. Let us now suppose that the space-time (V4, g) admits two
commuting K vectors £ and n which (locally) generate two-dimensional
group orbits. Dietz has proved the following result.

T The case of metric tensors that are strictly decomposable (i.e., when the conformal factor is a
constant) was first investigated by Kasner.®”*®’ A whole section is devoted to the conformally
decomposable case in Petrov’s book (Reference 89, Section 51).

i Our signature conventions are the opposite of those adopted in Reference 54.
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Proposition 3.12. (Reference 54, p. 544) The K tensor Kj; is reducible
in terms of g, ¢ and 7 if one eigenspace of Kj; coincides (locally) with the
orbits. T

Whenever this happens the quadruple (¢, 7, g, K) does not define a %,
structure. An analysis of all possibilities leads one to consider two more
cases, listed in Reference 54: (A) timelike orbits noncoinciding with eigen-
spaces of K ; (B) spacelike orbits noncoinciding with eigenspaces of K. (Null
orbits are excluded, as already noticed in Reference 8.) From the discussion
of cases (A) and (B) given in Reference 54 (Theorem 1, p. 544) we can draw
the following conclusions.

Proposition 3.13. Let (Vy, g), K, &, and 1 be as above. If K is such that
its eigenspaces do not coincide (locally) with the group orbits, then
(& m, g, K) defines a &>-separability structure provided K commutes with &
and 7.

Proof. Since [g, ¢]=[g, n]=[K,£€]=[K,n]=0 and [G,K]=0, by
Theorem 2.7 it is enough to check that K admits two commuting eigen-
vectors (say { and ), orthogonal and commuting with £ and 7. This follows
from Reference 54, Theorem 1, where it was proved that (smooth) functions
M and N exist such that (£, n, NY, MX) commute in pairs.i 0

We observe that the hypothesis on the eigenspaces of K is necessary,
because of Proposition 3.12. A similar statement (in a slightly weaker form)
was independently given in Reference 52, Theorem IV. Hauser and Mal-
hiot’s proof goes essentially as follows: suppose ||[dA A du| # 0; then the
surfaces of transitivity of £ and n are not null and coincide (locally) with the
surfaces A = const and u = const. Since LK = LK = 0, the eigenvalues A
and u are also constant along ¢ and n. This implies that VA and Vu are
commuting eigenvectors of K which are orthogonal to £ and 5. The results
then follow by showing that coordinates (x’) can be chosen so that x' = A,
x2= W, 3/ax> = ¢ and 9/0x* = n (see Reference 52, p. 1310).

If in addition to the previous hypotheses we assume that the Ricci
tensor R; of (V,, g) satisfies R”X,Y, = 0, Theorem 2.12 tells us that the
Schrédinger equation and the wave equation also separate (these statements
have been directly proved in Reference 54, Theorem 2, and Reference 52,
Theorem VI).

T The proof given in Reference 54 is similar to an analogous result of Reference 58.

i We recall that the appearance of the factors M and N should not be a surprise, in accordance
with the rescaling freedom implied in Theorem 2.7. The fact that Reference 54, Theorem 1,
implies separability of the geodesic equation was realized in Reference 54 by using Wood-
house’s approach.



Separability of the Hamilton-Jacobi Equation 431

Hauser and Malhiot have moreover proved a theorem (Reference 52,
Theorem V) which turns out to be of deep importance for a better under-
standing of #5 separability structures on space-time. This theorem can be
rephrased as follows.

Theorem 3.1. Let (Vy4, g) be a Lorentzian space-time. Let K;; be a K
tensor with Segre characteristic [(11)(11)] and nonconstant eigenvalues A
and u, with ||[dA A dul # 0. If

R'VaAVju =0 (3.30)
then (Vy, g) admits a & structure.

Proof (Sketch). From Theorem V of Reference 52 it follows that (3.§0)
implies the existence of two K vectors ¢ and n suchthat L.K = LK = 0 and
[¢, n] = 0. Then Proposition 3.13 (in its weaker form) applies to give the
result. 0

We have the following corollary.

Corollary 3.2. Any empty space—time (V, g) with a K tensor of Segre
characteristic [(11)(11)] and nonconstant eigenvalues admits a £
structure.

Some of the relations among the topics covered in Sections 3.1, 3.2, and
3.3 have been recently investigated for type-D vacuum space-times in
Reference 98.

3.4. Further Results on Conformal K Tensors and the Separability of
Second-Order Equations

We have already met CK tensors and anticipated that they often have to
do with separability of the null geodesic equation (see Section 3.2, § footnote
to Proposition 3.5; Section 3.3). After the pioneering paper of Walker and
Penrose,”® the role of CK tensors for null separability was investigated by
Woodhouse,? in searching for coordinate systems in which at least one
coordinate separates (see Section 2.3). This approach was later extensively
used in Reference 9, where Dietz applied Woodhouse’s theory of separable
systems to investigations concerning HJ, Schrédinger, and wave equation
separability, and null separability. From Dietz’s results (which for the sake
of brevity we do not repeat here) it is clear that CK tensors and CK vectors
play a fundamental role in the separability of the null geodesic equation (see
Reference 9, Proposition 4.5 and Theorems 2, 3, 4). The class of metrics
obtained by Dietz is another genuine generalization of Carter’s separable
metrics, to the extent that Dietz’s metrics admit only one separable coor-
dinate. The general form of Dietz’s metrics is again quite similar to Carter’s
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form, as it was already for (3.24), the link being obviously the overwhelming
presence of a K tensor (taken as an hypothesis in References 52 and 53 and
obtained as a consequence of partial separability in Reference 9). Dietz’s
and Hauser and Malhiot’s classes, of course, do not coincide but overlap on
the family of metrics having a &5 structure: it is nevertheless interesting to
accurately compare them.

The core of the analysis carried in Reference 9 is represented by the
following.

Theorem 3.2. If in (V4, g) coordinates x* (n —p+1=<a <n) are
ignorable and x! separable, the contravariant metric tensor takes the form

G=0"10:®+F'(x")0; ®0; + 2F™(x*) 9; ® 6, + (F® (x1)
+F(x*) 0. ® 8,1 (3.31)

where n—p+1<a, B=n, 2<1i, j, k=sn—p and ® splits as & =
d),(x’)+CI>*(x"). For null separability (of x') ® can be any function
®(x', x").

The last remark of Theorem 3.2 applies in particular to %,-separable
metrics; we can in fact state the following proposition.

Proposition 3.14. If the metric tensor g; has the pseudocanonical form
obtained from (3.1)—(3.3) by replacing ¢; + ¢, with an arbitrary function
U = U(y', y?%, then the HJ equation for null geodesics is completely
separable.

A weaker form of this statement appeared in Reference 49 (Theorem
2).

For the reasons which we tried to outline above, CK tensors also
deserve attention. A recent paper by Weir®” was devoted to the investiga-
tion of some of their properties. In Reference 90 the integrability conditions
and the structural equations (in the spirit of Reference 81) were found for
the conformal Killing equation V,K;;) = H(»g:;)- These have been used to
show the following.

Proposition 3.15. (Reference 90, Theorems 1 and 2.) The maximal
number N,(n) of CK tensors of order 2 that a (V,, g) can admit is
Na(n) =15(n — 1)(n +2)(n + 3)(n +4) (3.32)
and N5(n) is attained if (V,, g) is flat.

Weir then turned to give the general form admitted by the metric of a
(V., g) in which, besides an irreducible CK tensor, there exist one or two
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commuting CK vectors. The results for this last case read as follows: let &, £

¥ 2

be the CK vectors, K the CK tensor; choose coordinates (x') such that £ = 9,
1

and £ = 9,. Then there exists a function ¢ such that
2

gi=€ 8  9.8;=0 (3.33)
(G, é]l= (Vap)G (3.34)
Ki=e"Ky 9.K;=0 (3.35)
or
K= x°BEN &+ Kii (a,b,c =1,2)7 (3.35")
b c

These canonical expressions remain valid when £ and £ are simply K vectors
1 2

(i.e., when V,¢ = 0) and K is a K tensor. In this last case we get ‘‘canonical”
forms for metrics admitting two commuting K vectors and one K tensor,
summarized by

[£ K] =K, [£,K]=0 if (3.35) holds (3.36)
1 2
or

[£ K] = ¢.G + B ¢N ¢ if (3.35’) holds (3.36")
1 b c

Case (3.36') contains of course the case of &%, structures, when ¢, =0,
B,,bc =0Va,b,c, and n = 4. In Reference 90, Section 4, metric tensor

components were finally computed in the following situation: n = 4, £ = 9,

(a = 1, 2) are commuting K vectors, K;; is an irreducible CK tensor such that
[§,K 1= [f,K 1= 0; coordinates (x') are such that the metric is quasi-

dlagonal (1 e., g% =0, Vi, a =1,2). The investigation was performed by
looking at various possibilities for the eigenvalue problem det||K e
Ag*®|=0, a,8=23,4, and lead to three essentially different cases
(Reference 90, pp. 1785-1786): it is interesting to compare these results
(which we cannot report here) with those of References 9 and 52.

Weir’s analysis still holds when K is simply a K tensor. If it has Segre
characteristic [(11)(11)], which happens when case (la) of Weir’s

+ The distinction between (3.35) and (3.35) is as follows: decompose [.f, K] as [§, K]=

v,G + AK + B bcfﬂ § Then (3.35) applies when (A}, A,) # (0, 0), whlle (3.35') applies
when (A, Ay) = (0 0)
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classification is satisfied, Theorem 3.1 tells us that all vacuum metrics
involved are ¥ separable. If instead K is truly a CK tensor, Weir’s class of
metrics [in Reference 90, equation (4.5)] contains as a particular case all
type-D vacuum metrics (recall that they all admit a CK tensor; see Pro-
position 3.4). In fact these metrics are all conformally related with some
Carter yg-separable metric (this can be seen from Table I in Reference 75;
see also References 53 and 57), i.e., they all fall into the family of “‘general-
ized” separable metrics of Proposition 3.14. The general procedure to
separate the null geodesic HJ equation is given in detail in Reference 90
[equations (4.8)]; however, the particular case of C metric was computed in
Reference 72 and general results for all type-D metrics were also given in
Reference 49.

As far as separability of other second-order equations is concerned, we
just add a few remarks to what has'been already said in earlier sections. We
have already recalled the valuable contributions given in Reference 9.
Separability of the wave equation in vacuum separable space-times follows
from Corollary 2.1; for the cases of Schwarzschild and Kerr metrics this
property was long ago realized.®"** Results on separability of the wave
equation in the general type-D vacuum solution have been recently
obtained by Dudley,®® who obtained separated equations by relying on the
Newman-Penrose formalism. Dudley’s analysis is applicable to all vacuum
type-D solutions, even to those which do not admit a &, structure. This is
not contradictory with the general theory, since Dudley investigated the
property of R separability (see Reference 43 for a detailed account), which
roughly speaking amounts to separability modulo a conformal factor (in
perfect agreement with the above discussion).

3.5. Further Contributions to Separable Space-Times

In a recent paper by Collinson and Fugére® % vacuum space-times with
separable HJ equation were studied, with the aim of giving a classification of
all the various possibilities. In Reference 55 both partial and complete
separability are taken into account, and a list of eight different situations is
given (Table I, p. 747), according to the number of ignorable and separable
nonignorable coordinates (a distinction that is reflected by the correspond-
ing existence of a K vector or tensor, or else by the appearance in W of a
separated factor which is linear or not).

Collinson and Fugere explicitly restrict themselves to the case when
separability takes place after multiplication of the HJ equation by a suitable
separating factor. We have already stressed (cf. Section 2) that no a priori
reason exists that separation always takes place in such a manner: it could be
a fortuitous circumstance that it is always so when %, structures appear (see
Section 6). A definitive answer to this question (which would also assure that
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the classification given in Reference 55 exhausts all the possibilities) cannot
be given at this moment: in order to do that we need for any ¥, structure a
“canonical form” analogous to (3.1)—(3.3). This program is currently under
investigation.‘%

We shall here briefly discuss the results given in Reference 55. The first
three cases correspond to space—times for which the HJ equation admits a
complete integral of the form

W,
(aa s # 0 (3.37)

or a more separated one in which, however, no linear terms appear.t These
space-times were investigated by Petrov (Reference 89, Section 51) and
Dietz.’+ Cases 4 and 5 are studied in Reference 55, Sections 2, 3, and 4,
where only solutions in type-D and type-N families are found to exist. In
these space-times a complete integral takes the form

W= Wix") + W*(x?, 12, x%),

2
W = kx* + Wi(x') + W*(x?% 1), o “)’2# 0 (3.38)
The type-D solutions found in Reference 55 correspond to metric tensors in
which, besides the separating factor U, three arbitrary functions appear. The
type-N solutions correspond to metrics involving only two additional
functions (see Reference 55, pp. 751-752). The type-N solutions have been
independently found by Matravers,”” and we shall briefly discuss them
later.
Case 6 is essentially Carter’s %, case.
Case 7 is exactly the case of &; structures, i.e., when W separates as
FW
W = kox” + kax® + kax* + Wi(x"), e 0 (3.39)
We know from Theorem 2.7 that a space-time ( V4, g) admits a &5 structure
if and only if it admits a three-parameter Abelian group of isometries (cf.
also Reference 30, Theorem 3): hence, these space-times belong to
Bianchi’s family. Since (3.39) implies that the coordinates x?%, x>, and x* are
ignorable, the metric tensor of these space-times has the form

8ij = gij(xl)

All solutlons to Einstein vacuum equations that depend on a single variable
(say x ') were determined by Kasner®”®*® and by Papapetrou and Treder. e

1+ If ignorable coordinates exist, we shall consider these “limiting cases” as belonging to
“higher” cases of the classification.

t If any solution exists in the third case, this would correspond to a space-time with a %o
structure (i.e., with three K tensors other than G).
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Case 8 is case (IV) of Reference 53; see Section 8.
Let us now turn to Matraver’s solutions. In Reference 50 space-time
metrics of the form

X 0 0 =1

e U0 0 =1

= 2 3.40

5 0 0 Z -1 i
e s R s

were investigated, where D = D', x%x%), X = X(x"), Z = Z(x*) and
F = Fi(x") + F>(x?) + F3(x*). When D does not split into three separate
terms, (3.40) cannot give separable solutions. In Reference 50 it was proved
that vacuum solutions to Einstein equations exist under the form (3.40) only
if 3:.D = 3,D = 0. In this last case they are type-N plane-fronted gravita-
tional waves. Exact separable solutions were then computed (Reference 50,
Section 4) and shown to fit into Woodhouse’s separability scheme: these
solutions admit one K vector £ = 9, and two additional K tensors [Reference
50, equations (4.1) and (4.2)]. This last fact is in agreement with the
well-known properties of plane-fronted gravitational waves.T

We conclude this section with a list of additional references to some-
what related material. Explicit calculations for the completely separated HJ
equation for geodesics in Kerr—-NUT metric (which is one of Carter’s
#3-separable metrics) were given by Miller in Reference 96, by closely
following Reference 45. Miller has recently investigated in detail two
Bianchi type-VIII spatially homogeneous solutions which fall into Carter’s
class [§(+)] (i.e., which admit a %5 structure): separated equations are
derived in Reference 97, p. 9. Finally, %,-separable nonvacuum solutions
are investigated by Bonanos in Reference 56, in the case of a perfect fluid
stress tensor.

We should like to conclude this paper with the rather well-known
example given by the Kerr metric, in which it is easy and instructive to
compare the different viewpoints on separability and which provides an
interesting example of the greatest part of the material covered here.
However, obvious limitations of space forbid this “pedagogical”
comparison: the reader may compare the different discussions given in
Reference 45, pp. 1566-1569; Reference 58, pp. 271-273; Reference 60;
Reference 2, pp. 34-37; and Reference 30, Section 4.

T In any plane-fronted gravitational wave there are in fact two KY tensors [see Proposition
3.9(ii)], which, being null bivectors, give rise to two reducible K tensors (see Reference 84).
There are in fact three K vectors for plane-fronted gravitational waves, in accordance with a
result of Ehlers and Kundt.®®® In the notations of Reference 50 the two K tensors are
Il(=Za3®a3+F364®84+a3ﬂa4,12(=X61®61+F184®B4+61 064
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